
Bull Math Biol (2019) 81:3508–3541
https://doi.org/10.1007/s11538-017-0374-2

SPECIAL ISSUE: MATHEMATICS TO SUPPORT DRUG DISCOVERY AND DEVELOPMENT

Quantitative PET Imaging in Drug Development:
Estimation of Target Occupancy

Mika Naganawa1 · Jean-Dominique Gallezot1 ·
Samantha Rossano1,2 · Richard E. Carson1,2

Received: 7 August 2017 / Accepted: 27 November 2017 / Published online: 11 December 2017
© Society for Mathematical Biology 2017

Abstract Positron emission tomography, an imaging tool using radiolabeled trac-
ers in humans and preclinical species, has been widely used in recent years in drug
development, particularly in the central nervous system. One important goal of PET
in drug development is assessing the occupancy of various molecular targets (e.g.,
receptors, transporters, enzymes) by exogenous drugs. The current linear mathemat-
ical approaches used to determine occupancy using PET imaging experiments are
presented. These algorithms use results from multiple regions with different target
content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathemat-
ical estimation approaches to determine target occupancy, using maximum likelihood,
are presented. Amajor challenge in thesemethods is the proper definition of the covari-
ance matrix of the regional binding measures, accounting for different variance of the
individual regional measures and their nonzero covariance, factors that have been
ignored by conventional methods. The novel methods are compared to standard meth-
ods using simulation and real human occupancy data. The simulation data showed
the expected reduction in variance and bias using the proper maximum likelihood
methods, when the assumptions of the estimation method matched those in simula-
tion. Between-method differences for data from human occupancy studies were less
obvious, in part due to small dataset sizes. These maximum likelihood methods form
the basis for development of improved PET covariance models, in order to minimize
bias and variance in PET occupancy studies.
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1 Introduction

Drug development is lengthy, requiring 10–12years and costing ∼1 billion USD to
advance a drug to clinic (DiMasi et al. 2003). To speed and optimize this development,
quantitative biomarkers are essential to demonstrate a drug’s mechanism of action and
ultimate utility. One very effective tool to produce relevant quantitative biomarkers is
positron emission tomography (PET), a noninvasive imaging modality that provides
quantitative information in vivo and can be used to assess all aspects of a drug’s
behavior. PET has been increasingly recognized in the pharmaceutical industry as a
powerful tool that can provide essential and timely information for drug development;
these applications have been particularly successful in the central nervous system
(CNS) and are now spreading to other body systems. This article focuses on the
use of PET for the quantitative measurement of occupancy at receptors, transporters,
and enzymes, using current methods and new approaches, motivated by maximum
likelihood estimation.

1.1 Applications of PET Imaging in CNS Drug Development

PET applications in drug development include: (1) Detection of a drug’s distribution
and tissue kinetics if a drug can be directly labeled; (2) Validation of target engagement
by the drug to determine if the drug reaches and engages the desired target; (3) Target
occupancy studies to relate a drug’s dose or blood concentration to target occupancy,
to determine if the drug interacts with the target at a level sufficient to produce the
intended pharmacological effects; and (4) Monitoring treatment effect, to assess if the
drug alters the underlying pathology. For the purposes of this manuscript, we focus
on #3, measurement of target occupancy. Figure 1 shows an example of PET images
measured with the kappa opioid antagonist radiotracer 11C–LY2795050 before and
after an oral dose of 2mg of LY2456302, a kappa opioid antagonist (Naganawa et al.
2016).

PET imaging for receptor occupancy studies is especially useful, as it provides
the quantitative relationship of dosage with the level of target engagement. When
coupled with measurement of drug concentrations in the plasma, this type of study
provides information about the relationship between drug dosage, drug exposure in the
circulation, occupancy of target receptor, and pharmacological response. For example,
if a certain level of receptor occupancy is thought to be required for the intended
efficacy, and themaximal tolerable dose (MTD)yields a lower occupancy level, clinical
trials can be halted, thus saving drug development costs. Alternatively, if a specific
drug has high occupancy, but does not have efficacy, this provides valuable information
to develop drugs targeting other potential mechanisms.

For the CNS, brain receptor occupancy studies are typically performed first in
rodents and/or nonhumanprimates (NHP), and subsequently in human subjects. Exam-
ples of our own studies in NHP include occupancy at norepinephrine transporters
(Gallezot et al. 2011), serotonin receptors (Cosgrove et al. 2011), dopamine receptors
(Gallezot et al. 2012), acetylcholine receptors (Hillmer et al. 2016), glycine trans-
porters (Castner et al. 2014; Xia et al. 2015), histamine receptors(Sawant-Basak et al.
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Fig. 1 Transaxial images from a typical subject before and after an oral dose of 2mg of LY2456302.
Activity is expressed as standardized uptake values (SUVs, activity normalized by dose and body weight).
MR images (a) and co-registered PET images summed from 30 to 90min after injection of 11C-LY2795050
in the baseline scan (b), and 2h (c) and 24h (d) post-drug scans. High uptake is seen in the amygdala (left),
insula (middle), and anterior cingulate cortex (right). The computed receptor occupancy estimated with
Eq. 20 was 77% (c) and 58% (d) (Color figure online)

2017), kappa opioid receptors (Kim et al. 2013), and synaptic vesicular protein (SV2A)
(Nabulsi et al. 2016; Nicolas et al. 2016). In general, we have found there to be good
correlation between occupancy in NHP and occupancy in humans, after adjusting for
interspecies differences in bioavailability and plasma-free fraction of drug.

As an example, consider the kappa opioid system, where a selective ligand
[11C]GR103545 was shown to be suitable for imaging this receptor in nonhuman pri-
mates (NHP) (Talbot et al. 2005). Development of this radiotracer for PET imaging in
humans was carried out in our laboratory (Nabulsi et al. 2011; Naganawa et al. 2014).
After validation of this radiotracer in humans, it was used in a receptor occupancy
study of PF-04455254, a selective kappa antagonist. In the receptor occupancy study,
PF-04455254 was given to healthy subjects at an oral dose of 30mg and PET scans
were performed at 1.5h (tmax for the drug) and 8h (2 half-lives of the drug), respec-
tively, post-dosing. Venous samples were taken during the scan to measure plasma
concentrations of PF-0455254. As there is no reference region for this radiotracer (see
below), the occupancy plot was used to calculate receptor occupancy (Cunningham
et al. 2010). At a dose of 30mg, mean kappa receptor occupancy of ∼50%, a level
expected to be useful for antidepressant efficacy. Even though the development of this
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drug was halted for other reasons, the PET study with concurrent PK/PD measure-
ments provided an important proof of mechanism study demonstrating the potential
of kappa antagonists as efficacious antidepressants. Other examples of our published
human occupancy studies include acetylcholine receptors (Esterlis et al. 2013), his-
tamine receptors (Gallezot et al. 2017), kappa opioid receptors (Naganawa et al. 2016),
and synaptic vesicular protein (SV2A) (Finnema et al. 2016).

1.2 Basics of PET Imaging

PET uses biological molecules labeled with positron-emitting radioisotopes such as
carbon-11 or fluorine-18. These radiolabeled compounds (called radiotracers) are usu-
ally administered intravenously to a subject, and these molecules can then reach the
target tissues and interact with a target protein in vivo. Detection occurs when the
positron is emitted and annihilates with a nearby electron producing a pair of γ rays
traveling 180◦ apart, and coincidence detection is used to identify a “line-of-response”
in which the emission occurred. Subsequently, image reconstruction algorithms esti-
mate the 3D distribution of radioactivity concentration, with image resolution on the
order of a few mm. With proper corrections for physical factors in PET (e.g., random
coincidences, scatter, and deadtime), 3D images of radioactivity concentration cali-
brated in absolute units (Becquerels/cm3,Bq/cm3) are obtained. Dynamic acquisition
over time produce a 4D dataset of concentration versus time, amenable to tracer kinetic
modeling.

1.3 Quantitative Modeling Analysis of PET Data

Tracer kinetic modeling has been used for over 50years as a tool to measure the
uptake, retention, and metabolism of radiotracers (Cobelli et al. 2001). These model-
ing approaches depend upon the tracer assumption, i.e., that the mass concentration
of the radiotracer is small, and thus does not alter the saturation of any enzyme or
the occupancy of any receptor or transporter (e.g., radiotracer concentration � KD,
the dissociation equilibrium constant of the radiotracer). In this case, the mathematics
defining the time course of the agent becomes simple, i.e., linear differential equa-
tions with constant coefficients, and compartment modeling approaches can be used
(Jacquez 1985). PET tracer kinetic modeling differs from conventional whole-body
compartment modeling (Li et al. 2014), which involves measurement of tracer uptake
and retention in blood and urine, allowing the production of models of the uptake in
various body organs, even without direct measurement of the concentration in various
organs. In PET,many of the equations are similar, but the structure of themodel differs.
Since the PET system measures the activity in the target organ of interest over time,
for organs where delivery of tracer can only occur from arterial blood and clearance
can only occur via venous blood, i.e., excluding liver and lungs, we avoid the need for
knowledge about the rest of the body by measuring (or inferring) the concentration of
the tracer in the plasma. The time course of radiotracer in plasma is the input function
to the target organ.With the input function and each tissue’s time-activity curve (TAC),
various compartment models are derived which can best fit the dynamic data (Carson
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2003). Due to limits in precision of reconstructed PET data, these models typically
contain 1 or 2 tissue compartments.

In addition, other simplified or graphical methods have been extensively used to
extract a subset of model parameters, without definition of a specific model configu-
ration (Ichise et al. 2002; Logan et al. 1990b). Another significant development was
various methods to infer the input function, by use of the TAC in a “reference region,”
i.e., a regionwith no specific binding of the radiotracer (Ichise et al. 2003; Lammertsma
and Hume 1996; Logan et al. 1996). This approach has been most widely used in the
brain using agents targeted at one neurotransmitter system where there are regions of
the brain completely or nearly devoid of this receptor. Once validated, this approach
obviates the need for measurements of the input function that, in principle, should be
acquired from arterial blood. A further complication of input functionmeasurements is
that the radioactivity in circulation is a combination of the original injected tracer (the
parent compound), plus radiolabeled metabolites produced by the body; this requires
correction of the radioactivity measurements for these radiolabeled metabolites.

1.4 Quantification of Receptor Occupancy

For radiotracers designed to bind to protein targets such as receptors, transporters,
or enzymes, the PET modeling community adopted nomenclature for the quantitative
outcomemeasures derived fromkinetic analyses (Innis et al. 2007). For the purposes of
this text, we will use the word “receptor” for the protein target. The two key measures
are the volumeof distribution (VT) and the binding potential (BP).VT is the equilibrium
ratio of the tissue to plasma; this ratio reflects the radiotracer that is specifically bound
to the receptor, as well as free or nonspecifically bound (the latter two components
termed “nondisplaceable” since competing agents do not displace this component of
the tracer uptake). Mathematically,

VT = VND + VS (1)

where the subscripts T, ND, and S, refer to total, nondisplaceable, and specific, respec-
tively. Most PET studies use bolus injection of a radiotracer, so the modeling estimates
the equilibrium ratio by estimating VT from the kinetic parameters determined from
a model fit to the dynamic data [unless constant infusion is used to reach equilibrium
conditions (Carson et al. 1993)].

The binding potential,BP, is an equilibrium ratio of the concentration of specifically
bound tracer to that in a reference fluid or region. Three versions of BP are used, using
3 different references: free radiotracer in plasma (BPF), total in plasma (BPP), or the
tissue nondisplaceable component (BPND). BPND (VS/VND) is most commonly used,
since this term can be estimated using the reference region methods. The primary
assumption of reference regions is that the VT in the reference region (REF) is equal
to VND in the target region-of-interest (ROI). When calculated from VT, BPND is

BPND = VT,ROI − VT,REF

VT,REF
= VS

VND
(2)
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Receptor occupancy (r ) of a drug candidate at a target can then be measured quantita-
tively if the drug and the tracer bind to the same receptor. This is typically performed
by using 2 PET scans in the same subject, one at baseline (base), and one at a suitable
time post-administration of a drug of interest (post). VT is reduced in the post-drug
scan due to drug occupancy and reduction of specific binding. Assuming there is no
change in nondisplaceable binding induced by the drug:

VT = VND + (1 − r)VS (3)

If a reference region is available, the binding potential in the post-drug scan is:

BPND,post = VND + (1 − r) VS,ROI − VT,REF

VT,REF
(4)

and r can be determined independently for each ROI

r = BPND,base − BPND,post

BPND,base
(5)

Alternatively, if there is no suitable reference region devoid of receptors, r can be
determined without a reference region from VT values frommultiple regions using the
“occupancy plot” under the assumptions that r and nondisplaceable binding (VND) are
uniform across brain regions (Cunningham et al. 2010). This commonly used method
is not statistically optimal (as detailed in Sect. 3.1.1), and development and evaluation
of alternative methods is the topic of this manuscript.

Ultimately, r values can be compared to the dose of the drug (D) or the plasma
concentration (C) of the drug to estimate the ID50 or IC50, the dose or concentration that
produces 50% occupancy of the target. This analysis is typically done by combining
data frommultiple subjects or from havingmultiple post-drug scans (at different doses
or plasma drug levels) in one subject.

1.5 Scope of this Presentation

In this presentation, we focus on estimating receptor occupancy (r ) from a single
subject. This is typically based on 2 scans (baseline and post-drug), but we also include
3-scan paradigms (baseline plus 2 post-drug scans), estimating 2 occupancy values (r1,
r2). In addition, since many tracers have no ideal reference region, here we consider
only those tracers, i.e., where nondisplaceable binding levels (VND) must also be
estimated from multi-region data.

In the discussion, we consider other paradigms for occupancymeasurements. These
include multiple subject analysis (to permit IC50 or ID50 estimation), analyses where
reference regions are available, or methods to be used when there is no baseline scan
available.

Our goal is to devise new methods that produce estimates of occupancy with better
accuracy and/or precision than the current approaches.We do this first with simulation,
where there is a ground truth, in order to directly assess any advantages of the new
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methods. However, such simulations require assumptions, which may not be met in
the case of real data, or may bemet to different degrees for different tracers. Therefore,
we subsequently compare the methods in 3 real-data cases, in order to assess whether
the same patterns are found as in the simulation, recognizing that there is no ground
truth in these cases.

2 VT Estimation and Noise Models

2.1 Compartment and Graphical Methods to Measure VT

Bydefinition, the volume of distribution VT is the ratio of the tracer concentration in the
tissue (CT) and in the arterial plasma (Ca) at equilibrium. One of the simplest methods
to estimate volumes of distribution is equilibrium analysis (EA), where the tracer is
continuously infused until constant concentrations (i.e., equilibrium) are obtained in
plasma and all target tissues; here we ignore radioactive decay. In practice, a bolus plus
infusion is used in an attempt to reach equilibrium within a practical study duration
(Carson 2000). In a bolus plus infusion protocol, an initial short bolus of tracer is
injected first (worth Kbol minutes of infusion), and the rest of the tracer is infused
uniformly over time. Selecting the right Kbol value is critical for the success of a bolus
plus infusion study. However, such a protocol is not always possible (1) if the time
to reach equilibrium is too long, (2) if different tissues (including plasma) have very
different clearance rates and therefore require different Kbol values to reach a constant
concentration quickly, or (3) if there is too much variability in the optimal Kbol value
across subjects.

Another way to estimate volumes of distributions is to use a compartment model
following a bolus intravenous injection of tracer to fit tissue curves, using themeasured
input function in plasma. For a review of commonly used compartment models in PET,
see (Gunn et al. 2001). The operational equations of compartmentalmodels can always
be written as:

̂CT (t) = Ca (t) ⊗ h (t) (6)

where ⊗ is the convolution operator and h (t) is the tissue impulse response function,
i.e., a sum of n exponential functions, n being the number of compartments in the
model. To determine the best way to quantify a new tracer, various compartment
models are tested and compared, to determine the simplest model that accurately
fits the TACs, while providing stable VT estimates. In practice, a few reversible PET
tracers can be accurately modeled using the one-tissue compartment (1TC) model,
which requires estimating only two parameters, the influx rate constant K1 and the
efflux rate constant k2. The volume of distribution VT is then equal to the ratio of
K1 and k2. The other reversible tracers can usually be accurately modeled using the
two-tissue compartment (2TC) model, which requires estimating four parameters: the
influx rate constant K1, the first-compartment efflux rate constant k2, the transfer rate
constant k3 from the first to the second compartment, and its reciprocal k4. The volume
of distribution VT is then equal to K1/k2 × (1 + k3/k4). For the 2TC model, it is in
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general difficult to obtain reliable estimates of k2, k3 and k4, but reliable estimates of
K1 and VT can be obtained for many tracers.

A thirdway to estimate volumesof distributions is to use so-calledgraphical analysis

(Logan et al. 1990a), in which a plot of
t∫
0
CT (τ ) dτ/CT (t) versus

t∫
0
Ca (τ ) dτ/CT (t)

is created. Such a plot is asymptotically linear, and the asymptotic slope is equal to VT.
This method is general in the sense that it can theoretically be used for any reversible
compartment model, whatever the number and arrangement of the compartments.
However, this method has two drawbacks. First, it requires selecting a time t* after
which the plot is considered linear. Second, this method can be highly biased when
there is noise in the tissue curve (Slifstein and Laruelle 2000). Several methods have
been derived from the original graphical analysis to reduce this noise-induced bias,
such as multilinear analysis one (MA1) (Ichise et al. 2002) and likelihood estimation
in graphical analysis (LEGA) (Ogden 2003). The MA1 operational equation is:

̂CT (t) = −VT
b

t∫
0
Ca (τ ) dτ + 1

b

t∫
0
CT (τ ) dτ, t > t∗ (7)

where the parameter b is the intercept of the asymptotic line in the graphical analysis.
The LEGA operational equation is recursive and can be written as:

̂CT (ti ) =

i−1
∑

f=0

̂CT
(

t f
) (

S f − S f−1
) + 1

8
̂CT

(

ti−1
) (

Si − Si−1
) − b ×

ti∫
0

̂Ca (τ ) dτ

VT − 3
8

(

Si − Si−1
) , t > t∗ (8)

where ti and Si are the mid- and end times of PET frame number i , and ̂CT (ti−1) =
CT (ti−1) if ti is the first frame after t∗.

In practice, MA1 and LEGA VT estimates are often less variable than 2TC VT
estimates, since those two methods only require estimating 2 parameters. While they
are less biased than Logan graphical analysis, some bias may remain depending on
the selection of the time t*.

Among the aforementioned methods, EA uses a linear estimator for VT; MA1 is
bilinear, but VT is not one of the linear parameters, so it is obtained as a function of the
two linear parameters; and LEGA and compartmental model parameters are obtained
using nonlinear weighted least square estimation.

2.2 Noise Models for VT

Noise in dynamic PET data and noise in the input function data will lead to noise
in the VT estimates. Although the count data on which PET images are based are
Poisson in nature, the process of PET image reconstruction and the subsequent PET
data processing to determine VT can add additional noise sources, as well as altering
the distribution of the noise. Part of this noise is independent across ROIs (e.g., local
image noise due to counting statistics),while part of this noise is not independent across
ROIs (e.g., calibration errors, noise in the input function, ROI-delineation errors due
to coregistration errors between PET and MR images).
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Local image noise due to counting statistics is often assumed to have a variance
proportional to the mean of counts. The resulting variance of an ROI TAC CT (t) is
then modeled as follows:

σ 2
CT

= α
CT (t) × 2t/t1/2

�t
(9)

where t1/2 is the half-life of the tracer’s isotope, �t is the frame duration at time t ,
and α is a scaling factor. If CT (t) is expressed in radioactivity units (e.g., Bq/mL),
then α is independent of the injected dose. However, α is also a (decreasing) function
of the ROI size. If all voxels in the ROI were statistically independent, α would be
proportional to 1/n, where n is the number of voxels in the ROI. A practical way to
estimate α is to use the residual sum of squares from weighted fits of ROI data with
the following formula:

α = WRSS/nf (10)

where WRSS is the weighted residual sum of squares and nf is number of degrees of
freedom of the fit. The weights used for these fits should be the inverse of the variances
above, excluding α:

W (t) = �t

CT (t)
× 2−t/t1/2 (11)

If VT is estimated using a linear estimator (i.e., Y = Xβ, where Y is the vector of
observed PET data, β are the parameters, and X is the matrix with columns that are
the independent variables), noise in each CT value is assumed to be Gaussian and
independent, and the variance is assumed to be known up to a scale factor. Then, the
theoretical covariance matrix of the estimated parameters is:

covβML
= s2

(

XT�−1X
)−1

(12)

where s2 = 1
nf

(Y − Y)T Σ−1 (Y − Y) is the residual sum of weighted residuals
normalized by the number of degrees of freedom,Σ is the (assumed) covariancematrix
of the noise in the PET data. If Σ is scaled correctly, then the term s2 equals one.

If VT is estimated using a nonlinear estimator (e.g., using a compartmental model)
with weighted least squares, and the variance of the noise in the PET data is assumed to
be known up to a scale factor, then the theoretical covariance matrix of the estimated
parameters is an approximation, also given by Eq. (12), where X is the sensitivity
matrix with columns that are the partial derivative of the model function with respect
to each parameter.

If VT is one of the model parameters, then the theoretical standard error of VT can
be extracted directly from the relevant diagonal element of covβML

. If VT is not one
of the fitted model parameters, then the standard error can be estimated using covβML

and the error propagation equation:

σ 2
f (x,y) = σ 2

x

(

∂ f

∂x

)2

+ σ 2
y

(

∂ f

∂y

)2

+ 2σ 2
x,y

(

∂ f

∂x

∂ f

∂y

)

(13)

where σ 2
x and σ 2

x,y are diagonal and off-diagonal elements of covβML
, respectively
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2.3 Covariance Models for Multi-region VT

If the statistical noise in each ROI TAC is assumed to be independent from the noise in
other ROIs, and the noise in the input function is ignored, then the noise in estimated
regional VT values will be independent. However, when the noise in the input function
is not negligible, ROI VT values from the same scan will be correlated.

As an approximation, assuming that EA is used to estimate VT as CT/Ca, then
using the error propagation equation, the diagonal elements of the covariance matrix
of regional VT estimates can be expressed as:

σ 2
VT,i

= σ 2
CT,i

(

∂VT,i

∂CT,i

)2

+ σ 2
Ca

(

∂VT,i

∂Ca

)2

= σ 2
CT,i

(

1

Ca

)2

+ σ 2
Ca

(

CT,i

C2
a

)2

=
σ 2
CT,i

+ σ 2
Ca
V 2
T,i

C2
a

(14)

where VT,i is the estimated VT in ROI i , CT,i is the tissue concentration at equilibrium
in ROI i , and Ca is the plasma concentration at equilibrium and σ 2

CT,i
and σ 2

Ca
are the

variances of CT,i and Ca, respectively. Similarly, the off-diagonal elements of the VT
covariance matrix are:

σ 2
VT,i ,VT, j

= σ 2
Ca

∂VT,i

∂Ca

∂VT, j

∂Ca
= σ 2

Ca

CT,i

C2
a

CT, j

C2
a

= σ 2
Ca

C2
a
VT,i VT, j (15)

When a compartmental model is used to estimate VT, no such simple formula is
available. Previous evaluation of the impact of the noise in the input function can be
found in (Chen et al. 1991; Huesman and Mazoyer 1987; Normandin et al. 2012). In
this study, we used the following model, inspired by Eqs. (14) and (15):

VT,noisy = VT,truth (1 + εaif) + εVT,i (16)

where εaif and εVT,i are Gaussian random variables with zero mean and “aif” refers to
the arterial input function. The variance of εVT,i (denoted σ 2

VT,i,no input noise
)was evaluated

based on the noise in PET TACs using equations in Sect. 2.2. The standard deviation of
εaif (denotedσaif ) contributes to the covariancematrix of VT according to the following
equations:

σ 2
VT,i

= σ 2
VT,i,no input noise

+ σ 2
aifV

2
T,i (17)

σ 2
VT,i ,VT, j

= σ 2
aifVT,i VT, j (18)

which provide the diagonal and off-diagonal terms, respectively. Using real PET study
data, σaif was evaluated from test/retest studies (Naganawa et al. 2015), i.e., 2 back-
to-back scans in the same subject. The term σaif is then calculated using the excess
variability between test and retest VT estimates not explained by σ 2

VT,i,no input noise
, using

the following equation:
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σ 2
VT,i,diff

= 2σ 2
VT,i,no input noise

+ 2σ 2
aifV

2
T,i (19)

where σ 2
VT,i,diff

is the standard deviation of the difference between test and retest VT
values (i.e., VT,i,diff = VT,i,retest − VT,i,test).

3 Methods to Estimate Occupancy Without a Reference Region

3.1 One Post-Drug Scan

3.1.1 Standard Occupancy Plot (OCCPLOT)

The standard occupancy plot (Cunningham et al. 2010) is derived from equations for
VT [Eqs. (1), (3)]. Assuming that VND and r are the same for all regions, the occupancy
plot can be described as:

VT,base − VT,post = r
(

VT,base − VNDu
)

(20)

where VT,base and VT,post are column vectors of the distribution volumes from n
regions at baseline and post-drug administration, respectively, and u is a column n-
vector of ones. PlottingVT,base−VT,post (on the y-axis) againstVT,base (on the x-axis)
across n regions leads to a linear relationship with a slope equal to r and x intercept
equal toVND. InPETstudies, an unweighted linear least squares estimator is commonly
used to estimate the slope and y intercept. VND is obtained as − (yintercept) / r .
This method is frequently used because of easy visualization; however, it violates the
assumptions of ordinary least squares estimation since (1) the independent variable,
VT,base is noisy, (2) that noise is correlated with the dependent variables, and (3)
the dependent variables are not independent. Further, if the standard error of r is
calculated from this plot applying the incorrect OLS assumptions, this standard error
may be inaccurate, due to the violation of these assumptions.

3.1.2 Maximum Likelihood (ML) Estimation

The measured VT values of the i th ROI at baseline and post-drug administration are
modeled as:

VT,base,i = VND + VS,i + εi (21)

VT,post,i = VND + (1 − r) VS,i + εi (22)

where εi is additive Gaussian noise.
Let θ = [

VS,1, VS,2, . . . , VS,n, VND, r
]

be the vector of parameters to estimate. The
elements of θ are estimated by minimizing the cost function:

g (θ) = (vT − f (θ))T Σ−1 (vT − f (θ)) (23)
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where vT is a vector of the measured distribution volumes at baseline and post-drug
administration (2n values) and Σ is the 2n-by-2n data covariance matrix. f (θ) is the
model function as shown in Eqs. (21) and (22).

Since the covariance matrix is a real symmetric matrix, it can be eigendecomposed
as Σ = Q�QT where Q is the square matrix of eigenvectors (e1, e2, . . . , e2n) and
Λ is a diagonal matrix whose diagonal elements are the corresponding eigenvalues
(λ1, λ2, . . . , λ2n). Equation (23) is rewritten as:

g (θ) = (vT − f (θ))T QΛ−1QT (vT − f (θ)) =
2n
∑

i=1

1

λi

(

(vT − f (θ))T ei
)2

(24)

If we have no prior knowledge of the noise covariance matrix and uniform variance in
all VT values is assumed, the data covariance matrix is of the form, Σ = σ 2I, where
I is the identity matrix. In this case, it is also assumed that the noise is uncorrelated
across regions and across scans and identically distributed with a common variance
σ 2. Therefore, the cost function is reduced to the following equation.

g (θ) = 1

σ 2

(

n
∑

i=1

(

VT,base,i − VS,i − VND
)2

+
n

∑

i=1

(

VT,post,i − (1 − r) VS,i − VND
)2

)

(25)

The parameters can be estimated using ordinary least squares (OLS) method. We will
refer to this method as ML-OLS.

As described in Sect. 2, it is natural to introduce different noise variances between
regions and scans, i.e., � is a diagonal matrix with nonconstant variance. The cost
function can be written as follows:

g (θ) =
n

∑

i=1

1

σ 2
base,i

(

VT,base,i − VS,i − VND
)2

+
n

∑

i=1

1

σ 2
post,i

(

VT,post,i − (1 − r) VS,i − VND
)2 (26)

where σ 2
(base|post),i denotes the noise variance of i th region at baseline or post-drug

administration. The parameters can be estimated using weighted least squares (WLS)
method. Theweights are the inverse of the noise variances.Wewill refer to thismethod
as ML-WLS.

If theVT values are assumed to be correlated, bothwithin and between scans, the off-
diagonal terms of the covariance matrix cannot be ignored. In this case, the parameters
can be estimated by minimizing the cost function [Eq. (24)] using WLS method by
transforming the VT and f (θ) data vectors by the matrix Q and using weights equal
to the inverse of the eigenvalues. Since this approach uses the full covariance matrix,
we will refer to it as ML-FCM.
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3.2 Multiple Post-Drug Scans

3.2.1 Simultaneous Occupancy Plot Estimation (OCCPLOT2)

More than one post-drug scans are sometimes acquired in the same subject, e.g., by
performing one post-drug scan at peak plasma concentration and a second post-drug
scan at a later time. Consider the case of one scan at baseline and m post-drug scans.
The simplest approach is to apply the occupancy plot [Eq. (20)] sequentially to the
baseline scan and the kth post-drug scan to obtain m occupancy values and mVND
values. However, VND can be assumed to be constant across these scans. Assuming
that VND is the same for all scans, the cost function can be written as:

g (θ) =
m

∑

k=1

n
∑

i=1

(

VT,base,i − VT,post,i,k − (

VT,post,i,k − VND
)

rk
)2 (27)

where VT,post,i,k denotes the distribution volume of the i th region at the kth
post-drug administration. The elements of the (m + 1) parameter vector θ =
[VND, r1, r2, . . . , rm] and are estimated using OLS.

3.2.2 Maximum Likelihood Estimation for Multiple Post-Drug Scans

In case of more than one post-drug scan, Eq. (25) can be extended as (ML-OLS2):

g (θ) = 1

σ2

(

n
∑

i=1

(

VT,base,i − VS,i − VND
)2

+
m

∑

k=1

n
∑

i=1

(

VT,post,i,k− (1 − rk) VS,i − VND
)2

)

(28)

Equation (26) is also extended in a similar way (ML-WLS2)

g (θ) =
n

∑

i=1

1

σ 2
base,i

(

VT,base,i − VS,i − VND
)2

+
m

∑

k=1

n
∑

i=1

1

σ 2
post,i,k

(

VT,post,i,k− (1 − rk) VS,i − VND
)2 (29)

where σ 2
post,i,k denotes the noise variance of i th region at the kth post-drug scan.

Lastly, if we know the full covariance matrix, let vT be a n-by-(m+1) vector of the
distribution volumes at baseline and m post-drug scans and f be the corresponding
model vector. The cost function [Eq. (24)] is extended as (ML-FCM2):
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g (θ) = (vT − f (θ))T Q�−1QT (vT − f (θ)) =
(m+1)n
∑

i=1

1

λi

(

(vT − f (θ))T ei
)2

(30)

4 Simulations

4.1 Simulation Based on Human Kappa Opioid Occupancy Study

Simulations were performed based on real data from an occupancy study in humans
(Naganawa et al. 2016) using the radiotracer 11C-LY2795050 targeting kappa opioid
receptors (See Sect. 5.1.1 for details). The brain regions included in this simulation
were the cerebellum, the amygdala, the caudate nucleus, the putamen, the pallidum, the
thalamus, the insula, the hippocampus, and the anterior cingulum, posterior cingulum,
frontal, occipital, and temporal cortices.

To generate ground truth parameters, real data from one subject were fitted using
MA1 to obtain VT values for a baseline scan and two post-drug scans. These VT
values were then used to estimate this subject’s VND with Eq. (20) (Cunningham
et al. 2010). To simulate data, we used the 4-parameter 2TC model; VT and VND
provide values for 2 of the 4 parameters. To provide the 2 additional parameter values,
this subject’s baseline time-activity curves were fitted with the 2TC model with the
following constraints: K1 / k2 was fixed to the previously estimated VND in all ROIs,
and VT was fixed to the previously estimated MA1 VT values. This produced a set of
reference baseline parameters (K1, k2, k3, k4). To simulate post-drug data at a range
of occupancy values r , k3 was multiplied by (1− r). Simulated r values ranged from
0.1 to 0.9 (with a step of 0.1). For convenience, the 2TC model was reparameterized,
using the parameters K1, k2, VT, k4 instead of K1, k2, k3, k4.

To simulate noisy occupancy studies, noise was added directly to the VT values
used to estimate the occupancy. Using the reference kinetic parameters previously
determined, their covariance matrix was also estimated using Eq. (12) with weights as
in Eq. (11), and assuming that the noise in the PET TACs could be modeled by Eq. (9).
Since fits of simulated noisy TACs were not actually performed, the scale factor α was
used to determine s2.

To estimate the scale factor α in the noise formula, 2TC fits were performed for
all scans in the real occupancy study using weights, as in (11), and α was estimated
using Eq. (10). Then for each ROI i , the median value of α was computed to express
a typical level of noise for this tracer. Simulations were also performed with all αi

increased by a factor of 9, i.e., threefold higher standard deviation.
For simulations with noise due to the input function according to the model shown

in Eq. (16), σaif was set to 1, 3, 5, or 10%. As an example, based on 15 pairs of
test/retest PET scans (Naganawa et al. 2015) which can provide an estimate of these
effects, σaif was estimated to be ∼3% using Eq. (19). However, other tracers have
poorer test/retest variability, often due to measurement errors in the input function.
We simulated errors up to 10% since other tracers have poorer test/retest variability,
in part due to larger measurement errors in the input function.
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For each simulation case, 10,000 sets of 130 regional VT values (13 at baseline,
13 at each of the 9 occupancy levels) were generated. For each set of simulated VT
values, occupancy estimates, r , were obtained using the OCCPLOT, ML-OLS, ML-
WLS, and ML-FCM methods. These methods also provide estimated standard errors
on the occupancy estimate (SEr). To evaluate the accuracy of SEr, the bias on SEr
was computed with respect to the sample standard deviation across 10,000 replicates
as median(SEr)/sd(r) − 1.

Simulations were also performed for the case of multiple post-drug scans, in order
to evaluate the usefulness of coupled fits to reduce variability, particularly for low
occupancy studies. Simulations were performed for a pair of high (0.8) and low (0.2)
occupancy scans, and for two levels of input function noise: no noise or 10% noise.

4.2 Simulation Results

Results of the method comparisons with simulations are shown in the form of Bland–
Altman plots. For the simulation, results are plotted versus the ground truth in Figs. 2
and 3. There is one subplot for each method, i.e., the occupancy plot (OCCPLOT),
ordinary least squares (ML-OLS), weighted least squares (ML_WLS), and the full
covariancematrixmaximum likelihoodmethod (ML-FCM). A superiormethodwould
have a mean error near 0, and a small standard deviation.

The results of simulations with noise from the PET data only, i.e., without noise due
to the input function (σaif = 0), are shown in Fig. 2. Occupancy estimates were more
variable with the OCCPLOT and ML-OLS methods than with the ML-WLS method.
Moreover, at the higher noise level, OCCPLOT estimates were more biased than the
other methods. Since no noise contribution from the input function was added, the
covariance matrix of the VT estimates is diagonal, and thus the ML-WLS and ML-
FCMmethods are identical. With the OCCPLOTmethod, the variability of occupancy
estimates increased when the simulated occupancy was lower.With the other methods,
variability of occupancy estimates was highest when the simulated occupancy was
∼30%, and the variability was lower for either high or low simulated occupancies.

The nondisplaceable volume of distribution VND was also estimated. For all meth-
ods, the standard deviation of VND estimates was higher at lower occupancy levels than
at high occupancy levels. The relative standard deviations of VND estimates were 5,
6, 2 and 2% for the OCCPLOT, ML-OLS, ML-WLS and ML-FCM methods, respec-
tively, at high occupancy (70–90%), and >100, 47, 24, and 24%, respectively, at low
occupancy (10–30%). Thus, the OCCPLOTmethod was by far the least stable method
to estimate VND.

Using the OCCPLOT method, the standard errors of the occupancy estimates SEr
were underestimated. The underestimation was higher for low occupancy simulations:
the bias ranged from−40% for a 90% occupancy case, to−54% for a 10% occupancy
case. This incorrect estimation of SEr was similar on average for ML-OLS, but with
a different sensitivity to the level of occupancy: the bias was about −41% at 90%
occupancy, peaked at −53% at 40% occupancy and −23% at 10% occupancy. The
estimation of SEr was more accurate for ML-WLS (and ML-FCM), with a mean
bias of only −4% across all occupancy levels; accurate standard error estimates are
expected in this case, since all assumptions were met.
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Fig. 2 Bland–Altman plots of the error between occupancy estimates and simulated occupancies as a
function of the simulated occupancy, when the input function is assumed to be noise free. Symbols show
the mean error, and error bars show the standard deviation of the error. Data in black are from simulations
at a typical PET noise level. Data in blue are from simulations with PET noise at a level 3 times higher
(Color figure online)

A sample covariance matrix of the VT values used in simulations with noise due
to the input function (σaif = 5%) is shown in Table 1. The results of the simulations
with σaif set to 10% are shown in Fig. 3. The presence of (additional) noise in the
input function increased the standard deviation in all methods, especially for ML-
WLS, which provided slightly less variable results thanML-OLS in these simulations.
As expected, ML-FCM provided less variable results than ML-WLS. The standard
deviation of r for simulated occupancy of 50% and various levels of input function
noise are listed in Table 2. As expected, the difference in variability betweenML-WLS
andML-OLSwas reduced as input function noise increased. Conversely, the advantage
of ML-FCM over ML-WLS became more apparent as input function noise increased.

Finally, the standard errors of the occupancy estimates SEr were underestimated
for OCCPLOT, ML-OLS and ML-WLS, with average bias of −58, −63, and −55%,
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Fig. 3 Bland–Altman plots of the error between occupancy estimates and simulated occupancies as a
function of the simulated occupancy, with simulated noise from the input function (σaif =10%; red) or
without simulated noise from the input function (black; repeated from Fig. 2 to allow direct comparison).
Symbols show the mean error, and error bars show the standard deviation of the error (Color figure online)

respectively, when σaif was set to 10% (average bias computed across all simu-
lated occupancy values). ML-FCM provided relatively unbiased SEr values at higher
occupancy levels (mean bias was 2% at occupancies ≥50%) but underestimated the
standard deviation of occupancy values for low simulated occupancies (the bias was
+39% at 10% occupancy).

Limited simulations were performed to assess the proposed methodology for mul-
tiple post-drug scans. Specifically, the ability of coupled fits to reduce the variability
of low occupancy studies by analyzing data jointly with a high occupancy study in
the same subject was tested using a pair of studies with simulated occupancies of 0.8
and 0.2. When no noise was added to the input function data, all coupled methods
(ML-OLS2, ML-WLS2, ML-FCM2) showed lower variability for the low occupancy
study. Comparing single- to paired-scan analysis, the standard deviation of errors was
reduced from 0.10 to 0.058 forML-OLS2, and from 0.044 to 0.019 forML-WLS2 and
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Table 2 Standard deviation of occupancy estimates∗ for various input function noise levels

Noise level (%) OCCPLOT ML-OLS ML-WLS ML-FCM

0 0.086 0.092 0.034 0.034

1 0.087 0.092 0.035 0.034

3a 0.089 0.095 0.044 0.040

5 0.094 0.101 0.062 0.049

10 0.112 0.148 0.139 0.068

OCCPLOT occupancy plot, ML maximum likelihood, OLS ordinary least squares, WLS weighted least
squares, FCM full covariance matrix
∗Simulated occupancy was 50%; n = 10,000 replicates
aInput function noise level estimated on real data based on test/retest studies

ML-FCM2, i.e., ∼50% variability reduction for all methods. There were negligible
effects on the variability of the high occupancy estimates. However, with σaif set to
10% noise, coupled fitting increased variability for methods that did not use the full
covariance matrix: the standard deviation of errors increased from 0.15 to 0.18 for
ML-OLS2, and from 0.14 to 0.19 for ML-WLS2. Conversely, the standard deviation
of errors decreased with ML-FCM2 as expected, from 0.090 to 0.073, though this
reduction was smaller (∼20%) than that in the simulation without AIF noise.

5 Real Data

5.1 Kappa Occupancy Study

Results of the method comparisons with real data are shown in the form of Bland–
Altman plots. Since no gold standard is available for the real data, results (Figs. 4, 5, 6,
7) are plotted vs. those estimated using ML-FCM, since ML-FCM produced the min-
imum bias in the simulation. These plots should be interpreted in light of the results
from the simulation (Figs. 2, 3), to see if the same between-method pattern is visible.

5.1.1 Occupancy Study Methods

Data obtained from 7 healthy subjects scanned with the kappa opioid receptor tracer
11C-LY2795050 were used to test the occupancy estimation methods. The occupancy
studies were conducted with the drug LY2456302 as described in (Naganawa et al.
2016). Briefly, each subject underwent three PET scans (a baseline and two post-drug
scans at 2 and 24h post-drug), each for 90min on theHigh Resolution Research Tomo-
graph (HRRT) scanner. Metabolite-corrected arterial input functions were measured.
A range of LY2456302 doses was evaluated in this study: 0.5 mg (n = 1), 2 mg
(n = 3), 4 mg (n = 2), 10 mg (n = 1). Time-activity curves (TACs) of the following
13 ROIs were analyzed: amygdala, caudate, anterior cingulate cortex, posterior cingu-
late cortex, frontal cortex, hippocampus, insula, occipital cortex, pallidum, putamen,
temporal cortex, thalamus, and cerebellum. VT values were estimated for each ROI
and scan using MA1 (Ichise et al. 2002) with t∗ = 20min.
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Fig. 4 Bland–Altman plots of the difference between occupancy estimates from 11C-LY2795050 PET
data using different methods and the ML-FCM estimates [ML-FCM (top) and ML-FCM2 (bottom)]. The
x axis values were taken from ML-FCM or ML-FCM2 estimates, respectively. Each data point denotes an
occupancy value from a pair of baseline and post-dose scans
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Fig. 5 Bland–Altman plots of the difference between occupancy estimates from 18F-MK-6577 PET data
using different methods andML-FCM estimates [ML-FCM (top) and ML-FCM2 (bottom)]. The x axis val-
ues were taken fromML-FCM orML-FCM2 estimates, respectively. Each data point denotes an occupancy
value from a pair of baseline and post-dose scans
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Fig. 6 Bland–Altman plots of the difference between occupancy estimates from 11C-LY2795050 (left)
and 18F-MK-6577 (right) PET data using ML-FCM2 and ML-FCM estimates. Each data point denotes an
occupancy value from a pair of baseline and post-dose scans

5.1.2 Occupancy Calculations

VT values were computed with OCCPLOT,ML-OLS,ML-WLS, andML-FCM. Since
all subjects had two post-drug scans, the data were also analyzed with OCCPLOT2,
ML-OLS2, ML-WLS2, and ML-FCM2. For ML-WLS, relative variances of regional
distribution volumes were chosen based on the PET ROI noise model and theoretical
covariance matrix as described in Sect. 4.1, but noise from the input function was not
considered. For ML-FCM, σaif was set to 3%, and the same regional scale factors, α,
were used as in the simulation.

5.1.3 Occupancy Results

Occupancy estimates using the OCCPLOT, ML-OLS, and ML-WLS methods were
compared with those estimated using ML-FCM (Fig. 4, top). In the absence of a
gold standard, since ML-FCM produced the minimum bias in the simulation, the
ML-FCM estimate was taken as the true value for the x axis of the Bland–Altman
plots. Compared with the ML-FCM estimates, the OCCPLOT and ML-OLS methods
showed larger estimated results, while theML-WLS estimates were very similar to the
ML-FCM estimates. The mean and standard deviation of the difference between the
estimated occupancies (bias) and ML-FCM estimates were 7.3 ± 4.7, 6.1 ± 4.1, and
− 0.1± 0.1% for the OCCPLOT, ML-OLS, and ML-WLS methods, respectively. No
trend was found between the bias and the occupancy estimated using the ML-FCM
method (P > 0.5).

Occupancy estimates using theOCCPLOT2,ML-OLS2, andML-WLS2were com-
pared with those estimates using ML-FCM2, and similar results were found (Fig. 4,
bottom). The mean and standard deviation of the difference with respect toML-FCM2
estimates were 9.3±3.9, 7.2±3.3, and− 0.1±0.7% for the OCCPLOT2,ML-OLS2,
and ML-WLS2 methods, respectively.

123



3530 M. Naganawa et al.

Fig. 7 Bland–Altman plots of
the absolute error between
occupancy estimates from
11C–UCB–J PET data using
OCCPLOT (top), ML-OLS
(middle), ML-WLS (bottom),
and ML-FCM methods. The x
axis values were taken from
ML-FCM. Each data point
denotes an occupancy value
from a pair of baseline and
post-dose scans 0.4 0.6 0.8 1.0
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ComparingML-FCMandML-FCM2occupancy estimates (Fig. 6, left),ML-FCM2
occupancy tended to be lower than ML-FCM occupancy. The largest differences were
seen in the scans with occupancy <40%.

5.2 Glycine Transporter Occupancy Study

5.2.1 Occupancy Study Methods

Data obtained from 6 healthy subjects and 5 schizophrenia patients scanned with the
glycine transporter 1 (GlyT1) tracer 18F-MK-6577 (Joshi et al. 2015) were used to
test the occupancy estimation methods. The occupancy studies were conducted with
the GlyT1 inhibitor (PF-03463257). All subjects were assigned to three treatment
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groups based on a combination of placebo (baseline) and two out of three doses of
PF-03463257 (10, 20, and 40mg). In each treatment period, subjects received themed-
ication twice daily for 7days. Each subject underwent three PET scans on the HRRT
scanner for 90 min at baseline and at steady state of each dose received: Metabolite-
corrected arterial input functionsweremeasured. Regional TACs of 20ROIs, including
cortical regions, striatum, midbrain, pons, and cerebellum, were analyzed. VT values
were estimated for eachROI and scan usingMA1 (Ichise et al. 2002)with t∗ = 40min.

5.2.2 Occupancy Calculations

The GlyT1 data were analyzed with the same procedure as described in Sect. 5.1.2.
For ML-FCM, εaif was set to 3%, and the ROI noise scale factors, α, were computed
from the GlyT1 data using the method described in Sect. 4.1.

5.2.3 Occupancy Results

Occupancy estimates using the OCCPLOT, ML-OLS, and ML-WLS methods were
compared with those estimated using ML-FCM. The estimated results are shown in
Fig. 5 (top). Occupancy estimates with the ML-OLS method were less variable than
the estimates with the OCCPLOT method. The ML-WLS occupancy estimates were
almost identical to the ML-FCM occupancy estimates. The mean and standard devi-
ation of the difference between estimated occupancies (bias) and ML-FCM estimates
were 2.7±4.9, 1.1±3.8, and 0.0±0.0% for the OCCPLOT, ML-OLS, andML-WLS
methods, respectively. The bias appeared to be reduced at higher occupancy levels.

Occupancy estimates using the OCCPLOT2, ML-OLS2, and ML-WLS2 were
comparedwith those estimates usingML-FCM2.Similar propertywas seen in the com-
parison (Fig. 5, bottom). The mean and standard deviation of the difference between
bias and ML-FCM2 estimates were 1.9 ± 4.3, − 0.4 ± 3.0, and 0.0 ± 0.2% for the
OCCPLOT2, ML-OLS2, and ML-WLS2 methods, respectively.

Comparing ML-FCM and ML-FCM2 occupancy estimates (Fig. 6, right), ML-
FCM2 occupancy was similar to ML-FCM occupancy in the scans with occupancy
> 40%.For lower occupancy scans, the differences betweenML-FCMandML-FCM2
occupancies were more variable.

5.3 SV2A Occupancy Study

5.3.1 Occupancy Study Methods

The PET radiotracer 11C-UCB-J targets synaptic vesicular protein (SV2A) and can be
used as a marker for synaptic density in humans (Finnema et al. 2016). This protein
is the site of action of the antiepileptic drugs Brivaracetam (BRV) and Levetiracetam
(LEV), and PET scans with 11C–UCB–J can be used to assess drug occupancy. Using
11C-UCB-J PET with a bolus plus infusion protocol, a total of 23 pairs of baseline
and blocking scans were completed across 9 healthy controls who received varying
doses of BRV and/or LEV. Regional TACs of 23 ROIs including gray matter regions
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of the cerebral cortex, subcortical regions, striatum, midbrain, and cerebellum were
used for analysis. Using 60-min of data from baseline and blocking data, regional VT
values were estimated with the 1TC model, and occupancy was estimated for each
pair of scans. In some cases, the baseline scan was performed on the same day as the
blocking scan. In other cases, the blocking scan was performed on a subsequent day
following chronic dosing.

5.3.2 Occupancy Calculations

SV2A occupancy data were analyzed with methods similar to those described in 5.1.2
and 5.2.2, in which regional VT values were used with OCCPLOT, ML-OLS, ML-
WLS, and ML-FCM. For ML-FCM, the εaif was set to 3%, and the regional noise
level α was determined from the data, as described in section 4.1.

5.3.3 Occupancy Results

SV2A occupancy estimates from OCCPLOT, ML-OLS, and ML-WLS methods were
compared to those from the ML-FCM method, under the assumption that ML-FCM
provides true occupancy values, based on the simulation results. All occupancies
were high (>50%), and each method provided occupancy estimates of comparable
variability.

Occupancy estimates derived fromOCCPLOT,ML-OLS, andML-WLSwere com-
pared to those derived from ML-FCM (Fig. 7). Differences between methods were
extremely small. The mean and standard deviation of the percent difference between
the estimated occupancies and the ML-FCM occupancy estimates were 1.0 ± 1.4,
0.8 ± 1.4, and 0.3 ± 1.0% for OCCPLOT, ML-OLS, and ML-WLS, respectively.

6 Discussion Topics

6.1 Overview of This Work

The goal of this work is to provide more accurate and precise estimates of target
occupancy from PET studies. This work was motivated in part by the routine use of
the convenient occupancy plot (Cunningham et al. 2010). This plot is used commonly
because of its appealing nature, where data are plotted and the relevant parameter, r ,
is the slope of the plot. This style of analysis, i.e., plotting the data in a way to make
the slope of a line the relevant parameter has a long history in PET, as evidenced by
the Patlak and Logan plots (Logan et al. 1990b; Patlak et al. 1983) for irreversible and
reversible tracers, respectively. However, the occupancy plot suffers from incorrect
statistical assumptions, so the purpose of our work was to improve the statistical
characteristics of the estimates of r (and VND). Also, fitting the slope of the occupancy
plot ignores regional differences in the variability of the VT values. Such between-
region noise differences can be caused by variation in region size or noise differences
in VT estimation. For example, high VT values can often have high %SE for studies
with the short half-life of 11C, since the region approaches equilibrium slowly.
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An additional goal is to produce a reliable estimate of the standard error of these
estimates, a value which cannot be reliably obtained from the occupancy plot. Such
a standard error would be helpful when using r values from multiple experiments to
estimate a drug IC50, e.g., as we performed recently using the kappa opioid ligand
11C–LY2795050 (Naganawa et al. 2016). An accurate standard error of r would be
particularly helpful if there is substantial variability in the reliability of the individual
r values, e.g., due to substantial differences in injected tracer dose per subject.

In this work, we chose to limit the analysis to cases where there is no reference
region, i.e., a region devoid of specific binding. In fact, demonstration that a region is in
fact an ideal reference region requires that the VT of the reference region is equal to (or
very close to) VND, i.e., VS is nearly 0. Thus, validation of a reference region requires
an accurate and reliable estimate of VND, which is obtained from these occupancy
studies.

6.2 Sources of Error Common to Multiple Regions/Organs from One Scan

Many investigators have analyzed PET kinetic data and included weighting of the
individual data points to account for noise differences, typically due to activity level
and radioactive decay (Yaqub et al. 2006). There are many such models which, in
general, tend to produce minor difference in PET fitted values, except in cases where
there are large differences in noise level between-scan frames. However, when mul-
tiple modeling results are obtained from a single dynamic scan, there are many other
noise sources that produce common or similar noise in all the regional values, so the
regional estimates are correlated. Some sources of these correlations come from the
physiological modeling and include 1) the use of a common time-activity curve in
plasma, 2) the use of a common plasma metabolite correction, and 3) the effect of
plasma-free fraction ( fP), either due to ignoring this effect or due to noise in its cor-
rection. Other factors are based on the scanner physics such as the calibration factors,
as well as image processing steps, including registration of PET to MR or CT scans
and subsequent registration to atlases for region definition. Some of these issues can
cause correlation of values between baseline and post-drug scans, such as the use of a
common MR image to process both datasets. Thus, accurate definition of the covari-
ance matrix of the vector of VT values from one or multiple scans is challenging and
has not been addressed in the PET literature.

Here, we used approximations for this covariance matrix to assess the impact of
including these off-diagonal terms on the estimates of r . However, in future stud-
ies, it may be possible to provide a better estimate of the covariance matrix. One
approach, which we applied here, is to use test/retest data (Naganawa et al. 2014,
2015; Normandin et al. 2015; Park et al. 2015; Saricicek et al. 2015) to understand the
within-scan and between-scan correlations. Use of test/retest data avoids the confound
of separating within-subject and between-subject variance. Proper estimation is likely
to require a large dataset, so analysis of multiple studies with different tracers may
be needed. Also, in general, test/retest studies of drug occupancy are rarely done, so
extrapolations from baseline to post-drug scans will be needed. Such extrapolations
should account for the reduced VT values that occur in post-drug scans. Specifically,
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estimation of VT is most often improved in post-drug scans, since the tissue TACs
approach equilibrium more quickly, thus reducing the SE of VT.

6.3 Simulation Results

All fourmethods provided similarly unbiased occupancy estimates at typicalROI noise
levels in the simulations based on the 11C–LY2795050 tracer (Fig. 2). The OCCPLOT
method was slightly (positively) biased at higher noise levels. Some bias is expected
for a graphical analysis such as the OCCPLOTmethod, due to the presence of noise in
the independent variables, and additionally due to the correlation between this noise
and the noise in the dependent variables. However, the bias in the OCCPLOT method
is not as large as in some other graphical analysis, e.g., the graphical analysis used to
estimate VT values for reference tracers (Slifstein and Laruelle 2000). The direction
of the bias (overestimation), and the observation that the bias is relatively larger for
low-dose studies is consistent with results shown previously (Cunningham et al. 2010).

The main difference between methods was seen in the variability of the occupancy
estimates, which was lower in the ML-WLS method (in simulations without noise
terms due to the input function), or the MLS-FCM method (in simulations with large
input function noise terms, εaif ). Thus,ML-WLS andML-FCMmethodswill be useful
to improve occupancy estimates using tracers for which VT estimates have varying
noise in different ROIs. Regional VT estimates will have different levels of noise due to
the different ROI sizes, regional tracer uptake levels, and kinetic properties (e.g., low
flow regions and high binding regions are expected to have more variable VT estimates
due to the slower washout of the tracer from these regions). TheML-FCMmethod will
be more useful for tracers in which the input function estimation process contributes a
large fraction of the overall variability of VT estimates. In this simulation, the sample
standard deviation of r estimates did not differ between ML-WLS andML-FCM until
εaif was at least 5%. However, identifying these tracers and developing accurate model
of the noise for real data is still an open question.

In addition, the standard errors on the occupancy estimates were underestimated by
OCCPLOT and ML-OLS methods compared to the actual standard deviation of occu-
pancy estimates. ML-WLS also underestimated the standard errors on the occupancy
estimates for simulated studies with high noise levels from the input function.

6.4 Real-Data Results

In the simulation, occupancy estimates were more variable with OCCPLOT and ML-
OLS and the variability tended to be larger for lower occupancy. These patterns were
not evident in the real data, in part because of too few data points to quantify the
variability as a function of occupancy level. For 18F–MK-6577 (Fig. 5), there was
no clear pattern of bias between the various methods, although OCCPLOT may have
had a positive bias for low occupancy values. The bias pattern was different for 11C–
LY2795050 (Fig. 4), where a positive bias of 6–9% was seen for OCCPLOT and
ML-OLS; this bias was uniform over occupancy values. This pattern suggests that
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there is another source of bias due to a violation of one or more assumptions of the
general occupancy model (see below).

For 11C–UCB–J (Fig. 7), results from all methods were effectively identical. For
this tracer, the statistical precision of the VT values is excellent due to high tracer uptake
(low data noise), and the use of a simple 1TCmodel to estimate VT. Also, the dynamic
range of VT values is small for this tracer, and in the studies used here, occupancy
values were high. These factors contributed to very small differences betweenmethods
for this tracer.

In all real-data cases, ML-WLS and ML-FCM gave virtually identical results. This
was the case because the presumed error in the input function was assumed to be small
(3%). The value of 3% was chosen from test/retest data of a number of studies, but
would be more appropriately determined individually for each tracer.

Figure 6 shows the effect of simultaneously analyzing data from 2 post-drug occu-
pancy studies, and assuming a common nondisplaceable volume of distribution (VND)

between all scans. Looking at the data from both tracers, there is some evidence of
more variability in ML-FCM at low occupancy values. This is not surprising, since
the precise estimation of both r and VND is generally challenging for low occupancy
studies. By simultaneously fitting 2 r values and 1 VND value from one baseline and
2 post-drug scans in ML-FCM2, effectively, the higher-precision information of VND
provided by the high occupancy scan improves the r estimation for the low occupancy
scan. Also, the differences between single- and paired-scan analyses in the real data
were consistent with the simulation, i.e., simultaneous analysis of multiple post-drug
scans reduced variability in low occupancy scans, with negligible changes in high
occupancy results.

6.5 Extensions for Other Scenarios

6.5.1 Reference Region Data Available

If a suitable reference region is available, then the binding potential can be determined
for multiple regions [Eq. (2)]. If blocking studies are then performed, the occupancy
can be determined for region i (ri ) with Eq. (5). There are then multiple simple
methods to estimate the global occupancy, e.g., unweighted or weighted averages of
the ri . Weighted or unweighted averages of BPND values across regions could be
performed first, and then r calculated using Eq. (5) with the baseline and post-drug
average BPND values. Alternatively, full maximum likelihood versions for estimation,

as in Eq. (23), could be implemented, where θ =
[

VS,1
VND

,
VS,2
VND

, . . . ,
VS,n
VND

, r
]

is the

(n+1)-vector of parameters to estimate, vT is a vector of the measured BPND values
at baseline and post-drug administration (2n values), and f (θ) is the model function
as shown in Eqs. (2) and (4). As in our work, such an implementation would ideally
include an appropriate Σ , the 2n-by-2n BPND covariance matrix. To determine this
matrix, would require consideration of all the issues described in Sect. 6.2, as well
as including the effect of the use of common reference region data in the calculation
of all BPND values in a single scan, introducing another source of between-measure
covariance.
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6.5.2 Single-Subject IC50 Estimation

Occupancy can be expressed in terms of free drug concentration as

r = C

C + IC50
(31)

where C is the free drug concentration at the target site and IC50 is the half-maximal
inhibitory concentration, i.e., the drug concentration in the plasma that is required to
achieve 50% occupancy of the target site. The equations in this section also hold by
replacingC and IC50 by D and ID50, respectively, where D is the administered dose of
the drug and ID50 is the half-maximal inhibitory dose; this assumes that the post-drug
scans are acquired at similar times post-dosing.

One of the main purposes of an occupancy study is to estimate IC50 from a dose–
response curve (occupancy vs. drug concentration). The IC50 value can be estimated
from data of a single subject. Consider a case of m post-drug scans. The measured VT
values of the i th ROI at baseline scan and kth post-drug scan are modeled as:

VT,base,i = VND + VS,i + εi (32)

VT,post,i,k = VND +
(

1 − Ck

Ck + IC50

)

VS,i + εi (k = 1, . . . ,m) (33)

where εi is additive Gaussian noise and Ck is the drug concentration at the target site
during the kth post-drug scan.

Let θ = [

VS,1, VS,2, . . . , VS,n, VND, IC50
]

be the vector of parameters to estimate.
The elements of θ are estimated by minimizing a cost function

g (θ) = (vT − f (θ))T Σ−1 (vT − f (θ)) (34)

where vT is a vector of the measured distribution volumes at baseline and post-drug
administration (n(m+1) values) and Σ is the n(m+1) -by-n(m+1) data covariance
matrix. f (θ) is the model function as shown in Eqs. (32) and (33). Proper definition
of Σ should also include error sources due to uncertainty in Ck values; alternatively,
the Ck values could be added to the data vector and the true concentrations could be
added to the parameter vector θ .

6.6 Occupancy Estimates Without a Baseline Scan

When a subject has two post-drug scans with no baseline scan, Eq. (31) allows us
to estimate occupancy for each using the following extensions of the occupancy plot
(Cunningham et al. 2010):

(

VT,post,1 − VT,post,2
) C2

C2 − C1
= rpost,2

(

VT,post,1 − VNDu
)

(35)

(

VT,post,2 − VT,post,1
) C1

C1 − C2
= rpost,1

(

VT,post,2 − VNDu
)

(36)
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where C1 and C2 are the measured drug concentrations for post-drug scans 1 and
2. Plotting

(

VT,post,1 − VT,post,2
) C2
C2−C1

(y-axis) versus VT,post,1 (x-axis) across n
regions leads to a linear relationship with a slope equal to rpost,2 and x intercept equal
to VND. For this approach to be reliable, the difference in the drug concentrations
between the post-drug scans should not be small.

Alternatively, we can use the maximum likelihood framework developed in section
6.5.2 to analyze these data. Using the same θ vector (n+2 elements), vT is the data
vector of the measured distribution volumes in all post-drug scans (nm values) and Σ

is the nm -by-nm data covariance matrix.

6.7 Multi-Subject Analysis

Consider a case with more than one subject (l > 1) who underwent a baseline and m
post-drug scans.Assuming that themeasuredVT values can bemodeled usingEqs. (31)
and (32), a cost function to be minimized is simply extended from Eq. (33) where vT is
a vector of the measured distribution volumes at post-drug administration (nl(m + 1)
values) and Σ is the nl(m + 1) -by-nl(m + 1) data covariance matrix. This approach
can be implemented most simply by assuming no intersubject variation in VS values,
VND, or IC50, i.e., the parameter vector is θ = [

VS,1,, VS,2, . . . , VS,n, VND, IC50
]

.
A more sophisticated approach would incorporate population variability in all of

these values, as well as an appropriate covariance matrix. A proper model for covari-
ance in this case requires substantial understanding of both PET methodology, as
described here, as well as the underlying biological variability, specific to the target
biological system. For example, it would require adding subject-specific “noise” terms
to the data model [Eq. (16)], and either providing these variances as known or esti-
mating these terms from the data. However, in general, PET occupancy studies are
small (e.g., 10–20 post-dose scans), so estimating these interindividual factors from
the data is very challenging.

6.8 Assumptions of PET Occupancy Methods

For all PET occupancy studies including the studies presented here, the model of
Eqs. (21) and (22), assume that nondisplaceable binding (VND) is uniform across
regions and that the target occupancy r is also uniform. In order to assess the uniformity
of VND, a blocking studywith a very high occupancy (r ≈ 1) would be required, so that
the measured VT data are effectively equal to VND. Often in human studies, this cannot
be accomplished, due to limitations of drug dose caused by pharmacological effects.
Thus, this assumption is more often tested in animal studies. For example, we recently
assessed the validity of the uniform VND assumption for the glycine transporter tracer
18F-MK-6577 (Joshi et al. 2015) in a study in nonhuman primates (Xia et al. 2015).
Using unlabeled MK-6577 as the drug at multiple doses, we estimated VND for every
voxel of the image, using equations similar to (32) and (33). We found that VND was
in fact nonuniform, and that higher values were found in the white matter of the brain.
This was a reasonable result, since the nondisplaceable binding is affected by tissue
lipophilicity, and the myelin in white matter increases the lipid content compared to
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gray matter. Since the human occupancy analysis for this tracer avoided white matter
regions, this regional difference in VND should not affect our occupancy results.

The second major assumption is that r is uniform across regions, i.e., the drug
is in equilibrium between plasma and tissue, so that Eq. (31) holds for all regions.
This assumption may be invalid if the plasma concentration of drug is changing
rapidly, in the time scale of the PET experiment, which is most likely to occur in
the early phase post-dosing, especially for drugs with poor tissue penetration. Such an
effect can be evaluated by comparing occupancy at early and late times post-dosing at
matched plasma levels (Salinas et al. 2013), to assess the presence of pharmacological
hysteresis. An example of hysteresis in a human occupancy study was found for a
norepinephrine transporter drug (Smith edt al. 2015). More sophisticated models are
being developed to account for the dynamics of drug entry into tissue (Abanades et al.
2011).

Nonuniform occupancy across regions could also occur if there are other compet-
ing endogenous molecules, which occupy the target protein. The presence of such
a molecule would alter the interpretation of the relationship of drug level to occu-
pancy in Eq. (31). By competing with an endogenous compound, the effective IC50
(or Kd) would be increased. Thus, if the concentration of an endogenous molecule
varies across regions, the IC50 will vary, as will r .

Testing of these assumptions requires more extensive datasets than are convention-
ally acquired. One approach would be to use occupancy data from multiple subjects,
with a global maximum likelihood analysis. Then, a likelihood ratio test could be used
to assess if a model that violates the conventional assumption (e.g., nonuniform VND)

produces a statistically better fit to the global data than the simpler conventionalmodel.
Of course, such a multi-subject model would have to properly account for intersubject
variation in drug pharmacokinetics and other sources of between-subject variance.

7 Summary and Conclusions

PET imaging is an important quantitative imaging tool in drug development, which has
been successfully used to relate drug exposure to target occupancy. The methodology
commonly applied is based on sub-optimal statistics; this has developed in part for ease
of use. Here, we present maximum likelihood versions of these occupancy methods,
for situations with single-subject data in cases where a baseline (no-drug) scan is
available and where there is no reference region devoid of the receptor.

Simulation studies showed that the occupancy plot (OCCPLOT) provides similar
estimates to the maximum likelihood method based on ordinary least squares (ML-
OLS), using typical noise levels seen in regional time-activity curves. If the noise
in the VT estimates is known, our simulation studies showed the variability of occu-
pancy estimates could be lowered by using weighted least squares (ML-WLS), or
the full covariance matrix (ML-FCM) when noise in the input function is high. This
improvement was most striking for low occupancy cases.

Thesemethods were then applied to 3 human occupancy studies. Using the estimate
of input function noise based on test/retest data, ML-WLS and ML-FCM results were
very similar. The patterns of higher noise for OCCPLOT and ML-OLS found in the
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simulation were not evident in the real-data cases shown. This may be due to the small
number of data points per study and/or to violations of the assumptions of the ML
methods.

The newly proposed methods are likely to be most useful, i.e., to reduce bias and
variability, in caseswhere (1) there is variation in the data variance between regions, (2)
there is high noise in the input function determination producing global variability in
VT, and poor test/retest variability (such as with 11C–PK11195 or 11C–WAY100635),
and (3) occupancy is low. As with any approach, inconsistencies between the assump-
tions of the method and the real data can cause poorer performance than that found in
simulations, where all the assumptions can be met. Thus, best use of these approaches
with real data will be realized by improving the accuracy of the data covariancematrix.

These approaches can naturally adapt to other scenarios (reference region present
and no baseline scan available) and can be used for estimation of IC50 from individual
or group data. We expect that application of these methods based on maximum likeli-
hood in future PET occupancy studies will both improve the precision of PET results
and allow more comprehensive testing of the assumptions inherent in these analyses.
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