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Abstract In this paper, we extend the model of the dynamics of drug resistance in
a solid tumor that was introduced by Lorz et al. (Bull Math Biol 77:1–22, 2015).
Similarly to the original, radially symmetric model, the quantities we follow depend
on a phenotype variable that corresponds to the level of drug resistance. The original
model is modified in three ways: (i) We consider a more general growth term that
takes into account the sensitivity of resistance level to high drug dosage. (ii) We
add a diffusion term in space for the cancer cells and adjust all diffusion terms (for
the nutrients and for the drugs) so that the permeability of the resource and drug is
limited by the cell concentration. (iii) We add a mutation term with a mutation kernel
that corresponds to mutations that occur regularly or rarely. We study the dynamics
of the emerging resistance of the cancer cells under continuous infusion and on–
off infusion of cytotoxic and cytostatic drugs. While the original Lorz model has an
asymptotic profile in which the cancer cells are either fully resistant or fully sensitive,
our model allows the emergence of partial resistance levels. We show that increased
drug concentrations are correlated with delayed relapse. However, when the cancer
relapses,more resistant traits are selected.We further show that an on–off drug infusion
also selects for more resistant traits when compared with a continuous drug infusion
of identical total drug concentrations. Under certain conditions, our model predicts
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the emergence of a heterogeneous tumor in which cancer cells of different resistance
levels coexist in different areas in space.

Keywords Multi-drug resistance · Cancer dynamics · Diffusion

1 Introduction

Resistance to chemotherapy is a key obstacle to successful cancer treatments. Thus, the
biological mechanisms responsible for the emergence of drug resistance and its prop-
agation have been extensively studied (Gillet and Gottesman 2010; Teicher 2006).
Those mechanisms involve genetic and/or epigenetic alternations that allow cancer
cells to evade one or more drugs (Gottesman 2002; Gottesman et al. 2002; Fodal et al.
2011). In addition, the local tumor environment, including the availability of resources
and reduced absorption or metabolism of drugs, provides ecological opportunities for
resistant cells to evolve (Gerlinger et al. 2012; Rainey and Travisano 1998; Panetta
1998). The complexity of the underlying mechanisms has encouraged the develop-
ment of mathematical models for describing the emergence and evolution of drug
resistance. Such models were used for improving early detection, quantifying intrin-
sic and acquired resistance cells, and designing therapeutic protocols (Lavi et al. 2012;
Michor et al. 2006; Foo and Michor 2014; Roose et al. 2007; Swierniak et al. 2009).

Mathematical approaches for modeling the growth of tumor and resistant cells
range from deterministic to stochastic and from discrete (agent based) to continuum
models (differential equations). Modeling the emergence of resistance was initiated in
a series of work byGoldie and Coldman (1979, 1983a, b). These works predominantly
concentrated on point mutations that lead to resistance. Their approach was extended
using stochastic models including branching process and multiple mutations to study
multi-drug resistance and optimal control of drug scheduling (Komarova 2006;Michor
et al. 2006; Kimmel et al. 1998; Iwasa et al. 2006). Continuum deterministic models
using ordinary differential equations were used as a complementary approach to study,
for example, kinetic resistance (Birkhead et al. 1987) and point mutations (Tomasetti
and Levy 2010). Spatial heterogeneity and vascularization were incorporated into
models using partial differential equations (Anderson and Chaplain 1998; Trédan
et al. 2007; Wu et al. 2013), integro-differential equations (Lorz et al. 2013; Greene
et al. 2014).

Recent studies emphasize the importance of the tumor microenvironment as a driv-
ing force for drug resistance (Gerlinger et al. 2012; Bruin et al. 2013). Modeling the
spatial dependency becomes more significant due to limited perfusion capability of
large molecules and the differences in drug exposure based on their distance from the
capillary bed (Minchinton and Tannock 2006; Trédan et al. 2007; Vaupel et al. 1989).
Once spatially heterogeneous populations appear, they can also modulate the absorp-
tion andmetabolism of the resources and drugs, which further promotes heterogeneity.
Thus, various spatiotemporal models have been developed aiming at understanding
the tumor morphology and phenotypic evolution driven by selective pressure from
the microenvironment (Anderson et al. 2006; Trédan et al. 2007; Wu et al. 2013;
Panagiotopoulou et al. 2010).
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The present work is an extension of Lorz et al. (2013, 2015). The 2013 paper
introduced a mathematical model for studying the effects of cytotoxic and cytostatic
drugs on cancer cells. These two types of drugs have distinct effects on cancer cells.
While cytotoxic drugs aim to destroy cancer cells, for instance, by damaging the DNA
or inhibitingmitosis that lead to cell death, cytostatic drugs, i.e., antiproliferative drugs,
suppress cell growth by arresting the cell cycle. However, exposures to these drugs
may result in the development of numerous cell intrinsic and extrinsic drug resistance
mechanisms, such as alterations to the target of drug, activation of a compensating
pathway, environmental blockade, or alterations in drug metabolism. Thus, assuming
a continuous trait variable that corresponds to the resistance level, Lorz et al. derived
the long-term temporal dynamics of the fittest traits in the regime of small mutations.
The model of Lorz et al. (2013) was extended in Lavi et al. (2013, 2014); Greene
et al. (2014) by considering sufficiently large mutations and including cellular density
effects. An extension to a radially symmetric spatial model was done in Lorz et al.
(2015). Their work models the selection dynamics of cells taking into account the
availability of resources and the diffusion of cytotoxic and cytostatic drugs.

Building on themodel of Lorz et al. (2015), we develop in this paper amathematical
model that describes the dynamics of drug resistance in a solid tumor involving spatial
diffusion and phenotypic mutation. The fundamental differences between our model
and the original model are that we consider a growth rate function that allows for the
emergence of partial resistance levels. This is unlike the original model for which the
resistance levels asymptotically approached one of the boundaries: Over time, cancer
cells ended up being either fully resistant or fully sensitive. Additional changes we
make in the drug response function allow to model the effect of drug concentration in
modulating the resistance level. Other two major modifications in the cell dynamics
equation include a space diffusion and a mutation term. The new diffusion term incor-
porates cell motility into the model. No such effect was included in the original model.
In addition, we adjust all diffusion terms in our system to depend on the cell density,
so that the cell motility and the permeability of the resources and drugs are leveraged
by the local cell concentration. Finally, our model involves a mutation term. We study
the impact of different mutation kernels on the emerging drug resistance dynamics.

This paper is organized as follows. In Sect. 2, we review the model and the biolog-
ical assumptions introduced in Lorz et al. (2015), which then leads us to introducing
our model. Section 3 is divided into three subsections in which we study the threemain
modifications made with respect to the original model: the growth term, the diffusion
term, and the mutation term. We demonstrate that our model provides an asymptotic
trait distribution that is not necessarily concentrated on the boundaries of the domain.
This stands in contrast to the model of Lorz et al. (2015) in which the cancer cells end
up as a delta function being either fully resistant of fully sensitive. Since in our case
the distribution is not necessarily attracted to the boundary of the trait variable, we can
study how the various parameters impact the emerging dynamics of the drug resis-
tance. Specifically, we demonstrate that an increased drug concentration results with
a delayed relapse of the cells. However, once a relapse occurs, a higher drug dosage
selects for more resistant cells. This also implies that an on–off drug schedule selects
for more resistant cells than the cells that are selected by a corresponding continuous
drug schedule (with the same total drug concentration). Finally, we demonstrate that
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when combining spatial diffusion with mutations, a tumor may become spatially het-
erogeneous by developing regions inwhich different levels of resistance are expressed.
Conclusions and future directions are discussed in Sect. 4.

2 Model and Assumptions

We start with a brief overview of the model in Lorz et al. (2015). This model describes
the dynamics of the population density of the tumor cells n(t, r, θ). Themodel assumes
a 2D radially symmetric setup with a normalized planar distance of cells from the
center, given by r ∈ [0, 1]. The variable θ ∈ [0, 1] describes the normalized expression
level of a cytotoxic-resistant phenotype, i.e., the level of resistance to cytotoxic agents.
This can be related to a gene expression in a cellular level of cytotoxic drug resistance
and proliferative potential, such as ALDH1, CD44, CD117, or MDR1 (Amir et al.
2013; Hanahan and Weinberg 2011; Medema 2013). In addition to the density of
tumor cells, the model follows the dynamics of nutrients, s(t, r) ≥ 0, a cytotoxic
drug, c1(t, r) ≥ 0 and a cytostatic drug, c2(t, r) ≥ 0. The model is written as

∂t n(t, r, θ) = [R(t, r, θ) − D(ρ(t, r)) − μ1(θ)c1(t, r)] n(t, r, θ) (1)

−αsΔs(t, r) +
[
γs +

∫ 1

0
p(θ)n(t, r, θ)dθ

]
s(t, r) = 0, (2)

−αc1Δc1(t, r) +
[
γc1 +

∫ 1

0
μ1(θ)n(t, r, θ)dθ

]
c1(t, r) = 0, (3)

−αc2Δc2(t, r) +
[
γc2 + μ2

∫ 1

0
n(t, r, θ)dθ

]
c2(t, r) = 0. (4)

The first term on the RHS of Eq. (2) is a growth term,

R(t, r, θ) = R(t, r, θ; s, c2) = p(θ)

1 + μ2c2(t, r)
s(t, r).

Here, p(θ) > 0 models the consumption of the resource depending on the resistance
level. In Sect. 3, we will demonstrate that the choice of an appropriate consumption
function p(θ) plays a key role in controlling the emerging dynamics. It is assumed
that cells that are resistant to cytotoxic drugs use their resources to developing and
maintaining the drug resistance mechanism (Mumenthaler et al. 2015; Wosikowski
et al. 2000), corresponding to p′(θ) < 0. The cytostatic drug c2(t, r) reduces the
proliferation rate, with an uptake constant μ2.

The second term on the RHS of Eq. (2) is a death rate D(ρ), which we assume is
of the form D(ρ) = dρ(t, r). It is proportional to the local number of cells ρ(t, r)

ρ(t, r) =
∫

n(t, r, θ)dθ, (5)

with a constant death rate d. The third term on the RHS of Eq. (2) represents the death
of cancer cells due to the action of the cytotoxic drug c1(t, r), where μ1(θ) is the drug
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uptake function. We assume that as the resistance level increases, the cells become
more resilient to cytotoxic drugs, that is, μ′

1(θ) < 0.
In Eqs. (3)–(4), Δ denotes the Laplacian operator describing the diffusion in the

radial direction, the α’s are the diffusion constants, and the γ ’s provide a decay of the
corresponding terms.

The system is augmented with zero Neumann boundary conditions at r = 0, and a
source term at r = 1, written as Dirichlet boundary conditions

∂r s(t, r = 0) = 0, s(t, r = 1) = S1,

∂r ci (t, r = 0) = 0, ci (t, r = 1) = Ci (t), i = 1, 2. (6)

The models (2)–(4) provide a framework for studying the emergence of drug resis-
tance, incorporating the resource and the two types of drugs. However, while the
spatial heterogeneity is determined by the local environment, the heterogeneity in the
phenotypic space is driven by the growth term including the resource consumption
p(θ) and cytotoxic drug uptake μ1(θ). Thus, the dependency of these factors on the
phenotypic variable can be further studied. In addition, at each spatial location, the
cancer cell equation is only governed by an exponential growth term that lacks the
effect of spatial diffusivity and resistance driven by mutation. As will be demonstrated
in Sect. 3, the models (2)–(4) asymptotically converge to a distribution of cells that
are concentrated on the boundary of the interval, either fully resistant or fully sensitive
cells.

To address these issues, we replace the model (2)–(4) by the following system

∂t n(t, r, θ) = [((1 − w)R(t, r, θ) − D(ρ(t, r)) − C(t, r, θ))] n(t, r, θ)

+αn(ρ(t, r))Δn(t, r, θ) + w

∫
R(t, r, ϑ)M(θ, ϑ)n(t, r, ϑ)dϑ, (7)

−αs(ρ(t, r))Δs(t, r) +
[
γs +

∫ 1

0
p(θ)n(t, r, θ)dθ

]
s(t, r) = 0, (8)

−αc1(ρ(t, r))Δc1(t, r) +
[
γc1 +

∫ 1

0
μ1(θ)n(t, r, θ)dθ

]
c1(t, r) = 0, (9)

−αc2(ρ(t, r))Δc2(t, r) +
[
γc2 + μ2

∫ 1

0
n(t, r, θ)dθ

]
c2(t, r) = 0. (10)

Equation (7) involves three terms: a reaction term describing the growth rate, a spatial
diffusion term, and a mutation term represented by an integral operator. The growth
term consists of a natural growth rate R(t, r, θ), a natural death term D(ρ), and
a death term due to the cytotoxic drug C(t, r, θ). Both R and D are assumed to
be of the same form as in Eq. (2). The effect of the cytotoxic drug is modeled as
C(t, r, θ; c1) = μ1(θ, c1)c1(t, r), where μ1(·, ·) > 0 is an uptake function that not
only depends on θ , but also depends on the cytotoxic drug c1. Similar to Eq. (2), we
assume that ∂θμ1(·, c1) < 0 as to model the resilience of the resistance cells, but also,
∂c1μ1(·, c1) < 0 for drug-induced resistance. This is motivated from the experiments
in Mumenthaler et al. (2015) where the net growth rate of a certain type of resistant
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Table 1 List of variables and functions

Variable/function Range Biological interpretation

r [0, 1] Radial spatial variable

θ [0, 1] Resistance level

t R+ Time

n(t, r, θ) R+ Concentration of cells with phenotype θ at (t, r)

s(t, r) R+ Density of resources

c1(t, r) R+ Density of cytotoxic drugs

c2(t, r) R+ Density of cytostatic drugs

ρ(t, r) R+ Total number of cells at (t, r)

d R+ Death rate

μ1(θ, c1), μ2 R+ Drug uptake rate

M(θ, ϑ) [0, 1] Probability of mutation from phenotype ϑ to θ

w [0, 1] Proportion of cells undergoing mutation

αn , αs , αc1 , αc2 R+ Cell motility and permeability

γs , γc1 , γc2 R+ Decay coefficient

cells is distinctive in different levels of drug concentration. As will be demonstrated
later, it is important to consider an uptake function μ1(θ, c1) that also depends on
the cytotoxic drug c1. This allows us to more realistically model the dynamics of the
effectiveness of the cytotoxic drug.

We consider a spatial diffusion in the cancer cell density equation with a coefficient
αn in order to model the cell motility. We assume a zero Neumann boundary condition
at both boundaries for the cells concentration,

∂r n(t, r = 0) = ∂r n(t, r = 1) = 0.

The diffusion in the resource, cytotoxic drug, and cytostatic drug is known to play
an important role in spatial heterogeneity (Lorz et al. 2015). In addition, the tumor
pressure is identified as one of the critical features that affect the efficacy of cancer
treatment (Ariffin et al. 2014). Unlike the original model where the diffusion coeffi-
cients αs , αc1 , and αc2 were assumed to be constants, we assume that the diffusion
coefficients are functions of the number of cells ρ(t, r). Our model allows to consider
the influence of density of the tumor on the motility and permeability of the nutrients
and the drugs.

The integral term in the cell density equation accounts for the mutation. The weight
0 ≤ w ≤ 1 denotes the fraction of cells with phenotype θ that undergoes mutation
and the remaining 1 − w undergo faithful division. More generally, the weight can
be modeled as a function of the trait variable, i.e., w = w(θ). The Mutation kernel
M(θ, ϑ) ≥ 0 is the probability that phenotype ϑ will be mutated into phenotype
θ . Thus, we assume conservation,

∫ 1
0 M(θ, ϑ)dϑ = 1 for ∀θ ∈ [0, 1]. All model

parameters including their ranges and biological interpretation are listed in Table 1.
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Fig. 1 Drug infusion schemes used in our simulations, either a constant infusion Ca(t) and Cc(t) or an
on–off infusion Cb(t) and Cd (t)

3 Model and Simulation

In this section, we study the role of each term in the models (7)–(10) in detail, namely
the growth rate, the diffusion terms, and the mutation term. The numerical results are
analyzed by comparing the phenotype distribution of the cancer cells and the total
number of cells defined as

q(t, θ) :=
∫ 1

0
n(t, r, θ)r2dr, ρT (t) :=

∫ 1

0

∫ 1

0
n(θ, r, t)r2drdθ,

respectively. In addition, we denote the normalized probability density function of the
phenotype as Q(t, θ) := q(t, θ)/ρT (t).

Following Lorz et al. (2015) the initial distribution of the cancer cells is taken as

n(t = 0, r, θ) = C0 exp

[−(θ − 0.5)2

ε

]
. (11)

This mimics a biological scenario where most of the cells are characterized by the
intermediate level of resistance θ = 0.5 to therapies. We also take C0 = 0.005 � 1
and ε = 0.005 � 1 assuming, following Lorz et al. (2015), that we are dealing with a
tumor spheroid of small size where micro-tumors are derived from a single cell clone.

The resource is supplied in a constant level as S1 = 12 that is imposed as the
boundary condition in Eq. (6). For the drug infusion, we consider a combination of
two types of dose schemes, either a continuous infusion Ca(t) or an on–off infusion
Cb(t) as shown in Fig. 1. We denote the interval of the on–off scheme being nonzero
on interval Ibb = ∪n∈N0 [nT, nT +Tbb], that is,Cc(t /∈ Ibb) = 0. Here, T is the period
and Tbb is the time where the drug is infused. For a fair comparison between different
drug schemes, the dosages are selected in such a way that the total dose delivered
remains the same over a time interval [0, T ]. For instance, Cc(t) = 0.24Ca(t) and
Cd(t) = 0.84Cb(t) for T = 14 and Tbb = 4, so that

∫ T
0 Cc(t)dt = ∫ T

0 Cd(t)dt .
Following Lorz et al. (2015) we choose three different dose schedules. The first two
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include no cytostatic drug and either a constant or an on–off infusion for the cytotoxic
drug C1(t), that is,

Schedule 1: C1(t) = kCa(t), C2 = 0,

Schedule 2: C1(t) = kCb(t), C2 = 0,

with some constant k. In addition, we consider a combination of the cytotoxic and
cytostatic drug

Schedule 3: C1(t) = Cd(t), C2(t) = Cc(t).

Schedule 3 is shown in Lorz et al. (2015) to be the best dose scheme for the model (2)–
(4) when taking into account the cell growth and the resistance level.

3.1 Phenotype Selection Depending on Cytotoxic Drug

We start by investigating the growth rate in Eq. (7). This growth rate is based on three
terms: the natural division rate R(t, r, θ), the death rate D(ρ), and the response to
the cytotoxic drug C(t, r, θ). Here, to focus on the role of these terms, we neglect the
diffusion in n(t, r, θ) and the mutation terms by taking αn = 0 and w = 0.

First, we show that the long-time dynamics of the system in Lorz et al. (2015) can
be categorized into few distinct scenarios as it has been proven in Lorz et al. (2013),
and Greene et al. (2014). To simplify the analysis, we consider constant infusion of
resources and cytotoxic drugs for the boundary condition in Eq. (6). We also assume
that the death rate D is independent of the total cell density ρ. With an appropriate
choice of numerical discretization, the semi-discretized system of Eq. (7) can be con-
sidered as a system of ordinary differential equations of the grid point values rk of
the solution, that is, nk = n(t, rk, θ). For instance, we can take a finite difference
discretization or collocation basis functions at the grid points, such as Lagrangian
polynomials. In addition to time-independent boundary conditions, we assume that
Eqs. (9)–(10) have constant decay coefficients,1,2 then the system becomes

∂t nk =
(
R̂k(θ) − D̂(θ) − Ĉk(θ)

)
nk, (12)

and we can directly apply Theorem 1 in Lorz et al. (2013) and Greene et al. (2014).
The theorem describes the two qualitatively distinct scenarios as follows:

Theorem 1 Consider Eq. (12) with initial condition nk(0, θ). If R̂k(θ) < D̂(θ) +
Ĉk(θ), ∀θ ∈ [0, 1], then

lim
t→∞ nk(t, θ) = 0, ∀θ ∈ [0, 1], lim

t→∞ ρk(t) = 0.

1 Since the perturbations in the decay coefficients are small, for instance, γs � ∫ 1
0 p(θ)n(t, r, θ)dθ , this

estimation is similar to our simulation.
2 The solutions can be explicitly written in terms of a modified Bessel function of the first kind I0(r) as
s(r) = S1 I0

(√
λsr

)
/I0

(√
λs

)
, where λs = γs/αs , and similarly for c1(r) and c2(r). Then, R̂k (θ) =

p(θ)
1+μ2c2(rk )

s(rk ) and Ĉk (θ) = μ1(θ)c1(rk ).
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Fig. 2 Comparison of the growth term R(t, r, θ) and the drug effectC(t, r, θ). The second row plots the net
growth rate R(θ) −C(θ). a linear uptake and drug functions (Lorz et al. 2015). b nonlinear functions (13).
In both figures, s(t, r) = 12 and c1(t, r) = c1

Alternatively, if there exists a θ ∈ [0, 1] such that R̂k(θ) > D̂(θ) + Ĉk(θ), then

lim
t→∞

nk(θ, t)

ρk(t)
=

m∑
i=1

aiδ (θ − θi ) ,

where δ(·) denotes the Dirac delta function, ai are positive constants such that∑m
i=1 ai = 1, and

θi = argmax0≤θ≤1

(
R̂k(θ) − D̂(θ) − Ĉk(θ)

)
.

The simplest form of the proliferation and drug uptake functions is linear (Grothey
2006; Brodie 1992), i.e., p(θ) = a1θ + a2 and μ(θ) = b1θ + b2, respectively. As
described in Sect. 2, both functions should have a negative derivativewith respect to the
phenotype θ , i.e., a1 < 0 and b1 < 0. Figure 2 (left) shows the growth term R(t, r, θ)

and the drug effect C(t, r, θ) for the linear model with the coefficients prescribed as in
Lorz et al. (2013). We note that the maximum growth rate without the cytotoxic drug,
R(θ), is achieved at the boundary of the trait θ = 0, which also corresponds to the case
of only using cytostatic drugs. On the other hand, when a sufficiently large amount of
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Fig. 3 The trait distribution of the cancer cells q(t, θ) for t ∈ [0, 200]. The shown results are computedwith
a the linear resource and uptake functions (Lorz et al. 2015); and b nonlinear functions. The left column is
calculated with no drug, and the right column is calculated with an on–off infusion of the cytostatic drug. In
the linear model, the trait distribution becomes a delta function at the (fully sensitive) boundary θ = 0. The
nonlinear model exhibits dynamics in which the limit distribution is heterogeneous and is not necessarily
concentrated on the boundary

cytotoxic drug is applied, the growth rate R(θ) − C(θ) is maximized at θ = 1. Thus,
by Theorem 1, the density function of the traits approaches a delta function that is
concentrated at the boundary. For example, with a sufficient amount of cytotoxic drug
using schedule 1 or 2, the density function of the traits approaches a delta function
located at θ = 1, while for cytostatic drug or no drug, the density function of the traits
approaches a delta function at θ = 0. This corresponds to the first row of Figs. 3 and 4.

To overcome an asymptotic solution in the form of a delta function at θ = 0 or
θ = 1, we propose to replace the linear proliferation and drug uptake functions by
nonlinear functions, inspired byGreene et al. (2014).We assume functions of the form:

p(θ) = a1
1 + a2θ5

, μ1(θ, c1) = b1
1 + b2θb3

. (13)

Here, a1, a2, b1 are positive constants, and b2 := b2(c1), b3 := b3(c1) are positive
functions. Since ∂θ p(0) � 1 and ∂θμ1(0) � 1, this choice avoids a blowup at θ = 0.
The parameters chosen for the simulations are estimated as follows: First, we assume
theNorton–Simon hypothesis (Simon andNorton 2006) inwhich the rate of regression
under chemotherapy is related to the rate of tumor growth:
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Fig. 4 The trait distribution of cancer cells q(t, θ). a linear resource and uptake functions (Lorz et al. 2015).
b, c nonlinear resource and uptake functions Eq. (13). Figures a and b correspond to schedule 1, while
figure c corresponds to schedule 2. The columns (from left to right) represent increased dosage. The figures
for the linear model with dosage C1(t) = 4, 6 are zoomed on 0.9 ≤ θ ≤ 1 to emphasize the asymptotic
concentration of the density at θ = 1. In the nonlinear model, a higher dosage of the cytotoxic drug results
with a delayed relapse with higher resistance levels a dosage 1 b dosage 1 c dosage 2

a1
1 + a2

∝ b1
1 + b2

. (14)

We further set the average proliferation rate and the average mortality rate due to the
effect of cytotoxic drugs to the following constants (Corbett et al. 1975;Grothey 2006).

∫ 1

0
p(θ)dθ ≈ 0.2,

∫ 1

0
μ1(θ, c1)dθ ≈ 0.8. (15)

In particular, we choose a1 = 0.22, a2 = 1.2, and b1 = 1.5, and the functions
b2(c1) = 5 + 1.25c1 and b3(c1) = 2 + 0.5c1, see Pillis et al. (2005, 2014). The cor-
responding growth and drug effect functions are plotted in Fig. 2 for different values
of c1. We observe that both functions are less steep near θ = 0 and the maximal value
of R(t, r, θ) − C(t, r, θ) is achieved away from θ = 1.

Figure 3 compares the growth of the cancer cells in the linear and nonlinear models
for the cases without the cytotoxic drug. Shown is the cell concentrationwith respect to
the traits q(t, θ) computed up to t = 200,without the drug andwith the cytostatic drug.
As expected from the theorem, without the cytotoxic drug, the trait distribution using
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Fig. 5 The total number of cancer cells relative to the initial condition ρT (t)/ρT (0). a the linear model,
b the nonlinear model. The different drug schedules correspond to Figs. 3 and 4

the linear model becomes a delta function at θ = 0. On the other hand, the nonlinear
model (13) prevents the density function from blowing up at the boundary. Figure 4
shows the results of using the drug schedules for the cytotoxic drug. The linear model
(shown in the first row)with sufficiently large dosage, for instance,C1(t) = 6, 8, sends
the trait distribution to a delta function at θ = 1. We note that the figures are plotted
in the range 0.9 ≤ θ ≤ 1 to visualize the concentration of density at θ = 1. In our
parameter setting, the threshold dosage is 2.25, and a dosage lower than the threshold
asymptotically results with a distribution that approaches a delta function at θ = 0.
This is demonstrated for C1(t) = 2 in Fig. 4 (upper left), where the computation is
carried out until t = 600. In contrast to the linear case, the nonlinear model results in
an asymptotic distribution centered around an intermediate resistance level 0 < θ < 1.
The width of the asymptotic distribution shown in Fig. 4 is still rather narrow. We will
later study factors that control this spread in heterogeneity.

As shown in Fig. 2, the maximum value of R(t, r, θ) − C(t, r, θ) is achieved at a
higher level of resistance trait as the cytotoxic drug dosage c1 increases. In Fig. 4b, c
we plot the cell concentration with respect to the traits q(t, θ) using continuous Ca(t)
and on–off Cb(t) drug schemes for the cytotoxic drug C1(t). The corresponding total
number of cells relative to the initial value is plotted in Fig. 5. We observe that a high
dosage of cytotoxic drug delays the time of relapse. However, when a relapse occurs,
cells with higher resistance level are selected. In particular, the delayed relapse in
our simulations is consistent with the experiments in Mumenthaler et al. (2015) and
Garvey et al. (2016), where the resistant cells have positive but less growth rates in
higher drug dosages. In addition, the on–off scheme for the cytotoxic drug selects for
more resistant cells than those selected by the corresponding continuous schedule with
the same total dose. Temporarily, there is a reduction in the cancer cell population.
Asymptotically, larger populations emerge with a higher resistance level. We note that
considering different distributions in the initial density other than (11) affects the time
of relapse, although the dominating resistance trait will be similar.

Finally, we comment that with an appropriate death rate function D(ρ), the bound-
edness of the total number of cancer cell is provided by Theorem 2 in Greene et al.
(2014). Based on the assumption of the theorem, the death rate function must satisfy
limρ→∞ D(ρ) = ∞. In particular, we choose D(ρ) = d̄ρ, with a constant death rate
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d̄. Then, for the semi-discretized version of Eq. (7),

∂t nk =
(
R̂k(θ) − d̄ρ̂k − Ĉk(θ)

)
nk, (16)

and the diffusion Eqs. (9), (10) with time-independent boundary conditions and decay
coefficients, Theorem 2 in Greene et al. (2014) provides the following result,

Theorem 2 In the semi-discretized system Eq. (16), with finite positive constants RM
k

and Cm
k

3, there exists ∃ρ̂M
k < ∞ such that

0 < ρ̂k(t) ≤ ρ̂M
k , ∀t ≥ 0,

and ρT (t) ≤ maxk ρ̂M
k

Our simulation results shown in Fig. 5 confirm the results of Theorem 2.

3.2 Phenotype Variability Depending on Spatial Diffusion

It is well known that the spatial component and the diffusion play a crucial role in
heterogeneous cancer growth (Lorz et al. 2015; Anderson et al. 2006; Trédan et al.
2007; Wu et al. 2013; Panagiotopoulou et al. 2010). In this section, we study how
the diffusion terms effect the cancer growth and the phenotypic heterogeneity in the
resistance level. The diffusion terms in our system can be classified into two groups:
(i) the cell motility modeled as a diffusion process with coefficient αn in Eq. (7); and
(ii) the permeability of the resource and the drugs with coefficients αs , αc1 , and αc2 in
Eqs. (9), (10). We aim to examine the role of these diffusion terms in our model. The
coefficients are initially taken as constants, which allows us to study the sensitivity
with respect to the magnitude of each term.We thenmodel the coefficient as a function
of ρ(t, r) to further include the influence of cell density.

We first consider a constant infusion scheme of the cytotoxic drug C1(t) = 4Ca(t)
and test for different values of permeability of the resource and the cytotoxic drug
without cell mobility, i.e., setting αn = 0.We vary αs and αc1 by an order of magnitude
from 0.08 to 0.8. In order to consider the same amount of the resource and drug
across different permeabilities, we impose the boundary condition in Eq. (6) so that∫ 1
0 s(t = 0, r)r2dr is preserved. Here, s(t = 0, r) is the solution to Eq. (9) with
n(t, r, θ) = 0 assuming that no cancer cells are present. The reference solution is
taken as the case of αs = 0.08 and S1 = 12. Then, the boundary condition for
αs = 0.25 and αs = 0.8 becomes S1 = 9.08 and S1 = 7.91, respectively.

The cell concentration surface n(t, r, θ) at t = 100 and the phenotype distribution
q(t, θ) up to time t = 200 for different values of αs and αc1 are plotted in Figs. 6

3 RM
k = maxθ

[
p(θ)

1+μ2c2(rk )
s(rk )

]
, Cm

k = minθ

[
μ1(θ)c1(rk )

]
. Space independent bounds can be given

as RM = maxθ

[
p(θ)

1+μ2C2/I0(
√

λc2 )
S1

]
and Cm = minθ

[
μ1(θ)C1/I0(

√
λc1 )

]
, where I0(r) is a modified

Bessel function of the first kind, λc1 = γc1/αc1 , and λc2 = γc2/αc2 .
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Fig. 6 The surface of cancer cell concentration n(t, r, θ) at time t = 100 for different values of αs and
αc1 without cell diffusion. As the resource becomes more permeable, the cancer cell growth near the center
(r = 0) is expedited. This increases the overall heterogeneity particularly when the drug permeability is
low (first row)
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Fig. 7 Phenotype distribution q(t, θ) on time interval t ∈ [0, 200] for different values of αs and αc1
without cell diffusion. The phenotype heterogeneity becomes relatively large when the resource is more
permeable compared to the drug (upper-right corner)

and 7. We observe that the cancer cell distribution changes significantly depending on
the magnitude of these diffusion coefficients. In Fig. 6, the growth of cancer cells near
the center r = 0 is accelerated as the permeability of resource increases, while the
resistance level of the cell differs depending on the drug permeability. In particular,
when the drug permeability is low, the cell population becomes more heterogeneous
due to the larger drug dose next to the boundary r = 1. Such phenomena are clearly
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Fig. 8 The surface of cancer cell concentration n(t = 100, r, θ)with nonzero cell diffusion αn . The results
shown are for different values of αn and αs with fixed αc1 = 0.08. The cells become homogeneous along
r as cell motility, αn , increases
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Fig. 9 Phenotype distribution q(t, θ) on t ∈ [0, 200] with nonzero cell diffusion αn . The results are
shown for different values of αn and αs with fixed αc1 = 0.08. As αn increases, the increased phenotypic
homogeneity is reflected in the reduced variance

depicted in Fig. 7, where we observe a larger variance in the phenotype distribution
when the cytotoxic drug is less permeable compared to the resource.

Next, we study the effect of cell motility by considering nonzero αn . In Figs. 8
and 9, we take αn as 10−4, 10−3, 10−2 and test different values of αs with fixed
αc1 = 0.08. These are comparable to the first row of Figs. 6 and 7. In contrast to the
diffusivity of the resource and the cytotoxic drug, the cell diffusion reduces phenotypic
heterogeneity. The cell resistance level becomes more homogeneous in the direction
of r as shown in Fig. 8.When αn = 10−2, the cell phenotype density becomes uniform
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Fig. 10 The surface of cancer cell concentration n(t = 100, r, θ) with the scaled diffusion, Eq. (17). The
cell population becomes more variant compared with the constant coefficient model. Different effects of
cell mobility ᾱn and resource permeability ᾱs are observed

in r as in the lower-right corner of Fig. 6. The phenotype distribution q(t, θ) in Fig. 9
also illustrates that the cells concentrate around a single trait with smaller variance.
In addition, we observe an instance of cell clustering yielded by a certain amount
of cell mobility, when cells are sufficiently diversified. For instance, in Fig. 8, when
αn = 10−3 and αs is large, the cells near the center and the boundary tend to cluster
around different resistance levels, although they eventually merge into a single cluster
when αn ≥ 10−2.

With our parameter setting, the cancer cell population increases by two orders of
magnitude depending on the drug dosage (see Fig. 5), which makes it reasonable to
assume that this will affect the cell motility and the permeability of the resources and
the drugs. Therefore, we propose to consider the diffusion coefficient as a function of
the local cell concentration ρ(t, r). The cell diffusion in Eq. (7) is assumed to be of
the following form

αn(ρ) = α̃n

1 + β̄n
ρ(r,t)
ρ(r,0)

, (17)

where α̃n = ᾱn(1 + β̄n) with ᾱn as the initial magnitude of diffusion coefficient and
β̄n being the sensitivity constant to the cell density. The diffusion coefficient decreases
with an increased cancer cell population. The coefficient is bounded by zero and the

123



3002 H. Cho, D. Levy

t
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Fig. 11 Phenotype distribution q(t, θ) on t ∈ [0, 200] with the scaled diffusion, Eq. (17). The scaled
diffusion model provides increased heterogeneity in the resistance level
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Fig. 12 Phenotype distribution q(t, θ) at t = 200with andwithout the scaled diffusion Eq. (17). Compared
to the constant diffusion (solid line), the scaled diffusion model depicts a distribution that has a wider spread
with respect to the resistance

initial value ᾱn , i.e., 0 < αn(ρ) ≤ ᾱn . The diffusion terms in the other equations are
taken similarly as

αs(ρ) = ᾱs(1 + β̄s)

1 + β̄s
ρ(r,t)
ρ(r,0)

, αc1(ρ) = ᾱc1(1 + β̄c1)

1 + β̄c1
ρ(r,t)
ρ(r,0)

, αc2(ρ) = ᾱc2(1 + β̄c2)

1 + β̄c2
ρ(r,t)
ρ(r,0)

.

In our simulations, we set the sensitivity constants as β̄n = β̄s = β̄c1 = β̄c2 = 0.1.
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ᾱ
s
=

8
θ

0  0.5 1  

1  

0.5

0  
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Fig. 13 Cancer cell distribution at t = 200 with the scaled diffusion, Eq. (17) and resource S1 = 12. The
plots for n(t, r, θ) correspond to ᾱn = 10−2. We observe that with an increased level of resource and cell
diffusion, the cell clustering near the center and the boundary become more apparent, and the phenotype
distribution becomes a bimodal function

The results showing the effect of scaled diffusion are plotted in Figs. 10 and 11. To
compare with the constant diffusion model shown in Figs. 8 and 9, we test different
values of ᾱs and ᾱn with fixed ᾱc1 = 0.08.With the scaled diffusion, the overall hetero-
geneity in the resistance level increases. In addition, the combined effect of resource
permeability ᾱs and cell mobility ᾱn , that increases and lessens the cell variation,
respectively, can yield multiple clusterings in the cell population. In particular, the
phenotype distribution q(t, θ) plotted in Fig. 11 shows not only the increased variance,
but also cells gathering around two different trait values. This is shown more clearly
in Fig. 12 where we compare the phenotype distribution q(t, θ) at t = 200 between
the constant and the scaled diffusion coefficient model. Furthermore, in Fig. 13, we
consider the case where the resource is infused with an increased level of resource as
S1 = 12. The separation of the resistance level between the center and the boundary
is more apparent, and the corresponding phenotype distribution becomes a bimodal
function.

Figures 11, 12, and 13 demonstrate that our model can capture the dynamics that
leads to a heterogeneous tumor in space, where different levels of heterogeneity are
expressed in different locations in space. It is a one-dimensional caricature of what we
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Fig. 14 Effect of diffusion on the cell concentrationmeasured by the relative number of cells ρT (t)/ρT (0),
standard deviation σ [n(t)], and the KL divergence DKL (Q0||Qt ). The other coefficients except the one
varied are fixed as ᾱs = ᾱc1 = 0.25, ᾱn = 10−3

expect to see in 3D tumors in vivo.Cells that become drug resistant at certain locations
in space may develop into aggregates that have local characteristics of resistance.

We study the quantitative features of the cancer cell population in Fig. 14. The rela-
tive total number of cell ρT (t)/ρT (0), standard deviation of the phenotype distribution
σ [n(t)], and the deviation from the initial population DKL(Q0||Qt )

4 are compared
for different values of diffusion coefficients. The resource and cytotoxic drug diffusion
influences all three measures in opposing directions. While both resource and drug
diffusion are critical to the size and the variance of cancer cells, the resource diffusion
has slightly more influence on the emerging heterogeneity. However, the deviation
from the initial distribution is more affected by the diffusion of the drug.

We also test the combination of an on–off cytotoxic drug and constant cytostatic
drug, given by drug schedule 3. This schedule was shown to be effective in elimi-
nating cancer cells (Lorz et al. 2015), which is the reason as of why we study the
impact of diffusion on this schedule. Figure 15 shows the total number of cancer cells
ρT (t)/ρT (0) for different values of the diffusion coefficient for the cytotoxic drug,

4 DKL (Q0||Qt ) is the KL divergence from the initial distribution Q0(θ) := Q(t = 0, θ),

DKL (Q0||Qt ) :=
∫ 1

0
Q0(θ) log

Q0(θ)

Q(t, θ)
dθ,

that represents the divergence of the phenotype distribution from initial time.
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Fig. 15 Total number of cancer cells ρT (t)/ρT (0) using drug schedule 3 (◦) and double the dosage of
schedule 3 (×). The resource diffusion and the cell diffusion are fixed as ᾱs = 0.25 and ᾱn = 10−3,
respectively. The cancer cell growth is sensitive to the permeability of the drugs. For the case of ᾱc1 =
ᾱc2 = 0.08, doubling the dosage does not prevent the relapse

ᾱc1 , and the cytostatic drug, ᾱc2 . The resource diffusion and the cell diffusions are
fixed with coefficients ᾱs = 0.25 and ᾱn = 10−3, respectively, and the cytostatic
uptake rate is taken as μ2 = 100. We see that, as expected, the total number of cells
increases when the diffusion of the cytostatic drug is low (as the growth is not effec-
tively inhibited). By doubling the drug dosage to C1 = 0.5 and C2 = 1.7, the drug
schedule is more effective in reducing the population of cancer cells except for the
case of a low diffusion in both the cytotoxic an cytostatic drugs (upper-left corner)
that demonstrates that a relapse is still possible. In particular, the cell concentration
surface and the phenotype distribution are plotted in Fig. 16 for the cases when the
cells survive (ᾱc1 = ᾱc2 = 0.08) and when they die out (ᾱc1 = ᾱc2 = 0.8). In the
former case, the cells that grow are shown to stay close to the center of the initial dis-
tribution. Still, this dosage scheme has its advantage as it keeps the level of resistance
under control in a moderate range. It also keeps the number of cancer cells relatively
smaller than the relapse occurred by the cytotoxic drug.

3.3 Phenotype Selection Depending on Mutation Kernel

Mutation is a key factor that affects the dynamics of resistance in cancer. Here, we
aim to model the mutation kernel M(θ, θ ′) in Eq. (7) to explore its impact on the
phenotype distribution. The kernel M(θ, θ ′) represents the probability of mutation
from a mother cell with phenotype θ ′ to a daughter cell with phenotype θ . In modeling
the mutation kernel, we encode for the asymmetry of mutations in the forward (more
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Fig. 16 Cancer cell distribution using drug schedule 3 as in Fig. 15. Cancer cells either die or grow
depending on the permeability of the drugs. n(t = 200, r, θ) shows that the surviving cells are located close
to the center of the initial distribution

resistant) and backward (less resistant) directions. In addition, by considering either
a smooth function or a discontinuous function for the mutation kernel, we can model
mutations either as a continuous process or as a jump process.

We consider the mutation kernel in the following form,

M(θ, θ ′) = K (θ ′) exp
[
−|θ − θ ′|2

�(θ, θ ′)2

]
, θ, θ ′ ∈ [0, 1], (18)

where � is the correlation length that determines the mutation range in the trait space.
The correlation length is taken as a function �(θ, θ ′) so that the characteristics of
mutation can be readily modeled with respect to the resistance level. To model asym-
metry, we consider one � in the domain that increases the resistance level, �u(θ, θ ′)
on θ > θ ′, and a second � in the complementary domain, �d(θ, θ ′) on θ ≤ θ ′. For a
regular occurrence of the mutation that depends on the phenotype, we consider �u as
a linear function in terms of θ̄ := (θ + θ ′)/2, that is,

�u(θ, θ ′) = �u(θ̄) = (cur − cul) θ̄ + cul , (19)

where the correlation length changes linearly from cul at phenotype zero to cur at
phenotype one. Similarly, we denote �d(θ, θ ′) = (cdr −cdl) θ̄ +cdl . The irreversibility
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Fig. 17 A mutation kernel, M(θ, θ ′), that is based on a Gaussian function with linear correlation length
(left) and a piecewise linear function (right). The kernels are zoomed on θ, θ ′ ∈ [0, 0.5]

of themutation can be imposed by �d = 0 and less strictly by taking smaller correlation
lengths when θ ≤ θ ′ compared to θ > θ ′, i.e., cur ≥ cdr and cul ≥ cdl . In our
simulations, we choose cul = 0.02, cur = 0.01, cdl = 10−10, and cdr = 0.01 (see
Fig. 17). The mutation in the upper direction is reduced by considering a negative
slope for �u , and to avoid saturation at the highest resistance level, we allow backward
mutation near θ = 1.

Although a Gaussian kernel with a smooth correlation function can model the
mutations that occur regularly, we consider a second mutation kernel that reduces the
probability of mutation occurring at certain trait values. This can be obtained, e.g.,
by considering a mutation kernel based on piecewise linear functions defined on nD

partitions,

M(θ, θ ′) =
{∑nD

i=1 K (θ ′)(θ − θi−1) χ
(θ,θ ′)
Ωi×Ωi

, θ ≥ θ ′,
0, otherwise,

(20)

where {Ωi }nDi=1 is a partition of [0, 1]with boundaries denoted asΩi = [θi−1, θi ], and
χA is an indicator function on A. The boundary values of Ωi correspond to phenotype
values that may be more difficult to mutate away from5. Figure 17 shows an example
of a mutation kernel using this form of correlation function.We take nD = 10 uniform
partition of [0, 1]. We emphasize that these are arbitrary choices.

To study the impact of these mutation kernels, we test for the case when the diffu-
sion constants are ᾱn = 10−3, ᾱs = 0.8, 0.08, and ᾱc1 = 0.08 using drug schedule
1. We fix w = 0.1 and compare the result with the reference phenotype distribution
without mutation, w = 0. Figures 18 and 19 show the phenotype distribution q(t, θ)

corresponding to the two mutation kernels shown in Fig. 17, using the Gaussian ker-
nel (18) and piecewise linear (20) functions. In Fig. 18, we observe that smooth linear
correlation lengths increase the variance in q(t, θ) and regularize the distribution.
In spite of the diffusion terms, our model still has a tendency to concentrate near

5 Similar behavior can be modeled using the Gaussian kernel (18) by considering a piecewise continuous
correlation length on {Ωi }. For instance, �u(θ, θ ′) = �i (θ̄ ) on each θ̄ ∈ Ωi , where �i (θ̄) is a quadratic
function that decays as θ̄ approaches the partition boundary.
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ᾱ
s
=

ᾱ
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Fig. 18 Comparison of the phenotype distribution q(t, θ)withoutmutation (dashed line) andwithmutation
(solid line) using a Gaussian mutation kernel (18) and w = 0.1. This mutation expedites the occurrence of
resistant cells, while preventing an extreme localization at a single trait
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Fig. 19 Comparison of the phenotype distribution q(t, θ)withoutmutation (dashed line) andwithmutation
(solid line) using a piecewise linear mutation kernel (20) and w = 0.1. This mutation kernel allows for less
frequent mutations in certain trait values

the point where the maximum growth rate is achieved. This type of mutation kernel
prevents the phenotype distributions from being well localized after long-time simula-
tions (Greene et al. 2014). In addition, the phenotype distribution is smoothly shifted
toward the higher resistance levels due to the asymmetry in the kernel. The quantitative
effect of mutation comparable to Fig. 14 is shown in Fig. 20. The correlation length
of the mutation increases all three features including the mean E[n(t)] and standard
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Fig. 20 Effect of mutation on the cell concentration measured by the mean E[n(t)] and standard deviation
of the phenotype σ [n(t)] , and the KL divergence DKL (Q0||Qt )

deviation σ [n(t)] of the resistance level, and the deviation from the initial distribution
DKL(Q0||Qt ).

In contrast to the linear case, the phenotype distribution using a piecewise linear
mutation kernel shows distinctive features. In Fig. 19, we observe that cancer cells
accumulate before crossing the bottleneck trait values. This makes the phenotype
distribution different from the reference distribution that is rather close to a symmetric
unimodal function. In the case of αs = αc1 = 0.08 at time t = 100, an even higher
peak shows next to θ = 0.8, yet, a small number of cells begin to cross the blockage
point at t = 150.

In most studies, modeling mutations using integral transformations results with
an increased variance due to the smoothening of the cell distribution. Our approach
provides possible alternative sources for obtaining irregularity in the cell distribution.

4 Conclusion

In this paper, we developed a mathematical model that describes the evolution of
drug resistance in cancer cells with regard to the spatial dynamics of the resource and
drugs, cell motility, and phenotypic mutation. In contrast to the original Lorz model,
our model allows the emergence of partial resistance levels. We emphasize that this
modification is shown to result with tumor dynamics that is more relevant to the
biology. Moreover, by assuming a drug response that depends on the concentration,
we encode for the sensitivity of the resistance level to high drug dosages, that is
consistent with the observations made in Mumenthaler et al. (2015) and Garvey et al.
(2016). We show that increased drug concentrations are correlated with a delayed
relapse, though with higher resistant traits being selected. We further show that an
on–off therapy schedule also selects for more resistant traits when compared with a
continuous schedule of identical total drug concentrations.

Our model incorporates cell diffusion and mutation into the resistance dynamics.
While the resource permeability increases the phenotypic heterogeneity by allowing
various level of cells to grow in distinct locations, increased level of diffusion in the cell
motility and the drug permeability play an opposite role. Since the cell population is
highly sensitive to the diffusion, we emphasize that it is important to consider diffusion
coefficients that depend on the local cell concentrations. The combined effect of the
diffusion terms in our model yields distinctive cell populations. We also show that
under certain conditions, our model predicts the emergence of a heterogeneous tumor

123



3010 H. Cho, D. Levy

in which cancer cells of different resistance levels coexist in different areas in space.
Finally, the mutation term, parametrized by the range of mutation allowed in each
resistance level, increases the phenotypic variation.

Although the assumption of radial symmetry is consistent with experimental evi-
dence on tumor spheroids of small size (Yu et al. 2004), it is no longer valid for larger,
vascularized tumors (Anderson et al. 2006; Trédan et al. 2007). We intend to extend
our model to a full 2D system. This will allow us to investigate the spatial dependency
of intra-tumor heterogeneity in a more general setting. In addition, we propose to
extend our theoretical results by combining them with more recent analytical results
of phenotypic structured selection models (Mirrahimi and Perthame 2015; Jabin and
Schram 2016). Another drawback of our model is that the trait variable represents
the resistance level regarding the cytotoxic drug without considering the cytostatic
drug. We aim to study multi-drug resistance (Panagiotopoulou et al. 2010) by con-
sidering a multi-dimensional trait variable subject to different classes of drugs and
other phenotypes. It will be of great interest to extend the present model to specific
clinical problems. Althoughmapping the heterogeneity in the physical and phenotypic
space in vivo is not possible with current technology, we look forward to validating
and quantifying our model observations, and exploring various optimal chemotherapy
scheduling (Schättler and Ledzewicz 2015) while incorporating the heterogeneity of
the drug response.
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