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Abstract We study metastatic cancer progression through an extremely general
individual-patient mathematical model that is rooted in the contemporary understand-
ing of the underlying biomedical processes yet is essentially free of specific biological
assumptions of mechanistic nature. The model accounts for primary tumor growth and
resection, shedding of metastases off the primary tumor and their selection, dormancy
and growth in a given secondary site. However, functional parameters descriptive of
these processes are assumed to be essentially arbitrary. In spite of such generality,
the model allows for computing the distribution of site-specific sizes of detectable
metastases in closed form. Under the assumption of exponential growth of metas-
tases before and after primary tumor resection, we showed that, regardless of other
model parameters and for every set of site-specific volumes of detected metastases,
the model-based likelihood-maximizing scenario is always the same: complete sup-
pression of metastatic growth before primary tumor resection followed by an abrupt
growth acceleration after surgery. This scenario is commonly observed in clinical prac-
tice and is supported by a wealth of experimental and clinical studies conducted over
the last 110 years. Furthermore, several biological mechanisms have been identified
that could bring about suppression of metastasis by the primary tumor and acceler-
ated vascularization and growth of metastases after primary tumor resection. To the
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best of our knowledge, the methodology for uncovering general biomedical principles
developed in this work is new.

Keywords Angiogenesis - Dormancy - Metastasis - Method of maximum likelihood -
Poisson process - Primary tumor

1 Introduction

As every oncologist and veterinarian knows, cancer patients and tumor-bearing ani-
mals seldom present with clinically manifest metastases. Yet in a large fraction of
subjects metastases surface within a few weeks, months or years after removal of the
primary tumor. Is this just a coincidence or is there a causal relationship between (a) the
presence of the primary tumor and metastatic dormancy; and (b) primary tumor resec-
tion and surfacing of metastases? Although a wealth of clinical cases and experiments
on animal models accumulated over the last 110 years provide ample biomedical
evidence supporting the suppressing effect of the primary tumor and accelerating
effect of its ablation on metastasis, see Sect. 3, more definitive general conclusions
have been so far elusive, for two reasons. First, dormant micrometastases and critical
microevents that trigger their origination, escape from dormancy and progression to
detectable secondary tumors in an individual subject are largely unobservable. Second,
such randomly occurring microevents are separated by months, years or even decades
from their clinical manifestations. These two factors make mathematical modeling an
indispensable tool for establishing qualitative and quantitative relationships between
various aspects of cancer natural history and assessing the effects of treatment.

Over a few recent decades our understanding of carcinogenesis and cancer pro-
gression has seen many dramatic shifts. For example, discoveries of (1) mutational
origins of cancer; (2) metabolic plasticity of cancer cells; (3) aberrant regulation of cell
cycle, proliferation and apoptosis in cancer cells; (4) the role of angiogenesis in cancer
progression; (5) significance of primary and secondary tumor dormancy; (6) complex
interactions of cancer cells with the immune and endocrine systems; (7) a critical role
of tumor microenvironment as well as local and systemic interactions among various
cell types; (8) an important role of inflammation in cancer origination and progression;
and (9) identification of cancer stem cells have all considerably changed the landscape
of cancer research. Undoubtedly, many other aspects of cancer still remain unknown.
That is why answering systemic questions like those posed in this work cannot rely
on mathematical models based on specific biological mechanisms. This and other
limitations of traditional mathematical modeling call for a different approach.

In this work, we develop an alternative methodology that, to the best of our knowl-
edge, has never been employed in the past. Its main driving force is an extremely
general mathematical model of cancer origination and progression in an individual
patient that is rooted in basic cancer biology and yet is essentially free of any specific
assumptions of mechanistic nature, see Sect. 4. The model combines deterministic
description of the pre-surgery primary tumor dynamics and growth of metastases in a
given secondary site with stochastic description of the processes that clearly depend
on chance (Kendal 2006) such as shedding of metastases off the primary tumor, their
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selection, and dormancy in a given site. However, the “trick” is that the laws governing
primary tumor dynamics, the rate of metastasis shedding, the site-specific distribution
of metastasis dormancy times, and metastatic growth are very general in that they are
essentially assumed to have only qualitative properties (such as monotonicity, conti-
nuity or differentiability) rather than specific functional form. Thus, the model largely
avoids the step of initial parameterization that would make it rigid at the outset. Such
highly flexible models were discussed and advocated by Hanin (2013). The model
described in this work is an extension of a somewhat less general model introduced
and studied by Hanin et al. (2006) and Hanin (2008). In spite of its generality, the model
still allows for explicit formulas for the distribution of various clinically significant
variables observable in a particular patient.

A set of observations most suitable for our purposes is the collection of volumes of
metastases detected in a given secondary site (typically lungs, liver, bones, brain or soft
tissue). Such volumetric data can be obtained through laborious reading of CT/PET
images. Examples of such data sets, their mathematical and statistical analyses based
on various parametric versions of our model, and of relevant biomedical findings can
be found in Hanin et al. (2006, 2016), Hanin and Korosteleva (2010), Hanin and
Zaider (2011), Hanin and Bunimovich-Mendrazitsky (2014), and Hanin and Rose
(2016). A general question regarding clinical conclusions that can, or cannot, be made
on the basis of such models from a sample of site-specific volumes of metastases was
discussed from mathematical and biomedical standpoints by Hanin et al. (2016).

To answer our main question about the effects of primary tumor in situ and its
removal on the rate of growth of metastases, we do have to parameterize one part of
our model: the laws of growth of metastases before and after primary tumor removal.
Quite often, clinical metastases are detected early when they are likely to be still in
the exponential phase of their growth. Therefore, in order to compare the growth of
metastases pre- and post-surgery, we assumed that vascular metastases lodged in a
given site grow exponentially with two rates, not necessarily distinct—one before and
one after primary tumor resection, and estimated these two parameters from a given
sample of site-specific volumes of metastases. To retain model generality, all other
functional parameters were assumed arbitrary. Furthermore, the model of metastatic
growth s presented in Sect. 4 in a general form that goes far beyond the exponential law.
This makes the model more flexible, allows one to accommodate observations with
large metastatic volumes that cannot be assumed to result from exponential growth,
and enables an extension of our analysis to parametric families of metastasis growth
functions other than exponential in the future.

One of the most appealing ways to estimate the two rates of exponential metastatic
growth from data is to select their values that maximize the model-based probability
of observations. This fundamental idea, called the Principle of Maximum Likelihood,
goes back to Lagrange, Daniel Bernoulli, Euler, Laplace and Gauss, see, e.g., Stigler
(2007).

Application of the Principle of Maximum Likelihood has led us to a surpris-
ing discovery: for any sample of site-specific volumes of detectable metastases,
the likelihood-maximizing scenario is invariably the same—complete suppression of
metastatic growth while primary tumor is in place followed by a sudden growth accel-
eration after primary tumor resection. This conclusion is based, apart from standard
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assumptions about independent and (distributionally) identical behavior of metas-
tases in a given site, likelihood maximization, and the assumption of exponential
growth of metastases pre- and post-surgery, on the premise that metastasis shedding
off the primary tumor is governed by a Poisson process (with essentially arbitrary
time-dependent rate), see Sect. 4 for more details. Our finding does not mean, of
course, that the above scenario should necessarily occur for all solid cancers and all
patients. However, due to the generality of our model and conclusions, it provides
a compelling explanation for the fact that this scenario is very common in clinical
practice.

The outline of the article and the basic flow of ideas are as follows. A brief con-
ceptual overview of the dynamics of solid cancer including metastasis is presented
in Sect. 2. Extensive biomedical evidence for the suppression of metastasis by the
primary tumor and escape from dormancy following primary tumor resection as well
as several possible explanations of this phenomenon are reviewed in Sect. 3. A math-
ematical model of individual cancer natural history is introduced in Sect. 4 while in
Sect. 5 we present the model-based distribution of site-specific volumes of metas-
tases. In Sect. 6 we describe the outcome of likelihood maximization and the resulting
limiting model. Finally, in Sect. 7 we formulate and discuss our conclusions.

2 Dynamics of Primary and Secondary Tumors: A Brief Summary

Solid primary tumors originate from a single malignant clonogenic cell or a group of
such initiator cells. Unlike normal cells of the same tissue origin, cancer cells have an
abnormal control of cell cycle and apoptosis and can evade regulatory signals from the
microenvironment. Tumor growth is enabled by the supply of nutrients, oxygen and
growth factors which are initially delivered through diffusion. However, according to
a fundamental discovery made by Folkman (1974), under such conditions a tumor can
only reach a microscopic diameter of about 1-2 mm. To enable its further growth, the
tumor has to induce angiogenesis, i.e., develop a capillary network that will provide a
more efficient supply of essential chemicals. If the effects of angiogenesis inhibitors
are stronger than those of angiogenesis promoters then the tumor may indefinitely
reside in a state of dormancy characterized by a dynamic equilibrium between cell
proliferation, death and quiescence (Hadfield 1954; Sugarbaker et al. 1971; Holmgren
etal. 1995). In the opposite case [or if external microenvironmental or systemic factors
such as inflammation, infection, trauma and irradiation shift the balance in favor of
pro-angiogenic factors, an event referred to as angiogenic switch (Folkman 2002)],
the tumor will vascularize and start an irreversible aggressive growth. This event will
be called primary tumor inception.

The most clinically significant aspect of the progression of solid cancers is metas-
tasis, which accounts for about 90% of all cancer-related deaths, see, e.g., Spano
et al. (2012). A primary tumor may start shedding bloodborne metastases as soon as
it becomes vascularized, i.e., following inception. Because the minimum diameter for
clinical detection of tumors is about 5 mm, the aforementioned Folkman’s limit for
avascular tumors suggests that at the time of inception primary and secondary tumors
may still be undetectable.
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Metastasis is a complex multi-stage process (Fidler 1990). A metastasis-generating
cell has to separate itself from the primary tumor, migrate to a blood vessel, intravasate,
survive through the period of free circulation, extravasate and invade a host site. A
solitary metastatic cell lodged in a secondary site may remain dormant (i.e., in the Gg
phase of the cell cycle) for months, years or even decades (Marches et al. 2006). Under
favorable conditions it may start to grow, induce angiogenesis and eventually enter the
clinical stage. Thus, metastasis is a highly inefficient and selective process in that only a
tiny fraction of cancer cells shed off the primary tumor give rise to clinically detectable
secondary tumors. Just as for primary tumor, the start of irreversible aggressive growth
of a vascular metastasis will be termed inception.

3 Inhibition of Metastasis by the Primary Tumor and the Effects of Its
Resection: Biomedical Evidence

Investigation of the interaction between various tumors was initiated by a pioneer-
ing work of Ehrlich (1906), see also Bashford et al. (1907). The main conclusion
of this and many other experimental studies on animals was that large tumors sup-
press the growth of smaller ones, see a comprehensive review by Gorelik (1983). In
particular, primary tumor in situ impedes the growth of metastases (DeWys 1972;
Sugarbaker et al. 1977). This effect is one of the many reasons behind metastatic
dormancy whose fundamental role for understanding cancer natural history has been
acknowledged and well-documented long ago by Alexander (1983), Holmgren et al.
(1995) and Demicheli et al. (1997). It comes, then, as no surprise that resection of a
large primary tumor could lead to accelerated growth of metastases. The first exper-
imental study of this phenomenon goes back to the 1910s (Tyzzer 1913). Since then
it was observed directly in numerous animal experiments and countless clinical cases
where surgical removal of the primary tumor was followed by a sudden rapid out-
growth of multiple metastases, see reviews by Demicheli et al. (2008), Retsky et al.
(2010) and Hanin (2013). A vast body of experimental, clinical and epidemiological
evidence amassed over the last 110 years has proven that surgical removal of the pri-
mary tumor may trigger escape from metastatic dormancy, promote angiogenesis and
accelerate the growth of vascular secondary tumors. Mathematical models applied
to real data have led to the same conclusion (Hanin and Korosteleva 2010; Hanin
and Zaider 2011; Hanin and Bunimovich-Mendrazitsky 2014; Hanin and Pavlova
2016).

A number of non-mutually exclusive mechanisms explaining the suppressive effects
of primary tumor in situ and stimulating effects of primary tumor resection on metas-
tases have been proposed:

(1) An explanation due to Prehn (1993) is based on the observation that tumors
produce growth and angiogenesis factors as well as inhibitors of these processes.
While growth and angiogenesis factors are easily degradable and spread mostly locally
by diffusion, their inhibitors are more stable and when shed into the blood stream
may reach distant sites and suppress metastatic progression. When the primary tumor
is removed, the supply of the inhibitors is cut off, which causes vascularization of
metastases and boosts their growth.

@ Springer



524 L. Hanin, J. Rose

(2) Resection of the primary tumor (and any surgery for that matter, see Maida et al.
2009) leads to an increase in local and systemic production of growth and angiogenesis
factors required for wound healing. As these factors are captured by dormant or slowly
growing metastases, their vascularization and growth are accelerated.

(3) Surgery brings about transient inflammation that may boost cancer progres-
sion. The idea that cancer is closely associated with inflammation was advanced by
Rudolf Virchow in 1863 and is supported by numerous clinical and experimental
studies (Balkwill and Mantovani 2001). A related hypothesis is that inflammation
stimulates and fuels metastasis. One of many ways in which this may occur is due
to the increase in blood vessel permeability caused by inflammation, which facili-
tates both intravasation of cancer cells shed off the primary tumor and extravasation
of circulating tumor cells. Finally, a striking, if only indirect, evidence of a strong
association between inflammation and cancer progression was discovered by a group
of Belgian anesthesiologists who found that perioperative use of non-steroidal anti-
inflammatory analgesic ketorolac has led to a fivefold reduction in short-term (i.e.,
within 9-18 months post-surgery) relapses of breast cancer (Forget et al. 2010). This
remarkable phenomenon was explained by Retsky et al. (2013) and extensively dis-
cussed by Retsky and Demicheli (2017).

(4) Immunogenic primary tumor serves as a source of antigens that activate den-
dritic cells (DCs) of the immune system (Vatner et al. 2014). When activated DCs
reach lymph nodes they in turn activate naive T cells converting them into cytotoxic
lymphocytes (CTLs). The latter flow with the blood circulation and may extravasate
at distant metastatic sites thus inhibiting the growth of metastases. After excision of
the primary tumor, this massive CTL trafficking is abrogated causing metastases to
escape the immune surveillance and start aggressive proliferation.

(5) The adrenergic and inflammatory effects of surgery lead to temporary, yet sig-
nificant, immunosuppression caused by the perturbed functioning of T-lymphocytes,
macrophages, natural killer cells, monocytes and other cells of the immune system
(Hiller et al. 2017). This strong perioperative signal may cause “awakening” of dor-
mant micrometastases and their active propagation.

4 A Mathematical Model of Individual Cancer Natural History

A mathematical model introduced by Hanin et al. (2006), Hanin (2008), Hanin and
Korosteleva (2010) and presented in its most general form below accounts for the
basic aspects of cancer dynamics described in Sect. 2. Its only very mild assump-
tions are dictated by mathematical convenience and serve the purpose of facilitating
mathematical and statistical analysis without unduly restricting the scope of biological
possibilities allowed by the model.

Primary tumor growth The model of primary tumor growth describes the dynamics
of clonogenic cancer cells after primary tumor inception. These cells are of greatest
clinical importance because (a) each of them can regenerate the whole tumor; and (b)
some of them may give rise to metastases. The total number of clonogenic cells within
the primary tumor at any time ¢ counted from the age, T, of primary tumor inception
will be denoted by @ (¢). The significance of primary tumor inception is twofold:
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First, this is the earliest time when the primary tumor may start shedding bloodborne
metastases; and, second, before inception an avascular tumor may grow according to
a law different from @ or even remain dormant. It is assumed that up until the time,
V, of primary tumor resection ® is a continuous positive function, not necessarily
increasing. Allowing a deviation from monotonic increase can account for primary
tumor dynamics in patients receiving neo-adjuvant local or systemic treatments, i.e.,
given radio-, chemo-, immuno- and/or hormonal therapy before surgery.

Metastasis formation We assume that metastasis shedding is governed by a Poisson
process whose rate, (4(t), is proportional to the number, L (), of metastases-producing
cells at time ¢ : u(t) = o L(¢) with constant o« > 0, where time ¢ is counted from pri-
mary tumor inception. The unobservable number L(#) depends on the current number
of clonogenic cells: L(¢) = r[®(¢)], where r is a continuous function with 7(0) = 0
and r(x) > 0 for x > 0. Thus, u(¢) = ar[®(¢)]. Perhaps the most important exam-
ples of function r, explored in Hanin et al. (2006, 2016), Hanin (2008), Hanin and
Korosteleva (2010), Hanin and Zaider (2011), Hanin and Bunimovich-Mendrazitsky
(2014), Hanin and Rose (2016), are of the form r(x) = Bx?, where 8 > 0 and
6 > 0. The case & = 1 implies that a fixed fraction of clonogenic cells in the primary
tumor have metastatic potential. The case § = 2/3 arises under the assumption that
metastatic cells originate from the blood vessel-rich surface of the primary tumor,
assumed spherical. Finally, if 6 = 0 then the population of metastases-producing
cells has constant size, which suggests that it has self-renewal capacity, e.g., through
asymmetric division.

It is further assumed that metastases shed by the primary tumor survive and give
rise to clinically detectable secondary tumors in a given site independently of each
other with the same probability ¢ > 0. Therefore, see, e.g., Ross (1997, pp. 257-259),
inception of metastases in the site of interest is governed by a Poisson process with
the rate v(¢) = qu(z).

Next, each viable metastasis is assumed to spend some random time between detach-
ment from the primary tumor and inception in the secondary site, termed metastasis
latency time. Latency times of viable metastases bound for a given site are indepen-
dent and identically distributed (iid) with some continuous probability density function
(pdf) f and the corresponding cumulative distribution function (cdf) F'. Then, see, e.g.,
Hanin and Yakovlev (1996), the resulting delayed Poisson process is again a Poisson
process with the rate

t

/ v(s) f(t — s)ds
0

We assume for simplicity that the growth of all vascular metastases in the site
in question starts from the same initial size, Ny, at inception. This implies that the
duration of metastatic latency is bounded below by a certain minimal time v > 0
during which a metastasis can reach the microscopic size Ny if it starts to grow at
the maximum possible rate immediately after seeding. Accordingly, we assume that
f(@)=0for0O <t <tand f(r) >0tort <t < W — T, where W is the age at
metastasis detection. We think of t as a sufficiently small numbersothat 7 4+t < V,
see Fig. 1.
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primary tumor  the earliest primary tumor metastasis
inception metastasis resection survey

inception time
metastasis
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Fig. 1 Schematic timeline of the natural history of metastatic cancer and its treatment in an individual
patient. All times are represented as ages counted from the birth of the patient. 7'+ U is the age at inception
of a particular metastasis. Note that the inception may occur either before or after surgery. Numbers with
arrows above the timeline represent sizes of the metastasis at the indicated time points

Metastasis measurement The size of a metastasis becomes measurable when it
exceeds some threshold value m. This value and the accuracy of size measurement
depend on the secondary site and the sensitivity of imaging technology. A typical
threshold m corresponds to metastatic diameter of about 5 mm while the diameter of
metastasis at inception is close to the avascular limit of about 1-2 mm. Therefore, we
assume that m > Ny.

Timeline of metastatic cancer progression and observables Suppose that at age
V the primary tumor was resected, and that at age W > V the patient developed
n > 1 detectable metastases in a given secondary site with the observed sizes
Xi,Xo,...,Xy,wherem < X1 < Xp <--- < X,.Thus,0 < T <V < W,
see Fig. 1. Initially, the sizes of metastases are represented in volumetric form. Some
of these volumes may be identical due to image discretization and rounding. To convert
the volume of a metastasis into its size (the number of cells), one has to divide the vol-
ume by the volume of a single cell, assumed the same for all metastatic cells in a given
site. The corresponding distinct sizes of metastases will be denoted Y1, Y2, ..., Y,
where k < n, with the understanding that Y| < Y> < --- < Y. Letalso Yy := m and
Z = X, = Y be the largest size of detected metastases.

Metastatic growth Denote by U the inception time of a particular metastasis relative
tothe age, T', of primary tumor inception, so that 7 4 U is the patient’s age at metastasis
inception, see Fig. 1. Let Wy (¢) be the size of the metastasis at time ¢ counted from
time U. Recall that W (0) = Np. Observe that, in contrast to the primary tumor, ¥y,
accounts for the fotal number of cancer cells, both clonogenic and non-clonogenic;
the reason is that measured at age W are the total volumes of metastases.

In our likelihood maximization argument in Sect. 6, we will assume that every
viable metastasis in a given site grows exponentially before and after primary tumor
excision with respective rates yp and yi, not necessarily distinct. Then in the case
T +U < V we have Wy (1) = Noexp{yot} if0 <t <V —T — U and Yy (t) =
Noexp{yo(V — T — U)}exp{yilt —(V—-T - U)]}ift >V — T — U, see Fig. 1.
Similarly, if T + U > V then Wy () = Noexp{yit}, t > 0. In a simpler setting where
y1 = o studied by Hanin et al. (2006), Wy (¢) is a function of ¢ alone, independent of
the inception time U. However, if the rate of metastatic growth is affected by resection
of the primary tumor (y; # yp), this is not true anymore.
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The exponential law W () = N exp{yt} with y > 0 describes propagation of
identical clones generated by N initial cells and growing at constant net per-cell rate y
under the assumption of no interaction between cells. To obtain a more general model
of metastatic growth, we relax this assumption by prohibiting interaction only between
the clones generated by the cells in a given metastasis present at the time, V, of primary
tumor resectionif T+ U < V or at the post-surgery metastasis inception time 7 4 U if
T+U > V while allowing cell interactions within the clones. Such interactions may be
due to spatial proximity between cells resulting in contact inhibition and competition
for space, nutrients, oxygen and growth factors, and other reasons. As discussed in
Sects. 2 and 3, at these two time moments the dynamics of a metastasis may undergo
major transformation. It follows from our assumptions that after such a transformation,
the size of a metastasis post-surgery can be represented as the product of the number
of cells present at the time of transformation and the clone growth function, which
will be denoted W;. Although a similar multiplication rule may be also adopted for the
pre-surgery metastasis inception, it is technically unnecessary. In the context of clones
occupying separate biological niches, a similar approach was proposed by Fakir et al.
(2013).

Our model of metastatic growth is based on the following assumptions:

(1) Prior to primary tumor resection, the growth of each viable metastases in a
given site is governed by the same function Wy (¢), where time ¢ is counted from the
age T + U of metastasis inception (individual for each metastasis), with W (0) = Np;

(2) Clones generated by metastatic cells present at time V (or at the metastasis
inception time if 7 + U > V) in a given site grow independently according to the
same function ¥ with ¥{(0) = 1;

(3) Functions Wy and W are increasing and differentiable.

Clearly, in the case of exponential metastatic growth discussed above all these
assumptions are met. Similar to the exponential case we have:

Wo (1) ifT+U <Vand0<t<V-T-U
Uyt) = Wo(V-T—-U)W[t—(V-T-U)] fT+U<Vandt>V-T—-U (1)
NoWi (1) ifT+U>Vandtr >0

Observe that function Wy (¢) is increasing, continuous and piecewise differentiable.

Secondary metastasis and the effects/outcomes of treatment Secondary metastasiz-
ing (that is, formation of “metastasis of metastasis”) to a given site, both from other
sites and from within, is assumed negligible. The resected primary tumor is supposed
to be non-recurrent. Thus, formation of new metastases stops at the time of primary
tumor resection. Other treatments, including chemo-, immuno-, radiation or hormonal
therapies, are assumed to affect metastases only through the rate of their growth (and
not through a change in the distribution of their latency times).

5 Distribution of the Sizes of Detectable Metastases

Let X be the size of a particular metastasis with inception time U detected in a given
site and surveyed at age W. According to (1)
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_ WV =T -U)¥(W-V) ifT+U<V
X=VoW-T U)_{No\lll(W—T—U) fT+U>V
where W — T — U is the total metastasis progression time from inception to detection.
An important observation is that the function that relates the size X of a metastasis at
age W to its progression time actually does not depend on U':

X=UYW-T-U) (2)
where

_ [ NoWi(y) ifo<y<w-V
\Ij(y)_{qJO[y_(W_V)]\I’l(W—V) EW-V<y<w-T—7

Note that function W is increasing, continuous, piecewise differentiable, and satisfies
the condition W(0) = Ny. The inverse function, § :== W~!, is given by

wr! (NLO) if No < x < NoW, (W=V)

<VYo(V-T—-1)W1 (W-YV)

It follows from (2) and (3) that the theoretical upper limit for the size of a metastasis
at patient’s age W under the model assumptions is

M=Yo(V-T—-1)¥ 1 (W-V) %)

It represents the size of a hypothetical metastasis whose inception with size Ny
occurred over the shortest latency period possible, i.e., at time T + 7, see Fig. 1.
Clearly, M > Z (recall that Z is the largest among the sizes of metastases observed
atage W).

According to formula (2) the sizes of metastases are a fixed non-random transfor-
mation W of their inception times which, under our model, follow a Poisson process.
Then, using a well-known theorem about the conditional joint distribution of the event
occurrence times in a Poisson process conditional on their number, see, e.g., Ross
(1997, pp. 264-265), we obtain the following result.

Theorem 1 The sizes X1 < Xy < --- < X, of metastases in a given site that are
detectable at age W are equidistributed, given their number n, with the vector of order
statistics for a random sample of size n drawn from the distribution with pdf

min{W—-T-§(x),V-T} @ W_T_s _4d
p(x) =8(x) ff&in{W—T—a(m),V—T} rio@If1 () — 51ds m<x<M,
0 r[®@)]FIW =T — é§(m) — slds

(6)

and p(x) =0 forx ¢ (m, M).
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For a proof of Theorem 1 in the case r (x) = B x?, see Hanin et al. (2006); the proof
in the general case is obtained by a minor modification. Distribution (6) depends on
functional parameters @, r, Wy, W1 and f. Notice, however, that it is free of parameters
a and g involved in the rate of shedding of viable metastases and independent of the
sample size n. The patient- and/or site-specific biological parameters 7', Ny, T, m as
well as observables V and W are assumed fixed.

Denote by A := NoW (W — V) the size at age W of a hypothetical metastasis
whose inception with initial size Ny occurred at the age V' of primary tumor resection,
then No < A < M. Observe thatin view of 3) W — T — §(x) < V — T if and only
ifx > W (W —V)=NyWV (W — V) = A. Therefore, in the case A < m we have

W—T—-8(x) o _
o0 = 500) f(v)v B oUW =T =8 —skds o
Jo r[®()IFIW — T — 8(m) — s1ds

while if A > m then

oo S T WO IW =T —8(x)—s1ds
8 (x) N ,
Jo ! rI®)IFIW =T —8(m)—sds .
P = ST L@ (5)] FIW =T —8(x)—s1d. ®)
8 (x) = = __x)_s]sA<x<M

T HOOIFIW =T —8(m)—s)ds

m<x<A

The first and second formulas in (8) account for metastases whose inception occurred
after and before primary tumor resection, respectively. From (4) and (5) we find that
8(M) = W — T — t. Therefore, in view of our assumption about the support of pdf
f, we have p(M—) = 0. Thus, pdf p is continuous at point M. By contrast, pdf
p(x) has typically a jump discontinuity at points m and A > m. Finally, because
W—-T—-686(m) >W —T —§(M) = t, the denominator in formulas (7) and (8) is
positive.

Due to the non-stationarity of the Poisson process of metastasis inception, the sizes
of metastases detectable in a given secondary site at age W do not form a random
sample from a probability distribution. However, it follows from Theorem 1 that the
distribution of any symmetric (i.e., rearrangement-invariant) statistic based on the
observations X, X», ..., X, is identical to the distribution of the same statistic based
on a random sample of size n drawn from the pdf p given by formula (6). One of such
statistics is the joint likelihood of observations

L(X1, X2, ... Xn) = [ [ P(X0) ©)
k=1

Therefore, identifiable parameters of a suitably parameterized model of the natural
history of metastatic cancer described above can be estimated using the Principle of
Maximum Likelihood. If one of the observed volumes of metastases coincides with
A then, in order to maximize the likelihood, the larger of the two one-sided limits of
the pdf p(x) at x = A should be employed.
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6 Model Parameterization and Optimization
To quantify the effects of the presence of the primary tumor and its resection on the
growth of metastases, we assume that before and after resection of the primary tumor
metastases grow exponentially with respective rates yp, y1 > 0 : Wo(t) = No exp{yot}
and V() = exp{yi1t}. Then

A= Noexp{yi(W = V)}, M= Noexp{yo(V-T —1)+y1(W-V)} (10)

and according to (4)

Lnx ifm<x<A
sey={ " N N\ (11)
%lnN—O—i—(W—V)(l—%) fA<x<M

Note that in the case A < m function § is given by the second formula in (11). It
follows from (11) that § is a continuous function on the interval (m, M) and

5 e ifm<x<A 19
() = Lx ifA<x <M (12)

Because cell cycle duration has a lower limit, d, the growth rate of any cell popu-
lation is bounded above by (In2)/d. Another growth rate-limiting factor is cell death
due to apoptosis and necrosis. Therefore, parameters yp and y; are bounded above
by some constant K . However, quiescence and the possibility of equilibrium between
cell proliferation and death suggest that these parameters may approach zero. Observe
that due to the constraint M > Z > m and in view of (10) the rates yp and y; cannot
tend to zero simultaneously. Let G = (0, K) x (0, K) be the set of admissible pairs
(v0, y1)- Finally, denote

u

No

W-V

gu) = ,u > No

This quantity represents the rate of growth of a metastasis whose inception occurred
at age V and that reached size u at age W. Our main goal in this section is to prove
the following result.

Theorem 2 For any fixed functional parameters ®,r, f and for every data set
X1, X2, ..., Xn, the supremum of the likelihood function L(yy, y1) given by (9)
over the set G is infinite. Furthermore, if L(yén), yl(")) — 00 for some sequence
(yé"), yl(")) in G then 7/0(”) — 0 and yl(n) — g(2)-.

Proof The conclusion of the theorem will follow from exploring the behavior of all the
factors in the likelihood function L (yy, y1) defined by (9) for a given set of observations
under three conditions: (a) for y9 — 0 and appropriately chosen y;; (b) for y; — 0
and fixed yp; and (c) when yg and y; are bounded away from zero.
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(a) Suppose that yp — 0. Fix p suchthat0) < p <V — T — 7 and set

A = Z exp{—pyo} (13)

which implies that A < Z. In view of (10) this defines parameter y; as follows:

In & — pyo
n=—y—v— (14)

Clearly, for sufficiently small yp, we have y; > 0 and A > Y;_. Notice that y; —
gZ)y—asyy - 0. Thus, m =Yy <Y1 < - <Y1 <A< Yy=Z < M and
A M — Zasyy — 0.

We first compute the limit of p(Z) as y9p — 0. Note that p*(Z), where s is the
multiplicity of the observation Y; = Z, is the factor in (9) corresponding to the largest
observed volume of metastases. Invoking the second formula in (11), (13) and (14)
we have

1 V4
S(Z)=— = +W—-V=W—-V+p (15)
nw A

sothat W — T —§(Z) = V — T — p. It follows from the first formula in (11) and (14)
that

In 2- (W—V)lnNﬂO In &+

Bm) = — = — - (W=V)—2 :=Byasy— 0 (I6)
Y1 lnm—m/o lnN—o

The second equation in (8) and (12) imply that

O()

p(Z) = oz

where in view of (15), (16) and due to the inequality V — T — p > t we have

TP eI IW — T~ 5(2) = s)ds

I @@IFIW = T = 8(m) — s1ds
R [P @O1f(V =T — p — s)ds
[T @ )IF(W = T — By — 5)ds

Q) =

>0asy)— 0

Thus, p(Z) — oo as yg — 0.
We now compute the limits as 9 — 0 of the other factors in (9) that correspond to

(single or multiple) observations ¥; < A, 1 < j < k — 1. Along the lines of (16) we

obtain

Y

No

Z

lnﬁo

In

5(Y;) — (W—=1V) =Bjasyy—~>0,1<j<k-1 a7
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Using the first formula in (8) and (12) we find that

Qo)
Y;

L

where by (17) we have for 1 < j <k — 1:

ST @@O1fIW — T — 8(Y ;) — s]ds
[T P @@IFIW = T — 8(m) — s1ds
ISR @@1f(W =T — Bj — s)ds
[T P @@IF(W =T — By — s)ds

Qi) =

asyy — 0

Setting By := W — V we extend formula (17) to j = 0, see (16), and j = k. Then
W—-T—-Bj>2W—-T—-B,=V-T>1,0<j<k (18)

This implies that the limit of Q;(y),1 < j < k — 1, as yp — 0 is finite and
positive. Then the same is also true for the limit of p(Y ;). In summary, we showed
that if yp — 0 and y; is given by (14) then L(yp, y1) — o0. Thus, supremum of the
likelihood function over the set G is infinite.

(b) We now turn to the case y; — 0 with fixed yp > 0. Here we have A — Ny < m,
M — Noexp{yo(V—T —1)}and 6(x) > B(x) + W — V form < x < M, where

B = 10
x)=—In—

Yo No
Using (7) we find that

R;(y1)
Y) =12 <k,
r;) 0, <Jj=

where

Roy o 0 AREIIW = T = 5(0)) = s1ds

S [T @ )IFIW = T = 8(m) — s1ds
V—T—B(Y}) o N
N 1 IV = T = BO)) —slds B

[T @ )IFIV = T — B(m) — s1ds

From the inequalities m < Z < M it follows by taking limit as y; — 0 that m <
Noexp{yo(V — T — t)} or equivalently V — T — B(m) > t. This implies that

V-T
/ r[®(s)]F[V —T — B(m) — s]ds > 0
0
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Thus, in the case y; — 0 with fixed yy > 0 the likelihood function has finite limit.
(c) Suppose now that yp and y; are bounded away from zero. Consider a fixed
observation Y with m < Y < M. We first look at the case A < m, or equivalently
0 < y1 < g(m), where pdf p is given by (7). In accordance with our model assumptions
and in view of (11) and (12), p(Y) is a continuous function of (yp, y1). Similarly, the
same conclusion is true in the (overlapping) cases m < Y < A (thatis, for y; > g(Y))
and Y > A > m (ie., for g(m) < y; < g(Y)), where pdf p is given by the first and
second formulas in (8), respectively. Therefore, the likelihood function L(yy, y1) is
bounded above on any subset of G where y and y| are bounded away from O.

Let us now assume that L(yé"), yl(")) — oo for some sequence (y(;") , yl(") ) in

G. We first show that y(;") — 0. Suppose not, then by passing to a subsequence we
may assume without loss of generality that yén) — y > 0. If yl(n) — 0 then a slight
modification of our argument in part (b) accounting for variable ypywould show that the

sequence L()/O(") , yl(")) has finite limit, which is a contradiction. In the opposite case

where y1<”) does not converge to zero we may assume without restricting generality

that y](”) — y1 > 0. Then by part (c) the sequence L(y(;”), yl(")) is bounded, again a

contradiction. Thus, yo(") — 0.
Next, denote by A™ and M™ the values of parameters A and M, see (10), for the

sequence (7/0("), 7/1(”)). To finish the proof, we need the following result.
Claim A" < Z for all sufficiently large n.

To show this, suppose this is false, then AM > 7 or equivalently )/1(") > g(Z), for
an infinite subsequence of indices n. Again, without loss of generality we may assume
that yl(n) — y1* > g(Z). Using the first formula in (11) we find that

Y
No N No
V1 Y1

In

8(¥)) = =Cj, 0=j=k 19)

Also, from the first formula in (8) and (12) we obtain

s
_ ;
pYj)=—5—, 1=j<k
1Y

where in view of (19)

o o APWIIW T —5(Y)) = s1ds
P [T @ )IFIW = T = 8(m) — s]ds
J T @W1f(W — T — C; — s)ds
T ro@)IFW =T — Co — s)ds

l<j=<k (20)

Observe that according to (16) and because y1* > g(Z) we have Cy < By, which
implies in view of (18) with j = 0 that the denominator in the limits in (20) is positive.
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Therefore, all the limits in (20) are finite. Thus, we constructed a subsequence of indices
(n)

n for which L(y,"", yl(")) has finite limit. This contradiction proves our Claim.
Finally, in view of (10) inequalities A" < Z < M are equivalent to
V-T-1
(n) (n)
)=V, — <V, <gZ 21
8@ 1" o <7 <8(2) 1)

Since yo(n) — 0and the inequalities in (21) hold for all sufficiently large n, we conclude

that yl(n) — g(Z)-. This completes the proof of Theorem 2.

Remark A minor modification of the proof of part (a) would show that L (yp, y1) — o0
if (y0, 1) — (0, g(Z)—) non-tangentially in the sense that g(Z) —y; < Cyp for some
fixed constant C such that

V-T-1
wW-—-V

0<C<

Theorem 2 reveals that, according to the model, the most likely scenario for the
n detected metastases is as follows. All those (say, v) metastases whose inception
occurred before resection of the primary tumor remained essentially dormant (yy — 0)
before surgery while after it they were growing at a rate y; close to g(Z) and by age W
reached volumes close to the maximum observed volume Z. Additionally, the remain-
ing n — v metastases whose inception occurred after surgery were growing at about the
same rate y| and by age W reached more widely spread volumes X1, X2, ..., X,—,.
As we showed in Sect. 3, the pre-surgery suppression of metastatic growth and its post-
surgery acceleration predicted by the model are widely observed in the real world and
may be explained by a number of biological mechanisms.

Finally, we describe the limiting model where yp = 0 and y; = g(Z). We start
with the following important observation related to the general model (8). Integrating
the first formula in (8) we find that in the case A > m

i a4 V-T
= dx =1 — de — Jo T rl®®IF(V =T —s)ds
po= | podx = p(x)dx =T
A m 0 r[cD(S)]F[W_T—(S(m)—S]ds

(22)

is independent of Wy, see (4). In particular, in the case of exponentially growing metas-
tases, u is independent of yp. According to our model and Theorem 1, u represents
the conditional probability, given the number of site-specific detectable metastases
at age W, of the event that the inception of a randomly chosen detected metastasis
occurred before resection of the primary tumor. Note also that in the case A < m we
have u© = 1.

In the limiting case at hand in view of (10) and y; = g(Z) we have A =
Z = M = Noexp{y1(W — V)}. Therefore, v > 1. The limiting distribution for
(8), then, is a mixture of an absolutely continuous distribution with (improper)
pdf
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V-T
p0r) = W=V [y r[®@]fIW —T — r(x) — s]ds Cm<xz<M,

xIn M o f r[dD(s) FI[W —T — A(m) — s]ds

where

1 )C
Ax) = (W — V)
No

and a point mass 1 at M, where

T IO@IF(V — T — s)ds
T VT HOWIFIW — T — A(m) — s1ds

The limiting model depends on parameters ®, r, f, M or alternatively @, r, f, .
Parameter 7 can be optimized from a sample of observations X1, X5, ..., X,, where
m< X1 <Xp < < Xpy < Xppevy1 = - = X, = Z withv > 1, using
the Method of Maximum Likelihood. Then M = Z, and the likelihood, viewed as a
function of independent parameter 7, has the form

A(m) = Aon” (1 —nm)"™"

where Ay is independent of 1. The likelihood function is maximized for n = v/n,
where v is the multiplicity of the maximum observed volume Z. This imposes a
constraint

fova r[®()F(V —T — s)ds v

I TP @@IFIW =T — A(m) —slds = 7

on the remaining model parameters @, r and f.

7 Conclusions and Discussion

The main question addressed in this work concerns the effects of primary tumor
and its resection on the rate of growth of metastases. We found that, according to
our model, the most likely scenario is complete suppression of metastatic growth in
the presence of the primary tumor followed by active growth after primary tumor
resection. Because this is true regardless of the sizes of metastases detected in a
given secondary site, this conclusion is essentially a property of our model. However,
extreme generality and flexibility of the model allows us to hypothesize that what we
have found is “something real” that stems from the very basic temporal and kinetic
aspects of metastasis rather than from specific biological mechanisms. In fact, our
results are supported by more than a century of clinical observations and experimental
studies on animals that produced plentiful evidence, both direct and circumstantial,
for two inter-related principles: (1) the metastasis-suppressing effect of the primary
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tumor; and (2) accelerated growth of metastases after surgical removal of the primary
tumor, see Sects. 2 and 3 for more details. We do not claim that our conclusions hold
true for all types of solid cancer and all categories of patients nor that metastases cannot
eventually escape the inhibiting effect of the primary tumor or remain dormant after
its removal. However, what we have discovered by means of mathematical modeling
and statistical analysis represents a very common cancer progression scenario.

The model described in Sect. 4 is based on several mathematical assumptions. Cen-
tral among them is that the process of metastasis shedding off the primary tumor is Pois-
son. However, the rate of the Poisson process was assumed to be essentially arbitrary.
Other mathematical assumptions posit independence and homogeneity properties of
the progression of individual metastases. Specifically, we assumed that metastases
bound for a given secondary site evolve independently of each other, survive with the
same probability, have the same initial size at inception and identically distributed
latency times, and grow according to the same laws before and after primary tumor
resection. Finally, we postulated some qualitative properties of the model’s functional
parameters such as monotonicity, continuity and differentiability. Without all these or
similar assumptions, mathematical modeling of metastasis would barely be possible.

Specific biological assumptions of the model were minor. The first of them, that
secondary metastasis is negligible, was made out of necessity, for in practice primary
and secondary metastases are indistinguishable thus making generation number of a
metastasis unobservable. Also, existing biomedical evidence suggests that secondary
metastasis is relatively uncommon (Holzel et al. 2010). The second assumption is the
supposition that various treatments of the primary tumor affect metastases through the
rate of their growth rather than through a change in their latency times. For chemo-,
radiation-, immuno- and hormone therapies, it is to a large degree a statement of fact:
It is well-known that dormant micro-tumors and quiescent cancer cells are refrac-
tory to these types of treatment, see, e.g., Kleffel and Schatton (2013). For surgery,
however, the situation is very different. Although our generic model assumed that
surgery does not affect the distribution of latency times, see Sect. 4, application of the
Principle of Maximum Likelihood showed, paradoxically, that this is not true for the
likelihood maximizing limiting model characterized by zero metastatic growth prior to
primary tumor excision. In this case, the phases of metastatic latency and pre-surgery
growth become indistinguishable. Biologically, this amounts to extending the latency
of metastases after inception until surgery. This observation suggests that the most
important way of model refinement would be to incorporate two latency phases: one
before and one after surgery. In this case, however, the total metastasis latency times
cannot be assumed identically distributed.

From a statistical point of view, our main result, Theorem 2, may seem counterin-
tuitive. Imagine that a large sample of metastatic sizes is generated by model (6) with
fixed parameters @, r, f and yp, y1 > 0. One would expect, contrary to Theorem 2, the
maximum likelihood estimates of parameters yy, y; to be close with high probability
to their “true” values. The explanation of this “paradox” is that pdf (6) is discontinuous
atpoint A > m and, therefore, does not satisfy the regularity conditions that guarantee
consistency of the maximum likelihood estimator, see, e.g., Karr (1993, p. 202).

The workings of Nature, of course, are not constrained by the above mathematical
and biological assumptions nor do they have to maximize the likelihood. The question,
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then, is how metastasis suppression by the primary tumor came into being. It is well-
known that cancer was common in human ancestors. Also, in most cases primary tumor
is not lethal per se; metastases are. Therefore, any natural mechanism of metastasis
suppression by the primary tumor including those described in Sect. 3 would confer
on its bearers a survival and reproductive advantage over those who do not have
this mechanism in place. This would also allow the bearers of this trait to pass it
on to the offspring. This hypothetical, and perhaps highly speculative, explanation
represents one scenario by which metastasis suppression by the primary tumor could
have emerged over the long course of evolution through natural selection.

The limiting likelihood-maximizing model described in Sect. 6 predicts that the
observed sets of volumes of metastases may contain, along with widely spread volumes
corresponding to metastases whose inception occurred after surgery, some number
v > 1 of tightly clustered metastatic volumes that are much larger than other volumes
and come from metastases whose inception occurred prior to surgery. This unexpected
pattern was actually observed in several previously analyzed patients. In particular, it
occurred in two breast cancer patients withn = 20 andn = 31 bone metastases (v = 1)
(Hanin and Korosteleva 2010); a renal cancer patient with n = 55 lung metastases
(v = 1) (Hanin et al. 2016); and a prostate cancer patient with n = 36 bone metastases
(v = 3) (Hanin and Zaider 2011; Hanin and Bunimovich-Mendrazitsky 2014).

It is also interesting to mention that in those cases where parametric versions of
the model described in Sect. 4 were identifiable, optimization of model parameters
in the interior of the parameter space has also led to the conclusion that resec-
tion of the primary tumor accelerates the growth of metastases. In fact, when the
model with exponentially growing primary tumor and metastases, exponentially dis-
tributed latency times and r(x) = Bx% with B > 0 and # > 0 was applied to the
data for the aforementioned breast and prostate cancer patients with n = 31 and
n = 36 bone metastases, the resulting ratio y;/yo was found to be 32 and 4, respec-
tively, notwithstanding the fact that after surgery, in order to prevent local recurrence
and metastatic relapse, the breast cancer patient was put on hormonal therapy with
tamoxifen while the prostate cancer patient was given radiation, chemotherapy and
hormonal therapy (Hanin and Korosteleva 2010; Hanin and Zaider 2011). A similar
conclusion also followed when the growth of the primary tumor in these patients was
assumed to be governed by the Gompertz law (Hanin and Bunimovich-Mendrazitsky
2014).

Results of this work may potentially have far-reaching clinical implications for can-
cer diagnosis, staging, treatment and discovery of biomarkers for subclinical metastatic
disease. In particular, our results suggest that for some types of cancer and categories
of patients keeping primary tumor intact while controlling its growth rather than sur-
gical removal may perhaps be a better metastasis prevention strategy than primary
tumor excision. For a detailed biomedical discussion of this hypothesis in the case of
breast cancer, see Hanin (2017). Many cancer biologists and oncologists have arrived
at a similar conclusion. For example, Bernard Fisher, one of the greatest American
breast cancer oncologists of the twentieth century, wrote about the treatment of breast
cancer in a review article that summarized his work spanning half a century: “...it is
likely that surgery for the disease will continue to diminish in importance...” (Fisher
1999).
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