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Abstract
Phosphorus is an essential element for all life forms, and it is also a limiting nutrient
in many aquatic ecosystems. To keep track of the mismatch between the grazer’s
phosphorus requirement and producer phosphorus content, stoichiometric models
have been developed to explicitly incorporate food quality and food quantity. Most
stoichiometric models have suggested that the grazer dynamics heavily depends on
the producer phosphorus content when the producer has insufficient nutrient content
[low phosphorus (P):carbon (C) ratio]. However, recent laboratory experiments have
shown that the grazer dynamics are also affected by excess producer nutrient content
(extremely high P:C ratio). This phenomenon is known as the “stoichiometric knife
edge.” While the Peace et al. (Bull Math Biol 76(9):2175–2197, 2014) model has
captured this phenomenon, it does not explicitly track P loading of the aquatic envi-
ronment. Here, we extend the Peace et al. (2014) model by mechanistically deriving
and tracking P loading in order to investigate the growth response of the grazer to the
producer of varying P:C ratios. We analyze the dynamics of the system such as bound-
edness and positivity of the solutions, existence and stability conditions of boundary
equilibria. Bifurcation diagram and simulations show that our model behaves qualita-
tively similar to the Peace et al. (2014) model. The model shows that the fate of the
grazer population can be very sensitive to P loading. Furthermore, the structure of our
model can easily be extended to incorporate seasonal P loading.

Keywords Ecological stoichiometry · Predator–prey model · Stoichiometric knife
edge · Phosphorus
1 Introduction

Ecological stoichiometry, an emerging branch of ecology (Sterner and Elser 2002;
Andersen et al. 2004), is defined as “the study of the balance of elements in ecological
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process” (Moe et al. 2005, p. 29). Ecological stoichiometry provides a rigorous and
ubiquitous mechanistic basis for modeling population dynamics. Its principles are
involved in studies of food quality, nutrition, nutrient recycling, and others, which
have long histories of investigation.

Some population models implicitly assume chemical homogeneity of all trophic
levels by concentrating on a single constituent. However, in an ecosystem, the
macronutrients nitrogen (N), phosphorus (P), and carbon (C), along with light energy,
and other nutrients are fundamental to biogeochemical processes. Moreover, the con-
centrations of them vary considerably among species. In aquatic ecosystems, P is
usually considered one of the primary limiting nutrients (Elser et al. 2001). This
means that the available quantity of P controls the pace at which algae and aquatic
plants are produced. The appropriate quantities of P can be used by vegetation and
soil microbes for normal growth. However, excess quantities of P lead to water quality
problem such as eutrophication. When P is limiting or in excess in aquatic habitats,
traditional predator–prey models, which only track the energy flow, cannot adequately
describe and understand some rich and interesting aquatic observations.

In the last decades, many stoichiometric population models have been constructed
to explicitly incorporate both food quality and food quantity by tracking the mismatch
between P requirement in the grazer and P content in the producer. One of the popular
stoichiometric predator–prey models constructed to track the food quality and the
food quantity is the one proposed by Loladze, Kuang, and Elser (called the LKE
model). This model describes a food quality-modified Lotka–Volterra-type producer–
grazer model. The model shows that the grazer dynamics heavily depends on the P
content in the producer when the producer has insufficient nutrient content (low P:C
ratio). However, recent laboratory experiments show that the grazer dynamics are also
affected by excess producer nutrient content (extremely high P:C ratio) (Boersma and
Elser 2006; Elser et al. 2006). This phenomenon is known as the “stoichiometric knife
edge.”

Elser et al. (2012) and Peace et al. (2013) modified the LKE model to incorporate
the stoichiometric knife-edge phenomenon. However, these models do not explicitly
track P in the producer or in the media that supports the producer. For this reason,
Peace et al. (2014) extended the stoichiometric knife-edge model by mechanistically
deriving and tracking P in the producer and free P in the environment in order to
investigate the growth response of grazer to producer of varying P:C ratios.

The Peace et al. (2014) model does not explicitly consider the effects of P loading,
but it is a well-known fact that the basic cause of the eutrophication is the excessive
loading of P into water bodies (Yang et al. 2008). This fact motivates our study to
investigate the role of P loading in a producer–grazer system and its effects on grazer
dynamics. Our model is a system of four non-smooth ordinary differential equations.
The analysis of this non-smooth model is mathematically challenging due to its four
minimum functions. We provide a bifurcation analysis, with respect to the P input
parameter Pfin , for themodel with Holling type II functional response. The bifurcation
analysis shows that our model behaves qualitatively similar but quantitatively different
to the Peace et al. (2014) model.

The organization of this paper is as follows: In Sect. 2, the model is introduced
and the biologically significant parameters are identified. In Sect. 3, the dynamics
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of the system such as boundedness and positivity of the solutions and the existence
and stability conditions of boundary equilibria are analyzed. In Sect. 4, bifurcation
diagrams and simulations illustrating model behavior are presented. The similarities
and the differences of the Peace et al. (2014) model and the stoichiometric knife-
edge model with P loading are discussed systematically. In Sect. 5, the implications
of our results and suggested directions for further research are discussed. Proofs of
mathematical results are placed in “Appendix.”

2 Model Construction

Elser et al. (2012) and Peace et al. (2013) modified the Loladze et al. (2000) model to
incorporate the stoichiometric knife-edge effect:

dx

dt
= bx

(
1 − x

min{K , (P − θ y)/q}
)

− min

{
f (x),

f̂ θ

Q

}
y, (1a)

dy

dt
= min

{
ê f (x),

Q

θ
f (x), ê f̂

θ

Q

}
y − dy, (1b)

where Q = (P − θ y)/x describes the P:C ratio of the producer, x(t) and y(t) are
the biomass of the producer and grazer, respectively, measured in terms of C, b is the
maximum growth rate of producer, d is the specific loss rate of grazer, ê (< 1) (due to
the thermodynamic limitations) is maximal production efficiency of grazer, K is the
producer constant carrying capacity (due to external constraints of C, such as light
limitation), P is the total phosphorus in the system, θ is the grazer’s constant P:C
ratio, q is the minimal P:C in producer, and f (x) is the grazer’s ingestion rate, which
is taken here as a Holling type II functional response. In general, the function f (x) is a
bounded differentiable function that satisfies f (0) = 0, f ′(x) > 0, and f ′′(x) < 0 for
x ≥ 0 (Loladze et al. 2000). f (x) is saturating with limx→∞ f (x) = f̂ . The model
makes the following four assumptions.

Assumption 1 The total mass of phosphorus in the entire system is fixed; i.e., the
system is closed for phosphorus with a total of P (mg P/l).

Assumption 2 Phosphorus-to-carbon ratio (P:C) in the producer varies, but it never
falls below a minimum q (mg P/ mg C); the grazer maintains a constant P:C, θ (mg
P/ mg C).

Assumption 3 All phosphorus in the system is divided into two pools: phosphorus in
the grazer and phosphorus in the producer.

Assumption 4 At most f̂ θ units of phosphorus are ingested by each unit of grazer’s
biomass per unit time; i.e., the grazer ingests P up to the rate required for its maximal
growth but not more.

Then, Peace et al. (2014) extended the stoichiometric knife-edgemodel to explicitly
trace free P by following the procedure used by Wang et al. (2008). By this way, the
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third assumption above is dropped and the following four-dimensional knife-edge
model is obtained:

dx

dt
= bx min

{
1 − x

K
, 1 − q

Q

}
− min

{
f (x),

f̂ θ

Q

}
y, (2a)

dy

dt
= min

{
ê f (x),

Q

θ
f (x), ê f̂

θ

Q

}
y − dy, (2b)

dQ

dt
= υ(Pf , Q) − bmin

{
Q
(
1 − x

K

)
, Q − q

}
, (2c)

dPf

dt
= −υ(Pf , Q)x + θdy + min

{
f (x),

f̂ θ

Q

}
y

(
Q − min

{
ê,

Q

θ

}
θ

)
, (2d)

where υ(Pf , Q) = ĉP f

â+Pf

Q̂−Q
Q̂−q

is the P uptake rate of the producer. Here, Q̂ is

the maximum of quota, ĉ is the maximum P per C uptake of the producer, and â is
phosphorus half-saturation constant of the producer.

Henceforth, we will call this model as the stoichiometric knife-edge model without
P input. Notice that the assumption that total P in the system is constant allows this
model to be reduced to three ODEs.

Our model is an extension of the four-dimensional knife-edge model. The major
assumptions of the model are:

Assumption 5 There is a constant phosphorus concentration, Pfin , in the inflow.

Assumption 6 The volume of water is constant; i.e., the inflow rate of water is equal
to the outflow rate.

The stoichiometric knife-edge model with P input:

dx

dt
= bx min

{
1 − x

K
, 1 − q

Q

}
︸ ︷︷ ︸

producer growth
limited by light and nutrient

−min

{
f (x),

f̂ θ

Q

}
y

︸ ︷︷ ︸
uptake by grazer

− ρx︸︷︷︸
washout

, (3a)

dy

dt
= min

⎧⎪⎪⎨
⎪⎪⎩

energy limitation︷ ︸︸ ︷
ê f (x) ,

P limitation︷ ︸︸ ︷
Q

θ
f (x) ,

P in excess︷ ︸︸ ︷
ê f̂

θ

Q

⎫⎪⎪⎬
⎪⎪⎭

y

︸ ︷︷ ︸
grazer growth rate

− dy︸︷︷︸
grazer death&
respiration loss

− ρy︸︷︷︸
washout

, (3b)

dQ

dt
= υ(Pf , Q)︸ ︷︷ ︸

P uptake by producer

−bmin
{
Q
(
1 − x

K

)
, Q − q

}
︸ ︷︷ ︸

P consumption by producer

, (3c)

dPf

dt
= ρ(Pfin − Pf )︸ ︷︷ ︸

P input and washout

− υ(Pf , Q)x︸ ︷︷ ︸
producer P uptake

+ θdy︸︷︷︸
P from

grazer death
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+ min

{
f (x),

f̂ θ

Q

}
y

(
Q − min

{
ê,

Q

θ

}
θ

)

︸ ︷︷ ︸
P recycled by grazer

, (3d)

whereρ is lake flushing rate (i.e., the inverse of retention time). In the rest of this paper,
we assume ρ = 0.02/day. This specific value is selected from within the reasonable
range (see Table 1).

3 Model Analysis

In this section, we present a basic analysis on the model verifying the boundedness
and positivity of the solutions. We also locate boundary equilibria and develop some
criteria to determine their existence and stability.

3.1 Boundedness and Positive Invariance

Let P = Q(t)x(t)+θ y(t)+ Pf (t), which is the total phosphorus in system (3). Then,
since ê f (x) < f̂ , the following holds true.

Table 1 All parameters are biologically realistic values obtained from Andersen (1997) and Urabe and
Sterner (1996) and used by Loladze et al. (2000) and Peace et al. (2013)

Parameter Description Value Units

Pfin Input concentration of P 0–0.15 mg P/l

ρ Lake flushing rate 0–0.05 /day

ê Maximal production efficiency in C terms 0.8 –

b Maximal growth rate of the producer 1.2 /day

d Grazer loss rate (includes respiration) 0.25 /day

θ Grazer constant P:C 0.03 mg P/mg C

q Producer minimal P:C 0.0038 mg P/mg C

K Producer carrying capacity limited by light 1.5 mg C/l

f (x) Grazer ingestion rate f̂ x
a+x /day

f̂ Maximal ingestion rate of the grazer 0.81 /day

a Half-saturation of the grazer ingestion response 0.25 mg C/l

â Phosphorus half-saturation constant of the producer 0.008 mg P/l

ĉ Maximum P per C uptake rate of the producer 0.2 mg P/mg C/day

Q̂ Maximum quota 2.5 mg P/mg C

The values of ĉ and â are used in Wang et al. (2008) and are within the same orders of magnitude as those
found in Andersen (1997) and Diehl (2007). The value of ρ is used in Matsumura and Sakawa (1980). The
value of Pfin is used in Berger et al. (2006)
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dP

dt
= Q′(t)x(t) + Q(t)x ′(t) + θ y′(t) + P ′

f (t)

= min

{
ê f (x),

Q

θ
f (x), ê f̂

θ

Q

}
θ y − min

{
f (x),

f̂ θ

Q

}

min

{
ê,

Q

θ

}
θ y − ρQx − ρθ y + ρ(Pfin − Pf )

= min

{
ê f (x),

Q

θ
f (x), ê f̂

θ

Q

}
θ y − min

{
ê f (x),

Q

θ
f (x), ê f̂

θ

Q

}
θ y

+ ρ(Pfin − Pf − Qx − θ y)

= ρ(Pfin − P).

This implies

P∞ ≤ lim sup
t→∞

P(t) = Pfin and P(t) ≤ max
{
Pfin , P(0)

}
.

Theorem 3.1 Solutions to System (3) with initial conditions in the set

� =
{
(x, y, Q, Pf ) : 0 < x, 0 < y, q < Q < Q̂, 0 < Pf , Qx + θ y + Pf < Pfin

}
(4)

remain there for all forward time.

Proof The proof is provided in “Appendix A.” ��

3.2 Existence Conditions of Boundary Equilibria

System (3) has two equilibria on the boundary: the producer and grazer extinction
equilibrium E0 = (0, 0, Q0, Pfin), where

Q0 = (Q̂ − q)(â + Pfin)qb + ĉP fin Q̂

(Q̂ − q)(â + Pfin)b + ĉP fin

> 0,

and the grazer only extinction equilibrium E1 = (x1, 0, Q1, Pf1) which is obtained
by considering the following cases:
Case 1 1 − x

K < 1 − q
Q

In this case, Eq. (3a) becomes

dx

dt
= bx

(
1 − x

K

)
− min

{
f (x),

f̂ θ

Q

}
y − ρx

and

x1 = K (b − ρ)

b
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which is positive if b > ρ.
Equation (3c) becomes

dQ

dt
= ĉP f

â + Pf

Q̂ − Q

Q̂ − q
− bQ

(
1 − x

K

)

and

Q1 = ĉP f1 Q̂

(â + Pf1)(Q̂ − q)ρ + ĉP f1

> 0.

Equation (3d) is

dPf

dt
= ρ(Pfin − Pf ) − ĉP f

â + Pf

Q̂ − Q

Q̂ − q
x + θdy

+ min

{
f (x),

f̂ θ

Q

}
y

(
Q − min

{
ê,

Q

θ

}
θ

)
,

and if the solutions of dx/dt = 0 and dQ/dt = 0 are put into Eq. (3d), then Pf1 is
the positive root of the following equation:

ρ(Pfin − Pf1) +
(ρ

b
− 1
) ĉP f1K Q̂

(â + Pf1)(Q̂ − q)[
1 − ĉP f1

Pf1((Q̂ − q)ρ + ĉ) + âρ(Q̂ − q)

]
= 0.

Case 2 1 − x
K > 1 − q

Q
In this case, Eq. (3a) becomes

dx

dt
= bx

(
1 − q

Q

)
− min

{
f (x),

f̂ θ

Q

}
y − ρx

and

Q1 = bq

b − ρ

which is positive if b > ρ.
Equation (3c) becomes

dQ

dt
= ĉP f

â + Pf

Q̂ − Q

Q̂ − q
− bQ

(
1 − q

Q

)
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and

Pf1 = − (q − Q̂)âρbq

(q − Q̂)(qρ − ĉ)b − Q̂ĉρ

which is positive if (q − Q̂)(qρ − ĉ)b > Q̂ĉρ.
Equation (3d) is

dPf

dt
= ρ(Pfin − Pf ) − ĉP f

â + Pf

Q̂ − Q

Q̂ − q
x + θdy

+ min

{
f (x),

f̂ θ

Q

}
y

(
Q − min

{
ê,

Q

θ

}
θ

)

and

x1 =
(b − ρ)

(
Pfin

(
(q − Q̂)(qρ − ĉ)b − Q̂ĉρ

)
− (Q̂ − q)âbqρ

)

((q − Q̂)(qρ − ĉ)b − Q̂ĉρ)qb

which is positive if the following conditions are satisfied (simultaneously):

(q − Q̂)(qρ − ĉ)b > Q̂ĉρ,

Pfin

(
(q − Q̂)(qρ − ĉ)b − Q̂ĉρ

)
> (Q̂ − q)âbqρ.

Therefore, E1 = (x1, 0, Q1, Pf1)which takes the following form for the cases below:

E1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
K (b−ρ)

b , 0,
ĉP f1 Q̂

(â+Pf1 )(Q̂−q)ρ+ĉP f1

, Pf1

)
, if 1 − x

K < 1 − q
Q

(
(b−ρ)

(
Pfin

(
(q−Q̂)(qρ−ĉ)b−Q̂ĉρ

)
−(Q̂−q)âbqρ

)
((q−Q̂)(qρ−ĉ)b−Q̂ĉρ)qb

, 0, bq
b−ρ

, − (q−Q̂)âρbq
(q−Q̂)(qρ−ĉ)b−Q̂ĉρ

)
, if 1 − x

K > 1 − q
Q

where Pf1 is the positive root of the following equation:

ρ(Pfin − Pf1) +
(ρ

b
− 1
) ĉP f1K Q̂

(â + Pf1)(Q̂ − q)[
1 − ĉP f1

Pf1((Q̂ − q)ρ + ĉ) + âρ(Q̂ − q)

]
= 0.

Note that from the bifurcation analysis, we observe that the two equilibrium forms
cannot coexist.
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3.3 Stability Analysis of Boundary Equilibria

Consider the system,

x ′ = F(x, y, Q, Pf ) = 0

y′ = yG(x, y, Q, Pf ) = 0

Q′ = H(x, y, Q, Pf ) = 0

P ′
f = I (x, y, Q, Pf ) = 0

To analyze the stability of equilibrium points, we use the Jacobian of the above system
which is given by

J =

⎛
⎜⎜⎝

Fx (x, y, Q, Pf ) Fy(x, y, Q, Pf ) FQ(x, y, Q, Pf ) FPf (x, y, Q, Pf )

yGx (x, y, Q, Pf ) G(x, y, Q, Pf ) + yGy(x, y, Q, Pf ) yGQ(x, y, Q, Pf ) yGPf (x, y, Q, Pf )

Hx (x, y, Q, Pf ) Hy(x, y, Q, Pf ) HQ(x, y, Q, Pf ) HPf (x, y, Q, Pf )

Ix (x, y, Q, Pf ) Iy(x, y, Q, Pf ) IQ(x, y, Q, Pf ) IPf (x, y, Q, Pf )

⎞
⎟⎟⎠

Theorem 3.2 The producer and grazer extinction equilibrium, E0, is unstable if b(1−
q
Q0

) > ρ.

Proof The proof is provided in “Appendix B.” ��
Theorem 3.3 The grazer extinction equilibrium, E1, is locally asymptotically stable
if

min

{
ê f (x1),

Q1

θ
f (x1), ê f̂

θ

Q1

}
< d + ρ.

Proof The proof is provided in “Appendix C.” ��

4 Numerical Simulations

All simulations use the Holling type II function f (x) = f̂ x/(a + x) for the grazer
ingestion rate. Parameter values are listed in Table 1. All parameters are biologically
realistic values obtained from Andersen (1997) and Urabe and Sterner (1996) and
used by Loladze et al. (2000) and Peace et al. (2013). The values of ĉ and â are used
in Wang et al. (2008) and within the same orders of magnitude as those found in
Andersen (1997) and Diehl (2007). The value of ρ is used in Matsumura and Sakawa
(1980). The value of Pfin is used in Berger et al. (2006). The initial conditions in our
simulation are chosen inside the biologically meaningful region � [see Eq. (4)]. In
our numerical experiments, we increase Pfin in an ecological meaningful range from
0 to 0.15 mg P/l. Pfin is the amount of phosphorus input in the system and affects the
P:C ratio of the producer (Q) and thus the growth dynamics of the grazer.

For low phosphorus input Pfin , population densities stabilize around a positive
stable equilibrium (see Fig. 1a).When Pfin increases, the population densities oscillate
around an unstable equilibrium. The grazer density undergoes almost near-extinction
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Fig. 1 Numerical simulations of the full model presented in System (3) performed using parameters found
in Table 1 and varying values for Pfin , a low phosphorus input Pfin = 0.03 mg P/l, b Pfin = 0.05 mg
P/l, c Pfin = 0.08 mg P/l, d excess phosphorus input Pfin = 0.15 mg P/l. Producer and grazer densities
(mg C/l) are given by solid and dashed lines, respectively, and Q, producer cell quota (P:C), and Pf , free
phosphorus (mg P/l), are given by red dotted and blue dash-dot lines, respectively (Color figure online)

state (see Fig. 1b). When Pfin increase further, the system displays oscillations in
population densities and for a while later, oscillations disappear and the positive stable
equilibrium emerges (see Fig. 1c). For excess phosphorus input Pfin , the grazer, despite
ample food supply, is heading toward deterministic extinction. The extinction is caused
by reduction in grazer growth due to high producer P:C (see Fig. 1d).

Solutions of Model (3) are compared to those of Model (2) for varying Pfin and
P values in Fig. 2. For steady-state cases and Pfin , P = 0.05 mg P/l, our model
and the Peace et al. (2014) model have almost identical solutions. (a) coexistence
at an equilibrium; (b) coexistence with oscillations; and (d) extinction of the grazer.
However, for Pfin , P = 0.08 mg P/l, they are completely different. For P = 0.08
mg P/l, (c) captures oscillations around unstable equilibrium. These oscillations have
an unstable grazer density, almost nearing extinction. For Pfin = 0.08 mg P/l, (c)
captures oscillations around unstable equilibrium at the beginning, and then a little
while later, oscillations damp out a positive stable equilibrium.

4.1 Bifurcation Diagrams

The bifurcation diagrams in Fig. 3 illustrate how the dynamics of the grazer in Eqs.
(2) and (3) varies with P and Pfin . The grazer goes extinct for extremely low values
of P and Pfin because of low food quantity. As P and Pfin increase, there is a stable
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1362 L. Asik, A. Peace

Fig. 2 Comparison of solutions of Model (3) in black and the Model (2) in red with different Pfin and
P values. Solid curves depict producer densities, and dashed curves depict grazer densities (Color figure
online)

equilibrium. When P and Pfin increase further, the grazer density increases until the
stable equilibrium loses its stability at a saddle-node bifurcations. There is a limit
cycle, and the amplitudes of the oscillations increase with P and Pfin . For P and
Pfin large enough, the oscillations are abruptly halted when a Hopf bifurcation occurs
and another coexistence equilibrium emerges. As P and Pfin continue to increase, the
grazer density starts to decrease until it reaches the second saddle-node bifurcation,
and then, suddenly is driven to extinction due to low food quality. There are some
subtle but important differences between the dynamics of Eqs. (2) and (3): (a) The
equilibria of Eq. (3) lose their stability earlier than the corresponding ones of (2); (b)
the amplitudes of the oscillations in the stoichiometric knife-edge model without P
input are larger than those in the stoichiometric knife-edge model with P input; (c)
the range of the oscillations in the stoichiometric knife-edge model without P input is
longer than that in the stoichiometric knife-edgemodelwithP input; (d) the coexistence
equilibrium of Eq. (3) emerges earlier than the corresponding one of (2); and (e) in
the stoichiometric knife-edge model with P input, the grazer density drives itself into
extinction faster than that in the stoichiometric knife-edge model without P input.

Unlike the previous Model (2), Model (3) incorporates P loading dynamics. It is
important to note that Model (2) is a special case of Model (3) when the lake flushing
rate is zero (i.e., ρ = 0). Figure 4 shows the bifurcation diagram, which describes
the relationship between the variable y and the parameter ρ. For low value of ρ,
there are an unstable equilibrium and a stable limit cycle. As ρ increases, the unstable
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Fig. 3 Bifurcation diagram for Model (3) with respect to Pfin in black, bifurcation diagram for Peace et al.
(2014) Model (2) with respect to P in red. Solid curves depict stable equilibria and extrema of stable limit
cycles, and dashed curves depict unstable equilibria and extrema of unstable limit cycles. Data are generated
using the bifurcation software XPPAUT (Color figure online)

Fig. 4 Bifurcation diagram for Model (3). The grazer density (y) is the bifurcation variable, while the lake
flushing rate (ρ) is the bifurcation parameter. Solid curves depict stable equilibria and extrema of stable
limit cycles, and dashed curves depict unstable equilibria and extrema of unstable limit cycles. All other
parameters are as in Table 1, except Pfin that is considered as a constant at 0.08 because the two models
predict quantitatively different dynamics (see Fig. 2c), and it is near the observed Hopf bifurcation (Fig. 3).
Data are generated by the bifurcation software XPPAUT

interior equilibrium is stabilized by a Hopf bifurcation. Immediately following this
Hopf bifurcation, there is a brief regionof bistabilitywith the interior stable equilibrium
and the limit cycles. As ρ increases further, this region of bistability comes to an end
via a periodic saddle-node bifurcation as the limit cycles disappear. After the collapse
of the limit cycles, the one interior equilibrium remains stable.

5 Conclusion and Future Directions

We constructed and analyzed a stoichiometric knife-edge model that explicitly tracks
P loading. Conditions for positivity and boundedness of solutions are obtained in The-
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orem 3.1. The existence and stability conditions of boundary equilibria are analyzed
in Theorem 3.2 and Theorem 3.3. Bifurcation analysis of the model with P concentra-
tion in the inflow is performed. Through the bifurcation analysis, we observe that our
model behaves qualitatively similar to the Peace et al. (2014) model. However, there
are quantitative differences between the two models after the point where the predator
limitation switches from C to P (from food quantity to food quality). Furthermore, the
additional complexities of ourmodel are justified because P loading plays an important
role in controlling eutrophication of lakes and our model explicitly tracks it. Ecologist
often measures environmental nutrient loads and uses them as ecological gauges for
aquatic systems. This mechanistic model formulation also provides significant addi-
tional benefit; our model can be easily expanded to a seasonal model by following the
procedure used by Kot et al. (1992). A seasonal extension of our model will help shed
light on the major impacts seasonal P loading can have on population dynamics and
ecosystem function.

Appendix A. Proof of Theorem 3.1

Proof We consider a solution S(t) ≡ (x(t), y(t), Q(t), Pf (t)) of System (3) with
initial condition in �. Hence, 0 < x(0), 0 < y(0), q < Q(0) < Q̂, 0 <

Pf (0), Q(0)x(0) + θ y(0) + Pf (0) < Pfin . Assume that there exists a time t1 > 0
such that S(t) touches or crosses a boundary of �̄ (closure of �) for the first time,
and then (x(t), y(t), Q(t), Pf (t)) ∈ � for 0 ≤ t < t1. We will have several cases to
consider.
Case 1 x(t1) = 0. Let f = f ′(0) = limx→0

f (x)
x and y = maxt∈[0,t1] y(t) <

Pfin
θ

.
Then for every t ∈ [0, t1], we have

x ′ = bx min

{
1 − x

K
, 1 − q

Q

}
− min

{
f (x),

f̂ θ

Q

}
y − ρx

≥ − f (x)y − ρx ≥ − f̄ ȳx − ρx = −( f̄ ȳ + ρ)x ≡ α1x,

where α1 is a constant. Then, x(t) ≥ x(0)eα1t > 0 for t ∈ [0, t1], which implies that
x(t1) ≥ x(0)eα1t1 > 0, a contradiction. This proves that S(t1) does not reach this
boundary.

Case 2 y(t1) = 0. Then, for every t ∈ [0, t1], we have

y′ = min

{
ê f (x),

Q

θ
f (x), ê f̂

θ

Q

}
y − dy − ρy,

≥ −dy − ρy = −(d + ρ)y ≡ α2y,

where α2 is a constant. This implies that y(t1) ≥ y(0)eα2t1 > 0, a contradiction. This
proves that S(t1) does not reach this boundary.
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Case 3 Q(t1) = q. Then, for every t ∈ [0, t1], we have

Q′ = υ(Pf , Q) − bmin
{
Q
(
1 − x

K

)
, Q − q

}

≥ −bmin
{
Q
(
1 − x

K

)
, Q − q

}

≥ −b(Q − q).

This implies that Q(t1) ≥ q + (Q(0)− q)e−bt1 > q, a contradiction. This proves that
S(t1) cannot cross this boundary.

Case 4 Q(t1) = Q̂. Since υ(Pf (t1), Q(t1)) = 0

dQ

dt

∣∣∣
t1

= −bmin
{
Q(t1)

(
1 − x(t1)

K

)
, Q(t1) − q

}
< 0.

Thus, S(t1) cannot cross this boundary.
Case 5 Pf (t1) = 0. Since υ(Pf (t1), Q(t1)) = 0 and ρ(Pfin − Pf (t1)) = ρPfin

dPf

dt

∣∣∣∣
t1

= ρPfin + θdy(t1) + min

{
f (x(t1)),

f̂ θ

Q(t1)

}

y(t1)

(
Q(t1) − min

{
ê,

Q(t1)

θ

}
θ

)
> 0.

Thus, S(t1) cannot cross this boundary.
Case 6 Pf (t1)+Q(t1)x(t1)+θ y(t1) = Pfin . Let z(t) = Pfin − Pf (t)−Q(t)x(t)−

θ y(t), then z(t1) = 0 and z(t) > 0 for 0 ≤ t < t1. Then for every t ∈ [0, t1], we have

z′ = −P ′
f − Q′x − Qx ′ − θ y′

= −ρ(Pfin − Pf − Qx − θ y)

= −ρz,

where ρ is a constant. This implies that z(t1) = e−ρt1 z(0) > 0, a contradiction. This
proves that S(t1) cannot cross this boundary. ��

Appendix B. Proof of Theorem 3.2

Proof At E0 = (0, 0, Q0, Pfin), the Jacobian matrix is

J (E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b
(
1 − q

Q0

)
− ρ 0 0 0

0 −d − ρ 0 0

0 0 dυ
dQ

∣∣∣∣
E0

− b dυ
dPf

∣∣∣∣
E0

−υ(Q, Pf )

∣∣∣∣
E0

θd 0 −ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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where dυ
dQ

∣∣∣∣
E0

− b = − ĉP fin

(â+Pfin )(Q̂−q)
− b < 0. The eigenvalues of J (E0) are

b(1 − q
Q0

) − ρ, −d − ρ, dυ
dQ

∣∣∣∣
E0

− b, and −ρ.

If b(1− q
Q0

) > ρ, then the distinct real eigenvalues are of opposite signs. So E0 is
unstable in the form of a saddle. ��

Appendix C. Proof of Theorem 3.3

Proof Assume that min
{
ê f (x1),

Q1
θ

f (x1), ê f̂
θ
Q1

}
< d + ρ. To prove that E1 is

locally asymptotically stable, we consider two cases ( 1 − x
K < 1 − q

Q and 1 − x
K >

1 − q
Q ) where we look at the linearized system and use the Routh–Hurwitz criterion.

Case 1 1 − x
K < 1 − q

Q

Here, E1 = (x1, 0, Q1, Pf1) =
(
K (b−ρ)

b , 0,
ĉP f1 Q̂

(â+Pf1 )(Q̂−q)ρ+ĉP f1

, Pf1

)
by Sect. 3.2

and the Jacobian takes the following form:

J (E1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ − b Fy(E1) 0 0
0 G(E1) 0 0

Hx (E1) 0 dυ
dQ

∣∣∣∣
E1

− ρ dυ
dPf

∣∣∣∣
E1

−υ(Pf , Q)

∣∣∣∣
E1

Iy(E1) − K (b−ρ)
b

dυ
dQ

∣∣∣∣
E1

−ρ − K (b−ρ)
b

dυ
dPf

∣∣∣∣
E1

⎞
⎟⎟⎟⎟⎟⎟⎠

where G(E1) = min

{
ê f (x1),

Q1
θ

f (x1), ê f̂
θ
Q1

}
− d − ρ.

Let ρ < b, G(E1) < 0, α1 = dυ
dQ

∣∣∣∣
E1

= − ĉP f

(â+Pf )(Q̂−q)

∣∣∣∣
E1

< 0, and α2 =
dυ
dPf

∣∣∣∣
E1

= ĉâ(Q̂−Q)

(â+Pf )
2(Q̂−q)

∣∣∣∣
E1

> 0. The eigenvalues of J (E1) are ρ − b, G(E1), −ρ,

and − K (b−ρ)
b α2 + α1 − ρ, which are all negative. Thus, E1 is locally asymptotically

stable for this case.
Case 2 1 − x

K > 1 − q
Q

Here, E1 = (x1, 0, Q1, Pf1) =
( (b−ρ)

(
Pfin

(
(q−Q̂)(qρ−ĉ)b−Q̂ĉρ

)
−(Q̂−q)âbqρ

)
((q−Q̂)(qρ−ĉ)b−Q̂ĉρ)qb

, 0, bq
b−ρ

,

− (q−Q̂)âρbq
(q−Q̂)(qρ−ĉ)b−Q̂ĉρ

)
by Sect. 3.2 and the Jacobian takes the following form:

J (E1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Fy(E1) FQ(E1) 0
0 G(E1) 0 0

0 0 dυ
dQ

∣∣∣∣
E1

− b dυ
dPf

∣∣∣∣
E1

−υ(Pf , Q)

∣∣∣∣
E1

Iy(E1) IQ(E1) IP f (E1)

⎞
⎟⎟⎟⎟⎟⎟⎠
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where

FQ(E1) =bqx1
Q2

1

,

G(E1) =min

{
ê f (x1),

Q1

θ
f (x1), ê f̂

θ

Q1

}
− d − ρ,

IQ(E1) = − x1
dυ

dQ

∣∣∣∣
E1

= x1
ĉP f1

(â + Pf1)(Q̂ − q)
,

and

IPf (E1) = −ρ − x1
dυ

dPf

∣∣∣∣
E1

= −ρ − x1
ĉâ(Q̂ − Q1)

(â + Pf1)
2(Q̂ − q)

.

Let α = ĉ
(â+Pf1 )(Q̂−q)

> 0. Then, the Jacobian simplifies down to

J (E1) =

⎛
⎜⎜⎜⎜⎝

0 Fy(E1) FQ(E1) 0
0 G(E1) 0 0

0 0 −αPf1 − b (Q̂−Q1)âα
â+Pf1

−αPf1(Q̂ − Q1) Iy(E1) x1Pf1α −ρ − x1
(Q̂−Q1)âα
â+Pf1

⎞
⎟⎟⎟⎟⎠

One of the eigenvalues of J (E1) is G(E1) = min
{
ê f (x1),

Q1
θ

f (x1), ê f̂
θ
Q1

}
−d−ρ

and the remaining three eigenvalues are given by the eigenvalues of the matrix J ′(E1)

written as:

J ′(E1) =

⎛
⎜⎜⎝

0 FQ(E1) 0

0 −αPf1 − b (Q̂−Q1)âα
â+Pf1

−αPf1(Q̂ − Q1) x1Pf1α −ρ − x1
(Q̂−Q1)âα
â+Pf1

⎞
⎟⎟⎠

The characteristic equation of the above matrix is given by :

λ3 + A1λ
2 + A2λ + A3 = 0,

where

A1 = −tr(J ′(E1)) =
−Q1âαx1 + Q̂âαx1 + P2

f1
α + Pf1 âα + Pf1b + Pf1ρ + âb + âρ

â + Pf1
,

A2 =
−Q1âαbx1 + Q̂âαbx1 + P2

f1
αρ + Pf1 âαρ + Pf1bρ + âbρ

â + Pf1
,
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A3 = − det(J ′(E1)) = Pf1Q
2
1âα2bqx1 − 2Pf1Q1 Q̂âα2bqx1 + P Q̂2âα2bqx1

Q2
1(â + Pf1)

.

Now by Routh–Hurwitz criterion, E1 is locally asymptotically stable for this case
whenever the following conditions are satisfied:

⎧⎪⎪⎨
⎪⎪⎩
A1A2 > A3,

Ai > 0, i = 1, 2, 3 and

min
{
ê f (x1),

Q1
θ

f (x1), ê f̂
θ
Q1

}
− d − ρ < 0.

(C.1)

��
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