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Abstract In this paper, a mathematical model of contractile ring-driven cytokinesis
is presented by using both phase-field and immersed-boundary methods in a three-
dimensional domain. It is one of the powerful hypotheses that cytokinesis happens
driven by the contractile ring; however, there are only few mathematical models fol-
lowing the hypothesis, to the author’s knowledge. I consider a hybrid method to model
the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-
field implicitly because of its topological change. Otherwise, immersed-boundary
particles represent a contractile ring explicitly based on the author’s previous work.
Here, the multi-component (or vector-valued) phase-field equation is considered to
avoid the emerging of each cell membrane right after their divisions. Using a convex
splitting scheme, the governing equation of the phase-field method has unique solv-
ability. The numerical convergence of contractile ring to cell membrane is proved.
Several numerical simulations are performed to validate the proposed model.

Keywords Cytokinesis · Contractile ring · Phase-field · Immersed-boundary

1 Introduction

Although cell division is one of the most fundamental and important phenomena
of living cells, its general principles are still not clear because of its complicated
process (Pollard and Cooper 2008). A plausible hypothesis of the division is that the
formation of a contractile ring (CR) drives the physical division process by dragging
the cell membrane (Shlomovitz and Gov 2008) and there are many studies on the
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584 S. Lee

function of a CR during the final step of cell division (called cytokinesis) (Bathe
and Chang 2010; Bi et al. 1998; Calvert et al. 2011; Carvalgo and Oegema 2009;
Celton-Morizur et al. 2004; Chang et al. 1997; Jochova et al. 1991; Kamasaki et al.
2007; Mandato and Berment 2001; Pelham and Chang 2002). However, assembly
or dynamics of a CR in a cytokinesis is still poorly understood (Wang 2008). It is
important to come upwith testablemodels to decipher detailed assembly and dynamics
from the amount of experimental observation or data. For example, biologists have
addressed the experimental results of the relationship between cytokinesis and cancer
cells (Daniels et al. 2004; Gisselsson et al. 2010; Kang et al. 2010) and it could
be extremely expensive in a temporal or financial aspect to test each undesirable
case in a laboratory, whereas its difficulty can be resolved by establishing a reliable
computational model. Vavylonis et al. (2008) considered a simple numerical model for
assembly mechanism of the CR for cytokinesis by fission yeast using the Monte Carlo
method. Zhou et al. (2015) studied spatially coordinate curvature-dependent septum
assembly of a CR during fission yeast cytokineses. Recently, Koudehi et al. (2016)
performed numerical simulations to show the effect of actin spherical confinement
and cross-linking in CR formation, and Lee et al. (2016) proposed a numerical model
for a CR in a three-dimensional domain using an immersed-boundary (IB) method
comparing its numerical result with an experimental data.

The phase-field (PF) method, whose governing equation is the Cahn–Hilliard
(CH) equation (Cahn and Hilliard 1958), is a useful mathematical tool to resolve
an interfacial problem when topological changes occur, such as solidification dynam-
ics (Wheeler et al. 1992), image inpainting (Bertozzi et al. 2007; Li et al. 2015), tumor
growth (Chen et al. 2014),multi-phasefluidflows (Lee et al. 2016).Amulti-component
system of the CH equation was first generalized in the de Fontaini’s literature (1967).
Lee and Kim considered a second-order accurate nonlinear difference scheme for gen-
eralized multi-component CH system (Lee and Kim 2008). Zhao and Wang Zhao and
Wang (2016b, a) proposed cytokinesis models using the phase-field method with a
contractile forcing term.

The IB method was originally developed by Peskin (Peskin 1972), and it has an
advantage presenting flexible boundaries to move or change shapes in a complicated
fashion. An elastic boundary problem has been simulated using the IBmethod, such as
the dynamics of a bent and twisted rod (Lim et al. 2008; Lim 2010), a deformable fiber
(Vahidkhah and Abdollahi 2012), a wall modeling (Chen et al. 2014; Posa and Balaras
2014), and fluid flows between eccentric rotating cylinders (Botella et al. 2015).

In this paper, a process of contractile ring-driven cytokinesis is modeled by using
PF and IB methods in a three-dimensional domain. The CR is represented by the
Lagrangian particles using the IB method based on Lee et al. (2016) without a point-
deleting algorithm. However, the IB method has a numerical difficulty when the
boundaries suffer the topological changes like emerging or division; therefore, the
PF method is used to describe the dynamics of the cell membrane because the topo-
logical change, cell division, is more easily described than using the IB method fully.
To avoid merging the divided cell membranes again, the vector-valued CH systems
are considered rather than the original CH equation.

The rest of the paper is organized as follows: The governing equations and their
properties are introduced in Sect. 2. The discretization of the equations and numer-
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ical solutions are given in Sect. 3. The simulation results are shown in Sect. 4. The
conclusion is drawn in Sect. 5.

2 Mathematical Model

Acontractile ring and a cell membrane are considered by using the IB and PFmethods,
respectively, in a three-dimensional incompressible fluid. Here, the incompressible
fluid can be modeled by the Navier–Stokes equation as explained in the later section.

2.1 Fluid Motion

The cytokinesis is accomplished by a CR assembling just beneath the plasma mem-
brane and contracting to divide one mother cell into two daughter cells. Concurrently,
a new membrane is inserted into the plasma membrane by the fusion of intracellular
vesicles (Alberts et al. 2002). Since describing the above processes exactly is too com-
plicated in a modeling, the cell surface is modeled by the fluid interface for simplicity
(Li and Kim 2016). The equations of fluid motion are given as

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
�u + 1

We
f, in � × (0,∞), (1)

∇ · u = 0, (2)

where u(x, t) = (u(x, t), v(x, t), w(x, t)) is the fluid velocity, x = (x, y, z) is the
Cartesian coordinate in � = (ax , bx ) × (ay, by) × (az, bz) ⊂ R

3, t is the time
variable, p(x, t) is the pressure, Re = ρU∗L∗/η is the Reynolds number, and We =
ρ (U∗)2 L∗/σ is theWeber numberwith the densityρ, the viscosity η, the force density
coefficient σ , the characteristic velocity U∗, and the characteristic length L∗. Here,
the periodic boundary condition is implemented. f = ( f x (x, t), f y(x, t), f z(x, t)) is
the fluid force density defined by fm + fr with the force densities fm and fr generated
by the cell membrane and the contractile ring, respectively.

2.2 Cell Membrane

For a lipid membrane, its elasticity is governed by the Helfrich free energy functional
expressed by curvatures of the membrane (Helfrich 1973) and it is known that the
bending energy given by the Helfrich Hamiltonian can be derived from the Landau–
Ginzburg model (Gompper and Zschoke 1991). Note that the Landau–Ginzburg free
energy functional leads to the CH equation on a solution conserved space. Therefore,
the shape of the cell membranes is described by a zero-contour of a diffused-interface
PF function φ(x, t) = (φ1(x, t), φ2(x, t), . . . , φN (x, t)), governed by the advective
N -component CH equation (Lee et al. 2016):

∂φi

∂t
+ u · ∇φi = 1

Pe
�

(
f (φi ) − ε2�φi + β(φ)

)
, for i = 1, 2, . . . , N , (3)
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Fig. 1 Schematic illustration
for the distribution of φ(x, t)
when N = 4

where φi is the volume fraction (here φi = 1 in i th component and φi = −1 in other
components. See Fig. 1), Pe = L∗U∗/M is the Peclet number with the mobility M ,
f (φi ) = φ3

i − φi , ε is the constant related to the interface thickness, and β(φ) =
−∑N

i=1 f (φi )/N is the Lagrangian multiplier. Here, β(φ) makes
∑N

i=1 φi = 2 − N
and it implies that φN can be decided without solving (3). The periodic boundary
condition is also implemented as the fluid velocity field. The force density fm is
defined as the surface tension force of φi written in the form (Kim 2005)

fm(x, t) = −
N−1∑
i=1

αε

We
∇ ·

( ∇φi

|∇φi |
)

|∇φi | ∇φi , (4)

where α is the correction coefficient for a diffused-interface model.

2.3 CR

The CR generates the constricting force to divide a cell into two cells during cytoki-
nesis by creating a cleavage furrow (Miller 2011). For simplicity, I consider a CR
as a certainly elastic shrinking loop as in my previous result (Lee et al. 2016). The
evolution equation of the CR positions, defined as Lagrangian variables Xi (si , t) =
(Xi (si , t),Yi (si , t), Zi (si , t)) for i = 1, . . . , N − 1 with parameters si in [0, Li,t ],
where Li,t is the unstressed length of the i th ring, is given by

∂Xi (si , t)

∂t
= Ui (si , t) =

∫

�

(−φi (x, t)) u(x, t)δ (x − Xi (si , t)) dx, (5)

where Ui (s, t) is the i th CR velocity on Xi (si , t) and δ(x) is the three-dimensional
Dirac delta function. Here, the term (−φi (x, t)) makes the CR position on the cell
membrane. In the model, the elastic force for the CR is generated by reducing Lt,i as
time evolves end the force density fr is defined as the following integration
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fr (x, t) =
N−1∑
i=1

∫ Li,t

0
Fr,i (si , t)δ(x − Xi (si , t))ds, (6)

where Fr,i (si , t) = ∂ [Ti (si , t)τ i (si , t)] /∂s is the elastic force density of the i th
CR, Ti (si , t) = σ (|∂Xi/∂si | − 1) is the tension of the i th CR, and τ i (si , t) =
(∂Xi/∂si )/|∂Xi/∂si | is the unit tangent vector to the i th CR. The detailed descriptions
can be referred in Lee et al. (2016).

2.4 Cell Growth

To model a series of cell divisions, a growth term of the cell should be added in (3)
between each cytokinesis. In a tumor growth model (Britton 2003), a growth term is
considered as

ρt (x, t) + ∇ · [ρ(x, t)u(x, t)] = λpρ(x, t), in �t , (7)

where ρ(x, t) is the tumor density, λp is the proliferation rate, and �t is the tumor
domain. Furthermore, Eq. (7) can be written as

∇ · u(x, t) = λp, in �t , (8)

with the constant density of the tumor, i.e., ρ(x, t) ≡ ρ0. Applying (8) to a PF model
(3), the result is

∂φi

∂t
+ u · ∇φi = 1

Pe
�

(
f (φi ) − ε2�φi + β(φ)

)
+ λ

2
(1 + φi ) ,

for i = 1, 2, . . . , N − 1,
(9)

where

λ =
{

λp, in a cell growth level
0, otherwise.

3 Numerical Method

First, the discretization of each variable is introduced before considering numeri-
cal solvers for governing equations. Let the set of cell-centered grid points �h ={
(x j , yk, zl) : x j = ( j − 0.5)h, yk = (k − 0.5)h, zl = (l − 0.5)h

}
be the phase-field

computational domain for j = 1, . . . , Nx , k = 1, . . . , Ny , and l = 1, . . . , Nz , where
h = (bx − ax )/Nx = (by − ay)/Ny = (bz − az)/Nz is the uniform spatial step
size with the numbers of points Nx , Ny , and Nz in x-, y-, and z-directions, respec-
tively. Let φi (x, t) and p(x, t) approximate on�h by denoting φi (x j , yk, zl , n�t) and
p(x j , yk, zl , n�t) as φn

i, jkl and pnjkl , respectively, where n is the integer and �t is the
spatial step size. Similarly, let u approximate as (u j+ 1

2 ,kl , v j,k+ 1
2 ,l , w jk,l+ 1

2
) on cell-

edged points (called a marker-and-cell (MAC) mesh; Harlow and Welch 1965) (See
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Fig. 2 Schematic of a grid and
variables

Fig. 3 Schematic of
parametrization of X(s, t). To
simplify, the phase index i is
omitted in this figure

Fig. 2). The notations φn , un are used when approximating only along the temporal
axis.

Moreover, let �sni,m be the time-dependent step size satisfying Li,t = ∑Ni,s−1
m=0

�sni,m = αi (tn)Li, 0, where Ni,s is the number of i th variable intervals, αi (tn) is a
scaling factor function at time t = tn , and Li,0 is the initial length of the i th CR. Then,
sni,m = 0 and sni,m+1 = sni,m + �sni,m for m = 0, . . . , Ni,s − 1. The discrete i th CR
position is defined asXn

i,m = X(sni,m, n�t) = (Xn
i ,Y

n
i , Zn

i ) form = 1, . . . , Ni,s . Note
that Xn

i,0 = Xn
i,Ni,s

and Xn
Ni,s+1 = Xn

1 because of the periodicity. This parametrization
of Xi (si , t) is schematically illustrated in Fig. 3.

Next, the discrete operators are defined. The discrete gradient operator∇d is defined
as

∇dφ
n
jkl =

⎛
⎝

φn
j+ 1

2 ,kl
− φn

j− 1
2 ,kl

h
,

φn
j,k+ 1

2 ,l
− φn

j,k− 1
2 ,l

h
,

φn
jk,l+ 1

2
− φn

jk,l− 1
2

h

⎞
⎠ ,
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and the discrete divergence operator ∇d · φn
i jk is defined as

∇d · φn
jkl =

φn
j+ 1

2 ,kl
− φn

j− 1
2 ,kl

+ φn
j,k+ 1

2 ,l
− φn

j,k− 1
2 ,l

+ φn
jk,l+ 1

2
− φn

jk,l− 1
2

h
.

From the above operators, the discrete Laplacian operator �d is defined as

�dφ
n
jkl = ∇d ·

(
∇dφ

n
jkl

)

= φn
j+1,kl + φn

j−1,kl + φn
j,k+1,l + φn

j,k−1,l + φn
jk,l+1 + φn

jk,l−1 − 6φn
jkl

h2
.

These operators are also applied to un
i+ 1

2 , jk
, vi, j+ 1

2 ,k , or wi j,k+ 1
2
in a similar manner.

3.1 Fluid Motion

First, un+1 is updated from a given un . Applying the explicit scheme, the time-discrete
version of Eqs. (1) and (2) is written as follows:

un+1 − un

�t
+ un · ∇un = −∇ pn+1 + 1

Re
�un + 1

We
fn, (10)

∇ · un+1 = 0. (11)

Next, the Chorin’s projection method (Chorin 1968), well known as a useful solver
for the Navier–Stokes equation, is used:

Step 1 Calculate the temporal velocity ũ by solving the following equation:

ũ − un

�t
= −un · ∇un + 1

Re
�un + 1

We
fn . (12)

Note that ũ could not be divergence-free. Equation (12) can be discretized in
space as follows:

ũ j+ 1
2 ,kl − un

j+ 1
2 ,kl

�t
= − (u · ∇du)n

j+ 1
2 ,kl

+ 1

Re
�du

n
j+ 1

2 ,kl
+ 1

We
f x,n
j+ 1

2 ,kl
,

ṽ j,k+ 1
2 ,l − vn

j,k+ 1
2 ,l

�t
= − (u · ∇dv)n

j,k+ 1
2 ,l

+ 1

Re
�dv

n
j,k+ 1

2 ,l
+ 1

We
f y,n
j,k+ 1

2 ,l
,

w̃ jk,l+ 1
2

− wn
jk,l+ 1

2

�t
= − (u · ∇dw)n

jk,l+ 1
2

+ 1

Re
�dw

n
jk,l+ 1

2
+ 1

We
f z,n
jk,l+ 1

2
.

Here, the advection terms are computed with the upwind scheme. The details
can be seen in Lee et al. (2016).
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Step 2 Update un+1 using ũ.

un+1 − ũ
�t

= −∇ pn+1. (13)

Equation (13) can be discretized in space as follows:

un+1
j+ 1

2 ,kl
− ũ j+ 1

2 ,kl

�t
= − pn+1

j+1,kl − pn+1
jkl

h
,

vn+1
j,k+ 1

2 ,l
− ṽ j,k+ 1

2 ,l

�t
= − pn+1

j,k+1,l − pn+1
jkl

h
,

wn+1
jk,l+ 1

2
− w̃ jk,l+ 1

2

�t
= − pn+1

jk,l+1 − pn+1
jkl

h
.

Here, the pressure field can be calculated by solving the Poisson equation:

�pn+1 = 1

�t
(∇d · ũ) . (14)

Note that it is derived from (13) applying the divergence operator (∇d ·) and
the condition (11). Here, the multi-grid (Trottenberg et al. 2001) is used to
solve (14) with V-cycles and Gauss–Seidel relaxation. See Lee et al. (2016).

3.2 Cell Membrane

Here, the numerical solver for the cell membrane equation is described with its growth
term (9). Based on the convex splitting scheme of Eyre’s work (1998), Eq. (9) can be
discretized in time as follows:

φn+1
i − φn

i

�t
+ un · ∇φn

i = 1

Pe
�

((
φn+1
i

)3 − φn
i − ε2�dφ

n+1
i + β(φn)

)

+λ

2

(
1 + φn

i

)
.

for i = 1, 2, . . . , N − 1. (15)

Theorem 1 Equation (15) is unconditionally uniquely solvable for each i .

Proof To simplify the notation, let us omit the index i in a proof.Consider the following
functional

F(φ) = 1

2�t

∥∥φ − φn
∥∥2−1,h + 〈

un · ∇φn, φ
〉
−1,h − λ

2

〈
1 + φn, φ

〉
−1,h

+ 1

Pe

(
1

4
‖φ‖44 − 〈

φn, φ
〉
2 + ε2

2
‖∇φ‖22 + 〈

β(φn), φ
〉
2

)
,
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where 〈φ,ψ〉p is the L p-inner product, ‖φ‖2p = 〈φ, φ〉p is the L p-norm, 〈φ,ψ〉−1,h =
〈−�φ,ψ〉2 is the inner product on a Hilbert space, and ‖φ‖2−1,h = 〈φ, φ〉−1,h is the
norm corresponding to the inner product. Then, its first variation is

δφF(φ;ψ) =
〈
φ − φn

�t
+ un · ∇φn − 1

Pe
�

(
φ3 − φn − ε2�φ + β(φn)

)

−λ

2

(
1 + φn) , ψ

〉

−1,h
,

and the second variation is

δ2φF(φ;ψ) = 1

�t
‖ψ‖2−1,h + 3

Pe
‖φψ‖22 + ε2

Pe
‖∇ψ‖22 > 0,

where ψ is in a Hilbert space H = {
φ : ∫

φ = 0
}
. Since the second variation is

strictly positive, F is a strictly convex functional and it implies that Eq. (15) is a
unique minimizer of F from its first variation.

Here, spatial discretization is similarly defined as the previous section using ∇d and
�d . The detailed descriptions of numerical solver and its stability are in Lee et al.
(2012).

3.3 CR

Using the updated fluid velocity un+1 and PF functions φn+1 =
(
φn+1
1 , . . . ,φn+1

N

)

derived above, the CR velocityUn+1
i,m and boundary positionXn+1

i,m are also updated by
solving the following discrete equation:

Un+1
i,m = −

Nx∑
j=1

Ny∑
k=1

Nz∑
l=1

φi, jklu
n+1
jkl δ3h

(
x jkl − Xn

i,m

)
h3, (16)

Xn+1
i,m = Xn

i,m + �tUn+1
i,m , (17)

for i = 1, . . . , N − 1 and m = 1, . . . , Ni,s . Note that the motion of CR is calculated
numerically when λ = 0 in Eq. 15 and the position of cell division in numerical
simulation will be determined by the position of CR when the division occurs.

The following theorem proves the pointwise convergence of Xn
i,m to the zero-

contours representing the cell membranes. To simplify the notation, the phase index
i is omitted in the theorem. Moreover, assume that the PF function is fixed in time;
hence, denote φn

i, jkl and Xn
i,m as φ jkl and Xn

m , respectively.

Theorem 2 Given ε > 0, ‖ (
xξ , yη, zζ

) − Xn
m‖2 < ε as n → ∞ for some point(

xξ , yη, zζ
)
on {x : φ(x) = 0}.
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Proof Since it could be straightforwardly extended to higher-order cases, consider the
problem as an one-dimensional case. If |Xn

m − xξ | < 2h, take ε = 2h. Otherwise,

(16) and (17) are first rewritten by using the notation un+1
j = 0.5

(
un+1
j+ 1

2
+ un+1

j− 1
2

)
as

follows:

Xn+1
m = Xn

m − �t
Nx∑
j=1

φ j u
n+1
j δh

(
x j − Xn

m

)
h,

or,

Xn+1
m − xξ

Xn
m − xξ

= 1 − h�t

Xn
m − xξ

Nx∑
j=1

φ j u
n+1
j δh

(
x j − Xn

m

)
. (18)

Without loss of generality, assume un+1
j > 0 because the CR always shrinks when

the particle move happens. Clearly, h and �t are positive and δh has compact support
only on four points near Xn

m with a positive value. By compact supportedness, (18) is
rewritten again as

Xn+1
m − xξ

Xn
m − xξ

= 1 − h�t

Xn
m − xξ

∑
x j∈[Xn

m−2h,Xn
m+2h]

φ j u
n+1
j δh

(
x j − Xn

m

)
.

If |Xn
m − xξ | ≥ 2h, then (Xn

m − xξ )φ j > 0 for { j : x j ∈ [Xn
m − 2h, Xn

m + 2h]}.
Moreover, it implies that

∣∣∣∣
Xn+1
m − xξ

Xn
m − xξ

∣∣∣∣ < 1,

and the proof is over.

4 Simulation Results

In this section, several numerical tests are described to validate our modeling in a
three-dimensional domain. First, Theorem 2 is checked numerically and then some
numerical simulations are performed to show the configurations of cell membrane
and CR. The computational domain will be set as �h = (0, 1) × (0, 1) × (0, 2)
unless otherwise stated. Except for comparing with experimental data, I refer the
non-dimensional parameters in my previous results (Lee et al. 2016).

4.1 φ-Effect in IB Velocity

The first simulation is to prove the result of Theorem 2 numerically. The param-
eters are chosen as Nx = Ny = 32, Nz = 64, Re = 10, We = 10,
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Fig. 4 Temporal evolution of
differences between the radii of
CR and cell membrane at
z = 0.5 until the cytokinesis
occurs

0 0.2 0.4 0.6 0.8

min
max
average

Fig. 5 Numerical results of cell division process starting with a single cell. The isosurfaces represent cells,
the blue line is the CR, and arrows describe the fluid velocities. a Initial, b t = 300�t , c t = 600�t , d
t = 1000�t (Color figure online)

Pe = 1/ε, ε = ε3, �t = 0.1Re · h2, L0 = 2π(0.35), and Nt = 1000. Fig-
ure 4 shows the temporal evolution of differences between the radii of CR and
cell membrane at z = 0.5 until the cytokinesis occurs. Here, the black bold dot-
ted lines represent the upper(2h) and lower(0) bounds in the hypothesis and the
distances calculated from numerical results are drawn by thin lines. The distances
are calculated at each Lagrangian particle. The legends min, max, and average
in graph represent the minimum, maximum, and average distances, respectively.
Since the differences are always bounded by [0, 2h], it has a good agreement with
Theorem 2.

4.2 Single Cell

Next, the numerical simulations of cell division process starting with a single cell
are performed in this section. The isosurfaces represent cells, the blue line is the
CR, and arrows describe the fluid velocities in Fig. 5. The same parameters as the
previous simulation are chosen. Note that the topological change, i.e., cytokinesis,
can be expressed by using the proposed model without complicated numerical treat-
ment.
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(a) (b) (c) (d) (e)

Fig. 6 Comparison of temporal evolution with Li’s work (2012). The arrows and the black solid lines
represent the velocity field and the cell membranes, respectively, in the background images, which are
reprinted with permission from Springer (Li et al. 2012). Otherwise, the red dotted lines are a zero-contour
of φ (Color figure online)

(a) (b) (c) (d) (e)

Fig. 7 Configuration of cell membranes from the numerical simulation and in vivo. Background images,
reprinted with permission from National Academy of Sciences (Zang and Spudich 1998), and red solid
lines represent the experimental data and the simulation results, respectively. a Initial, b t = 0.2930, c
t = 0.6006, d t = 1.0693, e t = 1.3184 (Color figure online)

4.3 Comparison with Previous Model

Here, the numerical simulation for comparison with a previous model is considered
to validate the proposed model. Li et al. (2012) proposed the mathematical model for
simulating a single axisymmetric cell using an IB method. With the initial condition
from the elongated cell in the Li’s work, I perform the numerical simulation and
its results are presented in Fig. 6. The arrows and the black solid lines represent the
velocity field and the cellmembranes, respectively, from the previouswork.Otherwise,
the red dotted lines are a zero-contour of φ. Note that there are no data for comparing
with Fig. 6e because it is quite hard to perform the simulation after the cell is divided
in the previous work.

4.4 Comparison with Experiment Data

Moreover, Fig. 7 shows the configuration of cell membranes from the numerical sim-
ulation and in vivo. Background images and red solid lines represent the experimental
data and the simulation results, respectively. The used parameters are Nx = Ny = 32,
Nz = 64, Re = 15, We = 10, Pe = 1/ε, ε = ε3, �t = 0.1Re · h2, L0 = 2π(0.25),
and Nt = 1000. Note that computational parameters are chosen in order to match the
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Fig. 8 Numerical results of cell division process starting with a multiple cell. The isosurfaces represent
cells, the blue line is the CR, and arrows describe the fluid velocities. a 1000�t , b 1500�t , c 2000�t , d
2500�t , e 3000�t (Color figure online)

numerical result and the experimental data since the exact values for the experience are
unknown. The background images are in vivo, and the red solid lines present the simu-
lation results. Note that the times in numerical simulations are non-dimensionalized in
(a)–(e) and their ratios are well matched to experimental ones. As shown in the figure,
the result shows that the experiment data can be approximated well by the proposed
model.

4.5 Multiple Divisions

Now, the simulation with a series of divisions is considered in this subsection. The
position of cell divisionwill be randomly chosen on the cellmembrane. The parameters
are the same as the first simulation, except Nt = 3000. Figure 8 shows the numerical
results of cell division process starting with a multiple cell. Because the temporal
evolution is the same as one cell until t = 1000�t , Fig. 8a starts with the state when
t = 1000�t . In Fig. 8b, the cell membrane is growing with λp = 1. The cell growth
was already stopped, and the second cell division starts in Fig. 8c, and the cytokinesis
keeps going in Fig. 8d. At last, Fig. 8e shows that four daughter cells exist after
two divisions. If the usual CH equation, not the vector-valued one, is used to model,
emerging should be happened in Fig. 8b or c because the distance between each two
daughter cells is too close; however, it is resolved to use the vector-valued PF method.

5 Conclusion

Mathematical model of contractile ring-driven cytokinesis was proposed by using both
PF and IB methods in this paper. To validate the model in a mathematical sense, we
proved the solvability of the PF, governed the cell membrane and the convergence of
the IB equation and governed the CR. Moreover, several numerical simulations were
performed. The first result had a good agreement with the convergence theorem of
CR, and it was also shown that the experimental data from Zang and Spudich (1998)
can be approximated well by the proposed model. The multiple division simulation
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result was also presented. In the future work, the nucleus division could bemodeled by
modifying theCH equation andmore detailed theories in biologywould be considered.
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