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Abstract We present a multiscale approach to model diffusion in a crowded envi-
ronment and its effect on the reaction rates. Diffusion in biological systems is often
modeled by a discrete space jump process in order to capture the inherent noise of bio-
logical systems, which becomes important in the low copy number regime. To model
diffusion in the crowded cell environment efficiently, we compute the jump rates in
this mesoscopic model from local first exit times, which account for the microscopic
positions of the crowding molecules, while the diffusing molecules jump on a coarser
Cartesian grid. We then extract a macroscopic description from the resulting jump
rates, where the excluded volume effect is modeled by a diffusion equation with space-
dependent diffusion coefficient. The crowdingmolecules can be of arbitrary shape and
size, and numerical experiments demonstrate that those factors together with the size
of the diffusing molecule play a crucial role on the magnitude of the decrease in diffu-
sive motion. When correcting the reaction rates for the altered diffusion we can show
that molecular crowding either enhances or inhibits chemical reactions depending on
local fluctuations of the obstacle density.

Keywords Macromolecular crowding · Stochastic reaction–diffusion simulations

1 Introduction

Living cells are spatially organized, e.g., eukaryotic cells have a confined nucleus
containing the DNA and reaction complexes are often bound to the cell membrane.
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To simulate reaction networks accurately, it is therefore important to incorporate the
molecules’ movement into the models and account for the time it takes for a signal to
transmit, e.g., from the nucleus to the membrane.

Moleculesmovebydiffusion throughbiologicalmedia such as the cytoplasm,which
is a non-solute medium, where an estimated 40% (Luby-Phelps 2000; Schnell and
Turner 2004) of the available space is occupied by macromolecules, such as proteins,
ribosomes, RNA and the cytoskeleton. The environment is called crowded, meaning
that the space is densely packed by molecules, but individual species are only present
at very low concentrations. Macromolecular crowding is especially important on the
cell membrane (Grasberger et al. 1986), where attaching actin filaments (Medalia et al.
2002) create barriers, that hinder the displacement of membrane bound molecules (Jin
and Verkman 2007; Krapf 2015). In mitochondria, more than 60% of the matrix can
be occupied by enzymes and proteins (Verkman 2002). Moreover, the extracellular
space between, e.g., brain cells (Hrabe et al. 2004), is also considered crowded.

The steric repulsions between molecules in a crowded environment force diffus-
ing molecules to move around obstacles, or “crowders,” this slows down diffusion.
New techniques such as fluorescence fluctuation analysis (Rienzo et al. 2014) have
shown that diffusion is not simply slowed down but that crowding can lead to anoma-
lous diffusion, where the mean square displacement (MSD) of the molecule is no
longer linear, but sublinear in time. As the crowder density increases, space is divided
into subdomains and becomes inhomogeneous. For this fractal space, the dimension
decreases to a non-integer and the MSD no longer follows the linear law applicable in
integer dimensions (Ben-Avraham and Havlin 2000; Havlin and Ben-Avraham 2002).

The change in the diffusion rate in a crowded environment is a hydrodynamic effect.
The excluded volume effect on the reaction rates is a thermodynamic consequence
(Hall and Minton 2003) and can be both impeding and promoting. While diffusion-
limited reaction rates are decreased due to the slower diffusion, transition-state-limited
reactions and dimerizations are accelerated (Ellis 2001) since intermediate products
reside longer in the vicinity of reaction complexes and dimers occupy less volume
than two monomers. Hindered diffusion also leads to localized reactions and a hetero-
geneous distribution of products, which increases intrinsic noise (Hansen et al. 2015).

Scaled particle theory (SPT) has been used to describe the thermodynamic effect
on the reaction rates in a crowded environment (Grima 2010; Hall and Minton 2003;
Ridgway et al. 2008). Another approach is to perform Brownian dynamics (BD) simu-
lations and fit the reaction rates to the microscopic results, (Lee et al. 2008; Smith et al.
2014). Berry (2002), Michaelis–Menten reaction dynamics are best fitted by fractal
kinetics and the results are verified bymicroscopic cellular automata (CA) simulations.
The fractal kinetics are modified in Schnell and Turner (2004) to a Zipf–Mandelbrot
distribution of the reaction rates.

To better understand the effects of excluded volume on both diffusion and reactions,
accurate reaction–diffusion simulations in the crowded cell environment are needed.
Themicroscopic approachesmentioned above are computationally very expensive due
to the high number of collisions in such a medium. In this paper we present a novel
multiscale approach to simulate diffusion of a spherical particle surrounded by inert
and inactive crowders of any size and shape.We resolve the microscopic positions and
shape of the crowders initially to precompute jump rates for themovingmolecules. The
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molecule follows a random walk on a coarse Cartesian grid that no longer resolves the
multiple crowders for computationally more efficient simulations. With our approach
we can connect a given distribution of obstacles to a space-dependent diffusion map
which can be used to compute space-dependent reaction rates representing reactions
in the crowded environment. The method can easily be extended to moving crowders,
and an advantage over other techniques such as SPT is the versatility in the shape
of the crowders. The upscaling to a coarse grid makes the stochastic simulations
computationally much more efficient than BD and CA simulations.

In the next sectionwe present existingmodels of spatial simulations in systems biol-
ogy and how they incorporate crowding effects. We then present how the microscopic
motion of a molecule can be used to calculate its first exit time (FET) from domains,
which provides the jump rates in a coarse grained discrete jump process on the meso-
scopic level. We continue by extending the FET approach to include macromolecular
crowders. In Sect. 3.2, we use the jump coefficients and compute a space-dependent
diffusion map for the macroscopic level and show in Sect. 3.3 how that affects the
reaction rates in the crowded environment. We conclude with numerical experiments
in the final section.

Vectors and matrices are written in boldface. A vector u has the components ui ,
and the elements of a matrix A are Ai j . The derivative of a variable u with respect to
time t is written ut .

2 Spatial Modeling in Systems Biology

In this section we first present existing models of diffusion simulations in systems
biology and then describe how they can be adapted to include macromolecular crowd-
ing.

2.1 Models of Diffusion in Dilute Media

Molecules undergoing diffusion and reactions inside living cells are often modeled by
the reaction–diffusion equations. These are continuous, deterministic partial differen-
tial equations (PDEs) describing the time evolution of the concentrations ofmolecules.
For a diffusing molecule the concentration u(x, t) is described by the diffusion equa-
tion

ut (x, t) = γ0�u(x, t), x ∈ � (1)

with diffusion coefficient γ0 and suitable boundary conditions on ∂�. To include reac-
tions corresponding terms are added. This macroscopic description is accurate in the
limit of large molecule numbers, when stochastic fluctuations are small and the mean
value is the quantity of interest. Important molecules such as DNA or transcription
factors are, however, only present at very low copy numbers inside living cells. It
has been observed in experiments (Elowitz et al. 2002; McAdams and Arkin 1997;
Metzler 2001; Munsky et al. 2012; Raj and Oudenaarden 2008; Swain et al. 2002)
and shown theoretically (Gardiner et al. 1976; McQuarrie 1967) that stochastic fluc-
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tuations play an important role and a discrete stochastic description is more accurate
than the deterministic equations.

We distinguish two levels of accuracy of stochastic models. In the mesoscopic
model the domain � is partitioned into N non-overlapping voxels Vi with nodes xi
at the center. The state vector y(t) contains the number of molecules yi (t) in each
voxel Vi at time t . The voxels are small enough that the molecules can be considered
well-mixed inside so that reactions can occur between molecules residing in the same
voxel. An individual molecule can jump from a voxel Vi to a neighboring voxel V j to
model diffusion. The diffusion master equation (DME) describes the time evolution
of the probability to be in state y of a system with only diffusion

∂p(y, t)
∂t

=
N∑

i=1

N∑

j=1

λi j (y − µi j )p(y − µi j , t) − λi i (y)p(y, t), (2)

where λi j is the jump propensity from Vi to V j and λi i = ∑N
j=1 λi j is the total

propensity to leave voxel Vi . The transition vector µi j is zero except for μi j,i = −1
and μi j, j = 1. Let θi j be the splitting probability, that a jump from Vi goes to V j , then

λi j = θi jλi i . (3)

By including reaction terms in a similar manner, the DME can be extended to the
reaction–diffusion master equation (RDME). In the presence of bimolecular reactions
there exists no analytical solution, and a numerical solution is impossible due to the
high dimension of y. Instead, one samples trajectories of the systemwith the stochastic
simulation algorithm (SSA), first presented by Gillespie (1976) for only reactions and
improved in Cao et al. (2005) and Gibson and Bruck (2000). The algorithm was
extended to space-dependent problems with a Cartesian partitioning of the domain
in Elf and Ehrenberg (2004) implemented in Hattne et al. (2005). The propensities
λi i are here used to generate random numbers for the time until the next jump. To
represent the complicated geometries present in cells the algorithm was extended to
curved boundaries in Isaacson and Peskin (2006) and adapted for unstructured meshes
in Engblom et al. (2009) with software in Drawert et al. (2012) and Hepburn et al.
(2012).

In themore accuratemicroscopicmodel themolecules are tracked along their Brow-
nian trajectories in a continuous space, continuous time Markov process. Brownian
dynamics (BD) simulations discretize time and sample the positions of a particle at
these discrete time points from a normal distribution. Versions of this method are
for example implemented in the software packages Smoldyn (Andrews et al. 2010),
ReaDDy (Schöneberg et al. 2014) and MCell (Kerr et al. 2008). Another approach is
called Green’s function reaction dynamics (GFRD) (van Zon and tenWolde 2005a, b),
where protective domains are constructed around individual molecules in which they
cannot interact with other molecules. This is an event-driven algorithm with an asyn-
chronous time step that is chosen such that the probability to exit the protective domain
is small. Takahashi et al. (2010) the algorithm is improved to eGFRD using the exact
first exit times from Donev et al. (2010) and Oppelstrup et al. (2009) to make it exact
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and more efficient. The exit times and exit positions from these domains are sampled
to propagate the system until molecules are close enough to interact without sampling
all the intermediate jumps.

2.2 Include Macromolecular Crowding

The macroscopic, mesoscopic and microscopic models presented above are designed
to simulate diffusion in a dilute medium. The microscopic model automatically incor-
porates crowding effects since the molecules are modeled as hard spheres with a given
volume, but it becomes computationally very expensive in a densely packed space of
inactive crowders, because the protective domains around molecules will be small and
many short jumps will be simulated before meeting a potential reaction partner.

Cellular automata (CA) have been used inBerry (2002), Cianci et al. (2016), Schnell
and Turner (2004) and Takahashi et al. (2005) to simulate diffusion in a crowded
environment. This is a lattice-, or voxel-, based microscopic approach, where each
site can hold one molecule and crowders are represented as already occupied lattice
points. The jump length is here the size of a molecule which also leads to expensive
simulations with many short jumps and the shape of the molecules corresponds to the
shape of the chosen lattice. The choice of the lattice, moreover, influences the excluded
volume effect (Grima and Schnell 2006; Meinecke and Eriksson 2016).

Roberts et al. (2013) amesoscopic approach is usedwhere each voxel can holdmore
than one molecule. After distributing immobile crowders it is decided which voxels
are accessible and which are full. The crowders can move in Fanelli and McKane
(2010) and Taylor et al. (2015), and the jump propensity to an adjacent node is scaled
by the number of available spaces in the target voxel. Macroscopic nonlinear PDEs
are then derived in Fanelli and McKane (2010) to model diffusion in the crowded cell
environment, and the results are validated by physical experiments in Fanelli et al.
(2013). This approach is extended in Penington et al. (2011) to derive nonlinear diffu-
sion equations modeling more complicated interactions than steric repulsion between
the molecules. Similarly, the averaged occupied volume in the whole domain is used
in Landman and Fernando (2011) to rescale the jump propensities. These approaches
at most take the averaged occupied volume in the target voxel into account and neglect
the microscopic positions, the shape of the molecules and the surrounding medium.
Hence, only an averaged behavior is observed and the MSD is linear like for normal
diffusion but with a reduced diffusion constant (Phillips et al. 2008):

〈x2(t)〉 = (1 − φ)γ0t, (4)

where φ is the occupied volume fraction.
In this paper we present a novel multiscale approach to simulate molecular crowd-

ing. We will use the microscopic information of the crowders’ positions to recalculate
the jump propensities on an overlying mesoscopic mesh. Instead of simulating diffu-
sion in the detailed environment, as in BD, we will have to solve many PDEs on small
subdomains resolving the microscopic positions of the crowders. This is similar to
homogenization techniques used, e.g., for flow simulations in porous media (Brown
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and Peterseim 2014;Målqvist and Peterseim 2014). The crowding molecules can have
any shape, and this approach is especially useful when the crowded environment is
stationary or evolves on a much slower timescale than the diffusing molecule, so that
the jump coefficients can be precomputed and used for a long simulation time. This
is reasonable since the macromolecules responsible for the majority of occupied vol-
ume are ribosomes, microtubules and actin filaments (Ellis 2001), which are large and
hence diffuse on a slower timescale than for example transcription factors. Moreover,
it was shown in Rienzo et al. (2014) that anomalous behavior is most likely to happen
in a stationary environment, since otherwise averaging effects simply reduce the coef-
ficient of normal diffusion. But, it is important to mention that by computing statistics
our method can be made efficient also for moving crowders.

3 Upscaling of the Crowding Effects

We will now present a method of upscaling the detailed information about diffusion
in a crowded environment on the microscopic level to the mesoscopic simulation
framework and further to the macroscopic description. Moreover, we describe a way
of accounting for crowding effects in the reaction dynamics on the mesoscopic and
macroscopic levels.

3.1 Microscopic to Mesoscopic: First Exit Times

In this section we will use the methods developed for microscopic simulations of
Brownian motion with protective domains (Oppelstrup et al. 2009), to derive the jump
propensities λi i and splitting probabilities θi j for themesoscopicmodel. For simplicity
the illustrations are given in dimension d = 2, but themethod can be extended to d = 3
without modification.

3.1.1 First Exit Times

Let c(x, t) be the probability distribution that a molecule in Brownian motion is at x at
time t and has not yet exited a domain ω. If x0 is the starting position of the molecule
diffusing with γ0, then c(x, t) fulfills

ct (x, t) = γ0�c(x, t), x ∈ ω, (5)

c(x, t) = 0, x ∈ ∂ω,

c(x, 0) = δx0 .

The homogeneous Dirichlet boundary condition here models that the particle is
removed once it hits the boundary. The survival probability of the particle inside
ω until time t is then

S(t) =
∫

ω

c(x, t)dω. (6)

123



2678 L. Meinecke

By Gauss’ formula the probability density pω(t) that the particle leaves ω at t is

pω(t) = −∂S(t)

∂t
= −γ0

∫

∂ω

n · ∇c(x, t)ds, (7)

where n is the outward normal. The expected time E for the molecule to leave ω for
the first time is given by

E =
∫ ∞

0
tpω(t)dt =

∫ ∞

0
S(t)dt. (8)

We now use this FET approach to compute the jump propensities λi i in the space
discrete mesoscopic model. We use a Cartesian grid with space discretization h and
N nodes xi in the domain �. The voxels Vi are here defined by the dual mesh, see
Fig. 1b. Since the molecules are considered well-mixed inside the voxels, the domain
ω that diffusing particles have to leave to bewell-mixed in the next voxel has to include
the centers of the neighboring voxels. On a Cartesian grid we showed in Lötstedt and
Meinecke (2015) that solving (5) on the circleωi with center xi and radius h (similarly
a line of length 2h in 1D or a sphere with radius h in 3D) and choosing x0 = xi gives
the correct exit time from node i , see Fig. 1b. Observe that ωi � Vi and ωi ∩ ω j �= ∅
for neighboring nodes i and j . Using (6) and (8) the expected exit time Ei from Vi is

Ei = h2

2dγ0
, (9)

see Gardiner (2004). Since the jump propensity is the inverse of the exit time this
agrees with the mesoscopic rate on Cartesian grids

λi i = 2dγ0

h2
= E−1

i . (10)

The probability to leave ωi through a given part of the boundary ∂ωi j at time t is given
by the proportion of fluxes

θi j (t) =
∫
∂ωi j

n · ∇c(x, t)ds
∫
∂ωi

n · ∇c(x, t)ds
, (11)

and we can compute the expected probability to jump to a certain neighboring voxel
by

θi j =
∫ ∞

0
θi j (t)pωi (t)dt = −γ0

∫ t

0

∫

∂ωi j

n · ∇c(x, t)dsdt. (12)

Choosing ∂ωi j to be the quarter segment of the boundary closest to x j , see the blue
line in Fig. 1b, yields the splitting probability θi j = 0.25 as expected on a Cartesian
grid. The method has been extended to a rectangular grid and possible jumps to the
diagonal neighbors in Meinecke and Lötstedt (2016).
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By conditioning on the first step, these time-dependent equations can be converted
to equations describing directly the expected quantities (Redner 2001). The expected
exit time for amolecule starting to diffuse in x from the domainωi fulfills the Poisson’s
equation

γ0�E(x) = −1, x ∈ ωi ,

E(x) = 0, x ∈ ∂ωi . (13)

Equivalently, the expected splitting probability for this molecule to exit through the
boundary ∂ωi j can be computed by the harmonic measure (Øksendal 2003, Ch. 7) and
fulfills the Laplace equation

�θi j (x) = 0, x ∈ ω,

θi j (x) = 1, x ∈ ∂ωi j ,

θi j (x) = 0, x ∈ ∂ωi\∂ωi j . (14)

We solve Eqs. (13) and (14) and evaluate them at xi instead of solving the time-
dependent equations and the integrals above. It is sufficient to solve (14) three times
for each node since

∑4
j=1 θi j = 1.

In the following, we will not simply use the circle ωi to compute the mesoscopic
rates, but we will prohibit the molecule from diffusing where the crowders are located.

3.1.2 Include Crowding Molecules

The crowding molecules are represented as obstacles or holes in the domain ωi with
reflecting boundary conditions. Equations (5),(13) and (14) describe the diffusion of
point particles. To account for the volume of the diffusing molecule its radius is added
to the excluded volume for the center of mass, see Fig 1a. We depict the crowder as a
circle with radius R, but it is important to mention that any shape is possible for the
crowding molecules, see Fig. 1c. The shape of the small (as compared to crowders)
diffusing molecule is, however, restricted to circles or spheres with radius r .

Solving (13) and (14) numerically on the perforated domain ωi means that the
crowding molecules have to be resolved by a fine mesh. But, we have divided the
global problem into N smaller local subproblems (one protective domain ωi around
each node i). For each subproblem we have to solve 4 PDE’s ((13) and three equations
of type (14)). These equations have to be solved only once in a precomputing step
which is straight forward parallelizable. This is similar to the approach in Brown
and Peterseim (2014) where deterministic local equations are solved on media with
porous microstructures. The costly stochastic simulations of the spatial SSA are then
performed on the coarse mesh with N nodes, that do no longer resolve the individual
obstacles. The boundary conditions on the global domain � (reflective or absorbing)
are implemented by posing these conditions on the secants of the half or quarter circles,
which are the protective domains for boundary nodes, see Fig. 2a. In Fig. 2b we briefly
illustrate how the first exit time approach can be further used to compute the jump
rates for a Cartesian grid, discretizing a domain � with a curved boundary. Here, the
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Fig. 1 (Color figure online) a Excluded volume (gray and red) for the center of mass of the diffusing
molecule (blue). b Cartesian mesh and protective domain ωi without crowding. c Solution of (13) with the
effect of molecular crowding

(a) (b) (c)

Fig. 2 a Boundary treatment. b Using the first exit time approach to compute Cartesian jump rates on the
boundary of a curved domain �. c Model error when interpreting molecules as well-mixed and jumping
between nodes simultaneously

part of ∂ωi originating from the circle is imposed with the boundary conditions in (13)
and (14) and the part originating from ∂� with the boundary condition valid on �,
which is usually reflecting or (partially) absorbing. The circle is then divided in the
same way as before to compute the splitting probabilities to the neighboring nodes
remaining inside �.

The simultaneous interpretation of the moving molecules being well-mixed inside
the voxels Vi and jumping from node xi to x j leads to problems when including crow-
ders. Consider the case where just the center xi is blocked, but voxel Vi is sufficiently
empty to be traversed, see Fig. 2c. In this case the jump into voxel Vi is possible
(λ j i > 0), but the expected time to leave Vi is infinity and hence the molecules get
trapped insideVi . This does not agree with themicroscopic situation, wheremolecules
diffuse around xi . To avoid this unrealistic trapping, all jump propensities λ j i to voxels
whose vertex is isolated are set to zero. In the case when a node xi is covered by the
excluded volume (not pictured) Eqs. (13) and (14) cannot be evaluated. Setting all λ j i

to zero in this scenario would over estimate the crowding effect considerably, so we
constrain the crowder distribution such that xi remains inside ωi .
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ωi

xixj

(a)

ωi

xixj

(b)

Fig. 3 Not only the occupancy φ but also the microscopic positions and orientations of the crowding
molecules affect the jump propensities λi j = θi jλi i . a θi j = 0. b θi j > 0.25

By using the expected first exit time from ωi around xi to calculate the jump
coefficients in a crowded environment it is the crowder distribution inside the whole
circle ωi that affects the coefficients λi i and θi j . This differs from other approaches
to simulate diffusion in a crowded environment with a discrete space jump process.
Landman and Fernando (2011), Roberts et al. (2013) and Taylor et al. (2015) it is only
the percentage of occupied volume in the target voxel V j and in Grima and Schnell
(2007) the difference in occupancy between V j and the origin Vi that affect the jump
rate λi j = θi jλi i . In our approach the microscopic positions of all crowding molecules
inside ωi are resolved and influence the jump coefficients. In the case of non-spherical
crowding molecules also the orientation is taken into account and long thin molecules
with small volume can have a significant effect on λi j and θi j , see Fig. 3. Note that
in contrast to normal diffusion the jump propensities are no longer symmetric, i.e., in
general λi j �= λ j i and λi j �= λim for j �= m.

3.1.3 Statistics on the Mesoscopic Level

Solving N local problems where complicated geometries have to be resolved, see
Fig. 1c, is computationally expensive and will be inefficient if the crowding molecules
move and the coefficients λi i and θi j have to be recomputed frequently. Since the
crowders’ exact location is generally unknownwe can compute statistics on a reference
domain ωi for given a percentage of occupied volume, a given shape and size of the
molecules and h. Instead of solving N PDEs of type (13) and 3N of type (14) at each
time step, we can then sample the coefficients λi i and θi j from these precomputed
distributions. This will be especially applicable for moving crowders, where new
coefficients can be drawn from the distributions on the timescale of their diffusion.

3.2 Mesoscopic to Macroscopic: A Space-Dependent Diffusion Map

In this section we derive a macroscopic diffusion equation with a space-dependent
diffusion coefficient γ (x), representing the effect of macromolecular crowding. We

123



2682 L. Meinecke

approximate the mesoscopic jump process by Fickian diffusion with a constant diffu-
sion coefficient γi inside each voxel Vi . The mesoscopic expected exit time Ei from a
node xi or voxel Vi is connected via (9) to this diffusion coefficient γi . So we obtain
a modified version of the macroscopic deterministic diffusion equation (1)

ut (x, t) = ∇ · (γ (x)∇u(x, t)), x ∈ �, (15)

where

γ (x)|Vi
= γi = h2

2dEi
. (16)

For transferring the mesoscopic jump rate to the less detailed macroscopic level we
only use λi i and the random walk becomes symmetric in each voxel, i.e., θi j = θim =
0.25 for j �= m, but the asymmetry between back and forth jumps is preserved, i.e.,
λi j �= λ j i . Alternatively γ (x) can be defined on the edges ∂Vi j (see Fig. 1b) of voxel
V j by γi j = h2/2(λi j + λ j i ). This corresponds to a mesoscopic jump process with
symmetry in λi j = λ j i and non-symmetric jumps out of a box λi j �= λim for j �= m.

The anomalous diffusion is here modeled by a space-dependent diffusion coef-
ficient. A different description of anomalous diffusion on the macroscopic level is
fractional PDE’s (FPDE’s), which are used to derive a mesoscopic description in
Blanc et al. (2016), where molecules change their internal state, i.e., their diffusion
constant, spontaneously in time. This correlates to our model when the crowding
macromolecules are moving and the diffusion constant hence also becomes time-
dependent: γ (x, t), in Engblom et al. (2017)we connect statistics fromourmesoscopic
description to the internal states model in Blanc et al. (2016) and hence to a FPDE
description on the macroscopic level.

In the next section we will use the diffusion map γ (x) to derive space-dependent
reaction rates.

3.3 Reactions

Approaches to correct the reaction rates for crowding effects use either time-dependent
reaction rates k(t) (Berry 2002; Schnell and Turner 2004) or static modifications
(Ellis 2001; Grima 2010; Grima and Schnell 2007). Similarly to the latter we will use
the space-dependent diffusion coefficient γ (x) from the previous section to compute
mesoscopic reaction rates ki inside each voxel Vi . This static rate becomes time-
dependent ki (t) if we model moving crowders. According to Hellander et al. (2015)
the dilute mesoscopic rate k0 for bimolecular reactions in a three-dimensional cube of
volume h3 is linked to the effective rate kCK by Collins and Kimball (1949) by

k0 = kCK /h3, kCK = 4πσγ0kr
4πσγ0 + kr

, (17)

where kr is the intrinsic reaction rate and σ the sum of the two reaction radii. In 2D
there is no equivalent formula, but approximations are derived in Fange et al. (2010)
and Hellander et al. (2012).
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Assuming constant Fickian diffusion inside each voxel as in Sect. 3.2, we can now
compute mesoscopic reaction rates ki for each voxel by inserting the γi from (16) into
(17)

k(x) = 1

h3
4πσγ (x)kr

4πσγ (x) + kr
and k(x)|Vi

= ki . (18)

We can now add a space-dependent reaction term to the PDE (15) using these space-
dependent reaction rates ki . To model reactions under excluded volume effects on the
mesoscopic level the reactions inside each voxel Vi have their specific reaction rate ki .

In this model only bimolecular associations are affected bymacromolecular crowd-
ing, since the hindered diffusion changes the hitting time for the reaction partners. In
the internal states model (Blanc et al. 2016) also birth-death processes and isomeriza-
tions become anomalous. It is, however, questionable if it is meaningful to talk about
birth-death processes, when considering excluded volume effects, since all reactants
and products also occupy space. With scaled particle theory (Grasberger et al. 1986)
also dissociation events are affected by the excluded volume which is due to two
spherical molecules having a different activity coefficient than one molecule with the
same total area. In our model, dissociation is not affected either.

In Sect. 4.4 we perform numerical experiments to examine for which parameters
crowding molecules enhance or decrease the rate of bimolecular reactions.

4 Numerical Experiments

In the following experimentswe solve (13) and (14) in 2DwithCOMSOLMultiphysics
onωi , i = 1 . . . N . To be able to evaluate the solutions at xi the crowders are randomly
distributed such that the nodes xi remain inside the perforated domain ωi and are not
cut out by the excluded volume.

4.1 Effect of Crowding on Jump Propensities

We first investigate how the jump propensity λi i changes in different crowding situ-
ations. We therefore compute λi i on a reference domain ωi with h = 1 and different
crowders and sizes of the moving molecule r and compare it to the jump rate λ0,i i in
dilutemedium. InFig. 4,we compare themeanvalue of the jumppropensitiesE[λi i ] for
different distributions of crowders and an increasing percentage of occupied volume φ

with the jump propensities when no crowders are present, where E[λ0,i i ] = λ0,i i = 4.
We test two different sizes of crowding molecules for both rectangles and spheres.
The reference line is the linear scaling where λi i = (1 − φ)λ0,i i as in Landman and
Fernando (2011) and Phillips et al. (2008).

We observe that small obstacles (blue and orange in Fig. 4) hinder diffusion more
than big crowders for the same percentage of occupied volume, since they have more
reflecting surfaces than larger crowders. The same holds for elongated rectangular
crowders (green and orange in Fig. 4), as they create long barriers without occupying
a lot of volume. In three space dimensions the crowding effect is weaker and higher
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Fig. 4 (Color figure online) The mean value of the mesoscopic jump coefficients in the crowded environ-
ment E[λi i ] compared to E[λ0,i i ] = 4 in dilute media and its dependence on the occupancy φ. Averages
are taken over M = 100 different crowder distributions. The obstacles are either spheres (blue and red)
with radius R or rectangles (orange and green) with ratio of width to length equal to 20. The dashed ref-
erence line corresponds to Eq. (4) when only the averaged occupied volume in the target voxel is taken
into account. The spherical moving molecule has radius r . In (e) we compare the mesoscopic coefficients
with the results from a Brownian dynamics simulation, where we generate 104 trajectories for 10 different
crowder distributions with the software Smoldyn

occupation fractions φ would be necessary for a similar slow down. Since multiple
small spheres or a cylinder of the same size as a large sphere also has larger surface
areas in three dimensions, the same relative effects of crowders of different shapes
are expected. An increasing size r of the diffusing molecule leads to an increase
in the crowding effect, which is intuitive, since a bigger molecule finds less holes
through which to escape. These results agree with the findings in Muramatsu and
Minton (1988) and Ellery et al. (2015). We see that the averaged linear reduction in
the jump propensity can be a good model when the diffusing molecule is about a
tenth of the size of the crowders, but over- or underestimates the effect of occupied
volume when the diffusing species is smaller or bigger, respectively. Since an average
protein has a radius of ca. 2nm (Phillips et al. 2008) and the biggest macromolecules
in the cell, the ribosomes, have a radius of up to 15nm the linear correction is a good
approximation for many scenarios. The reduction in jump propensity, however, starts
to behave exponentially, as in Grima and Schnell (2007), for large diffusingmolecules.
The case r = 0 corresponds to a point particle which is irrelevant when simulating
excluded volume effects, but we include it to show the limit for very small particles. To
confirm these mesoscopic jump rates we compare them to the inverse of the expected
exit time computed by a Brownian dynamics simulation. We simulate 104 trajectories
with the open source software Smoldyn (Andrews et al. 2010; Andrews and Bray
2004) for 10 different crowder distributions and equally sized crowding and moving
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Fig. 5 (Color figure online) Standard deviation σ(λi i /λ0,i i ) around the mean value of the change in jump
coefficients in (a) and (d) in Fig. 4

molecules with R = r = 0.1 and see in Fig. 4e that the computationally expensive
microscopic results agree well with the mesoscopic coefficients. In our previous work
(Meinecke and Eriksson 2016) we have compared the computational time for detailed
Brownian dynamics simulations on the full domain � with microscopic grid-based
methods and measured a 42-fold speedup. Coarser mesoscopic simulations on � will
be even faster than the CA simulations and our method hence promises a great safe in
computational time compared to detailed BD simulations.

In Fig. 5, the standard deviation σ(λi i/λ0,i i ) initially increases as more and more
crowders are added but converges toward zero when the system approaches the state
where no escape to the boundary is possible.

Simply rescaling the jump propensity λi i for each node i by a constant factor
will lead to normal diffusion at reduced rate. To observe anomalous diffusion in the
crowded environment it is helpful to investigate themean square displacement (MSD).

4.2 The Mean Square Displacement

As mentioned in Sect. 2.2 the MSD is linear in time for normal diffusion

〈x2(t)〉 = 2dγ0t, (19)

but for anomalous diffusion the relation is no longer linear

〈x2(t)〉 = 2dγ0t
α, (20)

where α < 1 for subdiffusion. Rienzo et al. (2014), Galanti et al. (2014) and Mom-
mer and Lebiedz (2009) it was shown that diffusion in a crowded environment can
be modeled by a temporal change in the diffusion constant. First the molecule dif-
fuses normally with rate γ0 for very short timescales, before it undergoes a transient
anomalous phase with a changing diffusion coefficient γ and finally stagnates into
normal diffusion at a lower diffusion rate γ∞. The initial normal diffusion represents
the time the molecule diffuses in the solution before it encounters the first adjacent
macromolecule and is slowed down by collisions. On a large timescale the molecule

123



2686 L. Meinecke

(a)

Free 
diffusion 

Intermediate 
regime 

Diffusion in 
dense medium 

tc t

γ0

γ∞x
2
(t
)

/
2 d

t

(b)

Fig. 6 (Color figure online) a Diffusion in the crowded cell environment: initial free diffusion with γ0
(green). After colliding with the first macromolecules the observed diffusion is slowed down and the
molecule’s diffusion coefficient decays (orange) to the longtime behavior of slower diffusion with constant
γ∞ in a dense medium (red). bMSD curve for diffusion in a crowded medium (solid line) and as reference
normal diffusion (dashed line). The pale line corresponds to an ideal well-mixed medium and the dark line
to a realistic medium with stochastic fluctuations in the positions of the crowders

appears to diffuse in a denser medium instead of around obstacles, hence the reduced
diffusion rate γ∞, see Fig. 6. If the crowding macromolecules are distributed evenly
the MSD decays monotonically between γ0 and γ∞ (pale line), but due to stochastic
variations in the medium it fluctuates before converging to γ∞ (dark line). In Fig. 6a
we only depict collisions with the macromolecules responsible for excluded volume
effects, but note that there aremany collisionswith themuch smaller solventmolecules
responsible for the Brownian motion.

Since we choose h > R a jump in the mesoscopic model spans a number of
macromolecules and the initial free diffusion phase is not resolved and we start to
observe diffusion after the first jump of length h that occurs after a critical time tc
which can be approximated by

tc ∼ h2

2dγ0
. (21)

In the following we will plot the 〈x2〉/2dγ0t in log-log-scale for different crowd-
ing situations to examine when anomalous behavior occurs. Let p(t) ∈ RN be the
probability vector for a diffusing molecule, such that pi (t) is the probability that the
molecule is in voxel Vi at time t . As described in Sect. 2 p(t) evolves by the master
equation

pt = Dp(t), p(0) = p0, (22)

where Di j = λ j i for i �= j and Dii = −λi i . The initial probability distribution p0
is (0, . . . , 1, . . . , 0)T with one at the starting node x0. We choose the discretization
such that D is small enough to solve (22) numerically and compute the mean square
displacement by

〈(x(t) − x0)2〉 =
N∑

i=1

pi (t)(xi − x0)2. (23)

In the following experiments we discretize the square [0, 1] × [0, 1] into N = n2

voxels with space discretization h = 1/(n−1). If not mentioned otherwise we release
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Fig. 7 (Color figure online) The MSD on a mesoscopic grid with h = 0.025 for different distributions of
spherical crowders with R = 5×10−3 and a moving molecule with r = 5×10−4. a Two different crowder
distributions (red and blue), where we vary the starting position of diffusion from the center [0.5, 0.5] (solid
line) to one voxel to the right/left and up/down [0.5 ± h, 0.5 ± h] (dashed lines) to show the sensibility of
the MSD plot to the local environment. The crowding coefficient is φ = 0.4, and the diffusion constant is
γ0 = 1. b By varying the diffusion coefficient γ0 for the two extreme distributions highlighted in gray in
(a) we see that the diffusion coefficient only affects when the molecules undergo anomalous diffusion. c
Changing the crowding percentage φ for γ0 = 1 for the same two distributions as in (b) affects both the
longtime reduced diffusion and the duration of the anomalous phase. d Varying the space discretization h
for the red distribution in (a) for all 5 starting positions. We see that a finer discretization better resolves
the transient regime

the molecules in [0.5, 0.5] at time t = 0 and choose n = 41. To avoid boundary effects
we set homogeneous Dirichlet boundary conditions on ∂� and show the solutions as
long as more than 99% of the mass is preserved, i.e.,

∑N
i=1 pi (t) > 0.99.

4.2.1 The Effect of γ0 and φ

In Fig. 7a we plot MSD/(4γ0t) in the crowded environment for different distributions
of crowders. Lines in the same color show diffusion in the same environment with
starting positions [0.5, 0.5] (solid) and [0.5±h, 0.5±h] (dashed). We clearly observe
the anomalous behavior sinceMSD/(4γ0t) is not constant in time and the fluctuations
due to the variations of the local environment around the starting position, but for longer
times they converge toward the same longtime behavior, before the boundary effects
become apparent.

We choose the distributions and starting positions of the curves highlighted in gray
to examine the effect of γ0 and φ on the MSD. In Fig. 7b we observe that the diffusion
constant γ0 only affects when the molecule undergoes anomalous diffusion, but the
length of the anomalous phase and the longtime behavior are independent of γ0. The

123



2688 L. Meinecke

percentage of occupied volume φ on the other hand changes both the average diffusion
constant in the longtime behavior and the duration of the transient regime of anomalous
diffusion, Fig 7c.

4.2.2 Dependence on the Space Discretization h

The mesoscopic model is designed for a voxel size h considerably larger than the
molecular radius in order to save computational effort compared to a microscopic
simulation. For h → 0 the dilute and well-mixed assumptions in each voxel do no
longer hold, and the mesoscopic model is known to break down for the simulation
of bimolecular reactions (Isaacson 2009). Different corrections to the reaction rates
have been suggested (Gillespie et al. 2013) and the references therein, but a minimal
hmin > R remains and space cannot be resolved any finer in the mesoscopic model.
For a finer resolution one has to switch to microscopic models, such as BD or CA, and
we examine the effect of h only for h � R. A larger h shifts the critical time tc after
which we start to observe the molecule’s motion to the right in Fig. 6b, so for very
large h we will only see the longtime behavior. In Fig. 7d we see that the initial faster
diffusion with γ ∼ γ0 is less resolved for large h where the trajectories start at a much
later time. Furthermore, the boundary effects become apparent earlier for a larger h,
but all discretizations are expected to converge toward the same longtime behavior.

4.3 Comparison of Mesoscopic and Macroscopic Simulations

The MSD is only one quantity of interest to examine, but since it is a mean not all
features are captured andwewill now compare the distributions of molecules resulting
from either a mesoscopic or macroscopic simulation. Again, we discretize the square
[0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions into 41 nodes in each
direction and let molecules start diffusing in (0.5, 0.5) in an environment with rectan-
gular crowders of different sizes. We solve (22) once with the mesoscopicD and once
with D̃, where the off-diagonal elements are all equal to λi i/4, corresponding to a finite
difference approximation of themacroscopic equationwith the space-dependent diffu-
sion constant γ (x) derived from the λi i ’s. In Fig. 8 the macroscopic model agrees with
the mesoscopic results for small and evenly distributed crowding molecules, whereas
for long barriers only the mesoscopic approach simulates the expected behavior. This
is due to the symmetrization of D̃, so that onlyD can capture the asymmetric diffusion
close to the barriers. The diagonal barriers are not completely impermeable in the
mesoscopic model since a small part of the boundary ∂ωi j remains.

4.4 Reaction Rates

Due to the reduction in diffusion in a crowded environment and (18) the overall reaction
rate is decreased. It has, however, been shown (Grasberger et al. 1986; Schnell and
Turner 2004), that protein associations can also be enhanced. We examine the mean
time Er

j until the bimolecular reaction
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Fig. 8 (Color figure online) Mesoscopic and macroscopic simulations with crowders of different sizes and
a moving molecule with radius r = 10−3 starting in the center of the domain (red dot). The heat maps
show the probability distribution p(0.5) of the location of the diffusing molecule at t = 0.5, which is the
solution to Eq. (22) with homogeneous Dirichlet boundary conditions. a Rectangles of size 0.0005 × 0.01
and φ = 0.01. b, c The mesoscopic (D) and symmetrized macroscopic (D̃) simulation results with the
distribution in a, respectively. d 5 rectangles of size 0.004× 0.8. e, f The mesoscopic (D) and symmetrized
macroscopic (D̃) simulation results with the distribution in (d), respectively

A + B
kr−→ C (24)

happens, where reactant A is confined to voxel Vi , and molecule B starts diffusing in
voxel V j at time t = 0, see Fig. 9a. Due to molecular crowding we assume a simplified
space-dependent diffusion map with γi < γ0 inside Vi and γ < γ0 in the rest of the
domain. With ki given by (18) and λi i by (10) we can use conditioning on the first
step to compute the expected time until the reaction happens:

Er
i = ki

ki + λi i

1

ki + λi i
+ λi i

ki + λi i

[
1

ki + λi i
+

∑

m

θim E(xm) + Er
i

]
(25)

Er
j = E(x j ) + h2 + 4γi

∑
m θim E(xm)

h2ki
, (26)

where E(xm) is the expected time it takes a molecule located in the neighboring voxel
Vm to jump into voxel Vi and can be computed by solving

pt (t) = (D − Ki )p(t), p(0) = p0, (27)
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Fig. 9 (Color figure online) a Two-dimensional projection of the three-dimensional experimental setting
where a B molecule (blue) starts diffusing in x j = (0.7, 0.5, 0.5) and reacts with A (red) that is confined
to voxel Vi with xi = (0.5, 0.5, 0.5) (red shaded region). Due to an uneven distribution of crowders we
assume that the diffusion rate is γi inside Vi and γ [vertical dashed lines in (b, c)] in the rest of the domain.
In (b, c) we compare the time it takes to react in this crowded environment Erj to the time it takes in an

uncrowded environment Erj,0 with γ0 = 1 for different intrinsic reaction rates kr . b γ = 0.7. c γ = 0.9

E(xm) =
∫ ∞

0

N∑

k=1

|Vk |pk(t)dt, (28)

where Ki models a sink at node xi and is the zero matrix except for a suitably large
Kii (e.g., Ki,i = 109) and p0 is the zero vector except for p0,m = 1/h3, see Meinecke
et al. (2016) for a derivation. We solve these equations numerically in 3D for a cube
with length L = 1 and a uniform discretization with h = 0.1 in space and reflecting
boundary conditions. The voxel Vi , where the reaction happens is chosen to be the
center voxel, such that E(xm) are equal for all 6 neighbors. The diffusing molecule
B starts in x j = (0.7, 0.5, 0.5). In Fig. 9 we compare the mean binding time in the
crowded Er

j environment with different γi and γ to the time Er
j,0 it takes to react

in a dilute solution where γ (x) = γ0 = 1. The data points with scaled error bars
(±( σ√

ME
r
j
+ σ0√

ME
r
j,0

)) are fromaSSAsimulation of the reaction–diffusion processwith

M = 200 trajectories for kr = 10−4 and kr = 10−3 and M = 500 for kr = 5× 10−3

and kr = 10−2.
An overall slower diffusion rate γ < γ0 as a result of obstacles reduces the rate

of bimolecular reactions (18) in each voxel. But, due to an uneven distribution of
crowding agents compartmentalization with locally differing diffusion rates can occur
inside the cells. In this case Fig. 9 shows that our model of reaction–diffusion dynam-
ics in a crowded environment can model the increase in reaction rates due to crowders.
For certain intrinsic reaction parameters the overall reaction rate increases for a com-
partmentalization where γi is smaller than γ , despite the locally slower reaction. The
intuitive explanation for this is that once the diffusing molecule enters voxel Vi it
escapes slower and hence gets trapped close to its reaction partner, which increases
the chance of collisions. Like this, cells can boost their efficiency by locating important
reaction complexes in areas of slower diffusion, which will be especially productive
for reaction cascades where intermediate products are already produced inside the
compartment and have a low chance of escaping before being processed further. The
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fact that macromolecular crowding and locally slower diffusion rates can change the
qualitative behavior of a multistep reaction has also been shown by microscopic simu-
lations (Takahashi et al. 2010) and experimentally (Aoki et al. 2011). In the limit when
γi → 0 the binding time goes toward infinity, since then both reactants are immobile
inside Vi and never collide. For the case γi = 1 the reaction dynamics inside voxel
i behave as in the dilute case with γ0 = 1 and the time until reaction is hence only
governed by the expected time to reach voxel i , which is inversely proportional to the
diffusion rates γ and independent of kr .

5 Conclusion

We have presented a multiscale framework to model diffusion and reactions in a
crowded environment, which is an important feature for realistic simulations inside
living cells and on their membranes. First, we homogenize the system by solving a
set of PDEs on local domains resolving the microscopic positions and shapes of the
crowdingmolecules. This precomputing step is perfectly parallelizable andyields local
first exit times, which can be transformed into the jump rates on an overlying Cartesian
grid at the mesoscopic level. We then use these local first exit times to compute a
space-dependent diffusion coefficient for the macroscopic diffusion equation, which
corresponds to space-dependent reaction rates according to the formula by Collins and
Kimball.

Our approach is general in the sense that the crowding molecules can have arbitrary
shapes and can be located anywhere inside the domain. We indicate how to adapt our
method tomoving crowders by computing statisticswhich is presented inmore detail in
Engblom et al. (2017). As the jump process is simulated on a coarse Cartesianmesh, no
longer resolving the numerous crowders, the stochastic simulation is computationally
much more efficient than a microscopic simulation capturing all the collisions.

In numerical experiments we foremost observe that shape and size considerably
affect how strongly diffusion is impeded: small crowders have more reflective sur-
face and hence hinder diffusion more severely than bigger obstacles, so do elongated
crowders, which create long barriers. The effect is also stronger for larger diffusing
molecules than for smaller ones, since the former need bigger gaps to pass through.
This gives some new insight into how non-idealized (non-spherical) macromolecules
affect the diffusion, since most existing models either assume that all particles are
spheres or only consider the percentage of occupied volume.

Comparing the mesoscopic and macroscopic models for diffusion in the crowded
environment we note that the former captures the asymmetries created by long barriers
better and that they both behave similarly for small crowding molecules compared to
the grid size.

The space-dependent diffusion rate can be interpreted as a compartmentalization
effect, which has been observed in cells. In a simplified example we see that reactions
located inside a compartment with high crowding/low diffusivity can be enhanced
since the reaction partners reside longer in the vicinity of each other. Hence, the
concentration of reaction complexes in an area with slow diffusion as compared to the
rest of the cytoplasm or cell membrane can increase the reaction turn-over, an effect
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that has been capitalized by cells through colocalization of reaction complexes and
scaffolding. Otherwise, reactions between initially distant molecules are impeded by
excluded volume since it takes longer time for the reactants to find each other.

Hard sphere reflections on obstacles are not the sole cause of anomalous diffusion
(Ridgway et al. 2008), but there are other interactions between macromolecules, such
as transient binding or electrostatic repulsion, which have been modeled by a con-
tinuous time random walk (Barkai et al. 2012; Schulz et al. 2014) and fractional or
multifractional Brownian motion (Marquez-Lago et al. 2012). We can include these
types of interactions, by modifying boundary conditions on the crowders from reflect-
ing to partially absorbing or adding potential barriers.
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