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Abstract
We present conditions which guarantee a parametrization of the set of positive equilib-
ria of a generalizedmass-action system.Ourmain results state that (1) if the underlying
generalized chemical reaction network has an effective deficiency of zero, then the set
of positive equilibria coincides with the parametrized set of complex-balanced equilib-
ria and (2) if the network is weakly reversible and has a kinetic deficiency of zero, then
the equilibrium set is nonempty and has a positive, typically rational, parametrization.
Via the method of network translation, we apply our results to classical mass-action
systems studied in the biochemical literature, including the EnvZ–OmpR and shuttled
WNT signaling pathways. A parametrization of the set of positive equilibria of a (gen-
eralized) mass-action system is often a prerequisite for the study of multistationarity
and allows an easy check for the occurrence of absolute concentration robustness, as
we demonstrate for the EnvZ–OmpR pathway.
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1 Introduction

Networks of biochemical reactions can be represented as directed graphs where the
vertices are combinations of interacting species (so-called complexes) and the edges
are the reactions. Under suitable assumptions, such as spatial homogeneity and suffi-
cient dilution, the networks follow mass-action kinetics and give rise to a system of
polynomial ordinary differential equations in the species concentrations.

The mathematical study of positive equilibria of mass-action systems is impor-
tant for establishing the uniqueness of equilibria in invariant regions of the state
space (so-called compatibility classes) or, conversely, for establishing the capacity
for multistationarity (e.g., in models of biological switches). Such analysis, however,
is challenging due to the high dimensionality of the dynamical system, the significant
nonlinearities, and the number of (unknown) parameters. Recent work has conse-
quently focused on developing network-based methods for parametrizing the set of
positive equilibria. Conditions for constructing monomial parametrizations (Laurent
monomials) have been recently studied (Craciun et al. 2009; Pérez Millán et al. 2012;
Johnston 2014; Müller and Regensburger 2014), as have conditions for constructing
rational parametrizations (Thomson and Gunawardena 2009; Gross et al. 2016; Pérez
Millán and Dickenstein 2016). Based on parametrizations, the uniqueness of positive
equilibria has been analyzed (Conradi et al. 2008; Müller and Regensburger 2012;
Müller et al. 2016; Conradi and Mincheva 2017), and regions for multistationarity (in
the space of rate constants) have been identified for specific models, such as phospho-
rylation networks (Holstein et al. 2013; Conradi et al. 2016).

In this paper, we develop a method for explicitly constructing positive, typically
rational, parametrizations of the set of positive equilibria for a broad class of biochem-
ical reaction networks. Our approach is based on an extension of deficiency theory, the
concept of generalized mass-action systems, and the method of network translation.
The deficiency of a chemical reaction network was introduced in Feinberg (1972) and
Horn (1972) in the context of sufficient conditions for weakly reversible networks
to have complex-balanced equilibria (Horn and Jackson 1972). The notions of defi-
ciency and complex balancingwere subsequently extended to generalizedmass-action
systems by Müller and Regensburger (2012, 2014). Thereby, the kinetic complex
determining the reaction rate was allowed to differ from the (stoichiometric) complex
determining the reaction vector. Finally, the method of network translation was intro-
duced by Johnston (2014), in order to relate a mass-action system to a generalized
mass-action system that is dynamically equivalent, but has a different network struc-
ture. In particular, the translated network might be weakly reversible (even when the
original network is not) and have a lower deficiency.

A generalized mass-action system for which the underlying network is weakly
reversible and has deficiency zero is known to have an equilibrium set with a mono-
mial parametrization (Müller and Regensburger 2012, 2014; Johnston 2014). In this
paper, we extend this framework to construct positive parametrizations for a signif-
icantly wider class of generalized networks. To this end, we introduce a new notion
of deficiency called effective deficiency, cf. Eq. (21), which refers to the condensed
network of a generalized network, cf. Definition 7. Our main results state that if a
weakly reversible generalized network has an effective deficiency and kinetic defi-
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A Deficiency-Based Approach to Parametrizing Positive... 1145

ciency of zero, then the corresponding generalized mass-action system permits a
positive parametrization of the set of positive equilibria. This parametrization can
be computed by linear algebra techniques and does not require tools from algebraic
geometry such as Gröbner bases. Via network translation, we can apply our results to
a broad class of mass-action systems.

For example, consider the following two-component signaling system, which is
adapted from a histidine kinase example (Conradi et al. 2016):

X X p

X p + Y X + Yp

Yp Y

k1

k2

k3

k4

(1)

Thereby, X is a histidine kinase, Y is a response regulator, and p is a phosphate group.
The network is not weakly reversible and has deficiency one so that the classical defi-
ciency zero theorem does not apply. Via network translation, however, the system (1)
corresponds to the following generalized mass-action system:

�

�

�

�

X + Y
(X)

�

�

�

�

X p + Y
(X p + Y )

�

�

�

�

X + Yp

(Yp)

�

�

�

�

X + Yp

(X + Yp)

k1

k2k4 k3

σ

(2)

Thereby, we put a box at each vertex of the graph with the stoichiometric complex at
the top and the kinetic-order complex (in brackets) at the bottom, cf. Definition 1. The
red arrow corresponds to a phantom edge, that is, an edge which connects identical
stoichiometric complexes, cf. Eq. (16). Phantom edges do not contribute to the asso-
ciated system of ordinary differential equations and hence can be labeled arbitrarily.
Thus, the edge label σ > 0 can be considered a free parameter.

Now, the network (2) is weakly reversible and, as it turns out, it has an effective
deficiency of zero and a kinetic deficiency of zero. Our main results guarantee that
the set of positive equilibria has a positive parametrization and, in fact, constructively
yield the following rational parametrization:

⎧
⎪⎨

⎪⎩

x = k4
σ

, xp = k1(k3 + σ)k4
k2σ 2τ

,

y = τ, yp = k1
σ

,

(3)

where σ, τ > 0. Note that the ‘rate constant’ σ > 0 in the network (2) appears explic-
itly in the parametrization (3). Importantly, the construction of (3) via Theorem 15
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depends on efficient methods from linear algebra such as generalized inverses. Our
algorithm therefore represents a significant computational advantage over algebraic
geometry methods such as Gröbner bases.

The paper is organized as follows: In Sect. 2, we review the relevant terminology
regarding generalized chemical reaction networks and introduce several new notions,
including effective and phantom edges, parametrized sets of equilibria, condensed
networks, and effective deficiency. In Sect. 3, we present the crucial Lemma 13 and
the main results of the paper, Theorems 14 and 15. In Sect. 4, we discuss the method of
network translation, which allows us to apply the results of Sect. 3 to networks studied
in the biochemical literature, such as the EnvZ–OmpR and shuttled WNT signaling
pathways. In the EnvZ–OmpR example, our parametrization immediately implies the
occurrence of absolute concentration robustness (ACR). In Sect. 5, we summarize our
findings and present avenues for future work.

Throughout the paper, we use the following notation:

For v ∈ R
n
>0, ln v = (ln v1, . . . , ln vn)

T ∈ R
n . (4)

For v ∈ R
n, ev = (ev1 , . . . , evn )T ∈ R

n . (5)

For v ∈ R
n
>0 and w ∈ R

n, vw =
n∏

i=1

v
wi
i ∈ R. (6)

For v ∈ R
n
>0 and A ∈ R

n×m, vA =
(
va

1
, . . . , va

m
)T ∈ R

m, (7)

where a j ∈ R
n is the j th column of A.

For v,w ∈ R
n, v ◦ w = (v1w1, . . . , vnwn)

T ∈ R
n . (8)

2 Mathematical Framework

Wegive abrief introduction to the relevant terminology regardinggeneralized chemical
reaction networks (which include classical chemical reaction networks). In particu-
lar, we distinguish between effective and phantom edges and introduce parametrized
sets of equilibria. Further, we define condensed networks and the notion of effective
deficiency. Finally, we introduce the helpful concept of V ∗-directed networks.

2.1 GeneralizedMass-Action Systems

A directed graph G = (V , E) is given by a set of vertices V = {1, . . . ,m} and a set
of edges E ⊆ V × V . We denote an edge e = (i, j) ∈ E by i → j to emphasize that
is directed from the source i to the target j . We additionally define the set of source
vertices Vs = {i | i → j ∈ E}, that is, the set of vertices that appear as the source
of some edge. We call the connected components of a graph linkage classes and the
strongly connected components strong linkage classes. If linkage classes and strong
linkage classes coincide, we call the graph weakly reversible.
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A generalized chemical reaction network is essentially a graph with two embed-
dings of the vertices in R

n . The notion was introduced by Müller and Regensburger
(2012, 2014).

Definition 1 A generalized chemical reaction network (GCRN) (G, y, ỹ) is given by a
directed graphG=(V , E)without self-loops and twomaps y : V →R

n and ỹ : Vs →
R
n . Thereby, G is called the abstract reaction graph, and y(i), ỹ(i) ∈ R

n are called
the stoichiometric and kinetic-order complexes, respectively, assigned to vertex i .

In contrast to a classical chemical reaction network (see below), a GCRN has two
complexes associated with each vertex. Thereby, the maps y and ỹ are not required to
be injective, and the same stoichiometric or kinetic-order complex may be assigned
to several vertices.

When considering examples, we represent complexes y, ỹ ∈ R
n as formal sums of

species (often {X1, X2, . . . , Xn}). The components of the complexes correspond to the
coefficients in the sums, e.g., y = (1, 0, 1, 0, . . . , 0) is represented as y = X1 + X3.

Definition 2 A generalized mass-action system (GMAS) (Gk, y, ỹ) is given by a
GCRN (G, y, ỹ) with G = (V , E) together with edge labels k ∈ R

E
>0, resulting in

the labeled directed graph Gk . That is, every edge i → j ∈ E is labeled with a rate
constant ki→ j ∈R>0.

The ODE system associated with a GMAS is given by

dx

dt
= f Gk (x) =

∑

i→ j∈E
ki→ j x

ỹ(i) (y( j) − y(i)). (9)

We can rewrite the right-hand side of the ODE as

f Gk (x) = Y IE diag(k)(I sE )T xỸ = Y AG
k xỸ , (10)

where Y , Ỹ ∈ R
n×V are the matrices of stoichiometric and kinetic complexes, respec-

tively, IE , I sE ∈ R
V×E are the incidence and source matrices of the graph G, and

AG
k = IE diag(k)(I sE )T ∈ R

V×V is the resulting Laplacian matrix of the labeled
directed graph Gk . For an example of the decomposition, see Eq. (12). The columns
y j of Y are given by y j = y( j), and analogously for Ỹ . Note that columns ỹ j of Ỹ
corresponding to non-source vertices j /∈ Vs can be chosen arbitrarily since the corre-
sponding columns (I sE ) j of I sE and hence the columns (AG

k ) j of AG
k are zero vectors.

Notably, the change over time (9) lies in the stoichiometric subspace S = im(Y IE ),
which suggests the definition of a stoichiometric compatibility class (c′ + S) ∩ R

n≥0
with c′ ∈ R

n≥0. The stoichiometric deficiency is defined as δ = dim(ker Y ∩ im IE ).
Equivalently, δ = m − � − s, where m = |V | is the number of vertices, � is the
number of linkage classes of G, and s = dim S is the dimension of the stoichiometric
subspace [e.g., see Johnston (2014)]. If V = Vs , that is, if every vertex is a source, we
additionally define the kinetic-order subspace S̃ = im(Ỹ IE ) and the kinetic deficiency
δ̃ = dim(ker Ỹ∩im IE ). Equivalently, δ̃ = m−�−s̃, where s̃ = dim S̃ is the dimension
of the kinetic-order subspace.
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Example 3 Consider the GCRN (G, y, ỹ) with abstract graph G = (V , E) given by

�

�

�

�

1
∣
∣
∣
∣
X1 + X2

(X1)

�

�

�

�

2
∣
∣
∣
∣
X2 + X3

(X2 + X3)

�

�

�

�

4
∣
∣
∣
∣
X1 + X4

(X4)

�

�

�

�

3
∣
∣
∣
∣
X1 + X4

(X1 + X4)

(11)

where at each vertex we display the stoichiometric complex y at the top and the kinetic
complex ỹ (in brackets) at the bottom. That is, we have

y(1) = X1 + X2, y(2) = X2 + X3, y(3) = y(4) = X1 + X4,

and

ỹ(1) = X1, ỹ(2) = X2 + X3, ỹ(3) = X1 + X4, ỹ(4) = X4.

Note that network (2) in the introduction is essentially network (11) with specific
interpretations of the species X1, X2, X3, and X4.

This generalized network has four vertices in one linkage class and is weakly
reversible. It has a two-dimensional stoichiometric subspace (s = 2) and a three-
dimensional kinetic-order subspace (s̃ = 3). It follows that the stoichiometric
deficiency is one (δ = 4 − 1 − 2 = 1) while the kinetic deficiency is zero
(δ̃ = 4 − 1 − 3 = 0). The corresponding GMAS (Gk, y) gives rise to the system
of ODEs

dx

dt
= f Gk (x) = Y AG

k x
Ỹ

=

⎡

⎢
⎢
⎣

1 0 1 1
1 1 0 0
0 1 0 0
0 0 1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−k1→2 0 0 k4→1
k1→2 −k2→3 k3→2 0
0 k2→3 −k3→2 − k3→4 0
0 0 k3→4 −k4→1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2x3
x1x4
x4

⎤

⎥
⎥
⎦,

(12)

which can be expanded as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= −k1→2x1 + k2→3x2x3 − k3→2x1x4,

dx2
dt

= −k2→3x2x3 + k3→2x1x4 + k4→1x4,

dx3
dt

= +k1→2x1 − k2→3x2x3 + k3→2x1x4,

dx4
dt

= +k2→3x2x3 − k3→2x1x4 − k4→1x4.

(13)
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2.2 Mass-Action Systems

Classical chemical reaction networks and mass-action systems, which have been stud-
ied extensively in industrial chemistry and systems biology, can be considered as
special cases of Definitions 1 and 2.

Definition 4 A chemical reaction network (CRN) is a GCRN (G, y, ỹ) with y = ỹ
and y : V 
→ R

n being injective. A mass-action system (MAS) is a GMAS (Gk, y, ỹ)
with y = ỹ and y : V 
→ R

n being injective.

Since stoichiometric and kinetic complexes agree, y(i) = ỹ(i) ∈ R
n , we simply call

them complexes. For notational convenience, we use (G, y) and (Gk, y) to refer to the
CRN (G, y, y) and the MAS (Gk, y, y), respectively.

For a CRN, the stoichiometric and kinetic-order subspaces coincide (i.e., S = S̃),
and the stoichiometric and kinetic deficiencies are the same (i.e., δ = δ̃). In fact, the
deficiency δ = dim(ker Y∩im IE ) = m−�−s was introduced first by Feinberg (1972)
and Horn (1972) in the context of complex-balanced mass-action systems (Horn and
Jackson 1972). It has been studied extensively since then (Feinberg 1979, 1987, 1995;
Shinar and Feinberg 2010).

In a CRN, the map y is unique and vertices and complexes are in one-to-one
correspondence. It is typical to write the reaction graph G with the complexes as
vertices.

Example 5 Consider the CRN (G, y) given by

X1 X3

X2 + X3 X1 + X4

X4 X2

(14)

Note that network (1) in the introduction is essentially network (14) with specific
interpretations of the species. The network has six vertices in three linkage classes and
is not weakly reversible. It has a stoichiometric subspace of dimension two (s = 2),
and hence, its deficiency is one (δ = 6 − 3 − 2 = 1).

After relabeling the rate constants, the ODE system associated with (14) is equiva-
lent to theODE system (13) arising from (11). Results obtained by a structural analysis
of the GCRN (11) will consequently hold for the CRN given by (14). In particular, we
will investigate existing methods for corresponding MASs and GMASs with equiva-
lent dynamics in Sect. 4.1.

2.3 Effective and Phantom Edges and Parametrized Sets of Equilibria

For a GCRN, only edges i → j ∈ E with y( j) �= y(i) contribute to the right-hand
side of the ODE (9). In Example 3, y(3) = y(4), and hence, the rate constant k3→4

123



1150 M. D. Johnston et al.

does not appear in the ODEs (13), even though 3 → 4 ∈ E . Consequently, we may
partition the set of edges E into the set of effective edges

E∗ = {i → j ∈ E | y(i) �= y( j)} (15)

and the set of phantom edges

E0 = {i → j ∈ E | y(i) = y( j)}. (16)

Obviously, E∗ ∩ E0 = ∅ and E = E∗ ∪ E0. For a vector k ∈ R
E
>0, we define

k∗ = kE∗ ∈ R
E∗
>0 and k0 = kE0 ∈ R

E0

>0 so that, after reordering the reactions if
necessary, we may write k = (k∗, k0). Further, we introduce the effective graph
G∗ = (V , E∗).

From (9), it follows that

f Gk (x) =
∑

i→ j∈E
ki→ j x

ỹ(i) (y( j) − y(i))

=
∑

i→ j∈E∗
ki→ j x

ỹ(i) (y( j) − y(i)) = f G
∗

k∗ (x). (17)

That is, the GMAS (Gk, y, ỹ) gives rise to the same system of ODEs as the GMAS
(G∗

k , y, ỹ), involving the effective graph G∗. In particular, the dynamics does not
depend on k0. From (17) and (10), it follow that

f Gk (x) = f G
(k∗,k0)(x) = f G(k∗,σ )(x) = Y AG

(k∗,σ ) x
Ỹ , (18)

for arbitrary σ ∈ R
E0

>0. That is, we may replace the rate constants k0 by arbitrary
parameters σ .

For a GMAS (Gk, y, ỹ), the set of positive equilibria is given by

XG
k := {x ∈ R

n
>0 | f Gk (x) = 0},

while the set of positive complex-balanced equilibria (CBE) is given by

ZG
k := {x ∈ R

n
>0 | AG

k xỸ = 0} ⊆ XG
k .

Note that XG
k = XG∗

k∗ , and hence, the equilibrium set XG
k depends on k∗, but not on

k0, while Zk depends on both k∗ and k0.
Equation (18) motivates another definition. For an arbitrary parameter σ ∈ R

E0

>0,
we consider

ZG
(k∗,σ ) := {x ∈ R

n
>0 | AG

(k∗,σ ) x
Ỹ = 0} ⊆ XG

k ,

123



A Deficiency-Based Approach to Parametrizing Positive... 1151

which is the set of positive CBE of the GMAS (G(k∗,σ ), y, ỹ). The parametrized set
of positive CBE (PCBE) is given by

Z̄G
k :=

⋃

σ∈RE0
>0

ZG
(k∗,σ ) ⊆ XG

k , (19)

thereby varying over all σ ∈ R
E0

>0.
For a GMAS (Gk, y, ỹ), the set Z̄G

k need not coincide with the set XG
k . In our main

results, however, we give conditions on the underlying GCRN (G, y, ỹ) such that
XG
k = Z̄G

k (Theorem 14), and also conditions under which a positive parametrization
of Z̄G

k can be constructed (Theorem 15).

Example 6 Recall the GCRN (11) from Example 3. The edge set E can be partitioned
into effective edges E∗ = {1 → 2, 2 → 3, 3 → 2, 4 → 1} and phantom edges
E0 = {3 → 4}. The equilibrium set Xk is determined by setting the right-hand sides
of the ODEs (12) to zero, whereas the set Zk of CBE is determined by the Laplacian
matrix,

AG
k x

Ỹ =

⎡

⎢
⎢
⎣

−k1→2 0 0 k4→1
k1→2 −k2→3 k3→2 0
0 k2→3 −k3→2 − k3→4 0
0 0 k3→4 −k4→1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1
x2x3
x1x4
x4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ .

(20)

Note that these equations depend on the rate constant k3→4, even though it does not
appear in the ODEs (12). By replacing k3→4 with an arbitrary parameter σ in (20), we
obtain the new set of CBE Z(k∗,σ ). The set Z̄k of PCBE is obtained by varying over all
σ ∈ R>0. A constructive method for solving systems like (20) for the concentrations
xi will be discussed in Sect. 3.2.

2.4 Condensed Networks and Effective Deficiency

We now consider auxiliary networks with special properties. First, we introduce a
network that condenses stoichiometrically identical vertices and thereby removes
phantom edges.

Definition 7 For the GCRN (G, y, ỹ), we define the condensed CRN (G ′, y′) given
by the digraph G ′ = (V ′, E ′), where

1. V ′ = {[i] | i ∈ V } with [i] = { j ∈ V | y( j) = y(i)} for i ∈ V and
2. E ′ = {[i] → [ j] | i → j ∈ E∗},
and the map y′ : V ′ → R

n, y′([i]) = y(i).

Note that a condensed CRN is not a GCRN and has no kinetic complexes associated
with the vertices.
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1152 M. D. Johnston et al.

For the GCRN (G, y, ỹ), we define the effective deficiency as the deficiency of its
condensed CRN (G ′, y′),

δ′ = dim(ker Y ′ ∩ im IE ′) (21)

with the incidence matrix IE ′ ∈ R
V ′×E ′

and the matrix of complexes Y ′ ∈ R
n×V ′

, as
defined after (10) in Sect. 2.1. Equivalently, δ′ = m′ − �′ − s, where m′ = |V ′| is
the number of vertices and �′ is the number of linkage classes of G ′. Thereby, we use
S′ = im(Y ′ IE ′) = im(Y IE ) = S, and hence, s′ = dim(S′) = dim(S) = s.

Finally, we define a section ρ : V ′ → V , assigning to each equivalence class
[i] ∈ V ′ a representative vertex ρ([i]) ∈ [i], that is, we define a set of representative
vertices V ∗ = {ρ([i]) | [i] ∈ V ′} ⊆ V , containing exactly one representative vertex
from each equivalence class.

Example 8 Recall the GCRN (11) from Examples 3 and 6, in particular, that y(3) =
y(4) = X1 + X4. Hence, we have the equivalence classes

[1] = {1}, [2] = {2}, [3] = [4] = {3, 4}.

For the GCRN, we obtain its condensed CRN (G ′, y′), in particular, the graph G ′

{1} {2}

{3, 4}
(22)

and the map y′ with y′({1}) = X1, y′({2}) = X2 + X3, and y′({3, 4}) = X1 + X4.
The deficiency of (22) is δ = 3 − 1 − 2 = 0, that is, the effective deficiency of the
GCRN (11) is δ′ = 0.

2.5 V∗-directed Networks

Second, we introduce a class of GCRNs which is helpful for constructing a positive
parametrization of the equilibrium set.

Definition 9 Let (G, y, ỹ) be a GCRN with G = (V , E) and condensed CRN G ′ =
(V ′, E ′). Further, let V ∗ ⊆ V be a set of representative vertices. (That is, there is a
section ρ : V ′ → V such that V ∗ = {ρ([i]) | [i] ∈ V ′}.) We say that (G, y, ỹ) is
V ∗-directed if

j → i ∈ E∗ implies i ∈ V ∗, that is, i = ρ([i]),

and

E0 = {i → j | i ∈ V ∗, j ∈ [i]\{i}},
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A Deficiency-Based Approach to Parametrizing Positive... 1153

that is,

E0 = {ρ([i]) → j | [i] ∈ V ′, j ∈ [i]\{ρ([i])}}.

A GCRN being V ∗-directed guarantees that effective edges (those between equiv-
alence classes [i]) enter at the representative vertex ρ([i]) ∈ V ∗, and that phantom
edges (those within an equivalence class [i]) lead from ρ([i]) to the other vertices in
the class. The representative vertices ρ([i]) ∈ V ∗ may be thought of as the hubs of
the representative equivalence classes through which all directed paths must travel.

Example 10 Recall the GCRN (11) from Examples 3, 6, and 8. Since y(3) = y(4) and
hence [3] = [4] = {3, 4}, we have two possible sections ρ, that is, two possible sets
of representative vertices V ∗, namely, V ∗

1 = {1, 2, 3} and V ∗
2 = {1, 2, 4}.

For the set V ∗
1 , effective edges enter {3, 4} at 3 = ρ({3, 4}), and the phantom

edge 3 → 4 leads from 3 = ρ({3, 4}) to 4. Hence, (11) is V ∗
1 -directed. For the set

V ∗
2 = {1, 2, 4}, the effective edge 2 → 3 leads to 3 �= ρ({3, 4}). Consequently, (11)

is not V ∗
2 -directed.

From Example 10, the class of V ∗-directed GCRNs may seem restrictive. The
following result, however, guarantees that, for every GMAS, there is a dynamically
equivalent GMAS which is V ∗-directed, that is, the associated ODEs agree, cf. (9).
This will be instrumental in applications, cf. Sect. 4.

Lemma 11 Let (G, y, ỹ) be a GCRN with G = (V , E) and representative vertex set
V ∗ ⊆ V , and let k ∈ R

E
>0 be a rate vector. Then, there is a GCRN (Ĝ, y, ỹ) with

Ĝ = (V , Ê) that is V ∗-directed and a rate vector k̂ ∈ R
Ê
>0 such that the GMASs

(Gk, y, ỹ) and (Ĝk̂, y, ỹ) are dynamically equivalent, that is, the associated ODEs
agree, cf. (9).

Proof First we define the set Ê0 = {i → j | i ∈ V ∗, j ∈ [i]\{i}} and associate an
arbitrary k̂i→ j > 0 to each edge i → j ∈ Ê0. Then, we define the set Ê∗ = Ê∗

1 ∪ Ê∗
2

as follows:

1. If i → j ∈ E∗ and j ∈ V ∗, then i → j ∈ Ê∗
1 and k̂i→ j = ki→ j .

2. If i → j ∈ E∗ and j /∈ V ∗, then i → ρ([ j]) ∈ Ê∗
2 and

k̂i→ρ([ j]) = ∑
j ′∈[ j]\{ρ([ j])} ki→ j ′ .

Now we consider the GCRN (Ĝ, y, y′) with Ĝ = (V , Ê) and Ê = Ê0 ∪ Ê∗, which
is V ∗-directed by construction. With the vector k̂ ∈ R

Ê
>0 constructed above, we have

f Gk (x) =
∑

i→ j∈E∗
j∈V ∗

ki→ j x
ỹ(i) (y( j) − y(i)) +

∑

i→ j ′∈E∗
j ′ /∈V ∗

ki→ j ′ x
ỹ(i) (y( j ′)) − y(i))

=
∑

i→ j∈Ê∗
1

k̂i→ j x
ỹ(i) (y( j) − y(i))

+
∑

i→ρ([ j])∈Ê∗
2

∑

j ′∈[ j]\{ρ([ j])}
ki→ j ′ x

ỹ(i) (y( j ′)) − y(i))
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=
∑

i→ j∈Ê∗
1

k̂i→ j x
ỹ(i) (y( j) − y(i))

+
∑

i→ρ([ j])∈Ê∗
2

k̂i→ρ([ j]) x ỹ(i) (y(ρ([ j])) − y(i))

= f Ĝ
k̂

(x),

where we have omitted the edge sets E0 and Ẽ0 according to (17). ��

Example 12 Recall from Example 10 that the GCRN (11) is not V ∗
2 -directed, where

V ∗
2 = {1, 2, 4}. According to Lemma 11, however, we may replace the edge 2 → 3 by

the edge 2 → 4, where 4 = ρ({3, 4}). Further, we replace the phantom edge 3 → 4 by
the phantom edge 4 → 3. This construction yields the following V ∗

2 -directed GCRN
(Ĝ, y, ỹ):

�

�

�

�

1
∣
∣
∣
∣
X1 + X2

(X1)

�

�

�

�

2
∣
∣
∣
∣
X2 + X3

(X2 + X3)

�

�

�

�

4
∣
∣
∣
∣
X1 + X4

(X4)

�

�

�

�

3
∣
∣
∣
∣
X1 + X4

(X1 + X4)

(23)

The corresponding rate vector k̂ ∈ R
Ẽ
>0 is k̂1→2 = k1→2, k̂2→4 = k2→3, k̂3→2 =

k3→2, k̂4→1 = k4→1, and k̂4→3 = k3→4. Hence, f Gk = f Ĝ
k̂
, cf. (9).

3 Main Results

In Sect. 3.1, we consider GCRNs with an effective deficiency of zero (δ′ = 0) and
present Theorem 14, stating that the set of positive equilibria coincides with the
parametrized set of complex-balanced equilibria (PCBE). In Sect. 3.2, we consider
GCRNs with a kinetic deficiency of zero (δ̃ = 0) and higher (δ̃ > 0) and present
Theorem 15, explicitly constructing the PCBE.

3.1 Effective Deficiency

Lemma 13 below is crucial for the proof of Theorem 14. For a matrixW ∈ R
n×m , we

write cone(W ) = {Wx | x ∈ R
m≥0} ⊆ R

n for the polyhedral cone generated by the
columns of W and relint(cone(W )) ⊆ R

n for the relative interior of this cone.

Lemma 13 Let (G, y, ỹ) be a GCRN with G = (V , E) and representative vertex set
V ∗ ⊆ V . In particular, let (G, y, ỹ) be V ∗-directed and have effective deficiency
δ′ = 0. Then
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ker Y ∩ cone IE∗ ⊆ cone(−IE0).

Moreover,

ker Y ∩ relint(cone IE∗) ⊆ relint(cone(−IE0)).

Proof Let v ∈ (ker Y∩cone IE∗) ⊆ R
V , that is, v = IE∗ x = ∑

i→ j∈E∗ xi→ j (e j−ei )

with x ∈ R
E∗
≥0 (nonnegative weights on the effective edges E

∗) and

0 = Yv =
∑

i→ j∈E∗
xi→ j (y( j) − y(i))

=
∑

[i]→[ j]∈E ′

⎛

⎜
⎜
⎜
⎝

∑

i ′→ j ′∈E∗:
i ′∈[i], j ′∈[ j]

xi ′→ j ′

⎞

⎟
⎟
⎟
⎠

(y′([ j]) − y′([i]))

= Y ′ ∑

[i]→[ j]∈E ′
x ′[i]→[ j] (e[ j] − e[i])

= Y ′ IE ′ x ′ = Y ′ v′.

Thereby, (G ′, y′) with G ′ = (V ′, E ′) is the corresponding condensed CRN and v′ =
IE ′ x ′ ∈ R

V ′
with x ′ ∈ R

E ′
≥0. Clearly, v

′[i] = ∑
i ′∈[i] vi ′ for [i] ∈ V ′.

Now, δ′ = dim(ker Y ′ ∩ im IE ′) = 0 implies v′ = 0, that is,

0 = v′[i] =
∑

i ′∈[i]
vi ′

for [i] ∈ V ′. Using that G is V ∗-directed, reconsider v = IE∗ x ∈ R
V (the fluxes

arising from the effective edges E∗). Let i ∈ V ∗, that is, i = ρ([i]). For i ′ ∈ [i]\{i},

vi ′ = −
∑

i ′→ j∈E∗
xi ′→ j ,

whereas

vi = −
∑

i ′∈[i]\{i}
vi ′ .

Now, choose x̃ ∈ R
E0

≥0 (nonnegative weights on the phantom edges E0) as

x̃i→i ′ =
∑

i ′→ j∈E∗
xi ′→ j , (24)
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where i ′ ∈ [i]. Then, for i ′ ∈ [i]\{i},

vi ′ = −x̃i→i ′ ,

whereas

vi = −
∑

i ′∈[i]\{i}
vi ′ =

∑

i ′∈[i]\{i}
x̃i→i ′ =

∑

i→i ′∈E0

x̃i→i ′ .

That is, −v = IE0 x̃ ∈ R
V (the fluxes arising from the phantom edges E0), and hence

v ∈ cone(−IE0).
Finally, let v ∈ (ker Y ∩ relint(cone IE∗)), that is, v = IE∗ x for some x ∈ R

E∗
>0.

Then, v = −IE0 x̃ ∈ relint(cone(−IE0)) with x̃ ∈ R
E0

>0 by (24). ��
We now present the main result of this section, which gives conditions under which

the equilibrium set XG
k coincides with the parametrized set of complex-balanced equi-

libria Z̄G
k .

Theorem 14 Let (G, y, ỹ) be a GCRN with effective deficiency δ′ = 0. Further, let
(G, y, ỹ) be V ∗-directed for a set of representative vertices V ∗ ⊆ V . Then, for the
GMAS (Gk, y, ỹ), the set of positive equilibria agrees with the parametrized set of
complex-balanced equilibria, that is, XG

k = Z̄G
k .

Proof Let x ∈ R
n
>0 be a positive equilibrium, that is, x ∈ XG

k . Using G∗ = (V , E∗),
G0 = (V , E0), and σ ∈ R

E0

>0, we may write

AG
(k∗,σ ) x

Ỹ = AG∗
k∗ xỸ + AG0

σ xỸ ,

cf. (9). Now x ∈ XG
k = XG∗

k∗ implies Y AG∗
k∗ xỸ = 0 and hence

AG∗
k∗ xỸ ∈ (ker Y ∩ relint(cone IE∗)),

cf. (10). Since δ′ = 0 and (G, y, ỹ) is V ∗-directed, we have AG∗
k∗ xỸ ∈

relint(cone(−IE0)), by Lemma 13. That is,

AG∗
k∗ xỸ = −

∑

i→ j∈E0

αi→ j (e j − ei )

for some α ∈ R
E0

>0. On the other hand,

AG0

σ xỸ =
∑

i→ j∈E0

σi→ j x
ỹ(i) (e j − ei ).
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We choose σi→ j = αi→ j/x ỹ(i) for i → j ∈ E0 such that AG∗
k∗ xỸ = −AG0

σ xỸ and

hence AG
(k∗,σ ) x

Ỹ = 0, that is, x ∈ ZG
(k∗,σ ) ⊆ Z̄G

k so XG
k ⊆ Z̄G

k . Since Z̄G
k ⊆ XG

k

trivially, we have XG
k = Z̄G

k . ��

3.2 Kinetic Deficiency

We fix the directed graph G = (V , E) and omit the corresponding superscript, that
is, we write AG

k = Ak , ZG
k = Zk , and Z̄G

k = Z̄k . A subgraph T of G = (V , E) is a
directed spanning tree rooted at vertex i ∈ V if it is a tree and, for all j ∈ V , there is
a directed path from j to i .

Recall that x ∈ Zk is equivalent to xỸ ∈ ker Ak . Following Johnston (2014) and
Müller and Regensburger (2014), we discuss ker Ak . First, we introduce the vector of
tree constants K ∈ R

V
>0 with entries

Ki =
∑

(V,E)∈Ti

∏

i ′→ j ′∈E
ki ′→ j ′, i ∈ V ,

where Ti is the set of directed spanning trees (of the respective linkage class) rooted
at vertex i . Clearly, the tree constants K depend on the rate constants k ∈ R

E
>0, that

is, K = K (k).
For a weakly reversible GCRN,

ker Ak = span{v1, . . . , v�}

with nonnegative vectors vl ∈ R
n≥0 (for l = 1, . . . , �) having support on the respective

linkage class l. In particular, vli = Ki if vertex i is in linkage class l and vli = 0

otherwise. Now, xỸ ∈ ker Ak if and only if

xỸ =
�∑

l=1

αl v
l

with αl > 0. For any pair of vertices i and j in the same linkage class, we have

x ỹ(i)

Ki
= x ỹ( j)

K j
.

Taking the logarithm gives

(ỹ(i) − ỹ( j))T ln x = ln

(
Ki

K j

)

(25)

where ln (v) is defined by (4).
Now we choose a spanning forest F = (V , E) for G = (V , E), that is, we choose

spanning trees for all linkage classes. Note that F contains the same vertices as G, but
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not the same edges. Also note that, in the following results and applications, the choice
of the spanning tree is arbitrary. Clearly, the spanning tree of linkage class l contains
ml vertices and ml − 1 edges. Hence, the spanning forest F contains m vertices and
m − � edges. We introduce the matrix M = Ỹ IE ∈ R

n×E whose m − � columns are
given by ỹ( j) − ỹ(i) for i → j ∈ E . Correspondingly, we define the vector κ ∈ R

E
>0

whose m − � entries are given by κi→ j = Ki
K j

for i → j ∈ E . As for K , we note that
κ depends on k, that is, κ = κ(k). Hence, we can write the system of Eq. (25) as

MT ln x = ln κ. (26)

Theorem 1 of Müller and Regensburger (2014) implies the following result.

Theorem 15 Let (G, y, ỹ) be a GCRN that is weakly reversible, and let (Gk, y, ỹ) be
a GMAS. Further, let M ∈ R

n×E and κ = κ(k) = κ(k∗, k0) ∈ R
E
>0 be defined as

above, and let H ∈ R
n×E be a generalized inverse of MT (that is, MT HMT = MT ).

Finally, define B ∈ R
n×(n−s̃) with im B = ker MT and ker B = {0}, and C ∈ R

E×δ̃

with imC = ker M and kerC = {0}.
1. If the kinetic deficiency is zero (δ̃ = 0), then Z̄k �= ∅, in particular, Z̄k has the

positive parametrization

Z̄k =
{
κ(k∗, σ )H

T ◦ τ BT | σ ∈ R
E0

>0, τ ∈ R
n−s̃
>0

}
. (27)

2. If the kinetic deficiency is positive (δ̃ > 0) and the δ̃ equations

κ(k∗, k0)C = 1δ̃×1 (28)

can be solved explicitly for δ̃ components of k0 ∈ R
E0

>0 (in terms of k∗ ∈ R
E∗
>0

and the remaining components of k0), that is, if there exists an explicit func-

tion h : RE∗∪(E0\Ẽ0)
>0 → R

Ẽ0

>0 with Ẽ0 ⊆ E0, |Ẽ0| = δ̃, and k0 = (k̃0, ·) ∈
R

(E0\Ẽ0)∪Ẽ0

>0 such that, for all k∗ ∈ R
E∗
>0 and k̃0 ∈ R

E0\Ẽ0

>0 ,

κ(k∗, (k̃0, h(k∗, k̃0)))C = 1δ̃×1,

then Z̄k �= ∅, and Z̄k has the positive parametrization

Z̄k =
{
κ(k∗, (σ, h(k∗, σ )))H

T ◦ τ BT | σ ∈ R
E0\Ẽ0

>0 , τ ∈ R
n−s̃
>0

}
. (29)

Note that a matrix power is defined by (7) and ‘◦’ denotes the Hadamard product,
cf. (8).

Before we prove statements 1 and 2 of Theorem 15, we make two remarks.

– If the generalized inverse H ∈ R
n×E ofMT has integer entries, then (27) is a ratio-

nal parametrization. Common generalized inverses such as the Moore–Penrose

123



A Deficiency-Based Approach to Parametrizing Positive... 1159

inverse, however, rarely have this property (Ben-Israel andGreville 2003). In appli-
cations, we construct H by determining the matrix of elementary row operations
P that transforms MT to reduced row echelon form. That is, we find P ∈ R

E×E
such that PMT ∈ R

E×n is the reduced row echelon form of MT . Then, we
determine Q ∈ {0, 1}n×E such that QPMT = I and hence ln x = H ln κ with
H = QP ∈ R

n×E . That is, we perform Gaussian elimination on (26) and then set
all free parameters to zero.

– As a special case of statement 2, if Ẽ0 = E0 and Eq. (28) can be solved explicitly
for k0 (in terms of k∗), that is, if there exists h : RE∗

>0 → R
E0

>0 such that

κ(k∗, h(k∗))C = 1δ̃×1,

then we obtain the monomial parametrization

Z̄k =
{
κ(k∗, h(k∗))HT ◦ τ BT | τ ∈ R

n−s̃
>0

}
.

Proof of statement 1 Since (G, y, ỹ) is weakly reversible, x ∈ Zk if and only if ln x
satisfies (26). Now im M = im(Ỹ IE ) = im(Ỹ IE ) = S̃ and hence rank M = s̃. Since
the kinetic deficiency is zero, we have δ̃ = m − � − s̃ = 0 and hence s̃ = m − �. That
is, MT has full rank m − � and hence ln κ ∈ im MT for any κ ∈ R

m−�
>0 . Equivalently,

the linear system (26) has a solution ln x for any κ ∈ R
E
>0. Following Proposition 3 of

Müller and Regensburger (2014), we use the generalized inverse H ∈ R
n×E of MT

and obtain

MT H ln κ = MT HMT ln x = MT ln x = ln κ.

That is, ln x∗ = H ln κ is a solution of (26) and hence x∗ = κHT ∈ Zk . In particular,
Zk �= ∅.

For any x ∈ Zk ,

MT (ln(x) − ln(x∗)) = 0

and, since ker MT = im M⊥ = S̃⊥,

ln(x) − ln(x∗) ∈ S̃⊥.

We use B ∈ R
n×(n−s̃) with im B = S̃⊥, ker B = {0} and obtain

ln(x) − ln(x̃∗) = Bα

with α ∈ R
n−s̃ and

x = x∗ ◦ τ BT
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with τ = eα ∈ R
n−s̃
>0 , cf. (5) and (8). Equivalently,

Zk =
{
x∗ ◦ τ BT | τ ∈ R

n−s̃
>0

}
=

{
κ(k∗, k0)HT ◦ τ BT | τ ∈ R

n−s̃
>0

}
.

Note that the matrices M , H , and B do not depend on k ∈ R
E
>0, whereas κ = κ(k) =

κ(k∗, k0). Finally,

Z̄k =
⋃

σ∈RE0
>0

Z(k∗,σ ) =
{
κ(k∗, σ )H

T ◦ τ BT | σ ∈ R
E0

>0, τ ∈ R
n−s̃
>0

}
.

��
Proof of statement 2 If the kinetic deficiency is positive (δ̃ > 0), then MT does not
have full rank, and (26) does not have a solution for all right-hand sides. We use
C ∈ R

E×δ̃ with imC = ker M , kerC = {0} and find that (26) has a solution if and
only if ln κ ∈ im MT = ker M⊥ = imC⊥ = kerCT . Equivalently, CT ln κ = 0, that
is,

κC = κ(k∗, k0)C = 1δ̃×1.

By assumption, these δ̃ equations can be solved explicitly for δ̃ components of k0 ∈
R

E0

>0 (in terms of k∗ ∈ R
E∗
>0 and the remaining components of k0), that is, there

exists an explicit function h : RE∗∪(E0\Ẽ0)
>0 → R

Ẽ0

>0 with Ẽ0 ⊆ E0, |Ẽ0| = δ̃, and

k0 = (k̃0, ·) ∈ R
(E0\Ẽ0)∪Ẽ0

>0 such that, for all k∗ ∈ R
E∗
>0 and k̃0 ∈ R

E0\Ẽ0

>0 ,

κ(k∗, (k̃0, h(k∗, k̃0))C = 1δ̃×1.

Hence, (26) has a solution for any k∗ ∈ R
E∗
>0 and k̃

0 ∈ R
E0\Ẽ0

>0 , and from the proof of
statement 1 we obtain the positive parametrization (29). ��

4 Applications

The process of network translation allows to relate a classical CRN to a GCRN with
potentially stronger structural properties (Johnston 2014). In Sect. 4.1, we briefly
review the method, and in Sect. 4.2, we use it to apply the main results of this paper,
Theorems 14 and 15, to specific mass-action systems studied in the biochemical liter-
ature.

4.1 Translated Chemical Reaction Networks

The following definition was introduced by Johnston (2014) in order to relate a MAS
to a dynamically equivalent GMAS.
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Definition 16 Let (G, y) with G = (V , E) be a CRN. A GCRN (Gᵀ, yᵀ, ỹᵀ) with
Gᵀ = (V ᵀ, Eᵀ) if a translation of (G, y) is there exists a map g : E → Eᵀ such
that g(i → j) = iᵀ → jᵀ with i → j ∈ E and iᵀ → jᵀ ∈ Eᵀ implies (i)
yᵀ( jᵀ) − yᵀ(iᵀ) = y( j) − y(i) and (ii) ỹᵀ(iᵀ) = y(i).

In other words, a GCRN is a translation of a given CRN if there is a map between
reactions of the two networks which (1) preserves reaction vectors and (2) relates
source complexes in the CRN to kinetic complexes in the GCRN. Definition 16 is
more general than Definition 6 in Johnston (2014). In that work, GCRNs were defined
as byMüller and Regensburger (2012) which required yᵀ and ỹᵀ to be injective. Here,
GCRNs are defined as by Müller and Regensburger (2014) which allows yᵀ and ỹᵀ
to be noninjective.

Lemma 17 Let (G, y) be a CRN, and let k ∈ R
E
>0 be a rate vector. Further, let the

GCRN (Gᵀ, yᵀ, ỹᵀ) be a translation of (G, y), and let kᵀ ∈ R
Eᵀ
>0 be a rate vector

with kᵀ
iᵀ→ jᵀ = ki→ j if g(i → j) = iᵀ → jᵀ. Then, the MAS (Gk, y) and the GMAS

(Gᵀ
kᵀ , yᵀ, ỹᵀ) are dynamically equivalent, that is, the associated ODEs agree, cf. (9).

Proof The ODEs associated with the MAS (Gk, y) and the GMAS (Gᵀ
kᵀ , yᵀ, ỹᵀ) are

determined by (9). By Definition 16 and the construction of kᵀ, we have

f Gk (x) =
∑

i→ j∈E
ki→ j x

y(i) (y( j) − y(i))

=
∑

iᵀ→ jᵀ∈Eᵀ
kᵀ
iᵀ→ jᵀ x ỹ

ᵀ(iᵀ) (yᵀ( jᵀ) − yᵀ(iᵀ))

= f G
ᵀ

kᵀ (x).

��
Lemmas 17 and 11 provide a framework for parametrizing the set of positive equi-

libria of a (classical) MAS (9) by applying Theorems 14 and 15.

Original CRN,
MAS (Gk, y)

Translated GCRN,
MAS (Gᵀ

kᵀ , yᵀ, ỹᵀ)

V ∗-directed GCRN,
GMAS (Ĝᵀ

k̂ᵀ , yᵀ, ỹᵀ)

Network translation
(Lemma 17)

Network redirection
(Lemma 11)

Parametrization
(Theorems 14 and 15)

In biochemical applications, a suitable GCRN that corresponds to a given CRNmay
not be apparent. In particular, in order to apply Theorem 14, we want the translated
network to have effective deficiency zero, and to apply Theorem 15, we want the
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kinetic deficiency to be as low as possible and the translated and V ∗-directed network
to be weakly reversible.

A translation scheme involves the addition of linear combinations of species to each
side of a reaction arrow (Johnston 2014). This operation preserves reaction vectors
and establishes a correspondence between source complexes in the original network
and kinetic complexes in the new one. For small networks, this may suffice to create a
suitably well-connected translation; however, it is extremely challenging for large net-
works. Computational approaches to optimal network translation have been conducted
in Johnston (2015) and Tonello and Johnston (2018).

4.2 Examples

The following examples are drawn from the biochemical literature.

Example 18 Recall the histidine kinase network (1) from the introduction and apply
the following translation scheme:

X X p (+Y )

X p + Y X + Yp (+0)

Yp Y (+X)

k1

k2

k3

k4

The resulting GCRN together with an additional phantom edge yields a weakly
reversible GCRN, given by the (edge labeled) graph

�

�

�

�

1
∣
∣
∣
∣
X + Y
(X)

�

�

�

�

2
∣
∣
∣
∣
X p + Y

(X p + Y )

�

�

�

�

4
∣
∣
∣
∣
X + Yp

(Yp)

�

�

�

�

3
∣
∣
∣
∣
X + Yp

(X + Yp)

k1

k2k4 k3

σ

(30)

The stoichiometric complex X + Yp appears twice in (30), specifically, [3] = [4] =
{3, 4}, and the network is V ∗-directed for V ∗ = {1, 2, 3}. The network has a stoi-
chiometric deficiency of one (δ = 1) and a kinetic deficiency of zero (δ̃ = 0). Its
condensed network is given by the following graph:

{1} {2}

{3, 4}
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It has a deficiency of zero (δ′ = 0). Theorem 14 guarantees that the equilibrium
set coincides with the parametrized set of complex-balanced equilibria. Furthermore,
since δ̃ = 0 and (30) is weakly reversible, Theorem 15 guarantees that there is a
positive parametrization of the form (27).

By the construction preceding Theorem 15, we compute the matrix M (and fur-
ther H and B). In particular, we choose a spanning forest F = (V , E) for the graph (30)
with edges 1 → 2, 1 → 3, and 1 → 4, and we compute the corresponding differences
of kinetic complexes X p + Y − X , X + Yp − X , and Yp − X :

M =
X
X p

Y
Yp

⎡

⎢
⎢
⎣

−1 0 −1
1 0 0
1 0 0
0 1 1

⎤

⎥
⎥
⎦ , H =

⎡

⎢
⎢
⎣

0 1 −1
1 1 −1
0 0 0
0 1 0

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

0
−1
1
0

⎤

⎥
⎥
⎦ .

Thereby, MT HMT = MT , that is, H is a generalized inverse of MT , and im B =
ker MT .

In order to determine the parametrization (27), it remains to compute the tree
constants K = K (k∗, σ ) of the graph (30) and their quotients κ = κ(k∗, σ ). We find

K1 = k2k4σ, K2 = k1(k3 + σ)k4, K3 = k1k2k4, and K4 = k1k2σ.

Taking the spanning forest F = (V , E) as above gives

κ1 = K2

K1
= k1(k3 + σ)

k2σ
, κ2 = K3

K1
= k1

σ
, κ3 = K4

K1
= k1

k4
.

As a consequence, the rational parametrization (27) amounts to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = κ1
2κ

−1
3 · 1 = k4

σ
,

xp = κ1
1κ

1
2κ

−1
3 · τ−1 = k1(k3+σ)k4

k2σ 2τ
,

y = 1 · τ 1 = τ,

yp = κ1
2 · 1 = k1

σ
,

where σ, τ > 0.

Example 19 Consider the following EnvZ–OmpR signaling pathway, which was first
proposed by Shinar and Feinberg (2010), together with the translation scheme pro-
posed in by Johnston (2014):
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XD X XT X p (+XD + XT + Y )

X p + Y X pY X + Yp (+XD + XT )

XD + Yp XDYp XD + Y (+X + XT )

XT + Yp XTYp XT + Y (+X + XD)

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

The resulting GCRN together with an additional phantom edge yields a weakly
reversible GCRN, given by the (edge labeled) graph

�

�

�

�

1
∣
∣
∣
∣
2XD + XT + Y

(XD)

�

�

�

�

2
∣
∣
∣
∣
XD + X + XT + Y

(X)

�

�

�

�

3
∣
∣
∣
∣
XD + 2XT + Y

(XT )

�

�

�

�

9
∣
∣
∣
∣
X + XT + XTYp

(XTYp)

�

�

�

�

7
∣
∣
∣
∣
XD + X + XDYp

(XDYp)

�

�

�

�

4
∣
∣
∣
∣
XD + XT + X p + Y

(X p + Y )

�

�

�

�

8
∣
∣
∣
∣
XD + X + XT + Yp

(XT + Yp)

�

�

�

�

6
∣
∣
∣
∣
XD + X + XT + Yp

(XD + Yp)

�

�

�

�

5
∣
∣
∣
∣
XD + XT + X pY

(X pY )

k1

k2

k3

k4

k5
k14

k13

k11

k10 k6k12 k9

σ

k8

k7

(31)
Thereby, 6 → 8 is the phantom edge (with label σ > 0) since y(6) = y(8) =
XD + X + XT + Yp. The network is V ∗-directed for V ∗ = V \{8}. It can be quickly
checked that the condensed graph G ′ has deficiency zero so that (31) has an effective
deficiency of zero (δ′ = 0). It follows from Theorem 14 that every equilibrium point
is in the parametrized set of CBE (i.e., Xk = Z̄k). It can also be checked that (31) has
a kinetic deficiency of one (δ̃ = 1). Hence, in order to apply Theorem 15 (statement
2), we need to first determine if there is σ = h(k∗) such that κ(k∗, h(k∗))C = 1.

We choose the spanning forest F = (V , E) for the graph (31) consisting of the
edges 1 → i for i = 2, . . . , 9. We compute the following matrices:
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M =

XD
X
XT
X p

Y
X pY
Yp

XDYp

XTYp

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1 0 −1 −1 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1
0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
0 1
0 1

−1 1
1 0
0 1
0 0
0 1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
−1
0
0

−1
0
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And we find the following tree constants:

K1 = (k4 + k5)(((k9 + σ)k14 + k9k13)k11 + σk14k10)k2k6k8k12
K2 = (k4 + k5)(((k9 + σ)k14 + k9k13)k11 + σk14k10)k1k6k8k12
K3 = k6(((k9 + σ)k14 + k9k13)k11 + σk14k10)k12k1k8k3
K4 = (k7 + k8)(((k9 + σ)k14 + k9k13)k11 + σk14k10)k5k1k3k12
K5 = k5(((k9 + σ)k14 + k9k13)k11 + σk14k10)k12k1k6k3
K6 = (k10 + k11)k12(k13 + k14)k1k3k5k6k8
K7 = k1k12k3k5k6k8k9(k13 + k14)

K8 = (k13 + k14)k1k3k5k6k8σ(k10 + k11)

K9 = k1k3k5k6k8σ(k10 + k11)k12

Constructing κ = κ(k∗, σ ) according to the spanning forest F = (V , E) as above
gives the δ̃ = 1 condition

κ(k∗, σ )C =
(
K3

K1

)−1 (
K6

K1

)−1 (
K8

K1

)

= k2(k4 + k5)σ

k1k3k12
= 1,

which can be solved explicitly for σ (in terms of k∗),

σ = k1k3k12
k2(k4 + k5)

.
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By Theorem 15 (statement 2), we have a monomial parametrization of the form (29).
In particular, we obtain:

XD =
(

((k2(k4 + k5)(k13 + k14)k9 + k1k12k14k3)k11 + k1k3k12k14k10)(k4 + k5)k2
(k10 + k11)k12k5k

2
3k

2
1

)

τ1

X =
(

(((k2(k4 + k5)k9 + k1k3k12k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10)(k4 + k5)

(k10 + k11)k12k1k5k
2
3

)

τ1

XT =
(

((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10
(k10 + k11)k12k1k3k5

)

τ1

X p =
(

(((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10)(k7 + k8)

(k10 + k11)k12k3k1k8k6

)
τ1

τ2

Y = τ2

X pY =
(

((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10
(k10 + k11)k12k3k1k8

)

τ1

Yp =
(

((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10
k5k3k1(k13 + k14)(k10 + k11)

)

XDYp =
(
k2(k4 + k5)(k13 + k14)k9

(k10 + k11)k1k3k12

)

τ1

XTYp = τ1

over τ1, τ2 ∈ R>0. This parametrizationwas obtained via alternativemethods by Pérez
Millán et al. (2012) and Johnston (2014).

Note that the concentration of Yp does not depend upon either parameter τ1 or
τ2. Hence, it takes the same value at every positive steady state. This property has
been called absolute concentration robustness (ACR) in the literature, and the robust
steady-state value of Yp has been obtained by other methods (Shinar and Feinberg
2010; Karp et al. 2012; Pérez Millán et al. 2012; Tonello and Johnston 2018).

Example 20 Consider the model for the Shuttled WNT signaling pathway from Gross
et al. (2016),whichhas a deficiencyof four (δ = 4), takenwith the following translation
scheme:
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X1 X2 X3 (+0)

X5 X7 (+0)

X11 + X12 X13 (+0)

X3 + X6 X15 X3 + X7 (+X9)

X7 + X9 X17 X6 + X9 (+X3)

X2 + X4 X14 X2 + X5 (+X8)

X5 + X8 X16 X4 + X8 (+X2)

X4 + X10 X18 X4 (+X6)

X6 + X11 X19 X6 (+X4)

X10 X11

(+X4 + X6)

∅

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k16

k17

k18

k19

k20

k21

k22

k23

k24

k25

k26

k27

k29

k28

k31k30

(32)

In the representation above, we have kept the indexing of the species X1 through X19
as in Gross et al. (2016), but renamed the rate constants. Via Lemmas 17 and 11, the
network corresponds to a weakly reversible, V ∗-directed GCRN:
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�

�

�

	

1
∣
∣
∣
∣
X1

(X1)

�

�

�

	

2
∣
∣
∣
∣
X2

(X2)

�

�

�

	

3
∣
∣
∣
∣
X3

(X3)

�

�

�

	

4
∣
∣
∣
∣
X5

(X5)

�

�

�

	

5
∣
∣
∣
∣
X7

(X7)

�

�

�

	

6
∣
∣
∣
∣
X11 + X12

(X11 + X12)

�

�

�

	

7
∣
∣
∣
∣
X13

(X13)

�

�

�

	

8
∣
∣
∣
∣
X3 + X6 + X9

(X3 + X6)

�

�

�

	

9
∣
∣
∣
∣
X9 + X15

(X15)

�

�

�

	

12
∣
∣
∣
∣
X2 + X4 + X8

(X2 + X4)

�

�

�

	

13
∣
∣
∣
∣
X8 + X14

(X14)

�

�

�

	

11
∣
∣
∣
∣
X3 + X17

(X17)

�

�

�

	

10
∣
∣
∣
∣
X3 + X7 + X9

(X7 + X9)

�

�

�

	

15
∣
∣
∣
∣
X2 + X16

(X16)

�

�

�

	

14
∣
∣
∣
∣
X2 + X5 + X8

(X5 + X8)

�

�

�

	

16
∣
∣
∣
∣
X4 + X6 + X10

(X4 + X10)

�

�

�

	

17
∣
∣
∣
∣
X4 + X6 + X10

(X10)

�

�

�

	

18
∣
∣
∣
∣
X4 + X6 + X11

(X11)

�

�

�

	

19
∣
∣
∣
∣
X4 + X6 + X11

(X6 + X11)

�

�

�

	

20
∣
∣
∣
∣
X6 + X18

(X18)

�

�

�

	

21
∣
∣
∣
∣
X4 + X6

(0)

�

�

�

	

22
∣
∣
∣
∣
X4 + X19

(X19)

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k15

k16

k17

k13

k14

k12

k19

k20

k18

k21

σ1 k27

k29

σ2

k28

k31 k24

k23

k22
k30

k26

k25

(33)
Thereby, 17 → 16 and 18 → 19 (with labels σ1 > 0 and σ2 > 0) are phantom edges
since y(16) = y(17) = X4 + X6 + X10 and y(18) = y(19) = X4 + X6 + X11.
The network is V ∗-directed for V ∗ = V \{16, 19}. It can be quickly checked that
the GCRN has a stoichiometric deficiency of two (δ = 2) but effective and kinetic
deficiencies of zero (δ′ = 0 and δ̃ = 0). By Theorems 14 and 15(statement 1), the
equilibrium set can be parametrized by (27).

Explicitly, we choose the spanning forest F = (V , E) for the graph (33) consisting
of the edges 1 → i for i ∈ {2, 3}, 4 → 5, 6 → 7, 8 → i for i ∈ {9, 10, 11},
12 → i for i ∈ {13, 14, 15}, and 16 → i for i ∈ {17, . . . , 22}. Then, we compute the
corresponding matrix M :

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0
0 1 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 −1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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We have rank (M) = 16 and therefore nullity (MT ) = 19− 16 = 3. A matrix B with
im B = ker MT and ker B = {0} is given by

BT =
⎡

⎣
1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0

⎤

⎦ .

By reducing MT to row echelon form, we obtain the following generalized inverse of
MT :

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
1 −1 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
1 −1 1 0 0 0 −1 0 0 1 −1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 −1 0 1 0 0 −1 1 −1 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 −1 0 0 1 0 −1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

That is, MT HMT = MT . From the graph (33), we obtain the tree constants K =
K (k∗, σ ):

K1 = k2k4 K8 = (k10 + k11)k12k14 K15 = k15k17k18
K2 = k1k4 K9 = k9k12k14 K16 = (k22 + k23)k24k30((k28 + σ2

+ k31)k26 + k25(k28 + k31))σ1
K3 = k1k3 K10 = k9k11(k13 + k14) K17 = k21(k22 + k23)k24k30((k28 + σ2

+ k31)k26 + k25(k28 + k31))
K4 = k6 K11 = k9k11k12 K18 = k21(k22+k23)k24(k25+k26)k27k30
K5 = k5 K12 = (k16 + k17)k18k20 K19 = k21(k22 + k23)(k25 + k26)k27k30σ2
K6 = k8 K13 = k15k18k20 K20 = k21k24k30((k28 + σ2 + k31)k26

+ k25(k28 + k31))σ1
K7 = k7 K14 = k15k17(k19 + k20) K22 = k21(k22 + k23)k24k27k30σ2
K21 = ((((k28 + σ2 + k31)k29 + (σ1 + k27)k31 + σ2k27 + σ1(σ2 + k28))k26 + k25((k28 + k31)k29

+ (σ1 + k27)k31 + σ1k28))k23 + k22(((k28 + σ2 + k31)k29 + k27(k31 + σ2))k26
+ k25((k28 + k31)k29 + k31k27)))k24k21
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As a result, the parametrization (27) amounts to

x1 =
(
K3K10K19
K1K8K18

)
τ1τ3

x2 =
(
K3K10K19
K2K8K18

)
τ1τ3

x3 =
(
K10K19
K8K18

)
τ1τ3

x4 =
(
K17
K16

)

x5 =
(
K5K10
K4K11

)
τ1

x6 =
(
K18
K19

)

x7 =
(
K10
K11

)
τ1

x8 =
(
K3K4K11K12K17K19
K2K5K8K15K18K16

)
τ3

x9 = τ3

x10 =
(
K21
K17

)

x11 =
(
K21
K18

)

x12 =
(
K7K18
K6K21

)
τ2

x13 = τ2

x14 =
(
K3K10K12K17K19
K2K8K13K18K16

)
τ1τ3

x15 =
(
K10
K9

)
τ1τ3

x16 =
(
K3K10K12K17K19
K2K8K14K18K16

)
τ1τ3

x17 = τ1τ3

x18 =
(
K21
K20

)

x19 =
(
K21
K22

)

with K = K (k∗, σ ) as above and σ1, σ2, τ1, τ2, τ3 > 0.

5 Outlook

We have presented sufficient conditions for determining whether the set of positive
equilibria of a generalized mass-action system coincides with the parametrized set of
complex-balanced equilibria. We have also presented sufficient conditions for guar-
anteeing a positive parametrization of the set of complex-balanced equilibria and
for effectively constructing the parametrization. Through an extension of network
translations (Johnston 2014), we have shown how the result can be immediately
applied to biochemical reaction networks, including the EnvZ–OmpR signaling path-
way (Shinar and Feinberg 2010) and shuttled WNT signaling pathway (Gross et al.
2016).

A number of potential avenues for further research naturally emerge from this
work.

1. Recent work on generalized mass-action systems has established sign conditions
sufficient for the uniqueness of equilibrium points in compatibility classes (Banaji
and Pantea 2016; Müller et al. 2016). In particular, when the steady-state set is
toric or complex-balanced, uniqueness and multistationarity may be established
(Müller and Regensburger 2012; Pérez Millán et al. 2012). It is currently unclear,
however, whether the extension to rational parametrizations in Theorem 15 might
be utilized to guarantee either uniqueness or multistationarity.

2. For GCRNs with nonzero kinetic deficiency (δ̃ > 0), statement 2 in Theorem 15
guarantees that, if the parameters σ ∈ R

E0
>0 can be chosen to satisfy the δ̃ > 0 con-

ditions for complex balancing, then the system has a monomial parametrization.
It is currently unclear which conditions guarantee that a set of free parameters
σ ∈ R

E0
>0 may satisfy the δ̃ > 0 algebraic conditions on the rate parameters

required for complex balancing.
3. Even for biochemical networks of moderate size, it is difficult to determine

a translation scheme for constructing a GCRN corresponding to the original
CRN. Computational approaches to network translation have been investigated
by Johnston (2015) and Tonello and Johnston (2018). These works, however,
rely on the definitions of a GCRN introduced by Müller and Regensburger
(2012) and of network translation by Johnston (2014). Using the more gen-
eral definitions of Müller and Regensburger (2014) would allow to extend the
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applicability of the computational approaches to a significantly broader class of
networks.
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