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Abstract Radiotherapy uses high doses of energy to eradicate cancer cells and control
tumors. Various treatment schedules have been developed and tried in clinical trials,
yet significant obstacles remain to improving the radiotherapy fractionation. Genetic
and non-genetic cellular diversity within tumors can lead to different radiosensitivity
among cancer cells that can affect radiation treatment outcome.We propose a minimal
mathematical model to study the effect of tumor heterogeneity and repair in different
radiation treatment schedules. We perform stochastic and deterministic simulations
to estimate model parameters using available experimental data. Our results suggest
that gross tumor volume reduction is insufficient to control the disease if a fraction
of radioresistant cells survives therapy. If cure cannot be achieved, protocols should
balance volume reductionwithminimal selection for radioresistant cells.We show that
the most efficient treatment schedule is dependent on biology and model parameter
values and, therefore, emphasize the need for careful tumor-specific model calibration
before clinically actionable conclusions can be drawn.
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1 Introduction

Radiation is commonly used in cancer treatment, either as monotherapy or as com-
bination treatment with surgery and chemotherapy. Radiation is a DNA damaging
agent, and radiation as cancer therapy benefits from cancer cells being less efficient in
repairing radiation-induced damage than normal cells. Total radiation dose is divided
into small frequent fractions to provide temporal windows for normal tissue recovery.
Treatment schedules (fractionation) are predominantly based on evolved empirical
knowledge and wisdom, but greatly constrained by logistical considerations. Recent
developments include hypo- and hyperfractionation for various cancer types, that is
delivery of either larger doses temporally further separated or smaller doses more
frequently.

Despite many technical improvements in the efficiency of radiotherapy, many
tumors are refractory to irradiation. Various clinical and biological factors explain
such complications, including DNA damage repair (Hall and Giaccia 2006; Mathews
et al. 2013), prevalence of hypoxia, and tumor heterogeneity and plasticity. Recently,
the presence of cancer stem cells and a tumor hierarchy has been discussed as source of
intratumoral heterogeneity and therapy response (Marjanovic et al. 2013; Shackleton
et al. 2009). The cancer stem cell hypothesis proposes that the small subpopulation of
so-called cancer stem cells (CSCs) is critically important for the initiation and main-
tenance of the tumor. These CSCs are able to self-renew indefinitely and undergo
symmetric and asymmetric divisions to retrospectively increase the CSC population
and produce progenitor cells that will make up the bulk of the tumor (Reya et al. 2001).
Recent evidence suggests plasticity between non-CSC and CSC states (Gupta et al.
2011), due to genetic or microenvironmental perturbations. CSCs have been shown
to utilize superior radiation-induced DNA damage repair mechanisms to prevent cell
death (Bao et al. 2006). After radiation exposure, cells with damaged DNA attempt
different pathways of repair, and the repair time is likely dependent on the delivered
radiation dose (Lagadec et al. 2010; Sarcar et al. 2011).

The conventional radiotherapy protocol for most tumors delivers a total dose of 50–
70 Gy in 2Gy fractions on each weekday, with no treatment given on weekends. To
reduce toxicity and increase efficiency, alternative treatments have been considered,
including a hyperfractionated protocol with 1Gy per fraction twice a day; an accel-
erated regimen of 1.2Gy per fraction twice daily; and hypofractionation with 5Gy
twice-a-week fractions. Here, we develop a minimal mathematical model to study the
effect of tumor heterogeneity and repair in tumors exposed to theses different radiation
treatment schedules.

Several mathematical models have been developed to simulate the effects of radio-
therapy. Most models utilize the so-called linear quadratic (LQ) model and its various
extensions (Hall and Giaccia 2006). In the original LQmodel, cell survival probability
S after acute doses of radiation d can be estimated with

S(d) = exp(−αd − βd2), (1)

123



Mathematical Modeling of the Effects of Tumor Heterogeneity… 285

where α (Gy−1) and β (Gy−2) are tissue-specific radiosensitivity parameters that are
usually derived fromfitting the LQmodel to clonogenic survival data (Hall andGiaccia
2006).More recently, mathematical frameworks have been combinedwith experimen-
tal data to investigate the different responses to clinically available radiation protocols
(Dhawan et al. 2014; Dionysiou et al. 2004; Enderling et al. 2009; Stamatakos et al.
2014). Recently, Leder et al. (2014) proposed an optimized radiation dosing schedule
for PDGF-driven glioblastoma. The model, however, is dependent on a large number
of parameters and, with limited biological data, some parameters are far from bio-
logical realism. In particular, tissue-specific radiosenstivity parameters α and β are
derived such that the derived ratio of α/β = 865, 789 Gy is five orders of magnitude
larger than frequently derived α/β = 3− 10 Gy (Leder et al. 2014). Nevertheless, the
model-predicted optimal dose fractionation showed prolonged survival in subsequent
mouse experiments, emphasizing that the currently applied standard-of-care radia-
tion fractionation may not yield optimal outcomes. Mathematical models may help
decipher the complex biology underlying cancer cell response to irradiation, with the
ultimate aim to improve clinical application of radiotherapy.

Herein we propose a simple mathematical model of breast cancer cell dynamics
under fractionated radiation exposure. The model includes phenotypic cell hetero-
geneity and plasticity, as well as radiation-induced cell cycle arrest, which may play
a pivotal role in analyzing radiation protocols with multiple doses per day. The effect
of different model parameters and repair mechanisms on heterogeneity are studied for
different clinically feasible radiotherapy treatments.

2 Method

We developed a two-compartment mathematical model to analyze the effect of radi-
ation therapy on the two phenotypically distinct subpopulations of radioresistant and
radiosensitive cancer cells. In breast cancer, these populations have been identified by,
respectively, CD44highCD24low (CD+; biomarker positive) andCD44lowCD24high
(CD−; biomarker negative), which are also markers of cancer stemness (Al-Hajj et al.
2003; Fillmore and Kuperwasser 2008). Both subpopulations are capable of self-
renewal, albeit with lower rates for biomarker negative CD− cells that also feature
higher death rates.We discuss the balance of self-renewal and cell death as the net pop-
ulation growth rate, which does not affect the behavior of the system.As a visualization
of phenotypic plasticity, cells can switch from one phenotype to the other (Marjanovic
et al. 2013). After exposure to radiation, cells in each compartment are forced into
cell cycle arrest to attempt repair from radiation-induced DNA damage. Biomarker
positive cells have been shown to have better repair mechanisms (Bao et al. 2006;
Baumann et al. 2008) and, thus, a larger fraction of growth-arrested biomarker posi-
tive CD+ (calculated by the LQmodel with phenotype-specific αS and βS parameters)
returns into the viable population after successful repair. Figure 1 shows a schematic
diagram of the proposed model, and model parameters are summarized in Table 1.

We denote by NS , NRS , NP , and NRP the population of resistant cells, resistant
repairing cells, sensitive cells, and sensitive repairing cells, respectively. The model
can be mathematically represented by the following system of equations
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ρS

ρSP ρPS

δS f

δP f

g(d)e(−αSd−βSd
2 )

g(d)e(−αPd−βPd
2 ) g(d)(1− e(−αPd−βPd

2 ) )

g(d)(1− e(−αSd−βSd
2 ) )

ρP

Positive biomarker cells
CD44high/CD24low (CD+) Repairing cells (CD+)  

Negative biomarker cells
CD44low/CD24high (CD-)

Repairing cells (CD-)  

Dead cells (CD+)  

Dead cells (CD-)  

Fig. 1 (Color figure online) Schematic diagram of the model

Table 1 Description of the model parameters

Parameters Description

ρS Net proliferation rate of CD+ cells

ρSP Rate of switching of CD+ cells to CD− cells

ρP Net proliferation rate of CD− cells

ρPS Rate of switching of CD− cells to CD+ cells

δS f Rate at which CD+ cells go for repair

δP f Rate at which CD− cells go for repair

g(d)(1 − e(−αSd−βSd
2)) Rate at which CD+ cells that are in repair die

g(d)(1 − e(−αPd−βPd
2)) Rate at which CD− cells that are in repair die

g(d)e(−αSd−βSd
2) Rate at which CD+ cells that are in repair become active

again

g(d)e(−αPd−βPd
2) Rate at which CD− cells that are in repair become active

again

dNS

dt
= ρSNS + ρPSNP + g(d)e(−αSd−βSd2)NRS − ρSPNS − δS f NS,

dNRS

dt
= δS f NS − g(d)NRS,

dNP

dt
= ρP NP + ρSPNS + g(d)e(−αPd−βPd2)NRP − ρPSNP − δP f NP ,

dNRP

dt
= δP f NP − g(d)NRP.

(2)
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Table 2 Fractionated irradition effect on CSC population and mammosphere formation capacity (Lagadec
et al. 2010)

CD24low/−/CD44high

Dose % of CSCs Sphere forming capacity

2 6.54 (±1.95) 13.49 (± 1.32)

2–2 8.04 (± 1.47) 10.76 (± 0.96)

2–2–2–2 8.56 (± 1.21) 11.85 (± 1.81)

Overall average 7.71 12.03

Cells acquire on average one DNA double strand break after exposure to 1 Gy of
radiation. Therefore, we assume that each cell will enter cell cycle arrest and attempt
repair after each radiation fraction, but no new damage arises in the interval between
radiation treatments.Hence, f = 1 at discrete timeswhen radiation is given, and f = 0
otherwise. Dependent on radiosensitivity parameters αi and βi with i ∈ {S, P}, cells
will either die due to radiation-induced DNA damage with probability 1 − Si (d) or
return to the viable non-repairing population S or P with probability Si (d) at dose-
dependent rate g(d). We assume the function g(d) to be of the order of inverse square
of the dose (Lagadec et al. 2010; Sarcar et al. 2011), such that cells irradiated with a
dose of 1 Gy spend on average 1 h attempting repair, and 4 h after exposure to 2 Gy.

2.1 Parameter estimation

Stochastic and deterministic simulations have been compared to two sets of experi-
mental data to derive suitable values for model parameters. The experimental study on
breast cancer initiating cells (i.e., CSCs) and mammosphere formation assay (MFA)
data calibrates the fraction of biomarker positive CSCs (Lagadec et al. 2010). In this
study, the breast cancer cell line is irradiated with a single dose or daily doses of 2 Gy.
After 48 hours, single cells are seeded to form spheres for 20 days. The fraction of
CSCs and mammosphere formation capacity are reported in Table 2 (Lagadec et al.
2010).

As the MFA experiment was initiated from a single cell (Lagadec et al. 2010),
stochastic effects are important. We apply the Gillespie algorithm to compare model
sphere forming capacity predictions with the experimental data in Table 2. Since
running the Gillespie algorithm is computationally expensive, it is only used to fit
the parameters of the model when δs = δp = g = 0. We vary model parameters
without repair to obtain the best fit to the experimental data. At the same time, we
use the deterministic Eq. 2 to compare the theoretical results of average CSC fraction
to experimental data. The estimated model parameters are summarized in Table 3,
alongside the fraction of CSCs and sphere forming capacity using those values, which
show good agreement with the experimental results in Table 2. Of note is that the
reported parameter value combinations are not unique and, thus, we will perform a
sensitivity analysis to investigate the impact of each parameter on model outcome.
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Table 3 Estimated model parameters when δS = δP = g = 0

Parameters ρS ρSP ρP ρPS % of CSCs Sphere forming capacity

Values 0.2 0.7 0.1 0.05 7.6 12.7

The values of fraction of CSCs and sphere forming capacity that are evaluated based on the estimated
parameters values are also reported. The unit of all parameters is 1/day
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Fig. 2 (Color figure online) Fitting themodified linear quadratic model to the experimental data of (Phillips
et al. 2006). The black points are the extracted experimental data. The solid curve is the model result using
the estimated radiosensitivity parameters αS = 0.14 Gy−1, βS = 0.048 Gy−2, αP = 0.41 Gy−1 and
βP = 0.17 Gy−2

Herein, resistant and sensitive tumor cells are considered to have different radiosen-
sitivities. Thus, the total population of cells at time t is given by N (t) = NS(t)+NP (t)
(hereafter, NS ≡ NS + NRS and NP ≡ NP + NRP unless stated otherwise); the pop-
ulation of cells after exposure to treatment for the period of time τ can be calculated
as

N (t + τ)

N (t)
= NS(t)

N (t)
e(−αSd−βSd2) + NP (t)

N (t)
e(−αPd−βPd2). (3)

Assuming that the fraction of CSCs is at its steady-state value before the radiation,
and using the experimental data of (Lagadec et al. 2010), we set NS(t)

N (t) = 0.076 (and
NP (t)
N (t) = 0.924). Then, the modified linear quadratic model (Eq. 3) is used to fit model
results to the experimental data of (Phillips et al. 2006), which yields αS = 0.14
Gy−1, βS = 0.048 Gy−2 (αS/βS=2.9 Gy), αP = 0.41 Gy−1 and βP = 0.17 Gy−2

(αS/βS=2.4Gy) (Fig. 2). Since at each radiation fraction themajority of damaged cells
undergo repair mechanisms, we assume that 90% of cells will be arrested (Withers
1992). However, sensitivity analysis shows that reducing this fraction as low as to 40%
does not qualitatively change the results (see Figure S1 and Figure S2 in supplementary
materials). The list of all model parameters and their estimated values are reported in
Table 4.
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Table 4 Model parameter values

Parameters Value (unit) Reference

ρS 0.2 (day−1) Using experimental data (Lagadec et al. 2010)

ρSP 0.7 (day−1) Using experimental data (Lagadec et al. 2010)

ρP 0.1 (day−1) Using experimental data (Lagadec et al. 2010)

ρPS 0.05 (day−1) Using experimental data (Lagadec et al. 2010)

δS = δP 310 (day−1) Assuming 90% of cancer cells undergo repair

αS 0.14 (Gy−1) Using experimental data (Phillips et al. 2006)

αP 0.41 (Gy−1) Using experimental data(Phillips et al. 2006)

βS 0.048 (Gy−2) Using experimental data (Phillips et al. 2006)

βP 0.17 (Gy−2) Using experimental data (Phillips et al. 2006)

f 1 or 0 1: radiation, 0: no radiation

3 Results

We consider different clinical radiotherapy treatment protocols for one week includ-
ing standard of care (SoC; daily doses of 2 Gy), hyperfractionated (HR; two daily
doses of 1 Gy), accelerated hyperfractionation (AC; two daily doses of 1.2 Gy), and
hypofractionated (HO; twice-a-week doses of 5 Gy). Additionally, we simulate the
recently suggested optimal protocol for PDGF-driven glioblastoma by Leder (Leder
et al. 2014) (Optimum-1, OP; see Table 5). All protocols deliver a total dose of D = 10
Gy per week, except accelerated hyperfractionated with a total dose of D = 12 Gy.
However, the accelerated hyperfractionated protocol has the same biologically effec-
tive dose (BED) as SoC (see Table 6). BED is used to describe the biological effect of
dose fractionation and is defined as

BED = − ln(SF(d))

α
= D

(
1 + d

α/β

)
, (4)

where SF(d) is the LQ model derived single dose d-dependent survival fraction with
radiobiological parameters α and β (compare Eq. 1). Due to the linear quadratic rela-
tionship of dose and survival, total dose can be increased when smaller doses are
given in each fraction (Fowler 1989). The model introduced in Sect. 2 considered two
subgroups of cancer cells (resistant cells and sensitive cells) with different radiosensi-
tivities. Thus, following the survival fraction of cancer cells in Eq. 3, the BED is given
by

BED = − ln(mSFS + (1 − m)SFP )

mαS + (1 − m)αP
, (5)

where SFS and SFP are survival fractions for resistant cells and sensitive cells, respec-
tively. The constant m represents the proportion of resistant cells in the tumor prior
to irradiation. Table 6 shows the BED for the standard of care (SoC), hyperfrac-
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Table 5 Radiotherapy schedules for one week of treatment. Different colors are used for corresponding
colors in the figures

Schedule Day 1 Day 2 Day 3 Day 4 Day 5

Standard of care (SoC) 2 2 2 2 2

Hyperfractionated (HR) 2×1 2×1 2×1 2×1 2×1

Optimum-1 (OP) 3×1 1 2×1 1 3×1

Hypofractionated (HO) 5 – – – 5

Accelerated hyperfractionated (AC) 2×1.2 2×1.2 2×1.2 2×1.2 2×1.2

Table 6 Biological effective dose for hyperfractionation, standard of care, and accelerated hyperfraction-
ated protocols

BED Schedules

HR (d = 1, n = 10) SoC (d = 2, n = 5) AC (d = 1.2n = 10)

BEDS (m = 1) 13.5 17.1 17.1

BEDP (m = 0) 14.1 18.3 17.9

BEDSP (m = 0.076) 11.1 12.7 12.7

tionated (HR), and accelerated hyperfractionated (AC) protocols with different initial
fractions of resistant cells: tumors containing only resistant cells (m = 1), tumors
containing only sensitive cells (m = 0), and heterogeneous tumors with a small sub-
population of resistant cells (m = 0.076) as estimated. The BED is almost identical
for standard-of-care and accelerated hyperfractionation, but significantly smaller for
hyperfractionation.

Figure 3 shows the number of cancer cells NS + NP and fraction of resistant cells
NS/(NS + NP ) for all considered radiation schedules (compare Table 5). Simula-
tions show that protocols with larger number of fractions leads to more cell kill, with
accelerated hyperfractionation yielding the smallest number of cells after one week
of therapy. However, the fraction of stem cells is largest compared to the other radio-
therapy protocols. Hypofractionation with smallest overall cell kill leads also to least
competitive release of the most resistant stem cell subpopulation (Enderling et al.
2009).

For the chosen parameter combinations (Table 4), accelerated hyperfractionation
and SoC schedules yield the lowest number of cancer cells after one week of treatment
(Fig. 3). Sensitivity analysis showed that the results are robust to changes in the
parameter values (Table 7), with the exception that decreasing αP and βP by 50%
produces hypofractionated and accelerated hyperfractionated as best protocols (Fig.
4).

Heretofore we assumed that 90% of cells undergo arrest to attempt repair, and the
parameter values for δS and δP were chosen large enough to satisfy this assumption.
However, decreasing the values for these parameters so that less than 40% of cells
attempt repair suggests accelerated hyperfractionated as the best schedule (see Figure
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Fig. 3 (Color figure online) Number of cancer cells NS + NP and the fraction of resistant cells NS/(NS +
NP ) for radiotherapy protocols reported in Table 5

Table 7 Sensitivity analysis for different parameters of the model

Parameters αS , βS αP , βP ρS ρP ρPS ρSP 1st best 2st best

Default 0.14, 0.05 0.41, 0.17 0.2 0.1 0.044 0.73 AC SoC

αS , βS (+50%) 0.21, 0.07 0.41, 0.17 0.2 0.1 0.044 0.73 AC SoC

αS , βS (−50%) 0.07, 0.04 0.41, 0.17 0.2 0.1 0.044 0.73 AC SoC

αP , βP (+50%) 0.14, 0.05 0.61, 0.25 0.2 0.1 0.044 0.73 AC SoC

αP , βP (−50%) 0.14, 0.05 0.21, 0.08 0.2 0.1 0.044 0.73 HO AC

ρS (+50%) 0.14, 0.05 0.41, 0.17 0.3 0.1 0.044 0.73 AC SoC

ρS (−50%) 0.14, 0.05 0.41, 0.17 0.1 0.1 0.044 0.73 AC SoC

ρP (+50%) 0.14, 0.05 0.41, 0.17 0.2 0.15 0.044 0.73 AC SoC

ρP (−50%) 0.14, 0.05 0.41, 0.17 0.2 0.05 0.044 0.73 AC SoC

ρPS (+50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.066 0.73 AC SoC

ρPS (−50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.022 0.73 AC SoC

ρSP (+50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.044 1.09 AC SoC

ρSP (−50%) 0.14, 0.05 0.41, 0.17 0.2 0.1 0.044 0.36 AC SoC
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Fig. 4 (Color figure online) Number of cancer cells NS + NP and the fraction of resistant cells NS/(NS +
NP ) when αP and βP are changed to αP − 0.5αP and βP − 0.5βP for radiotherapy protocols reported in
Table 7

123



292 F. Forouzannia et al.

S1 and Figure S2 in supplementary materials). Furthermore, the model considers that
cells leave arrest with rate g(d), which is assumed to be on the order of 1/dose2. If
g(d) was proportional to 1/dose the number of cancer cells at the end of the course of
radiation therapy decreases significantly; however, the accelerated hyperfractionated
schedule remains the best treatment protocol followed by SoC. Moreover, if g(d) =
1, the order of the best treatment regimens remains (see Figures S3, S4, and S5 in
supplementary materials).

4 Conclusion

In this paper, a two-compartmentmathematicalmodel has been developed to assess the
effect of tumor heterogeneity and radiotherapy fractionation on treatment response.
Model simulations suggest that radiotherapy can alter tumor heterogeneity and elevates
the fraction of resistant cells. Future studies may further increase biological complex-
ity by considering increased self-renewal of the resistant population in response to
radiation (Gao et al. 2013). If the total radiation dose is insufficient to eradicate the
tumor, enrichment in cancer stem cells may lead to tumor relapse and recurrence.
Therefore, if total tumor control cannot be achieved optimal therapies should balance
decreases in tumor burden and prevention of outgrowth of the most resistant subpopu-
lation. Interestingly, none of our simulations suggested standard-of-care fractionation
as the best therapeutic approach, further emphasizing the need to prospectively evalu-
ate alternative fractionation protocols in the clinic. Furthermore, our model calibrated
for breast cancer was unable to confirm the optimum treatment schedule for PDGF-
driven glioblastoma (as in Leder et al. 2014). This suggests that treatment optimization
may be highly tumor biology, mathematical model, and model parameter dependent,
and utmost importance must be paid to identifying underlying biological mechanisms.
Hence, a general optimal radiation schedule as suggested in (Conforti et al. 2008; Leder
et al. 2014; Wein et al. 2000) may not be feasible and designing an efficient protocol
may be required for each type of cancer, and even each individual patient.

At the moment, the study is hypothesis generating, and we sincerely hope that the
presented results are exciting and encouraging for experimentalists and clinicians to
test the presented model predictions.

Acknowledgements Financial support by the Natural Sciences and Engineering Research Council of
Canada (NSERC) (MK) is gratefully acknowledged.
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