
Bull Math Biol (2018) 80:493–518
https://doi.org/10.1007/s11538-017-0385-z

ORIGINAL ARTICLE

New Gromov-Inspired Metrics on Phylogenetic Tree
Space

Volkmar Liebscher1

Received: 17 February 2017 / Accepted: 19 December 2017 / Published online: 2 January 2018
© Society for Mathematical Biology 2017

Abstract We present a new class of metrics for unrooted phylogenetic X -trees
inspired by the Gromov–Hausdorff distance for (compact) metric spaces. These met-
rics can be efficiently computed by linear or quadratic programming. They are robust
under NNI operations, too. The local behaviour of the metrics shows that they are
different from any previously introduced metrics. The performance of the metrics is
briefly analysed on random weighted and unweighted trees as well as random cater-
pillars.

Keywords Tree space · Phylogenetic distance · Caterpillars · Gromov–Hausdorff
metric · Mathematical programming

1 Introduction

Phylogenetic metrics are often used to analyse populations of phylogenetic trees,
generated by some Bayesian method or by different methods of tree reconstruction
from data. Such metrics are also useful to define some empirical statistics of such
populations, see, for example, Nye (2011) and Benner et al. (2014). There are already
a lot of phylogenetic distances available.

The simplest one, though not the oldest one, seems to be the Robinson–Foulds
distance introduced in Bourque (1978), see also Robinson and Foulds (1979) and
Robinson and Foulds (1981). That one is easy and efficiently to compute in linear time
(Day 1985) or even in sublinear approximation (Pattengale et al. 2007). But, it has no
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much power in discriminating trees, since a lot of treeswith similar biological meaning
have distance equal to the diameter of the unweighted tree space. Much nearer to
biology seems to be a variant of the Robinson–Foulds distance, the weighted matching
distance. It captures similarity of splits which entails a lot of biology and is still
computable in subcubic time (Bogdanowicz and Giaro 2012; Lin et al. 2012). Another
good alternative to the Robinson–Foulds metric is the quartet distance (Estabrook
et al. 1985). Using the induced quartet trees instead of the induced splits, it is much
more biologically plausible than the Robinson–Foulds distance and also efficiently
computable (Brodal et al. 2001).

A quite natural, biology adapted way of capturing tree similarity is provided by
the tree rearrangement metrics. There are different basic transformations giving rise
to the NNI distance (Robinson 1971), SPR distance and TBR distance. Unfortunately,
computation of those distances is NP-hard and only feasible for small trees (DasGupta
et al. 1997; Allen and Steel 2001; Bonet and St. John 2010). Some fixed parameter
approach to compute the (rooted) SPRdistance, e.g, was done inWhidden et al. (2016).
Even more at the heart of evolution is the maximum parsimony distance (Fischer and
Kelk 2016; Moulton and Wu 2015). Still it is NP-hard to compute that distance, even
between binary unweighted phylogenetic trees (Fischer and Kelk 2016; Kelk and
Fischer 2017; Bernstein 2017).

For weighted rooted phylogenetic trees, there is the euclidean type geodesic dis-
tance on tree space introduced by Billera et al. (2001). The crucial observation was
that in a natural way tree space is a space of nonpositive curvature or CAT(0) space, a
notion introduced by Gromov. This property implies uniqueness of geodesics. Owen
and Provan (2011) provided a polynomial time algorithm for computing this metric.
Although this metric was defined on rooted trees, also a version on unrooted trees is
used, see, for example, Nye (2011). The CAT(0) idea was used again in Gavryushkin
and Drummond (2016) to develop metrics for ultrametric trees. Again, efficient com-
putation of the geodesics is possible for at least one of the metrics. Further, different
natural parametrisations may yield different geodesics.

A similar approach for weighted rooted trees, see Sokal and Rohlf (1962), uses all
distances of the most recent common ancestors of pairs of taxa to the root. Recently,
Kendall and Colijn (2016) returned to this idea. The authors also experimented with
weighting different most recent common ancestors depending on their position in the
trees.

Anotherway to compare phylogenetic trees is to compare themetrics they induce on
the taxon set. This distance-based approach is feasible since by the work of Buneman
(1971, 1974), see also Zaretskii (1965) for the unweighted case, we can identify tree-
induced metrics among all metrics by the famous four-point conditions. Also, under
some natural minimality assumption, the tree can be identified up to isomorphy (see
Lemma 3). This approach is particularly appealing since the distance between two
taxa is easy to derive, to estimate and to interpret as evolutionary distance. Another
of Gromov’s ideas, Gromov’s tree, can be used to approximate arbitrary distance data
by tree-induced distance data (Dress et al. 2005).

Compared to the variety of metrics reviewed above and given the popularity of
distance-based methods for tree reconstruction, it is surprising that the only distance-
basedmetrics between phylogenetic trees are pathwise differencemetrics, the �1 and �2
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human bear dog sheep human sheep dog bear

Fig. 1 Two hypothetical phylogenies of human, dog, bear and sheep. The right one is obtained by just
permuting the labels of the leaves of the common sense phylogenetic tree on the left

versions of which are well established (Williams and Clifford 1971; Penny and Hendy
1985). The �∞ version of those metrics became of interest only recently, especially
in the context of tropical geometry (Huggins et al. 2012; Bernstein and Long 2017;
Coons and Rusinko 2016; Lin et al. 2017). All three metrics compare the tree-induced
metrics just as real vectors. Thus, they can be computed efficiently.

In the present paper, we want to construct other distance-based phylogenetic met-
rics. Instead of considering the distance data as just real vectors, we are looking for
metrics using the metric space properties. For (compact) metric spaces, there is the
well-known Gromov–Hausdorff distance (Gromov 1981)

DGH ((X, d), (X ′, d ′)) = inf
ϕ,ϕ′ ρ

H (ϕ(X), ϕ′(X ′)) (1)

where the infimum is taken over all isometric embeddings of X, X ′ into a common
metric space, and ρH is the Hausdorff metric on the compacts of that space. In fact,
this distance was introduced in a different way already in Edwards (1975), see Tuzhilin
(2016).

Unfortunately, computing the Gromov–Hausdorff distance between finite metric
spaces is NP-hard (Mémoli 2007), even considering the metric spaces induced by
metric trees (Agarwal et al. 2015). There is recent work on approximation algorithms
(Agarwal et al. 2015) and relaxations of the metric or related optimisation problems
(Mémoli 2007; Villar et al. 2016).

Applied to tree-induced metrics, this definition induces a semimetric on the space
of all weighted trees. But, we cannot distinguish trees with permuted labels. To give
a short argument, consider the two potential phylogenies in Fig. 1. The left one is
common believe in the evolutionary history of human, bear, dog and sheep. The right
one is completely unacceptable. This means that any meaningful distance between
those two trees must be positive. Unfortunately, Gromov–Hausdorff distance doesn’t
have this property since permutation of the leaf labels induces an isomorphism of
metric spaces. Since we want to compare the whole trees, not just tree shapes, we have
tomodify themetric (1). Thatmakes the definitionmore complicated (see Sect. 2) since
we have tomatch the leaf labels, but the idea of joint embeddings remains. Fortunately,
our metric becomes efficiently computable this way. Since there are several reasonable
candidates to substitute the Hausdorff metric in (1), we derive three different metrics.
In all three cases, the value of the metric is the solution of a linear or quadratic program
of polynomial size. Much of the mathematics presented in Sect. 4 aims at reducing
the size of those programs to get solutions as fast as possible.
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For mathematical reasons, it is very convenient to include also semimetrics on the
taxon set in the definition. This situation may occur in phylogenetics if we do not
resolve the topology by all singleton splits, see, for instance, Robinson and Foulds
(1981).

Summarisingly, we are looking for metrics on the space of weighted phylogenetic
trees which are both computable in polynomial time and able to capture some biolog-
ical similarity. We show in Sect. 2 how to apply Gromov’s idea of joint embeddings
to define metrics on the space of semimetrics. Section 3 defines their counterparts
on the spaces of weighted X -trees, unweighted phylogenetic trees and unweighted
binary phylogenetic trees. Then, Sect. 4 demonstrates how to compute these met-
rics efficiently. We compare the metrics with the pathwise difference metrics and the
NNI distance in Sect. 5. Some special computations in Sect. 6 show how our metrics
behave under the change of one or two edge lengths. A small simulation study is done
in Sect. 7. Finally, Sect. 8 discusses several extensions and open questions.

2 Distances Between Semimetrics

For a finite set X denote by M(X) the set of all semimetrics on X , i.e. all ρ :
X × X → R≥0 such that for all x, y, z ∈ X ρ(x, x) = 0, ρ(x, y) = ρ(y, x)
and ρ(x, y) ≤ ρ(x, z) + ρ(z, y). Frequently, we describe such a semimetrics in an
equivalent fashion by ρ : (X

2

) → R≥0 where
(X
2

) = {{x, y} : x, y ∈ X, x �= y}. Let
M = {(Y, ρ) : #Y < ∞, ρ ∈ M(Y )} denote the set of all finite semimetric spaces.
Isometries ϕ : (X, ρ) → (Y, ρ′) preserve the semimetrics, i.e. for all x, y ∈ X
ρ(x, y) = ρ′(ϕ(x), ϕ(y)), but need not be injective.

Definition 1 Let X be a finite set. Then, we define three functions D̃1, D̃2, D̃∞ on
M(X) × M(X) by

D̃1(ρ, ρ′) = inf
Y,ϕ,ψ

∑

x∈X
d̄(ϕ(x), ψ(x))

D̃2(ρ, ρ′)2 = inf
Y,ϕ,ψ

∑

x∈X
d̄(ϕ(x), ψ(x))2

D̃∞(ρ, ρ′) = inf
Y,ϕ,ψ

max
x∈X d̄(ϕ(x), ψ(x)),

where the infimum is taken over all (Y, d̄) ∈ M and all isometries ϕ : (X, ρ) →
(Y, d̄), ψ : (X, ρ′) → (Y, d̄).

Note that D̃∞ is nearest to the Gromov–Hausdorff distance, which we should imple-
ment via

DGH (ρ, ρ′) = inf
Y,ϕ,ψ

max(max
x∈X min

y∈X d̄(ϕ(x), ψ(y)),max
y∈X min

x∈X d̄(ϕ(x), ψ(y))).

It is not complicated to deduce (see, for example, Mémoli 2007) that then the optimum
is achieved by matching the points of ϕ(X) with points of ψ(Y ) and find a matching
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with all distances as small as possible. In difference to this, all Di match ϕ(x) with
ψ(x) to compute the distance. This implies that just permuting labels to define ρ′
yields nonnull distances, see the discussion around Fig. 1. Another consequence is
that we compute upper bounds for the Gromov–Hausdorff distance, but this is not
needed later.

We will see now that it is enough to have just one model space Y . This simplifies
the optimisation problems in Definition 1 considerably. Frequently we need identical
copies of our taxon set X . Using a slightly informal notation, we denote them X ′ ={
x ′ : x ∈ X

}
and X ′′ = {

x ′′ : x ∈ X
}
. To ρ, ρ′ ∈ M(X), we associate now the set

E(ρ, ρ′) of their extensions

E(ρ, ρ′) = {
d̄ ∈ M(X ∪ X ′) : d̄(x, y) = ρ(x, y), d̄(x ′, y′) = ρ′(x, y)∀x, y ∈ X

}
.

So every extension reproduces the distances from ρ on X and the distances from ρ′
on X ′. Just the distances d̄(x, y′) and d̄(x ′, y), x, y ∈ X between the two images of
X are not fully determined, but only constrained through the metric properties of d̄ . It
is important and easy to see that E(ρ, ρ′), considered as a subset of R(X∪X ′)×(X∪X ′),
is convex.

Let ‖·‖i denote the usual �i -norm on R
X . We obtain a simple reformulation of

Definition 1:

Lemma 1 For i = 1, 2,∞

D̃i (ρ, ρ′) = inf
d̄∈E(ρ,ρ′)

∥∥(d̄(x, x ′))x∈X
∥∥
i . (2)

Thus, to compute the distances D̃i (ρ, ρ′), just one convex function over the convex
set E(ρ, ρ′) has to be minimised. Compactness of the sublevel sets of the norms ‖·‖i
gives directly

Lemma 2 For i = 1, 2,∞, there exists a d∗
i ∈ E(ρ, ρ′) such that

D̃i (ρ, ρ′) = ∥∥(d∗
i (x, x ′))x∈X

∥∥
i .

Now we are ready to prove that we defined metrics.

Theorem 1 D̃i , i = 1, 2,∞, are metrics on M(X).

Proof Symmetry is clear.
If D̃i (ρ, ρ′) = 0, choose d∗

i ∈ E(ρ, ρ′) according to the previous lemma. Obvi-
ously, we obtain d∗

i (x, x ′) = 0 for all x ∈ X . The triangle inequality implies for all
x, y ∈ X

ρ(x, y) = d∗
i (x, y) = d∗

i (x ′, y′) = ρ′(x, y)

such that ρ = ρ′.
Now fix ρ, ρ′, ρ′′ ∈ M(X). Using again Lemma 2, we choose d1 ∈ M(X ∪ X ′)

extending ρ, ρ′ and d2 ∈ M(X ′ ∪ X ′′) extending ρ′, ρ′′ such that
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D̃i (ρ, ρ′) = ∥
∥(d1(x, x

′))x∈X
∥
∥
i

D̃i (ρ
′, ρ′′) = ∥∥(d2(x

′, x ′′))x∈X
∥∥
i .

Following Cristina (2008) or Lemma 7 in “Appendix”, we find some d ∈ M(X ∪ X ′ ∪
X ′′) extending both d1, d2:

d|
(X∪X ′

2 )
= d1 and d|

(X
′∪X ′′
2 )

= d2.

We see now from monotonicity of the �i -norms on RX≥0 and their triangle inequalities
that

D̃i (ρ, ρ′′) ≤ ∥∥(d(x, x ′′))x∈X
∥∥
i ≤ ∥∥(d(x, x ′) + d(x ′, x ′′))x∈X

∥∥
i

≤ ∥∥(d(x, x ′))x∈X
∥∥
i + ∥∥(d(x ′, x ′′))x∈X

∥∥
i

= ∥
∥(d1(x, x

′))x∈X
∥
∥
i + ∥

∥(d2(x
′, x ′′))x∈X

∥
∥
i

= D̃i (ρ, ρ′) + D̃i (ρ
′, ρ′′).


�

3 Distances Between X-Trees

We are mainly interested in metrics on tree space. To get a metric space from a tree
(or a graph), we metrise trees by the lengths of shortest paths. To start, let us introduce
some phylogenetic and graph theoretic notions. For more details, see Semple and Steel
(2003).

LetG = (V, E, q) be a weighted connected graph, i.e. E ⊆ (V
2

)
and q : E → R≥0.

Then, we define the induced semimetric on V by

dqG(x, y) = inf {len(p) : p path from x to y } (3)

where

len(x0x1 . . . xm) =
m∑

i=1

q({xi−1, xi })

is the length of the path x0x1 . . . xm from x0 to xm . For unweighted graphs (V, E), we
assume q({x, y}) = 1 for all {x, y} ∈ E .

We only consider unrooted trees, i.e. connected acyclic graphs (V, E). A weighted
X -tree is a quadruple (V, E, q, μ), where (V, E) is a tree, μ : X → V is a (not
necessarily injective) map and q : E → R>0 is a weight function. Additionally, it
is required that all vertices v ∈ V of degree ≤ 2 are included in μ(X). Identify-
ing isomorphic variants, let the tree space T (X) be the set of all weighted X -trees.
Unweighted phylogenetic X -trees are characterised by all edges having weight 1 and
by μ being an injective map onto the set of all vertices v ∈ V of degree 1, which
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implies absence of vertices of degree 2. The corresponding subspace of T (X) will be
denoted T1(X). In a binary (bifurcating) phylogenetic X -tree, all vertices have degree
1 or 3. We denote the set of binary phylogenetic X -trees by T 2

1 (X).
For an X -tree, τ = (V, E, q, μ) denote the induced semimetric on X by ρτ :

ρτ (x, y) = dq(V,E)(μ(x), μ(y)), x, y ∈ X.

This means that ρτ (x, y) is the length of the shortest path between the leaves (labelled)
x and y. Then, we define for two weighted X -trees τ, τ ′ ∈ T (X) and i = 1, 2,∞

Di (τ, τ
′) = D̃i (ρτ , ρτ ′).

Again, all three Di are metrics on tree space. This can be seen from the following
characterisation of tree-induced semimetrics, provided in essence byBuneman (1971).

Lemma 3 For ρ ∈ M(X), there exists a weighted X-tree τ with ρ = ρτ if and only
if for all x, y, z, w ∈ X the four-point condition

ρ(x, y) + ρ(z, w) ≤ max(ρ(x, z) + ρ(y, w), ρ(x, w) + ρ(y, z)) (4)

is fulfilled.
Given such a ρ ∈ M(X), all X-trees τ with ρ = ρτ are isomorphic.

Proof Necessity of (4) is proved in the same way as for metrics ρ, see Lemma 7.1.7
of Semple and Steel (2003).

For sufficiency and uniqueness, let X̃ be the set of equivalence classes of X under
identifying points x, y ∈ X with ρ(x, y) = 0.We define ρ̃ on X̃ through ρ̃([x], [y]) =
ρ(x, y)where [x], [y] are the equivalence classes of x, y ∈ X . The triangle inequality
for ρ implies that ρ̃ is a well-defined metric on X̃ . Further, (4) is fulfilled for ρ̃, too.
Thus, there exists a weighted X̃ -tree τ̃ = (V, E, μ̃, q) inducing ρ̃ (Buneman 1971).
Defining μ = μ̃ ◦ [·], the X -tree τ = (V, E, μ, q) induces ρ.

Let τ ′ = (V ′, E ′, μ′, q ′) be another weighted X -tree inducing ρ. Since q ′ is strictly
positive, any x, y ∈ X with ρ(x, y) = 0 must fulfil μ′(x) = μ′(y). Thus, there is
a mapping μ̃′ : X̃ → V ′ with μ̃′ = μ′ ◦ [·]. This gives us the weighted X̃ -tree
τ̃ ′ = (V ′, E ′, μ̃′, q ′) inducing the metric ρ̃. By Theorem 7.1.8 of Semple and Steel
(2003), τ̃ and τ̃ ′ are isomorphic. Thus, τ and τ ′ are isomorphic, too. 
�

For tree-induced metrics ρτ , ρτ ′ , we can consider extensions d̄ ∈ E(ρτ , ρτ ′) as
being induced by a graph metric on X ∪ X ′. Let us look at one example.

Example 1 We want to compare for X = {A, B,C, D} the two unweighted X -trees

τ =
A

B
• •

C

D
and τ ′ =

A

C
• •

B

D

with corresponding distances ρ = ρτ , ρ
′ = ρτ ′ .
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Wewant to derive possible extensions d̄ ofρ, ρ′. For this goal, denote d̄(x, x ′) = δx ,
x = A, B,C, D. Then, δA, δB, δC , δD ≥ 0 should be compatible with the distances
on the weighted graph

G =

A

B
•

•
C

D

A′

C ′
•

•
B ′

D′

δA

δCδB

δD

,

see Theorem 6. One possible choice is δA = 0, δB = 1, δC = 1, δD = 0, i.e.

G1 =
B

•

•
C

A = A′

C ′
•

•
B ′

D = D′

11

is consistent. Obviously, we embedded now both τ and τ ′ isometrically into the metric
space of the graph G1. We see D∞(τ, τ ′) ≤ 1, D2(τ, τ

′) ≤ √
2 and D1(τ, τ

′) ≤ 2. In
fact, equality holds for D1(τ, τ

′), see Example 2. Picturely, we look for graphs similar
to G1 with “shortest” bridges between the left and the right sides. The meaning of
“short” is given by the �i -norm.

In biological terms, the trees τ and τ ′ or their induced metrics ρτ and ρτ ′ ,
respectively, entail certain (genetic) differences between the taxa A, B,C, . . . and
A′, B ′,C ′, . . . . Those differences we try to match in a parsimonious (by minimisa-
tion), but consistent (d̄ is still a metric) way. For example, A and A′ could stand
for different individuals of taxon A and similarly for B,C, D, and we try to get a
parsimonious yet consistent picture of possible mutations in the genealogy of those
individuals.

It is an important general feature of the minimisation problem in (2) that we need
not fix the whole extension d̄ . It is enough to study the constraints on the variables δx ,
x = A, B,C, D. This is elaborated in the next section.

4 Efficient Computation

As already mentioned after Lemma 1, we can compute D̃1 and D̃∞ by solving a linear
program and D̃2 by solving a quadratic program. Thus, we can compute the distance
in a time polynomially bounded in n = #X (Karmarkar 1984). In the naïve way, the
linear (quadratic) program has the n2 variables εxy = d̄(x, y′) and O(n3) constraints
resulting essentially from the triangle inequalities in triangles of the form x, y, z′ or
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similar. But, we can do the computation more efficiently. Observe that the objective
function in (2) depends on the unknown values (δx )x∈X , δx = εxx = d̄(x, x ′) only. The
reformulation of the constraints forced by d̄ being a semimetric using that variables
only is provided by the following theorem. We prove it in “Appendix”.

Theorem 2 (quadrangle inequalities)Letρ, ρ′ ∈ M(X) and (δx )x∈X ∈ R
X≥0 be given.

Then, there exists a d̄ ∈ E(ρ, ρ′) with

d̄(x, x ′) = δx , x ∈ X,

if and only if for all x �= y ∈ X the following inequalities are fulfilled:

δx + δy ≥ ∣∣ρ(x, y) − ρ′(x, y)
∣∣

∣∣δx − δy
∣∣ ≤ ρ(x, y) + ρ′(x, y). (5)

Consequently, D̃i (ρ, ρ′) solves the program

‖δ‖i → min under

δx + δy ≥ ∣∣ρ(x, y) − ρ′(x, y)
∣∣ x, y ∈ X

∣∣δx − δy
∣∣ ≤ ρ(x, y) + ρ′(x, y) x �= y ∈ X. (6)

Observe that x = y in the second line yields δx ≥ 0. Thus, D̃i (ρ, ρ′) can be obtained
as solution of a linear (quadratic) program in the n variables δx = d̄(x, x ′)with O(n2)
constraints.

Example 2 Let us continue Example 1 and compute Di (τ, τ
′) exactly. Since

ρ(A, D) = ρ′(A, D) and ρ(B,C) = ρ′(B,C), the nontrivial constraints from the
upper part of (5) read as

δA + δB ≥ 1

δA + δC ≥ 1

δB + δD ≥ 1

δC + δD ≥ 1. (7)

Consequently,

D1(τ, τ
′) ≥ δA + δB + δC + δD ≥ 2.

The graph G1 from Example 1 realises this lower bound.
For i = ∞, (7) immediately shows

2D∞(τ, τ ′) ≥ 1
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502 V. Liebscher

or D∞(τ, τ ′) ≥ 1
2 . This lower bound is realised by δA = δB = δC = δD = 1

2 :

G2 =

A

B
•

•
C

D

A′

C ′
•

•
B ′

D′

0.5

0.50.5

0.5

For i = 2, (7) gives δ2A+δ2C ≥ (δA+δC )2

2 = 1
2 . The same calculation for B, D yields

δ2A + δ2B + δ2C + δ2D ≥ 1

or D2(τ, τ
′) ≥ 1. G2 realises this lower bound, too.

The upper bounds on the absolute differences were not used in the example. Inter-
estingly, they are not important in general:

Theorem 3 For ρ, ρ′ ∈ M(X) D̃i (ρ, ρ′) is the solution of the convex program

‖δ‖i → min under

δx + δy ≥ ∣
∣ρ(x, y) − ρ′(x, y)

∣
∣ x, y ∈ X. (8)

In Isbell (1964), see also Dress (1984), the set of these constraints for ρ′ = 0 was
studied thoroughly. Our proof is obtained by adapting some arguments from Isbell
(1964).

Proof By sublevel compactness for ‖·‖i there exists a minimal point δ ∈ R
X≥0 of (8).

We show by contradiction that for this δ the second part of (5) is fulfilled as well. This
implies coincidence of the solutions of (8) and (6).

So let us fix x, y ∈ X with

δx > δy + ρ(x, y) + ρ′(x, y).

We define δ∗ ∈ R
X≥0 by

δ∗
z =

{
δz z �= x
δy + ρ(x, y) + ρ′(x, y) z = x .

Clearly, 0 ≤ δ∗
z ≤ δz for all z ∈ X with strict second inequality for z = x . Thus,

‖δ∗‖i < ‖δ‖i .
First we see

δ∗
x + δ∗

y = δy + ρ(x, y) + ρ′(x, y) + δy ≥ ∣∣ρ(x, y) − ρ′(x, y)
∣∣ .
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Fix now an arbitrary u ∈ X , u �= x, y. The triangle inequality shows

δ∗
x + δ∗

u = δy + ρ(x, y) + ρ′(x, y) + δu

≥ ∣∣ρ(y, u) − ρ′(y, u)
∣∣ + |ρ(x, u) − ρ(y, u)| + ∣∣ρ′(x, u) − ρ′(y, u)

∣∣

≥ ∣∣ρ(y, u) − ρ′(y, u) + ρ(x, u) − ρ(y, u) + ρ′(x, u) − ρ′(y, u)
∣∣

= ∣∣ρ(x, u) − ρ′(x, u)
∣∣ .

Thus, δ∗ fulfils all constraints from (8). ‖δ∗‖i < ‖δ‖i contradicts that δ is optimal
for (8). 
�

5 Comparison to Other Metrics

First we compare our metrics to the pathwise difference metrics, defined by

D̃ pd
i (ρ, ρ′) =

∥∥
∥(ρ(x, y) − ρ′(x, y)){x,y}∈(X2)

∥∥
∥
i

(9)

on M(X). On T (X), we set Dpd
i (τ, τ ′) = D̃ pd

i (ρτ , ρτ ′). Dpd
1 and Dpd

2 were defined

in Williams and Clifford (1971) and Steel and Penny (1993), respectively. D̃ pd∞ is just
the distortion of the identity map in the theory of metric spaces (Burago et al. 2001;
Lang et al. 2013). To your knowledge, it was used in Huggins et al. (2012) under the
name k-interval cospeciation the first time.

Abbreviating n = #X we have standard estimates between our metrics for different
i , resulting from similar estimates for the norms ‖·‖i , first.
Lemma 4 For ρ, ρ′ ∈ M(X), it holds

D̃1(ρ, ρ′) ≥ D̃2(ρ, ρ′) ≥ D̃∞(ρ, ρ′) ≥ 1√
n
D̃2(ρ, ρ′) ≥ 1

n
D̃1(ρ, ρ′)

D̃ pd
1 (ρ, ρ′) ≥ D̃ pd

2 (ρ, ρ′) ≥ D̃ pd∞ (ρ, ρ′) ≥ 1
√(n

2

) D̃
pd
2 (ρ, ρ′) ≥ 1

(n
2

) D̃ pd
1 (ρ, ρ′).

Theorem 4 For ρ, ρ′ ∈ M(X), it holds

n

2
D̃ pd
1 (ρ, ρ′) ≥ D̃1(ρ, ρ′) ≥ 1

n − 1
D̃ pd
1 (ρ, ρ′) (10)

√
n

2
D̃ pd
2 (ρ, ρ′) ≥ D̃2(ρ, ρ′) ≥

√
1

2(n − 1)
D̃ pd
2 (ρ, ρ′) (11)

D̃∞(ρ, ρ′) = 1

2
D̃ pd∞ (ρ, ρ′). (12)

(12) reminds of the fact that the Gromov–Hausdorff distance of two compact metric
spaces is one half of the infimum over the distortions of correspondences between the
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two spaces (Burago et al. 2001, Theorem 7.3.25). Further, (12) shows that we need
not solve a linear program for computing D̃∞.

Proof We choose a minimal point δ of (8), i.e. ‖δ‖i = D̃i (	, 	′). Like in Example 2
we get for all x �= y ∈ X

δx + δy ≥ ∣∣ρ(x, y) − ρ′(x, y)
∣∣ (13)

δ2x + δ2y ≥ 1

2
(δx + δy)

2 ≥ 1

2

∣∣ρ(x, y) − ρ′(x, y)
∣∣2 (14)

max {δx : x ∈ X} ≥ 1

2
(δx + δy) ≥ 1

2

∣∣ρ(x, y) − ρ′(x, y)
∣∣ . (15)

Let i = ∞. Taking the maximum of (15) over all {x, y} ∈ (X
2

)
yields

D̃∞(ρ, ρ′) = ‖δ‖∞ = max {δx : x ∈ X}
≥ 1

2
max

{∣∣ρ(x, y) − ρ′(x, y)
∣∣ : x, y ∈ X

} = 1

2
D̃ pd∞ (ρ, ρ′).

Now define δ̄ ∈ R
X≥0 by setting

δ̄z = 1

2
max

{∣∣ρ(x, y) − ρ′(x, y)
∣∣ : x, y ∈ X

}
, z ∈ X.

The constraints from (8) are clearly fulfilled for δ̄. Evaluating
∥∥δ̄

∥∥∞ gives

D̃∞(ρ, ρ′) ≤ ∥∥δ̄
∥∥∞

= 1

2
max

{∣∣ρ(x, y) − ρ′(x, y)
∣∣ : x, y ∈ X

} = 1

2
D̃ pd∞ (ρ, ρ′)

and (12) is proved.
For i = 1, we sum (13) over all {x, y} ∈ (X

2

)
. This yields

(n − 1)D̃1(	, 	′) = (n − 1)
∑

x∈X
δx

≥
∑

{x,y}∈(X2)

∣∣ρ(x, y) − ρ′(x, y)
∣∣ = D̃ pd

1 (	, 	′),

the lower bound in (10). From Lemma 4, we derive the upper bound:

D̃1(ρ, ρ′) ≤ nD̃∞(ρ, ρ′) = n

2
D̃ pd∞ (ρ, ρ′) ≤ n

2
D̃ pd
1 (ρ, ρ′).

For i = 2, the lower bound in (11) is proved similarly to i = 1 using (14). The
upper bound follows again from the previous lemma:
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D̃2(ρ, ρ′) ≤ √
nD̃∞(ρ, ρ′) =

√
n

2
D̃ pd∞ (ρ, ρ′) ≤

√
n

2
D̃ pd
2 (ρ, ρ′). 
�

We want to demonstrate now that the new metrics are biologically meaningful.
Especially we show that an NNI (nearest neighbour interchange) move is a relatively
small step in tree space T 2

1 (X)when measured by these metrics. An NNI move (Allen
and Steel 2001) is given by

A

B
• •

C

D
�−→

A

C
• •

B

D

or

A

B
• •

C

D
�−→

A

D
• •

C

B

where A , B , C , D denote different subtrees. The minimal number of NNImoves
to reach τ ′ ∈ T 2

1 (X) from τ ∈ T 2
1 (X) is their NNI distance DNN I (τ, τ ′) (Robinson

1971).

Theorem 5 Consider τ, τ ′ ∈ T 2
1 (X) with DNN I (τ, τ ′) = 1. Then,

D1(τ, τ
′) ≤ n

2

D2(τ, τ
′) ≤

√
n

2

D∞(τ, τ ′) = 1

2

Consequently, for all τ, τ ′ ∈ T 2
1 (X)

DNN I (τ, τ ′) ≥ 2D∞(τ, τ ′) ≥ 2√
n
D2(τ, τ

′) ≥ 2

n
D1(τ, τ

′).

Note that these formulae give estimates of the gradient of the metrics Di in the
sense of Lin et al. (2012).

Proof Specifically we consider

τ =
A

B
• •

C

D
and τ ′ =

A

C
• •

B

D
.
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Let A′ be the set of labels mapped into the subtrees A and D and let B ′ be the
set of labels mapped into the subtrees B and C . Then,

|ρτ (x, y) − ρτ ′(x, y)| =
⎧
⎨

⎩

1 x ∈ A′, y ∈ B ′
1 x ∈ B ′, y ∈ A′
0 otherwise

Theorem 4 yields directly D∞(τ, τ ′) = 1
2 .

For δ ∈ R
X≥0 fulfilling the constraints in (8), define δ∗ ∈ R

X≥0 by

δ∗
x =

{
δ̃A = 1

#A′
∑

y∈A′ δy x ∈ A′
δ̃B = 1

#B′
∑

y∈B′ δy x ∈ B ′

Neither permutations of labels in A′ nor in B ′ change the absolute difference of the
metrics. Thus, δ∗ fulfils the constraints, too. By convexity, ‖δ∗‖i ≤ ‖δ‖i for i = 1, 2.

For i = 1 optimisation among all vectors of the form, δ∗ means to solve the linear
program

#A′δ̃A + #B ′δ̃B → min under

δ̃A + δ̃B ≥ 1.

Its solution is 1 − δ̃B = δ̃A =
{
1#A′ < #B ′
0#A′ ≥ #B ′ with objective value

D1(τ, τ
′) = min(#A′, #B ′) ≤ n

2
.

For i = 2, we have to solve

#A′δ̃2A + #B ′δ̃2B → min under

δ̃A + δ̃B ≥ 1.

Now the minimum is realised by δ̃A = #B′
n and δ̃B = #A′

n with value

D2(τ, τ
′)2 = #A′#B ′

n
≤ n

4
.

The definition of the NNI distance and Lemma 4 imply the second hypothesis. 
�
Note that different NNI moves have different Di -length for i = 1, 2 in general.

Nowwe show that the Di -distance of τ, τ ′ ∈ T 2
1 (X)which are one NNI move apart

is small compared to the diameter of the space T 2
1 (X). For the latter, we have upper

bounds which hold on T1(X) as well.
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Lemma 5 For all τ, τ ′ ∈ T1(X), it holds

D1(τ, τ
′) ≤ n · n − 2

2

D2(τ, τ
′) ≤ √

n · n − 2

2

D∞(τ, τ ′) ≤ n − 2

2

Proof All shortest paths in τ and τ ′ have at least one and at most n − 1 edges. Thus,
Dpd∞ (τ, τ ′) ≤ n − 2. By Theorem 4, D∞(τ, τ ′) ≤ n−2

2 . Lemma 4 implies the other
two bounds. 
�

We want to show now that the estimates in Lemma 5 have the correct order in the
number of taxa n. The examples are caterpillars, i.e. binary trees for which all interior
vertices form a chain.

Lemma 6 Let us be given n = 4m + 1 for some m ∈ N, m ≥ 1, X =
{1, 2, . . . , 4m, 4m + 1}. Suppose τ is an unrooted (binary) caterpillar tree with cher-
ries {1, 2} and {4m, 4m + 1}:

τ =
1

2

•
3

•
4

•
5

• · · ·
4m − 2

•
4m − 1

• •
4m

4m + 1

and τ ′ is obtained from τ by reversing the order of the even labels, i.e. 2 j is inter-
changed with 2(2m + 1 − j) for j = 1, . . . , 2m:

τ ′ =
1

4m

•
3

•
4m − 2

•
5

• · · ·
4

•
4m − 1

• •
2

4m + 1

Then,

D1(τ, τ
′) ≥ 4m2

D2(τ
′, τ ′) ≥

√
16

3
m3 − 4

3
m

D∞(τ, τ ′) = 2m − 1.
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Proof It is easy to see that for 1 ≤ x < y ≤ n = 4m + 1

ρτ (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 x = 1, y = 2
y x = 1, 2, 3 ≤ y ≤ 4m − 1
4m x = 1, 2, y = 4m, 4m + 1

4m + 2 − x 3 ≤ x ≤ 4m − 1, y = 4m, 4m + 1
2 x = 4m, y = 4m + 1

y − x + 2 otherwise

By construction,

ρτ ′(x, y) =
{

ρτ (x, y) x ≡ y (mod 2)
ρτ (x, 4m + 2 − y) otherwise

First, the formula for D∞(τ, τ ′) follows immediately from Theorem 4.
Continuing, (8) contains the constraints δ2 j−1 + δ2 j ≥ |4(m − j) + 2| and

δ4m+2−2 j + δ4m+3−2 j ≥ |4(m − j) + 2|, 1 ≤ j ≤ m. Summing up these constraints
gives the lower bound for D1(τ, τ

′).
Applying the inequalitya2+b2 ≥ (a+b)2

2 to the sameconstraints and again summing
up these inequalities yield the lower bound for D2(τ, τ

′). 
�

6 Local Properties

From Theorem 3, we obtain for all ρ, ρ′, ρ′′ ∈ M(X)

D̃i (ρ + ρ′, ρ + ρ′′) = D̃i (ρ
′, ρ′′).

In general, the sum of two tree-induced semimetrics is not a tree-induced semimetric.
But, if ρ′, ρ′′ result from simple manipulations of the edge lengths in the tree τ

corresponding to ρ = ρτ , some computations are possible. They inform us about
the local behaviour of the metrics D1, D2.

First we compute the influence of changing one edge length. Usually edges of an
X -tree are described by the split they induce on X . Deleting an edge decomposes
the tree into two connected components. Then, the induced split is the corresponding
bipartition of X . Bipartitions are denoted A|B with A, B ⊂ X , A∪B = X , A∩B = ∅.
Example 3 Consider for l > 0 the unresolved weighted X -trees

τ lA,B = A B
l

.

Thus, A|B is a split of X and l is the length of the edge inducing this split. We are
interested in Di (τ

l
A,B, τ l

′
A,B). By the preceding considerations, these are the distances

between two weighted X -trees displaying the same splits with the same length except
the split A|B, where the lengths are l and l ′.
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We see that the constraints from (8) turn into

δx + δy ≥ |l − l ′| x ∈ A, y ∈ B.

Using the same arguments as in the proof of Theorem 5, we may assume that

δx =
{
a x ∈ A
b x ∈ B

for some a, b ∈ R≥0 with a + b ≥ ∣∣l − l ′
∣∣.

For i = 1, we find

‖δ‖1 = #Aa + #Bb ≥ #Aa + #B
(∣∣l − l ′

∣∣ − a
)
.

The minimal value of the latter function of a in
[
0,

∣∣l − l ′
∣∣] is

D1(τ
l
A,B, τ l

′
A,B) = min(#A, #B)

∣∣l − l ′
∣∣ .

It is attained at
∣∣l − l ′

∣∣ − b = a =
{
0#A ≥ #B∣
∣l − l ′

∣
∣ #A ≤ #B

.

Similarly, we have to minimise for i = 2

‖δ‖22 = #Aa2 + #Bb2 ≥ #Aa2 + #B
(∣∣l − l ′

∣∣ − a
)2

.

Now the minimum is attained at a = #B
#A+#B

∣
∣l − l ′

∣
∣, b = #B

#A+#B

∣
∣l − l ′

∣
∣ as

D2(τ
l
A,B, τ l

′
A,B) =

√
#A#B

n

∣∣l − l ′
∣∣ .

Summarisingly, we observe that different splits of a tree may contribute with differ-
ent strengths to the distance. This differs from the behaviour of the geodesic distance.

Note that the above computations imply estimates for the Robinson–Foulds metric
similar to Theorem 5.

Now we change two edge lengths simultaneously. Let τ0 ∈ T (X) denote the tree
with one vertex and without edges. Thus, the label function μ maps to a single point
and ρτ0 = 0.

Example 4 Let l, l ′ > 0 and pairwise disjoint A, B,C ⊂ X , A ∪ B ∪ C = X , be
given. We want to compute Di (τ0, τ

l,l ′
A,B,C ) where

τ
l,l ′
A,B,C = A B C

l l ′
.

This tree captures the “difference” of two trees with the same shape which differ in
the lengths of two edges.
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Again, symmetry allows us to consider only δ ∈ R
X≥0 with

δx =
⎧
⎨

⎩

a x ∈ A
b x ∈ B
c x ∈ C

for some a, b, c ∈ R≥0 which fulfil now

a + b ≥ l

b + c ≥ l ′

a + c ≥ l + l ′. (16)

This yields a linear program or a quadratic program in R
3≥0.

For computing D1(τ0, τ
l,l ′
A,B,C ), we want

#Aa + #Bb + #Cc �→ min

under the constraints (16). We know that this minimum is achieved in a corner of
the feasible set. But, we see easily that not all inequalities in (16) could be equalities
unless b = 0. Thus, at least one of a, b, c must be zero and we obtain the minimal
value as

min
{
#Al + #Cl ′, (#B + #C)l + #Cl ′, #Al + (#A + #B)l ′

}

A distinction of cases whether #A � #B + #C and #C � #A + #B gives us in

any case one of the values as minimum. Thus, in any case, D1(τ0, τ
l,l ′
A,B,C ) is a linear

combination of l and l ′, i.e. some weighted �1-distance.
The computation of D2(τ0, τ

l,l ′
A,B,C ) would mean solving the quadratic program

#Aa2 + #Bb2 + #Cc2 �→ min

under the constraints (16). For this problem, we only know that the solution is the
projection of the null vector onto the affine hyperspace determined by some face of

the feasible set. This projection is linear in l and l ′. This means that
(
D2(τ0, τ

l,l ′
A,B,C )

)2

is the minimum of five quadratic functions in l, l ′. Since the algebra is rather tedious,
we stop here now with the indication that this minimum is just a single quadratic
function similar to the linear case before. A numerical test for several cardinalities
and random lengths l, l ′ showed that the parallelogram equality is fulfilled in all con-
sidered situations (data not shown, see https://math-inf.uni-greifswald.de/fileadmin/
uni-greifswald/fakultaet/mnf/mathinf/liebscher/phylodistpaper4.R). Thus, the local
geometry under D2 seems to be euclidean. Note that the previous example showed
that D2 is not a version of the geodesic distance from Billera et al. (2001) for unrooted
trees.

123

https://math-inf.uni-greifswald.de/fileadmin/uni-greifswald/fakultaet/mnf/mathinf/liebscher/phylodistpaper4.R
https://math-inf.uni-greifswald.de/fileadmin/uni-greifswald/fakultaet/mnf/mathinf/liebscher/phylodistpaper4.R


New Gromov-Inspired Metrics on Phylogenetic Tree Space 511

D1 D2 D∞
pd D1

pd D2
pd

BHV RF WM

0.
00

1
0.

00
2

0.
00

5
0.

01
0

0.
02

0
0.

05
0

0.
10

0
0.

20
0

computing times of tree metrics, n = 100

type

co
m

pu
tin

g 
tim

e 
[s

]

Fig. 2 Boxplot of computing times for different metrics (logarithmic scale) for 103 random weighted

X -trees with n = #X = 100. From left: D1, D2, D
pd∞ , Dpd

1 , Dpd
2 , the geodesic, the Robinson–Foulds and

the weighted matching distance. All times were rounded to milliseconds

7 Implementation and Numerical Examples

We did a small simulation study on a Intel� i7-7700 3,60GHz PC running Ubuntu
16.04 to get some empirical insight extending our mathematical results.

The different metrics were implemented in R (R Core Team 2017) and form
now the gromovlab package (Liebscher 2015). For the geodesic distance, the
implementation by the package distory (Chakerian and Holmes 2017) was used.
To root trees, the first taxon was marked as outgroup. The weighted matching
distance was implemented using the package lpSolve (Berkelaar et al. 2015).
Random (weighted and unweighted) trees were generated by the function rtree
of the R package ape (Paradis et al. 2004). This function generates uniformly
distributed binary trees with uniformly in [0, 1] distributed edge lengths in the
weighted case. To avoid a potential bias, labels were randomly permuted after-
wards. Random caterpillars were generated by random labelling of the caterpillar
tree generated by the stree function of the package ape. The corresponding
R-script can be downloaded from https://math-inf.uni-greifswald.de/fileadmin/uni-
greifswald/fakultaet/mnf/mathinf/liebscher/phylodistpaper4.R.

Some testing showed in the �1-case best performance in terms of computing time
for the dual simplex algorithm. The computing time for obtaining the distance between
random trees of size n = 100 was around 0.1 s. This compares to the computing times
of the geodesic distance and the weighted matching distance, see Fig. 2. Of course,
computations of the Robinson–Foulds distance and the pathwise difference metrics
are faster.

We also compared the values of Di , i = 1, 2,∞ with the pathwise difference
metrics [see (9)], the geodesic distance and the Robinson–Foulds metric, for random
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Fig. 3 Comparison of different metrics for 103 random weighted X -trees with n = #X = 10. From upper

left: D1, D2, D
pd∞ , Dpd

1 , Dpd
2 , the geodesic, the Robinson–Foulds and the weighted matching distance

weighted binary X -trees with n = 10 leaves. The resulting scatterplots are presented
in Fig. 3. One can observe correlations only among the different Gromov-type metrics
and among the different pathwise difference metrics. There is not much correlation to
the geodesic distance. This shows that our metrics differ essentially from the pathwise
difference and the geodesic metrics. Further, it is not determined by any of those
metrics in the sense of Coons and Rusinko (2016).

Similar pictures are found for random unweighted trees, see Fig. 4. Now
there is a strong correlation to the weighted matching distance. Interestingly,
D1 turns out to be integer-valued now, see Fig. 5. That is surprising since
the matrix corresponding to the linear program (8) is not totally unimodular
in the sense of Hoffman and Kruskal (2010), it contains the 3 × 3 submatrix⎛

⎝
1 1 0
1 0 1
0 1 1

⎞

⎠ with determinant −2. Note that for general integer-valued metrics, D̃1

assumes also half-integer values (https://math-inf.uni-greifswald.de/fileadmin/uni-
greifswald/fakultaet/mnf/mathinf/liebscher/phylodistpaper4.R). The lower bound

from Lemma 6 computes to (n−1)2

4 ≈ 21. Obviously, it is not sharp. Random cater-
pillars provide a similar distribution with only even values and more extreme to the
right (data not shown) (https://math-inf.uni-greifswald.de/fileadmin/uni-greifswald/
fakultaet/mnf/mathinf/liebscher/phylodistpaper4.R).
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Fig. 5 Frequency tables of the D1 metric for 103 random unweighted trees with n = 10. The formal lower
bound on the diameter of T (X) from Lemma 6 is added as dotted line

8 Discussion

We constructed three different well motivated metrics on the space M(X) of semi-
metrics on the taxon set X . This leads to at least two new efficiently computable
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metrics for comparing unrooted, but possibly weighted, phylogenetic X -trees. There
is an obvious interpretation of the metrics by parsimonious consistent matching of the
differences entailed by the two trees, see Example 2. Since we showed that NNImoves
are small in these metrics compared to the whole space of binary trees, these metrics
surely capture some biological similarity.We think this rather abstract approach to tree
metrics is valuable and could generalise well. One direction could be the extension
to rooted trees. We should then just measure the distance of the induced metrics on
X ∪ {root}. Another generalisation could focus phylogenetic networks.

In general, we follow Steel and Penny (1993) in arguing that there is no universal
metric for phylogenetic trees which suits perfectly for all purposes. We think that
every application has its own choice, and we added a further choice to this portfolio.
Yet, we should discuss further properties of phylogenetic metrics to guide the users.
Monotonicity as considered in Allen and Steel (2001), Lemma 2.2 is a start in this
direction. Here we want to discuss some results of the present paper and possible
extensions only.

It looks interesting to extend the metric to tree shapes, with allowing the labels to
be permuted. But computation of the general Gromov–Hausdorff distance is NP-hard
(Pardalos and Wolkowicz 1994), and the same result holds for tree-induced metrics
(Agarwal et al. 2015).

One important topic which raised up already in Bogdanowicz and Giaro (2012),
Lin et al. (2012), Gavryushkin and Drummond (2016), and Kendall and Colijn (2016)
is the question how to weight the edges of the trees. We computed the influence of
different splits on our metric in Example 3. If those weights do not fit the intention
of the user, one could change the tree-induced metrics by rescaling the edges of the
trees in an objective way. Using weighted ‖·‖i norms can account for uneven taxon
sampling or rooting the tree. The principle of the computations would remain the
same. Note that we met already such weights in Examples 3 and 4. Further, also a
Kantorovich–Wasserstein approach similar to Mémoli (2007) might be feasible if the
weights of the taxa differ between the trees. Thus, our approach is natural, but can be
well adjusted to the needs of applications.

We compared the newmetrics with theNNImetric, the pathwise differencemetrics,
the Robinson–Fouldsmetric (see Example 3). Notmany of the estimates are tight. So it
would be valuable to get tight lower and upper bounds in these cases and for the quartet,
SPR-, TBR-, maximum parsimony, weighted matching and geodesic metrics as well.
It is important to knowmore about the 1-neighbourhoods on T 2

1 (X), e.g. whether there
are islands in the sense of Bogdanowicz and Giaro (2012). Our numerical study in
Sect. 7 is still sparse.

Weexpect the diameter between twounweighted X -trees to be realisedby caterpillar
trees. The simulation result in Fig. 5 points into this direction. We would like to know
why D1 takes integer values only on T 2

1 (X).
The geometry induced by D2 needs to be explored. Is it locally fully euclidean?

How do the geodesics look like?
Outside phylogenetics, there should be applications to other kinds of finite labelled

metric spaces. At the moment, we are only aware of the papers of F.Memoli, e.g.
Mémoli (2007), which deal with �p-type Gromov–Hausdorff metrics.
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In spite of these many open questions, we are sure that this work is just the start of
studying this interesting kind of metrics.
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A On Semimetric Extensions

Several times we met the problem whether a partial dissimilarity on X , i.e. a map
q : E → R≥0, E ⊆ (X

2

)
, has an extension to a semimetric on X . This seems to be a

well-known problem, one folklore solution I found in Guénoche et al. (2004). For our
needs, the following reformulation proved more useful.

We call a cycle p = x0x1 . . . xm , x0 = xm , in a graph (X, E) induced, if it is simple
(xi , i = 0, . . . ,m − 1, are different) and chordless (

{
xi , x j

}
/∈ E , 0 ≤ i, j ≤ m − 1,

2 ≤ |i − j | ≤ m − 2).

Theorem 6 If the graph G = (X, E) is connected, then q : E → R≥0 extends to a
semimetric on X if and only if for all induced cycles p of G and all edges e in p

2q(e) ≤ len(p). (17)

Proof ByGuénoche et al. (2004), Proposition 2.1, q has a semimetric extension if and
only if for all {x, y} ∈ E q({x, y}) = dqG(x, y). dqG was introduced in (3).

Let there be an extension of q to a semimetric. Fix an induced cycle p =
x0x1 . . . xm−1xm , xm = x0, and the edge e = {x0, x1} in p. We obtain

q({x0, x1}) = dqG(x0, x1) ≤ len(x1 . . . xm−1x0) =
m−1∑

k=1

q({xk, xk+1})

2q({x0, x1}) ≤ q({x0, x1}) +
m−1∑

k=1

q({xk, xk+1}) = len(p).

Now assume (17) is fulfilled, but there is no extension to a semimetric. Thus,
we find {x, y} ∈ E such that q({x, y}) > dqG(x, y). This means there is a path
p̃ = x0x1 . . . xm−1, x0 = x , xm−1 = y, such that

q({x0, xm−1}) > len( p̃) =
m−2∑

k=0

q({xk, xk+1}).
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We may assume w.l.o.g. that m is minimal. Thus, xi , i = 0, . . . ,m − 1 are different.
Setting xm = x0, e = {x, y} = {x0, xm−1}, the (simple) cycle p = x0x1 . . . xm
violates (17). Suppose now that p has a chord, say

{
xi , x j

}
. Since m is minimal, we

know

q
({
xi , x j

}) ≤
j−1∑

k=i

q({xk, xk+1})

and

q({x0, xm−1}) ≤
i−1∑

k=0

q({xk, xk+1}) + q
({
xi , x j

}) +
m−2∑

k= j

q({xk, xk+1}).

Substituting the first inequality into the right hand side of the second one yields

q({x0, xm−1}) ≤
m−1∑

k=0

q({xk, xk+1}).

This contradiction shows that p is an induced cycle and completes the proof. 
�
We can use this result for the

Proof of Theorem 2 WeapplyTheorem6 to X∪X ′, E = (X
2

)∪(X ′
2

)∪{{
x, x ′} : x ∈ X

}

and q : E → R≥0 given by

q({u, v}) =
⎧
⎨

⎩

ρ(u, v) u, v ∈ X
ρ′(x, y) u = x ′, v = y′, x, y ∈ X

δx u = x, v = x ′, x ∈ X
.

Induced cycles in (X ∪ X ′, E) are either triangles in X , triangles in X ′ or quadrangles
x, y, y′, x ′, x . For the two former, (17) is equivalent to the triangle inequalities for
ρ, ρ′. For the latter, (17) is the same as (5). 
�

The following result was used in the proof of Theorem 1.

Lemma 7 Suppose X,Y, Z are disjoint sets and there are given d1 ∈ M(X ∪ Y ) and
d2 ∈ M(Y ∪ Z) such that d1|(Y2) = d2|(Y2). Then, there exists a d ∈ M(X ∪ Y ∪ Z)

such that d|(X∪Y
2 ) = d1 and d|(Y∪Z

2 ) = d2.

Proof Now we apply the theorem to the graph
(
X ∪ Y ∪ Z ,

(X∪Y
2

) ∪ (Y∪Z
2

))
with

q({u, v}) =
{
d1(u, v) u, v ∈ X ∪ Y
d2(u, v) u, v ∈ Y ∪ Z

.

Since both X ∪ Y and Y ∪ Z are complete in this graph, the only induced cycles are
triangles. The triangle inequalities for d1, d2 show (17). 
�
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