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Abstract Finding an appropriate functional form to describe population growth based
onkeyproperties of a described systemallowsmaking justifiedpredictions about future
population development. This information can be of vital importance in all areas of
research, ranging from cell growth to global demography. Here, we use this connection
between theory andobservation to pose the followingquestion:what canwe infer about
intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on
external resources) based on which growth function best fits its growth dynamics?
We investigate several nonstandard classes of multi-phase growth curves that capture
different stages of population growth; these models include hyperbolic–exponential,
exponential–linear, exponential–linear–saturation growth patterns. The constructed
models account explicitly for the process of natural selection within inhomogeneous
populations. Based on the underlying hypotheses for each of the models, we identify
whether the population that it best fits by a particular curve is more likely to be
homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent
manner, and whether it depends on external resources during any or all stages of
its development. We apply these predictions to cancer cell growth and demographic
data obtained from the literature. Our theory, if confirmed, can provide an additional
biomarker and a predictive tool to complement experimental research.
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1 Introduction

Finding a simple curve or a justified equation that fit experimental data well is a stan-
dard problem in population dynamics, since the result allows improving predictions
about future dynamics of the population. Exponential and logistic curves are classi-
cal examples for describing unrestrained and environmentally restrained population
growth, respectively. The procedures for finding the best fitting curves within a certain
class of formulas (equations) are well developed, and the problem is often considered
to be solved when an appropriate curve is found. For instance, tumor growth can be
described by logistic or Gompertz curves, and there exists a relatively extensive dis-
cussion about which curve is better, see for instance (Benzekry et al. 2014). Similarly,
this question arises in describing microbial growth, which is crucial in food preserva-
tion and disease prevention (Peleg and Corradini 2011). In some cases, the predictive
power of the obtained model can be evaluated experimentally, such as in cases of
cancer cell or microbial growth. In other cases, due to large time scales or difficulties
in experimental design, such validation is not possible, making predictions made by
models is critical, such as in making policy decisions (see for instance Heesterbeek
et al. 2015; Rönn et al. 2017; Verguet et al. 2015). Finding the right curve to describe
the trends observed in global demography is another example, where finding a cor-
rect equation influences dramatically the predictions about future human population
growth (von Forster et al. 1960; Kapitza 1996, 2006; Karev 2005).

Here, however, we are interested in investigating a different angle of the data-
equation relationship: if a data set is best fit by a particular curve, what information
about intrinsic population dynamics can be derived from this result? That is, we are
interested not in making predictions about future population dynamics, but in infer-
ring information about possible population structure and conditions, under which the
population must have been growing, based on the data that have been collected.

Data that describe tumor growth dynamics, for instance, can be fit to various,
often similarly shaped curves (e.g., logistic and Gompertz curves). We will use the
demographic and tumor growth curves available in the literature as examples in the
discussion of implications of our results.

2 Models of Polymorphic Populations

Natural selection and drift can operate only if the population is non-homogeneous.
Models of heterogeneous populations are typically of very high or even infinite dimen-
sionality. An effective method for reduction in a wide class of infinitely dimensional
non-homogeneous models to low dimensionality was recently developed (see Karev
2005, 2010, 2014).

All models discussed here are of the following form. Consider an inhomogeneous
population composed of individuals with different Malthusian parameters a. We refer
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to the set of all individuals that have a given value of the parameter a as an a-clone. Let
l (t, a) be the size ofa-clone at themoment t . The total size of the population is given by
N (t) = ∑

A l(t, a) if the parametera takes ondiscrete values, and N (t) = ∫
A l(t, a)da

if a is continuous. A denotes the range of possible values of parameter a.
If the growth rate of the population depends on its total size N (t), then the dynamics

of such a population can be described by the following model:

dl (t, a)

dt
= al (t, a) g (N ) , N (t) =

∫

A

l (t, a) da (1)

where g (N ) is a function that accounts for intrapopulation competition between the
individuals.

Denote P (t, a) = l(t,a)
N (t) ; the probability density function (pdf) P (t, a)describes the

distribution of the parameter a within the population in t moment. We assume that the
initial pdf P (0, a) is given; let M0 (λ) = ∫

A e
λa P (0, a) da be its moment generating

function (mgf). Note: henceforth units are set as generic “time” and “population size”
as necessary to balance them on both sides of the equations; specific units are used for
relevant examples.

Here, we are interested in describing the dynamics of pdf P (t, a) and population
size N (t) as they change over time. In order to solve this problem, let us define
formally the “keystone” auxiliary variable q (t) as the solution to the Cauchy problem

dq

dt
= g (N ) , q (0) = 0. (2)

The clone densities and population size can be expressed with the help of q (t):

l (t, a) = l (0, a) eaq(t) = N (0) P (0, a) eaq(t), (3)

N (t) = N (0)
∫

A

eaq(t)P (0, a) da = N (0) M0 (q (t)) . (4)

Now, Eq. (2) for the auxiliary variable q (t) can be written in a closed form

dq

dt
= g (N (0) M0 (q (t))) , q (0) = 0. (5)

Now that we have the solution to Eq. (5), we can completely solve the initial problem
(1).

The population size N (t) is given by Eq. (4) and solves the equation

dN

dt
= Et [a] N (t)g (N (t)) (6)

where Et [a] = ∫
A aP(t, a)da is the mean value of a at t moment. The current

parameter distribution P (t, a) is determined by the formula
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P (t, a) = P (0, a) eq(t)a/M0 (q (t)) . (7)

The mgf of the current distribution P (t, a) is given by

Mt (δ) = Et [eδa] = M0 (δ + q (t)) /M0 (q (t)) .

The mean value of distributed parameter a is given by the formula

Et [a] = M ′
0 (q (t)) /M0 (q (t)) (8)

and solves the equation

dEt [a]

dt
= Vart [a] g (N (t)) . (9)

The derivation of these formulas can be found in Karev (2010).
In what follows we show that some nonstandard curves of population growth that

account for different stages in population development, as well as standard exponential
and logistic curves, can be understood and explained within the frameworks of models
of the type (1), which take into account the process of natural selection within the
population.

3 Inhomogeneous F-Model for Exponential Curve

As an introductory example, let us consider the simplest inhomogeneous Malthusian
model of a population growth. Capacity to grow exponentially under ideal environ-
mental conditions is generally considered a common property of most populations.

Assume a population is composed of clones l (t, a) characterized by their relative
growth rate (Malthusian parameter) a, such that

dl (t, a)

dt
= al (t, a) . (10)

Then according to Eqs. (6) and (9)

dN

dt
= Et [a] N and

dEt [a]

dt
= Vart [a] > 0. (11)

This is the simplest version of the Fisher’s Fundamental theorem (Fisher 1958). It
means that the per capita population growth rate, which is equal to Et [a], is not a
constant, as is necessary for exponential growth, but increases with time with the
rate Vart [a] > 0, i.e., as long as the population remains inhomogeneous. Hence,
an inhomogeneous population composed of different exponentially growing clones
can never demonstrate exponential growth, but instead grows with “acceleration” of
relative growth rate proportional to Vart [a].
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This may cause dramatic dynamical behavior, such as population size “blowing
up,” i.e., tending to infinity in finite time (Karev 2005). Hence, one may conclude
that in order for a population to grow exponentially, it must be homogeneous, such
as when the process of natural selection has already been completed, resulting in a
single type of the fittest survivor. This is likely to take a long time, so the population
will probably face environmental restrictions, such resource limitations, which would
prevent its free exponential growth and generate the struggle for existence, leading to
natural selection.

This means that at both ends of the temporal scale, an inhomogeneous population
composed of Malthusian clones cannot show exponential growth, either in the begin-
ning of the population development when it grows over-exponentially, or at its end
when it grows under-exponentially, possibly tending to an equilibrium, excluding a
short transitional period between these two regimes.

Considering that all natural biological populations are inhomogeneous, we may
ask the following question: do there exist models of inhomogeneous populations that
demonstrate exponential/logistic growth of the total population size on the entire time
scale? The answer is affirmative. Namely, both Malthusian and logistic equations
describe the growth of total population size of specific inhomogeneous frequency-
dependent models (F-models for brevity). By definition, F-models are models, where
the growth rate of a clone is proportional to its frequency in the total population.

The simplest example of F-model is the model of Malthusian-type

dl (t, a)

dt
= k

N (t)
al(t, a) = kaP (t, a) . (12)

A possible rationalization of this as well as more general frequency-dependent models
is as follows. Assume that the growth rate of individuals within the population is
controlled by a limiting external factor or resource measured by parameter k, which is
divided uniformly between all individuals, resulting in the term k/N . Then, the growth
rate of a clone depends on its frequency. This resource can be dynamic and increase
together with population size up to the saturation stage. Conversely, if a population
grows in accordancewith the F-model; then, we can assume that the population growth
is controlled by an external dynamic resource, and individuals have equal probability
of using this resource for reproduction.

Let us assume that the initial distribution P (0, a) of the parameter a in F-model
(12) is exponential with the mean N (0),

P (0, a) = 1

N (0)
e− a

N (0) , 0 ≤ a < ∞. (13)

Then, the solution to the F-model (12), (13) is given by the formula (see Karev 2014
for details)

l (t, a) = e− a
N (0) e

−kt
(14)

and N (t) = ∞∫
0
l (t, a) da = ∞∫

0
e−a/N (0)e−kt

da = N (0)ekt solves the Malthusian

equation dN
dt = kN .
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An important corollary follows from these results. The inhomogeneous population
described by the F-model (12), (13), which shows exponential growth of the total
population size, consists of clones, each of which grows according the Gompertz
curve (14) (see Online Appendix 1 for a brief survey of the Gompertz model).

The results of this section can be summarized as follows. A monomorphic popula-
tion in ideal conditionsmay grow exponentially; however, if the exponentially growing
population is polymorphic, then one can hypothesize that (a) the population is com-
posed of Gompertzian clones; (b) the growth of the population is not free but depends
on an external resource, which is distributed uniformly between the individuals and
hence proportionally to the clone frequencies in the total population, thus limiting the
growth rate of the population at each time moment.

4 F-Model for the Logistic Curve

Now let us construct a model of an inhomogeneous population that shows logistic
growth of the total population size,

dN

dt
= kN

(

1 − N

C

)

. (15)

Its solution is given by the formula N (t) = C
1+(C/N (0)−1)e−kt .

Firstly, let us consider an inhomogeneous population composed of different clones
l (t, a), which now grow according to the logistic equation

dl (t, a)

dt
= kal (t, a)

(

1 − N

B

)

, (16)

where B is a common carrying capacity.
Then, according to (6), (9)

dN

dt
= kEt [a] N (t)

(

1 − N

B

)

and
dEt [a]

dt
= kVart [a]

(

1 − N

B

)

> 0 as N < B.

Hence, an inhomogeneous population composed of different logistically growing
clones grows not exactly logistically, but instead always grows faster during the initial
phase of growth.

Now, instead of model (16) let us consider the following logistic-like F-model

dl (t, a)

dt
= kaP (t, a)

(

1 − N

C

)

. (17)

Then, dN
dt = kEt [a]

(
1 − N

C

)
. In order to obtain logistic equation (15) we need to

have Et [a] = N (t). To this end, introduce an auxiliary variable q (t), which solves
the equation
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dq

dt
= k

(

1 − N

C

) /
N , q (0) = 0. (18)

According to (8), Et [a] = M ′
0 (q (t)) /M0 (q (t)). Taking into account Eq. (4), we

arrive at the following equation for the unknown mgf M0 (q):

dM0 (q)

dq
= N (0) M0 (q)2 , M0 (0) = 1.

Its solution is M0 (q) = (1 − N (0) q)−1. This mgf corresponds to exponential distri-
bution (13).

We can now write Eq. (18) in explicit form

dq

dt
= k

(
1

N (t)
− 1

C

)

= k

(
1

N (0) M0 (q(t))
− 1

C

)

= k

(
1

N (0)
− 1

C
− q(t)

)

.

Its solution is given by q (t) =
(

1
N (0) − 1

C

) (
1 − e−kt

)
, and hence

l (t, a) = N (0) P (0, a) eaq(t) = exp

(

−a

(
1

C
+

(
1

N (0)
− 1

C

)

e−kt
))

. (19)

One can easily check that N (t) = ∞∫
0
l (t, a) da coincides with the solution to Eq. (15).

Let us now collect the obtained results in the following Theorem.

Theorem 1 Logistic equation (15) describes the dynamics of the total size of an inho-
mogeneous population growing according to F-model (17), where initial distribution
of the parameter a is exponential (13) with the mean N (0). The solution to the F-
model (17), (13) is given by Eq. (19). The distribution of the parameter a at moment t
is exponential with the mean Et [a] = N (t).

We can see that each clone l (t, a) grows according to the Gompertz curve G (t) =
r exp(−be−kt ) with r = e− a

C and b = a
N (0) − a

C . This means that, similarly to the
exponential population, a population that grows according to logistic equation (15)
can be an inhomogeneous population composed of the Gompertzian clones.

Using the model given in Theorem 1 to describe dynamics of populations can
be considered unrealistic, since the described population would contain clones with
arbitrarily large values of parameter a. However, the contribution of clones with large
values of the parameter a to the total population size is negligible. Indeed, let us denote

N (t, B) = B∫
0
l (t, a) da. Then

N (t, B) = C
1+e−kt (C/N (0)−1)

(

1 − e− Be−kt (C+N (0)(ekt−1))
CN (0)

)

.

So, N (t,B)
N (t) ≈ 1 − e−B/C for large t .
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Fig. 1 (Color figure online) Fitting of data set 1, obtained from Figure 3 in Biebricher et al. (1985), see

Online Appendix 2 for data values. a Fitting with logistic curve, defined by dN
dt = kN

(
1 − N

C

)
, with C =

80.64, N (0) = 0.006 and k = 0.238. b Fitting with the Gompertz model, N (t) = N (0) exp(b
(
1 − e−kt

)
),

with b = 4.732, k = 0.052, N (0) = 0.71. Parameter estimations were obtained using cftool in MATLAB

Hence, N (t, B) gives a very good approximation of the exact solution to the logistic
equation if B

C ∼ 6 − 10, in this case e−B/C ∼ 0.0025 − 0.000045.
Examples: Logistic versus Gompertz curves
Consider the following data set, whichwas extrapolated fromFigure 3 in Biebricher

et al. (1985).
As can be seen in Fig. 1 here, data set 1 (see Online Appendix 2 for details) is fit

better by the logistic equation, from which we can imply that the studied population
is more likely to be heterogeneous.

The results obtained in this section can have important implications.
Assume there exist experimental data on population growth, but no a priori assump-

tions have beenmade about processes that govern its growth.Assume the logistic curve
fits the data better than the Gompertz curve. Then, the population is more likely to
be polymorphic than monomorphic, and in this case, it is composed from different
Gompertzian clones.

Furthermore, assume one can determine that the population is indeed polymorphic.
Then, one may assume that population growth is controlled by an external limiting
factor (e.g., a dynamic resource) at all stages of population development, not only
when the population size becomes large. Determination of this external factor may
be of crucial interest, especially for such populations as tumor cells (Marusyk and
Polyak 2010;Marusyk et al. 2012). This will be discussed in greater detail in following
sections.

Remark Different generalizations of the standard logistic equation are well described
in the literature and have been applied to many specific problems, (see, e.g., Tsoularis
and Wallace 2002; Peleg and Corradini 2011); most of them are special cases of the
generalized logistic equation

dN

dt
= kNα

[

1 −
(
N

C

)β
]γ
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Fig. 2 (Color figure online) Examples of hyperbolic and two-phase growth curves obtained from published
literature. a tumor growth curves reported Figure 1D in Naumov et al. (2006). b and c tumor growth curves
reported in Figure 2b,i in Rogers et al. (2014). d World population since 10,000 BCE, reported at https://
ourworldindata.org/world-population-growth/, plotted in logarithmic scale. Data sources include History
Database of the Global Environment (HYDE) for before 1900, the UN publication “The World at Six
Billion” for 1900–1940 and the UN’s World Population Prospects: the 2015 Revision for 1950–2015. e
World population data plotted since year 0, to avoid potential issues with data extrapolation BC. f World
population data plotted in logarithmic scale from year 1750

where α, β, γ are the model parameters. Similar to standard logistic equation and
using the same method, we can show that the generalized logistic equation describes
the dynamics of total size of an inhomogeneous population composed from clones
l (t, a) = N (0) P (0, a) eaq(t), where initial distribution of the parameter a is expo-
nential (13). The difference with standard logistic equation is that now the key variable
q (t) is not Gompertzian but is a solution to the equation

dq

dt
= Nα−1

[

1 −
(
N

C

)β
]γ

,

N (t) = N (0) (1 − N (0) q)−1 , q (0) = 0.

5 Hyperbolic and Hyperbolic–Exponential Growth

Curves that have hyperbolic shape have been observed in a variety of circumstances,
ranging from tumor growth curves (Almog et al. 2006; Naumov et al. 2006; Rogers
et al. 2014) to global demography (von Forster et al. 1960; Kapitza 2006). Some
examples reported in the literature can be seen in Fig. 2.

Note: World population data since 10,000 B.C. were reported at https://ourworldin
data.org/world-population-growth/. Certainly, there is no truly reliable information
about actual world population size BC. The data set is plotted in Fig. 2d in the log-
arithmic scale; it clearly reveals that population size in the years BC was estimated
under assumption that it grew exponentially. However, it seems that this assumption
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may have been incorrect, as suggested by the plot of world population data, in loga-
rithmic scale since year 0 (see Fig. 2e). A closer look at these data clearly shows that
before the middle of the twentieth century, population grows not exponentially, but
faster, i.e., that Malthusian parameter was not a constant but increased in time. It was
shown in von Forster et al. (1960), Kapitza (1996, 2006) that these data are fitted well
by hyperbolic curve. There is no reason to assume that the growth law changed sharply
after year 0 AD; therefore, a more reasonable assumption is that the hyperbolic growth
law should be used to extrapolate the size of world population B.C. In contrast, after
1960 the hyperbolic growth indeed was followed by exponential growth, and then
possibly by the saturation stage, see Fig. 2f. A model that shows all three hyperbolic–
exponential–saturation stages was constructed in Karev (2005). Estimation of the time
and level of saturation stage is a challenge; an interesting attempt was done by Kapitza
(1996, 2006).

In this section, we will look at model types that can reproduce hyperbolic and
hyperbolic–exponential growth curves. We will start with a simple parametrically
heterogeneous Malthusian growth model, which was briefly discussed in an earlier
section. Here, we will give the main results, since a more detailed discussion has
previously been published in Karev (2005) in application to global demography, and
in Kareva (2016) in application to tumor dormancy.

Consider a population of clones that grow with their own intrinsic growth rates,
independently of other clones and of the population as a whole. Then, dynamics of
these clones is given by the Malthusian equation (10), dl(t,a)

dt = al (t, a). If the initial
distribution P(0, a) is the Gamma-distribution, then its mgf M0 (t) = (1 − st)−k ,
t < 1/s, k > 0. As a special case, k = 1 for exponential distribution.

In these cases, the total population size N (t) = N (0)M0(t) = N (0)(1 − st)−k

shows hyperbolic growth, and N (t) increases very slowly at the initial stage of popula-
tion growth, and then tends quickly to infinity at themoment of “population explosion”
T = 1

s , see Fig. 2d.
This unrealistic scenario becomes actualized when the Malthusian parameter a

can take arbitrarily large values, which can be avoided through truncating the initial
distribution of parameter a to be restricted to a finite interval.

Let the initial distribution be truncated exponential in the interval [0, B], resulting
in pdf

P (0, a) = Ce−sa for 0 ≤ a ≤ B, (20)

where C = 1/
B∫
0
e−sasa = s

1−e−Bs is the normalization constant. The mgf of the

truncated exponential distribution is given by the formula

M0(t) =
∫ B

0
eat P(0, a)da =

(
eBs − eBt

)
s

(
1 − eBs

)
(t − s)

(21)

and hence

N (t) = N (0)M0(t) = N (0)

(
eBs − eBt

)
s

(
1 − eBs

)
(t − s)

. (22)
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Fig. 3 (Color figure online) Fitting of inhomogeneousMalthusian model with initial truncated exponential
distribution to world population data, reported at https://ourworldindata.org/world-population-growth/.
Parameters are taken as B = 0.12, s = 2000. a Demographic data together with model predictions, tracking
the dynamics over time of total population size N (t).bChange over time of the expected value ofMalthusian
parameter a, Et [a], during the transition from hyperbolic to exponential phase of the model; c change over
time of variance of theMalthusian parameter a, Vart [a], during the transition from hyperbolic to exponential
phase of the model. Deviation of model solution from real data around 1400 is partly explained by decline
of the world population due to the Black Plague epidemic in Europe, in years 1346–1353

InhomogeneousMalthusian models (10) with any initial distribution concentrated in a
bounded interval,a ∈ [0, B] ,possess some common interesting properties.According
to Equations (6), the population relative growth rate, which is equal to Et [a], increases
with time as long as Vart [a]> 0. Hence, if the initial distribution is not concentrated in
a single point, then Et [a] tends to themaximal possible value of a, Et [a] → B. Then,
the growth of the population will be asymptotically exponential with the growth rate
equal to B. These phenomena are illustrated in Fig. 3b, where one can see that Et [a]
increases very slowly for a long time and then suddenly undergoes rapid increase and
tends to the maximal value of B.

The transition from hyperbolic to exponential phase of population growth is known
as “demographic transition” (Kapitza 1996). Noticeably, the mean value Et [a], which
in this case is equal to the relative growth rate of the total population, starts increasing
sharply and tends to its maximal possible value; at this time, the population transitions
to the stage of exponential growth. According to the mathematical model developed
in Karev (2005), this transition is clearly connected with the behavior of the variance
of Malthusian parameter a. During this short period one can observe a sharp bell-
shaped growth and rapid decrease in variance (see Fig. 3c). This model prediction was
endorsed by analysis of demographic data given in Tolstikhina et al. (2013).

5.1 Tumor Dormancy and Inhomogeneous Malthusian Growth

The simple inhomogeneous Malthusian-type model (10), (20) allows reproducing
qualitatively a growth pattern of prolonged slow growth before a growth spurt through
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solely incorporating population heterogeneity in themodel. Onemay conclude that the
“dormancy” effect in tumor development (Folkman and Kalluri 2004; Almog et al.
2006; Naumov et al. 2006; Kareva 2016), i.e., the sudden exponential growth of a
population of cancer cells after a long period of non-detected presence may be the
evidence that the tumor is composed of clones, which grow freely and independently
of both each other and of the population as a whole. In this case, each clone would have
its own Malthusian growth rate, and the distribution of the Malthusian rates is skewed
to very small values, similarly to truncated exponential distribution. Asymptotically,
the growth rate of the tumor in the stage of exponential development is equal to the
maximal value of the growth rate of the clones. This hypothesis, as well as application
of other parametrically heterogeneous models to understanding tumor dormancy, is
discussed in Kareva (2016).

Overall, if the hyperbolic–exponential growth of a population is observed, then
one may hypothesize that the population is inhomogeneous and is composed of inde-
pendent exponentially growing clones; the relative growth rates of the clones follow
truncated exponential distribution. If it is the case, then the transition from hyper-
bolic to exponential phase should be accompanied by underlying sharp growth of
the mean population growth rate and by a sharp bell-shaped curve of its variance, as
demonstrated with demographic data in Fig. 3c.

6 Exponential–Linear Growth

Another type of a model that can qualitatively replicate the two-stage dynamics
observed in Fig. 2c is the exponential–linear model, constructed within the frame-
works of F-models.

Let us once again consider Malthusian-type F-model

dl (t, a)

dt
= kal (t, a) /N (t) = kaP (t, a) (23)

and assume that the initial distribution of the Malthusian parameter is truncated
exponential (20) concentrated in the interval [0, B]. According to Eqs. (6) and (9),
dN
dt = kEt [a] and dEt [a]

dt = k
N (t)Var

t [a] . Therefore, Et [a] increases monotonically
as long as Vart [a] > 0, and Et [a] → B, implying asymptotical linear growth of N .

Next, let us define the auxiliary variable by the equation

dq

dt
= k

N
, q (0) = 0. (24)

Themgf of truncated exponential distribution (20) is given by formula (21). Therefore,
according to Eq. (7), the total population size is given by

N (t) = N (0) M0 (q(t)) = N (0)
s
(
1 − eB(q(t)−s)

)

(
1 − e−Bs

)
(s − q(t))

. (25)

Equations (24) and (25) make up our model.
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Fig. 4 (Color figure online)
Plots of N (t) as defined in
Eq. (25) with different values of
boundary B. a In the initial
stages, the population grows
exponentially, as is confirmed by
logarithmic transformation of
the growth curve. b At later time
points, the population starts
growing linearly

With a solution to these equations, we can compute all statistical characteristics of
interest:

P (t, a) = eaq(t)

M0 (q (t))
P (0, a) = ea(q(t)−s)(q (t) − s)

eB(q(t)−s) − 1
, (26)

Et [a] = B∫
0
aP (t, a) da = b

1 − eb(s−q(t))
+ 1

s − q (t)
. (27)

For the purposes of analysis and computation, we can write the model (24), (25) in
equivalent form:

dq
dt = k

N (t) ,

dN
dt = kN (0) Et [a] = kN (0)

(
B

1−eB(s−q(t) + 1
s−q(t)

)
.

(28)

The initial growth stages of populations described by Eq. (23) with initial exponential
and truncated exponential distributions are very similar if the value of boundary B
is large and hence the initial dynamics of model N (t) defined by Eq. (25) or (28) is
close to exponential.

For example, consider the initial truncated exponential distribution as defined in
Eq. (20) with s = 1 and different values of the boundary B. As can be seen in Fig. 4, for
large values of B, in the initial stages of growth the population increases exponentially
(i.e., log N (t) in Fig. 6a approximates well a linear function with respect to t). Then,
after a transitional period, the shape of the curve changes and the population grows
linearly (see Fig. 4b).

Overall, we have arrived to the following statement.

Theorem 2 F-model (23) implies asymptotically linear growth of the total popula-
tion size for any initial distribution of the distributed parameter a concentrated on a
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Fig. 5 Schematic representation of three phases of replication process. Figure is adapted from Schuster
(2011)

bounded interval. If the initial distribution is truncated exponential, then the model
predicts exponential–linear population growth.

The results obtained in this section can be summarized as follows. The nonstandard
exponential–linear dynamicsmaybe the evidence that the population (e.g., tumor cells)
is inhomogeneous and is composed of clones such that distribution of their growth rates
is close to truncated exponential distribution. Even more importantly, the population
growth may be controlled by an external (possibly dynamic) factor or resource at
all stages of population development, such that the resource is distributed uniformly
between individuals within the population. These assumptions and the corresponding
conceptual model compose a null-hypothesis that can explain the exponential–linear
growth of a population. A more detailed model should contain a description of the
controlling resource dynamics. For example, tumor growth depends on blood vessels
and is controlled by the process of angiogenesis (Kareva et al. 2016); tumor cells also
require nutrients, such as carbon and phosphorus, to support accelerated proliferation
(Elser et al. 2007;Kareva 2013).Another example is presented in the following section.

7 Three-Stage Model and Virus-Specific RNA Replication

The models considered above that show indefinite growth of population size such
as hyperbolic–exponential or exponential–linear models are clearly incomplete as
populations cannot grow indefinitely. In most (but not all) cases, population growth is
followed by a saturation stage. Amodel that shows hyperbolic–exponential–saturation
growth in application to global demography was suggested and identified in Karev
(2005).

In the works (Biebricher et al. 1983, 1985), the authors have proposed that in a
closed system, where there exists no exchange of materials with the environment,
the RNA replication process goes through three phases: exponential growth, linear
growth and saturation. A schematic representation of the proposed kinetics of RNA
replication, as adapted from Schuster (2011), is shown in Fig. 5.
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In their original work, Biebricher et al. (1983, 1985) had the following hypothesis
about the kinetics of RNA replication in closed systems. They proposed that “the time
course of RNA replication by Qβ-replicase shows three distinct growth phases: (i)
an exponential phase, (ii) a linear phase and (iii) a phase characterized by saturation
through product inhibition. The experiment was initiated by transfer of a very small
sample of RNA suitable for replication into amedium containing Qβ-replicase and the
activated monomers, ATP, UTP, GTP and CTP in excess (consumed materials are not
replenished in this experiment). In the phase of exponential growth, there was shortage
of RNA templates, every free RNA molecule is instantaneously bound to an enzyme
molecule and replicated, and the corresponding overall kinetics follows dx

dt = f x
resulting in x (t) = x (0) exp( f t). In the linear phase, the concentration of template
was exceeding that of enzyme, every enzyme molecule is engaged in replication, and
overall kinetics is described by dx

dt = k0e0 (E) = k,wherein e0 (E) is the total enzyme
concentration, and this yields after integration x (t) = x (0) + kt.”

The schematic given in Fig. 5 is somewhat exaggerated compared to the data that
the authors cited, presumably to emphasize the transition from exponential to linear
phase. In the reported data, the transition is smoother. Notably, the authors proposed
describing the transition between three stages of growth using several separatemodels,
which does not allow understanding how transition between the three stages can occur
naturally, as a result of system dynamics.

Our numerical estimates of some of the reported data [such as curves reported in
Biebricher et al. (1985)] are fitted well by a logistic model (see Fig. 1). However, there
does exist a model that can realize all three regimes. Such a model can be constructed
in the following way.

We have already shown that transition from exponential to linear growth can be
described by an inhomogeneous F-model with a distributed Malthusian parameter,
with initial truncated exponential distribution. The transition to a saturation stage can
be realized through addition of a logistic-like term.

The resulting model is as follows. Consider an F-model

dl (t, a)

dt
= kaP (t, a)

(

1 −
(
N (t)

K

)r)

(29)

where P (0, a) is the truncated exponential distribution (20).
Define the auxiliary variable q(t) by the equation

dq

dt
=

k
(
1 −

(
N (t)
K

)r)

N (t)
, q (0) = 0. (30)

The solution to the F-model can be written again as l (t, a) = l (0, a) eaq(t), so
Eqs. (25)–(27) apply to this model as well. The difference is that the auxiliary variable
q(t) is now defined not by Eq. (24), but by Eq. (30).

Similarly to the previous exponential–linear model, for the purposes of analysis
and computations, we can write the obtained three-stage model in two different but
equivalent forms:
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Fig. 6 (Color figure online) Three-stage model, as described by System (32), with s = 1, B = 10, k = 1,
K = 100, r = 4. The model realizes three distinct growth phases, beginning with a the exponential stage of
the system growth, b confirmed by logarithmic transformation, followed by c the linear stage of population
growth, followed by d the saturation stage of population growth. All three stages can be seen in subplot (e)

Version 1 :
dq
dt = k(1−(

N (t)
K )r )

N (t) , q (0) = 0;
N (t) = N (0)

s
(
1−eB(q(t)−s)

)

(1−e−Bs)(s−q(t))
;

(31)

Version 2 :
dq
dt = k(1−(

N (t)
K )r )

N (t) , q (0) = 0;
dN
dt = kN (0) Et [a] = kN (0)

(
B

1−eB(s−q(t)) + 1
s−q(t)

)
.

(32)

The three distinct stages of System (32) are illustrated in Fig. 6. The initial expo-
nential stage is shown in Fig. 6a and is confirmed by logarithmic transformation of the
same curve in Fig. 6b. It is followed by the linear stage (Fig. 6c), which is followed
by the saturation stage (Fig. 6d). The full curve is shown in Fig. 6e.

Now let us compare the three-stage F-model (29) with r = 1 and the inhomogeneous
logistic model (16). Both models can be reduced to identical systems of the form
(5)–(8). The only difference is in the initial distribution of the Malthusian parameter
a and hence in the functional form of the mgf M (q). For the logistic model, the
initial distribution is exponential, while for three-stage model the initial distribution is
truncated exponential. Hence, solution to the three-stagemodel tends to the solution of
the logistic model as the boundary B of truncated exponential distribution increases.

The results obtained here and their implications are summarized in Table 1.
As one can see, logistic function appears to provide a better fit, which is confirmed

by low residual mean square error (see Online Appendix 2 for values), suggesting that
the population grows in a frequency-dependent manner and depends on a uniformly
distributed external resource during all stages of growth (Fig. 7).

Data set 4. Rogers et al. (2014).
The following data set was obtained from Rogers etal. (2014, Figure 2b). Similarly

to the previous case, the data are fitted to logistic (Fig. 8a), Gompertz (Fig. 8b),
Linear–exponential (Fig. 8c) and three-stage (Fig. 8d) functions. Neither function in
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Fig. 7 (Color figure online) Data extracted from Naumov et al. (2006, Figure 1), breast cancer in vivo.
Data fitted to a logistic, b Gompertzian, c exponential–linear and d three-stage model. The data and all the
growth functions are plotted in e. Logistic function had the lowest mean square error (MSE)

Fig. 8 (Color figure online) Data extracted from Rogers et al. (2014, Figure 2B). Data fitted to a logistic, b
Gompertzian, c exponential–linear and d three-stagemodel. The data and all the growth functions are plotted
in e. Gompertzian curve provides the worst fit (highest RMSE), allowing elimination of monomorphic
population

this case provides a good fit, with logistic and three-stage models providing better fit
than others. One can certainly see that the Gompertz function (Fig. 8b) provides a
particularly poor fit, confirmed but RMSE and relative least square deviation, at least
suggesting that, according to Table 1, the population described here is highly unlikely
to be monomorphic.

Data set 5. Rogers et al. (2014).
The following data set was also obtained from Rogers et al. (2014), in this case

from Fig. 2i. Here, both logistic (Fig. 9a) and Gompertz (Fig. 9b) functions provide
a relatively good fit, with the Gompertz function having a slightly smaller MSE (see
Online Appendix 2 for details). This suggests that in this case, the population is more
likely to be monomorphic.

Data set 6. Benzekry et al. (2014).
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Fig. 9 (Color figure online) Data extracted from Rogers et al. (2014, Figure 2i). Data fitted to a logistic,
b Gompertzian, c exponential–linear and d three-stage model. The data and all the growth functions are
plotted in e. Gompertzian curve provides the best fit (lowest MSE), suggesting monomorphic population

Fig. 10 (Color figure online) Data extracted from Benzekry et al. (2014), Figure S1B, the lung cancer
growth curve. Data fitted to a logistic, b Gompertzian, c exponential–linear and d three-stage model. The
data and all the growth functions are plotted in e. Based onMSE values, logistic curve fits best, suggesting a
polymorphic population that grows in a frequency-dependentmanner and depends on a uniformly distributed
external resource during all stages of growth

Finally, consider the following data set, which was extrapolated from Benzekry
et al. (2014), Figure S1B, the lung cancer growth curve. Our calculations suggested
that, while all the models provided a reasonable fit (Fig. 10), logistic model resulted
in the lowest RMSE, suggesting that this population is inhomogeneous, grows in a
frequency-dependentmanner and depends on a uniformly distributed external resource
during all stages of growth. Notably, in their analysis, the authors predicted a better
fit with a Gompertzian growth function; this discrepancy may either be a result of
variations in parameter estimation methods, or, which is more likely, in the fact that
we had no access to original raw data and had to rely on the published figure to obtain
the numbers for our analysis.
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8 Discussion

Finding an appropriate function that best fits the data may have not only predictive
value. It may provide insights into the nature of the population that is growing accord-
ing to one or another growth law, as well as the conditions under which this growth
has occurred. Building a foundation for making these distinctions has been the focus
of this work.

A homogeneous (monomorphic) population can grow exponentially in the absence
of competition; it can grow logistically if there exists a limitation on external resources.
If the population is polymorphic and consists of exponential or logistic clones, then
the total population size grows faster than exponentially or logistically. Nevertheless,
polymorphic population can show exponential or logistic growth if the population
consists of clones that grow according to the Gompertz curve.

Inhomogeneous populations can demonstrate exponential and logistic growth of
the total population size if the population is described by specific inhomogeneous
frequency-dependent models (or F-models, where the growth rate of a clone is pro-
portional to its frequency in the total population). If a population grows in accordance
with the solution to anF-model, thenwecan assume that the populationgrowthdepends
on an external (perhaps, dynamic) resource, which is divided uniformly between all
individuals in the population at all stages of population development, not only when
the population size becomes large. Determination of this external factor may be of
crucial interest, especially for such populations as tumor cells.

In several mouse xenograft models (transplantation of human cancer cells into
immune deficient mice, a standard albeit imperfect method for studying tumor growth
dynamics in vivo), tumor growth curves were reported, which exhibit extended period
of near-negligible growth, followed by a sharp exponential-like growth phase (see
Fig. 4). Such behavior can be captured by the inhomogeneous Malthusian models (see
Eqs. 10 and 20) that show hyperbolic–exponential growth (Eq. 22). Additionally, one
may expect that the process of natural selection within the population will eventually
result in elimination of relatively slowly growing clones; this process would be very
slow, resulting in a long “lag time” phase preceding the rapid growth phase. The popu-
lation becomes almost monomorphic during transition from hyperbolic to exponential
growth.

Exponential–linear dynamics can imply that a tumor is inhomogeneous, and the
distribution of the clones’ growth rates within the tumor is close to truncated expo-
nential distribution. Even more importantly, this may mean that the population growth
depends on an external resource at all stages of population development, such that the
resource is distributed uniformly between individuals in the population. The popula-
tionbecomes almostmonomorphic during transition fromexponential to linear growth.
One may expect that at this stage the system still has enough external resource for
growth and has not yet reached the saturation stage.

Adding a saturation stage to the exponential–linear dynamics allows reproducing
three-stage dynamics, including linear, exponential and saturation stages, which was
observed in viral RNA replication models (Biebricher et al. 1985; Schuster 2011). A
key difference of the proposed model from the models proposed by Schuster (2011)
is that this model allows replicating all three dynamical regimes with just one model.
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The constructed three-stage model is perhaps the simplest one, which allows us to
explain the transition from one stage of development to another due solely to internal
systemdynamics.Hence, if one observes the three-stage exponential–linear–saturation
growth curve, then one can assume that the system is inhomogeneous and the growth
rates of different clones follow the truncated exponential distribution. Moreover, the
population in this case is once again likely to depend on an external, possibly dynamic,
resource at all stages of population development, not only during the saturation stage.

8.1 Applications and Implications

Here, we have extracted several data sets from published literature and compared
the data to our models (see Figs. 8, 9, 10). We observed that depending on the data
set, different functions fit it better, with logistic model providing better fits in the
majority of cases, implying (according to our theory) that the population described is
heterogeneous, grows in a frequency-dependent manner, and depends on a uniformly
distributed external resource during all stages of growth. In one of the cases, where nei-
thermodel provided good fit to the data (Fig. 8), wewere nevertheless able to eliminate
Gompertzian growth, suggesting at least that the population is not monomorphic.

Analysis and predictions made in this section are based on our theory, summarized
in Table 1, but they of course require experimental verification. Nevertheless, should
this theory prove correct, it can provide invaluable tools for inferring information about
the nature of the population, i.e., whether it is monomorphic or polymorphic, and the
conditions under which the population is evolving, whether it can grow freely up to a
saturation stage or must depend on an external resource/limiting factor at all stages of
growth.

An example of such a population would be hormone-dependent tumors, such as
some breast and prostate cancers, among others (Wirapati et al. 2008; Jozwik and
Carroll 2012; Brisken 2013; Spring et al. 2016). Other examples could be nutrient-
related, such as phosphorus (Elser et al. 2007; Kareva 2013) or glucose and glutamine
(Kareva and Hahnfeldt 2013; Chang et al. 2015; Gillies and Gatenby 2015; Kareva
2015). Identification of such resources for each tumor might provide crucial guidance
into effective therapeutic avenues, such as with estrogen-dependent breast cancers
(Wirapati et al. 2008; Spring et al. 2016).

Our theory, if confirmed, can also allow making better predictions about further
population growth, since, even if the initial stages of growth look similar, over time
the shape of the growth curves varies depending on the model. Such analytical insights
can provide an additional biomarker and a predictive tool to complement experimental
research.
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