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Abstract
In an epidemic of a serious disease, there is likely to be behavioral response that
decreases the epidemic size considerably, and taking this into account may lead to
estimates of the final epidemic size that are much smaller and more realistic than
estimates that do not take this into account.
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1 Introduction

It has been standard practice in analyzing disease outbreaks to formulate a dynamical
system as a deterministic compartmental model, then to use observed early outbreak
data to fit parameters to the model, and finally to analyze the dynamical system to
predict the course of the disease outbreak and to compare the effects of different man-
agement strategies. In general, such models predict an initial stochastic stage (while
the number of infectious individuals is small), followed by a period of exponential
growth. Measurement of this early exponential growth rate is an essential step in esti-
mating contact rate parameters for the model. A thorough description of the analysis
of compartmental models may be found in Hethcote (2000).

However, instances have been noted where the growth rate of an epidemic is clearly
slower than exponential, especially for diseases which are viewed as very serious. For
example, the initial apparently exponential spread of the 2013–2015 Ebola epidemic
in West Africa can be viewed as a composition of locally asynchronous outbreaks
at local level displaying sub-exponential growth patterns during several generations
(Chowell et al. 2015). One of the earliest examples (Colgate et al. 1989) concerns the
growth of HIV/AIDS in the USA, and a possible explanation might be the mixture
of short-term and long-term contacts. This could be a factor in other diseases where
there are repeated contacts in family groups and less frequent contacts outside the
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home. There may be more than one mechanism influencing the early epidemic growth
rate, and it may not be possible to estimate the effects of different mechanisms from
incidence data.

A variety of epidemiological situations in which slower than exponential epidemic
growth might be possible have been described (Chowell et al. 2016b, a). Ultimately,
the challenge for epidemiological modeling would be to determine which of these
situations allow slower than exponential growth by deriving and analyzing mecha-
nistic models to describe each of these situations. This is an important new direction
for epidemic modeling. Some suggestions include metapopulation models with spa-
tial structure including cross-coupling and mobility, clustering in spatial structure,
dynamic contacts, agent-based models with differences in infectivity and susceptibil-
ity of individuals, and reactive behavioral changes early in a disease outbreak (Chowell
et al. 2016a). It may well turn out that slower than exponential growth may be ruled
out in some cases but is possible in others. For example, heterogeneity of mixing in a
single location can be modeled by an autonomous dynamical system and the lineariza-
tion theory of dynamical systems at an equilibrium shows that early epidemic growth
for such a system is always exponential. On the other hand, metapopulation models
may well allow many varieties of behaviors. It is likely that more than one mechanism
is at work in decreasing the growth rate, and this would complicate disentangling the
mechanisms involved form the incidence data.

There have been several approaches to the question of modeling disease outbreaks
which grow more slowly than might be expected. It has been pointed out (Chowell
et al. 2016a, b, 2015; Viboud et al. 2016) that a so-called general growth model of the
form

C ′(t) = rC(t)p,

where C(t) is the number of disease cases occurring up to time t , and p, 0 ≤ p ≤
1, is a “deceleration of growth” parameter, has exponential solutions if p = 1 but
solutions with polynomial growth if 0 < p < 1. This is not and does not claim to be a
mechanistic epidemic model, but it has proved to be remarkably successful for fitting
epidemic growth and predicting the future course of an epidemic (Pell et al. 2018;
Shanafelt et al. 2018). For example, it has provided much better estimates of epidemic
final size than the exponential growth assumption for the Ebola epidemic of 2014. Such
phenomenological models are particularly likely to be suitable in situations where it is
difficult to construct a mechanistic approach because of multiple transmission routes,
interactions of spatial influences, or other aspects of uncertainty.

We suggest that an assumption of a contact rate that decreases in time, because of
behavioral response to an outbreak of a disease that is often fatal, is a very plausible
assumption. For example, during the SARS epidemic of 2002–2003 many people
began towear facemasks to try to prevent disease spread through contact with airborne
particles, even though this may have in fact been counter-productive.

Another example of a behavioral response is given by theGreat Plague in the village
of Eyam near Sheffield, England, which suffered an outbreak of bubonic plague in
1665–1666, the source of which is generally believed to be theGreat Plague of London
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(Raggett 1982). The Eyam plague was survived by only 83 of an initial population of
350 persons.

In Eyam, the rector persuaded the entire community to quarantine itself to prevent
the spread of disease to other communities. He assumed that infection was transmitted
directly between people. While this is possible, it was thought that bubonic plague
is transmitted mainly by rat fleas. When an infected rat is bitten by a flea, the flea
becomes extremely hungry and bites the host rat repeatedly, spreading the infection
in the rat. When the host rat dies, its fleas move on to other rats, spreading the disease
further. As the number of available rats decreases, the fleas move to human hosts, and
this is how plague starts in a human population. It is believed now that fleas were the
main agents of the spread of plague (Dean et al. 2018).

One effect of this policy was to increase the infection rate in the village by keeping
fleas, rats, and people in close contact with one another, and the mortality rate from
bubonic plague was much higher in Eyam than in London. Further, the quarantine
could do nothing to prevent the travel of rats and thus did little to prevent the spread
of disease to other communities.

2 A Variable-Contact-Rate Epidemic Model

Another direction that would be well worth further exploration would be contact rates
decreasing in time because of individual behavioral changes in response to a disease
outbreak. A contact rate which is a decreasing function of time can certainly lead
to early epidemic growth slower than exponential. A step in this direction has been
initiated in a discrete model (Fisman et al. 2013) that has been applied to an Ebola
model in Fisman et al. (2014).

Our goal is to develop a simple approach to the question of making estimates early
in an outbreak of a dangerous disease for the eventual size of the epidemic, considering
the total size of the epidemic over a country rather than the more complicated growth
in separate villages. Study of the local structure of an epidemic is essential for attempts
to control the epidemic; our intent is only to obtain early estimates of the full extent
of an epidemic in order to judge the resources necessary for management.

The idea of a contact rate decreasing exponentially in time has been suggested
in Chowell et al. (2004). In Althaus (2014), a model for Ebola has been described
consisting of a standard SEIR epidemic model with disease deaths but with a contact
rate which decreases exponentially in time,

S′ = −βe−κt S
I

P

E ′ = βe−κt S
I

P
− ηE

I ′ = ηE − γ I

R′ = (1 − f )γ I . (1)

Here, β represents the transmission rate in unit time, depending on themean number of
contacts sufficient to transmit infection in unit time and the probability of transmission
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in a contact, κ represents the rate at which exposed individuals become infective, γ

represents the recovery rate of infective individuals, and f represents the disease
mortality rate. P is the number of live individuals, P = S + E + I + R.

The basic reproduction number is

R0 = β

γ
. (2)

The (time-dependent) effective reproduction number is

Rt = βe−κt

γ

S(t)

P(t)
,

and so long as the number of disease cases is small compared to the initial population
size, this is approximately

βe−κt

γ
.

Because the model (1) is non-autonomous, there is no final size relation available,
but it is not difficult to simulate the model numerically for a given set of parameter
values.

3 Heterogeneity in epidemic models

Another possible explanation for epidemic sizes smaller than expected is heterogeneity
of mixing of individuals, and we will extend our model to epidemics which include
heterogeneity.

It has been observed that in many disease outbreaks, the phenomenon of super-
spreading events, situations in which a small fraction of the population causes more
than its share of disease cases, has been significant (Lloyd-Smith et al. 2005). For
example, superspreading events were important in the SARS outbreak of 2002–2003
(Riley et al. 2003), in which there was a cluster of at least 125 cases apparently infected
by a single index patient as well as another cluster of perhaps 300 cases. For a given
basic reproduction number, the number of disease cases is generally fewer if there is
superspreading than if the population mixing is homogeneous.

In the 2014–2015 West Africa Ebola epidemic, there is also evidence of super-
spreading (Lau et al. 2017). It is suggested in Galvani and May (2005) that commonly
roughly 20% of the individuals in a population are responsible for 80% of the disease
cases.

We have described a simple superspreading epidemicmodel inBrauer (2018). Here,
we extend this model to include a time-dependent contact rate and disease deaths.

We consider an SE I R epidemic model in a population divided into two groups.
Group 1 members (superspreaders), forming a fraction ρ of the total population, have
a contact rate σa and Group 2 members have a contact rate a, with σ > 1. Mixing
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between groups is proportionate. We take σ = 16, ρ = 0.2 in order to conform to the
suggestion in Galvani and May (2005) that commonly roughly 20% of the individuals
in a population are responsible for 80% of the disease cases.

We assume

– Total initial population size is N . Group 1 initial population size is N1 = ρN .
Group 2 initial population size is N2 = (1 − ρ)N .

– Group i is divided into susceptibles (Si ), exposed members (Ei ), infectives (Ii ),
and recovered members (Ri ).

– Mixing between groups is proportionate. The fraction of contacts of susceptibles
with groups 1 and 2, respectively, are

p1 = ρσ

ρσ + (1 − ρ)
, p2 = 1 − ρ

ρσ + (1 − ρ)
.

– Infections in each group recover at rate γ .
– There is a disease death rate f .
– There are no demographic effects (births, deaths, migration) on the population.

Then, the total population sizes at time t in the two groups are

P1 = S1 + E1 + I1 + R1, P2 = S2 + E2 + I2 + R2.

The model is (Brauer 2018)

S′
1 = −σβ∗e−κt S1

[
ρσ

ρσ + (1 − ρ)

I1
P1

− 1 − ρ

ρσ + (1 − ρ)

I2
P2

]

E ′
1 = σβ∗e−κt S1

[
ρσ

ρσ + (1 − ρ)

I1
P1

+ 1 − ρ

ρσ + (1 − ρ)

I2
P2

]
− ηE1

I ′
1 = ηE1 − γ I1 (3)

R′
1 = (1 − f )γ I1

S′
2 = −β∗e−κt S2

[
ρσ

ρσ + (1 − ρ)

I1
P1

− 1 − ρ

ρσ + (1 − ρ)

I2
P2

]

E ′
2 = β∗e−κt S2

[
ρσ

ρσ + (1 − ρ)

I1
P1

+ 1 − ρ

ρσ + (1 − ρ)

I2
P2

]
− ηE2

I ′
1 = ηE2 − γ I2

R′
1 = (1 − f )γ I2

We let

θ = ρσ + (1 − ρ).

To calculate the reproduction number using the next-generation method (van den
Driessche and Watmough 2002) for t = 0 using the disease-free equilibrium with

P1 = N1 = ρN , P2 = N2 = (1 − ρ)N
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and

S1 = ρN , S2 = (1 − ρ)N , E − 1 = E2 = !1 = I2 = R1 = R2 = 0,

we write

F =

⎡
⎢⎢⎣
0 ρσ 2β∗

θ
0 σρβ∗

θ

0 0 0 0
0 (1−ρ)σβ∗

θ
0 (1−ρ)β∗

θ

0 0 0 0

⎤
⎥⎥⎦ , V =

⎡
⎢⎢⎣

σ 0 0 0
−σ α 0 0
0 0 σ 0
0 0 −σ α

⎤
⎥⎥⎦

Thus, the next-generation matrix is

FV−1 =

⎡
⎢⎢⎣

ρσ 2β∗
αθ

ρσ 2β∗
αθ

ρσβ∗
αθ

ρσβ∗
αθ

0 0 0 0
(1−ρ)σβ∗

αθ
(1−ρ)σβ∗

αθ
β∗(1−ρ)

αθ
β∗(1−ρ)

αθ

0 0 0 0

⎤
⎥⎥⎦ .

This matrix has the same nonzero eigenvalues as the 2 × 2 matrix

KL =
[

ρσ 2β∗
αθ

ρσβ∗
αθ

β∗(1−ρ)
αθ

β∗(1−ρ)
αθ

]

(the next-generation matrix with least domain). The matrix KL has determinant zero.
Thus, the nonzero eigenvalue is the trace of this matrix, and

R0 = β∗

αθ
[σ 2ρ + (1 − ρ)] = β∗

α

σ 2ρ + (1 − ρ)

σρ + (1 − ρ)

In order to have a superspreading model with the same reproduction number as the
original model (1), we must take

β∗ = β
θ

σ 2ρ + (1 − ρ)
.

4 Guinea: An Example

The first country to experience an outbreak of Ebola in 2014 was Guinea, where the
index case occurred on December 2, 2013. The development of the disease in Guinea
was modeled by (1) with parameter values

N = 10,589,000, β = 0.27, η = 1/5.3, γ = 1/5.61, κ = 0.0023, f = 0.71,

giving a basic reproduction number R0 = 1.51. In fact, there were 3814 cases of
disease in Guinea.
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The model (1) was simulated using Maple, with initial values

S(0) = N − 40, E(0) = 0, I (0) = 40, R(0) = 0.

If κ = 0, the situation in which there is no decrease in the basic reproduction num-
ber, we would obtain S∞ = 1,182,015, corresponding to 9,406,985 disease cases
(including the initial infectives). With the given estimate of κ , we would obtain
S∞ = 10,561,299, corresponding to 27,701 disease cases, much closer to the actual
number of cases.

Simulation, usingMaple, of the superspreader model (3), with S1(0) = 2,117,792,
S2(0) = 8,491,168, lead to S1(∞) = 2,099,272, S2(∞) = 8,486,508 corresponding
to 23,220 disease cases. a slightly better estimate.

5 Sierra Leone: An Example

The first cases of Ebola in Sierra Leone were reported on May 27, 2014. The devel-
opment of the disease in Guinea was modeled by (1) with parameter values

N = 5,364,000, β = 0.45, η = 1/5.3, γ = 1/5.61, κ = 0.0097, f = 0.48,

giving a basic reproduction number R0 = 2.53. In fact, there were 14,124 cases of
disease in Guinea.

The model (1) was simulated using Maple, with initial values

S(0) = N − 20, E(0) = 0, I (0) = 20, R(0) = 0.

If κ = 0, the situation in which there is no decrease in the basic reproduction number,
we would obtain S∞ = 206,896, corresponding to 5,157,104 disease cases (including
the initial infectives). With the given estimate of κ , we would obtain S∞ = 5,341,699,
corresponding to 22,301 disease cases, much closer to the actual number of cases.

Simulation, using Maple, of the superspreader model (3), with S1(0) = 106,919,
S2(0) = 4,276,784, leads to S1(∞) = 1,058,093, S2(∞) = 4,273,995 correspond-
ing to 13,912 disease cases. a slightly better estimate.

6 Liberia: An Example

The Ebola epidemic in Liberia began somewhat later than the epidemics in Guinea
and Sierra Leone. There was a minor outbreak in April 2014, and the first cases in the
full epidemic were reported on June 16, 2014. Fisman et al. (2014) found no decrease
in the reproduction number by early September 2014. The data after early September
are incomplete and unreliable, and the only available estimate of a decrease in the
reproduction number for Ebola in Liberia is in WHO Ebola Response Team (2014)
which leads to a decrease rate of κ = 0.0018, probably smaller than the actual rate.

123



876 F. Brauer

Simulation of the model (1) using Maple was carried out, with parameter values

N = 3,787,000, β = 0.28, η = 1/5.3, γ = 1/5.61, κ = 0.0018, f = 0.71,

and initial values

S(0) = N − 20, E(0) = 0, I (0) = 20, R(0) = 0.

If κ = 0, the situation in which there is no decrease in the basic reproduction number,
we would obtain S∞ = 585,843, corresponding to 3,701,157 disease cases (including
the initial infectives). With the given estimate of κ , we would obtain S∞ = 3,683,495,
corresponding to 103,505 disease cases, much closer to the actual number of cases
but still quite large.

Simulation, using Maple, of the superspreader model (3), with S1(0) = 757,396,
S2(0) = 3,029,584, leads to S1(∞) = 724,293, S2(∞) = 3,021,121 corresponding
to 41,636 disease cases, a considerably better estimate.

7 Conclusions

In order to plan management strategies for an outbreak of an epidemic, it is important
to have an estimate early in the epidemic of how serious the epidemic will be. For
an epidemic that may spread very widely, an estimate based on a simple SIR or SEIR
model may predict a very large number of disease cases. If the disease is viewed as
very dangerous, theremay be substantial behavioral changes in the affected population
even before official control measures are begun. These may lead to a decrease in the
reproduction number of the epidemic and a much smaller number of disease cases
than an initial prediction. We suggest that it would be very useful to estimate both the
(initial) basic reproduction number and an effective reproduction number a little later in
the epidemic in order to estimate how the reproduction number changes over the course
of the epidemic. The estimate may be improved further by assuming heterogeneity of
mixing, which appears to be an extremely common phenomenon. Reasonably accurate
initial estimates are useful in planning the overall management of an epidemic, which
may be quite distinct from the problems of management in individual regions.

There is a possible contradiction in this procedure. Behavioral response to an epi-
demic may be much larger if the public estimates of epidemic size are estimates that
do not assume behavioral response. It would be important to emphasize how large
the effect of even small decreases in reproduction number can be on the size of an
epidemic.
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