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Abstract We formulate and analyse a stochastic epidemic model for the transmis-
sion dynamics of a tick-borne disease in a single population using a continuous-time
Markov chain approach. The stochastic model is based on an existing deterministic
metapopulation tick-borne disease model. We compare the disease dynamics of the
deterministic and stochastic models in order to determine the effect of randomness
in tick-borne disease dynamics. The probability of disease extinction and that of a
major outbreak are computed and approximated using the multitype Galton–Watson
branching process and numerical simulations, respectively. Analytical and numerical
results show some significant differences in model predictions between the stochastic
and deterministic models. In particular, we find that a disease outbreak is more likely if
the disease is introduced by infected deer as opposed to infected ticks. These insights
demonstrate the importance of host movement in the expansion of tick-borne diseases
into new geographic areas.

Keywords Stochastic model ·Tick-borne disease ·Ehrlichiosis ·Multitype branching
process

1 Introduction

Ticks are blood-feeding external parasites of mammals, birds and reptiles throughout
the world. There are approximately 850 species of ticks worldwide and two main
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families namely Ixodidae (hard ticks) and Argasidae (soft ticks) (Furman and Loomis
1984). Ticks take bloodmeals by attaching themselves to a suitable host which is found
through questing. The host might brush against the questing tick or walk near enough
to allow the tick to latch onto or fall onto it. The length of a tick’s life depends on the
species and the region in which they live. Ticks live longer in cold climates where they
can enter a hibernation stage. Ticks in warm climates typically live less than a year
but in general they have a 2-year life cycle. After hatching from an egg, ticks have
three distinct life stages: larva, nymph and adult. The number and distribution of blood
meals required in each life stage varies between tick species. The preferred hosts are
also species-dependent and can be different for each life stage, adding complexity to
the study of tick-borne diseases (Gaff and Gross 2007).

Ticks were the first arthropods to be established as vectors of pathogens, and cur-
rently they are recognised, alongwithmosquitoes, as themain vectors of disease agents
to humans, domestic animals and wildlife globally (Jongejan and Uilenberg 2004).
Tick-borne diseases (TBDs) have had an increasing impact on human health during
the past 100 years (Gaff and Gross 2007). Ticks transmit pathogens that cause several
diseases in humans, livestock and wildlife, for example, Lyme disease, Colorado tick
fever, tick paralysis, human babesiosis, Rocky Mountain spotted fever, cowdriosis,
anaplasmosis, human monocytic ehrlichiosis (HME), etc. Some of these diseases are
capable of causing death (CDC 2015). The pathogens that cause these diseases include
viruses, bacteria and protozoan (Gaff and Gross 2007). Ticks’ hosts have different lev-
els of susceptibility to tick-borne pathogens, and as such the success of a pathogen
is highly dependent on the suitability of the hosts on which the tick feeds. The spec-
trum of TBDs affecting domestic animals, wildlife and humans has increased in recent
years and has gained more attention from physicians and veterinarians (Dantas-Torres
et al. 2012). Ticks and TBDs are present throughout the world, but they are most
prevalent and numerous in tropical and subtropical regions (Masika et al. 1997). For
instance, large parts of South Africa are subtropical, and hence, animal husbandry is
also severely constrained by tick-borne diseases.

Wildlife species are the main reservoirs of tick-borne pathogens of medical and
veterinary concern (Piesman and Eisen 2008). The expanding range of tick-borne
pathogens affecting domestic animals, wildlife and humans requires new studies on
the epidemiology, diagnosis and ecology of these newly recognised diseases (Dantas-
Torres et al. 2012). The vast majority of tick-borne diseases are maintained by wildlife
reservoirs, and most cases of human parasitism are related to hard ticks. TBDs maybe
difficult to control due to their complex epidemiology that may involve different tick
vectors and animal hosts (Dantas-Torres et al. 2012). In this study, we focus on human
monocytic ehrlichiosis (HME) that is caused by a rickettsial pathogen called Ehrlichia
chaffeensis (Anderson et al. 1993). The lone star tick (Amblyomma americanum), of
the Ixodidae family, is suspected to be one of the vectors that transmits pathogens that
cause HME (Gaff and Gross 2007). The white-tailed deer (Odocoileus virginianus) is
the reservoir host for Ehrlichia chaffeensis. Studies have shown that the lone star tick
prefers the white-tailed deer as a blood meal host for all its life stages (Gaff and Gross
2007).

Mathematicalmodels play a significant role in studies about TBDs and other vector-
borne diseases. Different tick-borne disease models have been developed to address a
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variety of problems. Gaff andGross (2007) formulated a deterministic metapopulation
model to provide general methods to evaluate strategies for predicting and managing
outbreaks of TBDs in a temporal and spatial context. They found parameter restric-
tions under which the susceptible and infected densities reach equilibrium. In 2013,
Gaff and Nadolny formulated and used an agent-based model, TICKSIM, to identify
key parameters that are predominant in driving the invasion of ticks and of tick-borne
pathogens (Gaff and Nadolny 2013). They observed that if an area has competent
hosts, an initial population of ten ticks is enough to always establish a new population.
Wu et al. (2010) modelled the dynamical temperature influence on the tick Ixodes
scapularis population’s influence on the transmission of pathogens that cause tick-
borne disease Lyme disease. They found the threshold condition for tick persistence;
showed existence, uniqueness and stability of the endemic equilibrium; and concluded
that temperature can be used as a determining parameter to predict the distribution and
establishment of tick populations and Lyme disease in new regions. Other model struc-
tures such as computer simulations using age-structured difference equations (Mount
and Haile 1989; Mount et al. 1993, 1997), matrix-based models (Sandberg et al. 1992;
Awerbuch and Sandberg 1995), remote sensing and GIS approaches (Randolph 1999;
Glass et al. 1995; Das et al. 2002) and hybrid mathematical techniques (Ghosh and
Pugliese 2004; Ding 2007) were also developed to address different issues pertaining
to ticks and TBDs.

Ticks’ unique life history contributes to the complexity of mathematical studies
of tick–host interactions as such models governing these interactions must incor-
porate stochasticity in the system (Gaff 2011). However, many models that have
been used in tick-borne disease dynamics are deterministic, thereby neglecting the
possible significance of stochasticity in the transmission of infection. For endemic
infections, stochasticity leads to variation in prevalence about the endemic level which
can result in disease extinction via endemic fade-out provided the fluctuations are large
enough (Lloyd et al. 2007).Onemajor significant difference between deterministic and
stochastic epidemic models is that stochastic solutions (sample paths) converge to the
disease-free equilibrium although the corresponding deterministic solution converges
to an endemic equilibrium (Allen 2008). Unlike deterministic models, stochastic mod-
els predict the possibility of disease extinction in finite time and therefore the expected
time to disease extinction can be calculated (Allen 2008; Allen and Burgin 2000). In
addition, stochastic models capture the uncertainty and variability that is inherent
in real-life epidemics due to demographics or the environment which are important
when the initial number of infectives is small (Allen and Burgin 2000). Our goal in
this study is to formulate and analyse a stochastic epidemic model for the transmission
dynamics of a tick-borne disease, HME, in a single population using a continuous-time
Markov chain (CTMC) model. The stochastic model is based on an existing deter-
ministic metapopulation model by Gaff and Gross (2007). Their model tracked the
host and tick population densities as well as the densities of infected individuals in
each population. However, for CTMCmodels, numbers in each epidemiological class
are nonnegative integers and not densities or proportions. Thus, to cater for stochastic
transitions and assumptions, we modify the model by Gaff and Gross by re-writing
the deterministic model into its equivalent form by using a standard incidence rate for
infection terms in both the host and tick populations. The term for recovered hosts

123



2002 M. Maliyoni et al.

is added to the susceptible host class, and we incorporate density-dependent death
in all the four classes. We shall then compare the dynamics of the deterministic and
stochastic epidemic models in order to understand the effect of stochasticity in tick-
borne disease dynamics.

This paper is organised as follows; in Sect. 2, we present a deterministic model
which is equivalent to the model by Gaff and Gross (2007). We compute the basic
reproduction number,R0, of the deterministic model using the next-generation matrix
approach as well as presenting the equilibria of the deterministicmodel. The stochastic
version of the deterministic model and its underlying assumptions necessary for model
formulation are presented anddiscussed inSect. 3. InSect. 4,we compute the stochastic
threshold for disease extinction or invasion by applying the multitype Galton–Watson
branching process. We illustrate our results using numerical simulations in Sect. 5.
We conclude with a discussion of the results in Sect. 6 which includes a comparison
of the stochastic and deterministic models.

2 The Deterministic Model

2.1 Model Formulation

We consider an equivalent form of the model by Gaff and Gross (2007) in a single
population. The model investigates transmission dynamics of a tick-borne disease in
the case of a single host, a single pathogen and a single life stage. The assumptions in
thismodel are not applicable to every tick species, but ourmodel is suitable for the lone
star tick because it prefers the samehost (white-tailed deer) for all its life stages, thereby
reducing the need to model multiple life stages. The total population sizes for the host
and ticks are denoted by N (t) and V (t), respectively. The host (deer) population
N (t) is divided into two epidemiological classes, namely susceptible and infected
individuals denoted by T (t) and Y (t), respectively, with N (t) = T (t) + Y (t). The
tick population V (t) classes are denoted by S(t) and X (t) representing the susceptible
and infected ticks, respectively, and V (t) = S(t) + X (t). In both populations, there
is no within-population structure except for infection status so that individuals of
different locations, ages and sizes are equivalent. The disease is not spread from tick
to tick or host to host, and it is not transmitted vertically from one generation to the
next in either population. Thus, all offsprings are susceptible at the time of birth. The
disease pathogen is assumed to pass from an infected tick to a susceptible host or
from an infected host to a susceptible tick only during a blood meal. The ticks do
not recover from the disease, while the hosts recover with temporary immunity at a
rate ν. Further, we assume that there is no disease-induced death for either population
but there is density-dependent death in all classes. The flow diagram of the model is
depicted in Fig. 1.

The model description is given by a system of nonlinear differential Eq. (1).

dT

dt
= βN − β

T N

K
− Â

T X

N
− bT + νY,

dY

dt
= Â

T X

N
− β

Y N

K
− (b + ν)Y,
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Fig. 1 (Color figure online) Schematic representation of the host–tick epidemic model

Table 1 Description of
parameters in model system (1)

Name Description Value

β Growth rate for hosts 0.2

β̂ Growth rate for ticks 0.75

K Carrying capacity for hosts per m2 120

M Maximum number of ticks per host 200

b External death rate of hosts 0.01

b̂ External death rate of ticks 0.01

Â Transmission rate from ticks to hosts 0.02

A Transmission rate from hosts to ticks 0.07

ν Recovery rate of hosts 0All rates are per m2 and per
month (Gaff and Gross 2007)

dS

dt
= β̂V − β̂

SV

MN
− A

SY

N
− b̂S,

dX

dt
= A

SY

N
− β̂

XV

MN
− b̂X. (1)

The total host and tick population sizes N (t) and V (t) can be determined by N (t) =
T (t) + Y (t) and V (t) = S(t) + X (t).

The model parameters are explained in Table 1. The transmission rate from ticks
to host and vice versa is ÂT X/N and AY S/N , respectively. Disease transmission in
the model is restricted by the number of deer since the transmission rates depend on
the proportion of T (t) and Y (t), that is, either T/N or Y/N . The deer have carrying
capacity K and an external death rate b which is due to hunting or removal from the
area. The growth rate for ticks β̂ incorporates the actual birth rate, host-finding rate
and survival rate. Ticks depend on their hosts for feeding as such the tick population is
restricted by a maximum number of ticks per deer M and external death rate b̂, which
is due to desiccation and acaricide impacts. The second term in all equations of system
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(1) represents density-dependent death. In the following subsection, we present a brief
analysis of model (1).

2.2 Existence and Stability of Model Equilibria

We investigate the existence and stability of equilibrium points of model (1). To do
this, we scale the population sizes in terms of the proportions of individuals in each
compartment in both populations and define p = T

N , y = Y
N , s = S

V , x = X
V as

proportions for individuals in classes T,Y, S and X , respectively. Let h = V
N be the

ratio of ticks to hosts which is taken as a constant because ticks have fixed number
of blood meals per unit time which is independent of the host population density.
Differentiating proportions p, y, s and x with respect to time t and simplifying leads
to the scaled system of differential equations

dp

dt
= β − ( Âhx + β)p + νy,

dy

dt
= Âhpx − (ν + β)y,

ds

dt
= β̂ − Asy − β̂s,

dx

dt
= Asy − β̂x, (2)

where p + y = 1 and s + x = 1.
The basic reproduction number, R0s , is defined as the number of secondary infec-

tions that one infective would produce in a completely susceptible population over
the entire period of infectiousness (Van den Driessche and Watmough 2002; Heth-
cote 2000; Diekmann et al. 1990). We compute the basic reproduction number for
the scaled model (2) using the next-generation matrix approach as described by Van
den Driessche and Watmough (2002). The next-generation matrix, N, of the infected
classes y and x in model (2) is given by

N =
[

0 Âh
β̂

A
ν+β

0

]
, (3)

and the basic reproduction number R0s is the spectral radius of matrix N (Van den
Driessche and Watmough 2002; Diekmann et al. 1990). Thus,

R0s = ρ(N) =
√

ÂAh

β̂(ν + β)
. (4)

We reduce system (2) into a two-dimensional system in y and x by eliminating p
and s because p = 1 − y and s = 1 − x respectively. We obtain
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dy

dt
= Âh(1 − y)x − (ν + β)y,

dx

dt
= A(1 − x)y − β̂x . (5)

All parameters and variables are nonnegative for t > 0. Thus, system (5) is biolog-
ically and mathematically feasible in the domain

C = {(y, x) ∈ R2+; 0 ≤ y ≤ 1, 0 ≤ x ≤ 1}.

In addition, existence, uniqueness and continuation of solutions hold in this domain.
For any initial conditions in C, system (5) has unique solutions which start and remain
in C for t ≥ 0 (Maliyoni et al. 2012). To calculate the equilibrium points of system (5),
we equate the derivatives with respect to time to zero and then solve for y∗ in terms
of x∗. After simplification, this gives

y∗ = Âhx∗

Âhx∗ + (ν + β)
, (6)

x∗ = Ay∗

Ay∗ + β̂
. (7)

Substituting (7) into (6) and simplifying yield a quadratic equation

F1(y
∗)2 + F2y

∗ = 0, (8)

where F1 = ÂAh + Aν + Aβ and F2 = νβ̂ + ββ̂ − ÂAh.
From Eq. (8), the first root y∗ = 0 represents the disease-free equilibrium (DFE),

E0, while the second root

y∗ = − F2
F1

= β̂(ν + β)[R2
0s − 1]

ÂAh + (ν + β)A
(9)

represents the endemic equilibrium, E1, which is positive when R0s > 1.
Thus, model (5) has a DFE, E0 = (y∗, x∗) = (0, 0). When the disease persists in

the population, there exists an endemic equilibrium, E1 = (y∗, x∗) where

y∗ = β̂(ν + β)[R2
0s − 1]

ÂAh + (ν + β)A
,

x∗ = (ν + β)(R2
0s − 1)

(ν + β)[(R2
0s − 1) + β̂] + β̂ ÂAh

. (10)

Applying Theorem 2 in (Van den Driessche andWatmough 2002), we establish the
following result:
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Theorem 1 The DFE, E0, of model (5) is locally asymptotically stable if R0s < 1
and unstable if R0s > 1.

Note that the reproduction number (4) for the scaled model (2) can be reverted to
the reproduction number of the original model (1) which is given by

R0 =
√

Ā Â

(βt + b̂)(βd + b + ν)
, (11)

where Ā = Ah, βt = β̂h
M , βd = βT ∗

K and T ∗ is the DFE value for the variable T (t).
The expression for R0 can also be obtained by applying the next-generation matrix
approach to the original model (1).

The tick–deer model (1) is equivalent to the single patch model in (Gaff and Gross
2007), and our analytical results mirror those results. Their study provides a complete
discussion of the deterministic single patch model.

3 Stochastic Epidemic Model

Stochastic models incorporate discrete movements of individuals between epidemi-
ological classes and not average rates at which individuals move between classes
(Bartlett 1956, 1960). In stochastic epidemic models, numbers in each class are inte-
gers and not continuously varying quantities. A significant possibility is that the last
infected individual can recover before the disease is transmitted and the infection can
only reoccur if it is reintroduced from outside the population (Lloyd et al. 2007).
In contrast, most deterministic models have the flaw that infections can fall to very
low levels well below the point at which there is only one infected individual only to
rise up later (Allen 2008). In addition, the variability introduced in stochastic models
may result in dynamics that differ from the predictions made by deterministic models
(McCormack and Allen 2005).

3.1 Model Formulation and Properties

We derive the stochastic version of the deterministic model (1) using a CTMC model
because time is continuous but the random variables are discrete (Allen 2008, 2010).
The model takes into account random effects of individual birth and death processes,
that is, demographic variability. We use the same notation for the state variables and
parameters as used in the deterministic model (1) in order to simplify the analysis of
the CTMC model. Let time be continuous, t ∈ [0,∞) and let T (t),Y (t), S(t) and
X (t) be discrete random variables for the number of susceptible hosts, infected hosts,
susceptible ticks and infected ticks, respectively, with finite state space,

T (t),Y (t), S(t), X (t) ∈ {0, 1, 2, 3, . . . ,G}, (12)

where G is a positive integer and represents the maximum size of the population in
the finite space (Allen 2010).
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Table 2 State transitions and rates of occurrence for the CTMC tick-host model

Event State transition Rate event occurs

Birth of host (T, Y, S, X) → (T + 1, Y, S, X) βN

Death of T (T, Y, S, X) → (T − 1, Y, S, X) (βN/K + b)T

Infection of host (T, Y, S, X) → (T − 1, Y + 1, S, X) ÂT X/N

Recovery of host (T, Y, S, X) → (T + 1, Y − 1, S, X) νY

Death of Y (T, Y, S, X) → (T, Y − 1, S, X) (βN/K + b)Y

Birth of ticks (T, Y, S, X) → (T, Y, S + 1, X) β̂V

Death of S (T, Y, S, X) → (T, Y, S − 1, X) (β̂V/MN + b̂)S

Infection of ticks (T, Y, S, X) → (T, Y, S − 1, X + 1) AY S/N

Death of X (T, Y, S, X) → (T, Y, S, X − 1) (β̂V/MN + b̂)X

For CTMC models, the transition from one state to a new state may occur at any
time t . The state transitions and rates for the CTMC model are presented in Table 2.

The stochastic process

{T (t), Y (t), S(t), X (t) : t ∈ [0, ∞)}

is a multivariate process. As such its joint probability function is given by

p(n,y,s,x)(t) = Prob{T (t) = n, Y (t) = y, S(t) = s, X (t) = x},

(Allen 2010).
We assume that the stochastic process is homogeneous in time and satisfies the

Markov property. The Markov property states that the future state of the process at
time (t + Δt) depends only on the current state of the process at time t and hence

Prob{[T (t + Δt),Y (t + Δt), S(t + Δt), X (t + Δt)] | [T (0),Y (0), S(0), X (0)],
[T (Δt),Y (Δt), S(Δt), X (Δt)], . . . , [T (t),Y (t), S(t), X (t)]}
= Prob{[T (t + Δt),Y (t+Δt), S(t+Δt), X (t + Δt)] | [T (t),Y (t), S(t), X (t)]}.

The time to next event is exponentially distributed due to the Markov assumption
(Allen 2010; Lahodny and Allen 2013; Lahodny et al. 2015). We assume that at most
one event occurs during the time interval Δt . The infinitesimal transition probabilities
(ITPs) for the stochastic process from state k = (n, y, s, x) at time t to a new state
k + m = (q, r, i, j) at time (t + Δt), that is,

pk+m, k(Δt) = Prob{ΔT (t) = q,ΔY (t) = r,ΔS(t) = i,ΔX (t) = j

|T (t) = n,Y (t) = y, S(t) = s, X (t) = x},
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are defined by

pk+m, k(Δt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βNΔt + o(Δt), m = (1, 0, 0, 0)
(βN/K + b)nΔt + o(Δt), m = (−1, 0, 0, 0)
Ânx/NΔt + o(Δt), m = (−1, 1, 0, 0)
νyΔt + o(Δt), m = (1,−1, 0, 0)
(βN/K + b)yΔt + o(Δt), m = (0,−1, 0, 0)
β̂VΔt + o(Δt), m = (0, 0, 1, 0)
(β̂V/MN + b̂)sΔt + o(Δt), m = (0, 0,−1, 0)
Ays/NΔt + o(Δt), m = (0, 0,−1, 1)
(β̂V/MN + b̂)xΔt + o(Δt), m = (0, 0, 0,−1)
1 − C�Δt + o(Δt), m = (0, 0, 0, 0)
o(Δt), otherwise,

(13)

where

C� = βN + (βN/K + b)n + Ânx/N + νy + (βN/K + b)y + β̂V

+(β̂V/MN + b̂)s + Ays/N + (β̂V/MN + b̂)x .

The probability of no change in any of the state variables, p(Δt) = 000 is 1 −
C�Δt + o(Δt). Applying the Markov property to the stochastic process and the ITPs
in (13), we can express the state probabilities at time (t + Δt) in terms of the state
probabilities at time t (Khan et al. 2013). Thus, at time (t+Δt), the state probabilities
p(n,y,s,x)(t) satisfy the following master equation:

p(n,y,s,x)(t + Δt) = p(n−1,y,s,x)(t)[βNΔt + o(Δt)]
+ p(n+1,y,s,x)(t)[(βN/K + b)(n + 1)Δt + o(Δt)]
+ p(n+1,y−1,s,x)(t)[ Â(n + 1)x/NΔt + o(Δt)]
+ p(n−1,y+1,s,x)(t)[ν(y + 1)Δt + o(Δt)]
+ p(n,y+1,s,x)(t)[(βN/K + b)(y + 1)Δt + o(Δt)]
+ p(n,y,s−1,x)(t)[β̂VΔt + o(Δt)]
+ p(n,y,s+1,x)(t)[(β̂V/MN + b̂)(s + 1)Δt + o(Δt)]
+ p(n,y,s+1,x−1)(t)[Ay(s + 1)/NΔt + o(Δt)]
+ p(n,y,s,x+1)(t)[(β̂V/MN + b̂)(x + 1)Δt + o(Δt)]
+ p(n,y,s,x)(t)[1 − C�Δt + o(Δt)] + o(Δt).

4 Stochastic Threshold for Disease Extinction

In stochastic epidemic theory, predictions about occurrence of disease outbreak and
extinction are possible and depend on the number of infectious individuals for each
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group. If a disease emerges from one infectious group with R0 > 1 and if i infectives
are introduced into a wholly susceptible population, then the probability of a major
disease outbreak is approximated by 1 − (1/R0)

i while the probability of disease
extinction is approximately (1/R0)

i (Whittle 1955). However, this result does not
hold if the infection emanates from multiple infectious groups (Allen 2012). For mul-
tiple infectious groups, the stochastic thresholds depend on two factors, namely the
number of individuals in each group and the probability of disease extinction for each
group. Further, the persistence of an infection into a wholly susceptible population is
not guaranteed by having R0 greater than one (Lloyd et al. 2007). Disease extinction
is possible during the period immediately following the introduction of an infection
when there are few infected individuals. Stochastic models will in this case predict a
minor outbreak unlike in deterministic models where a major outbreak may always
result. After the introduction of an infection in the early stages of the epidemic pro-
cess, little depletion of susceptibles will have occurred and so invasion probabilities
can be derived using the linear model that arises by assuming that the whole popula-
tion is susceptible (Bartlett 1964; Ball 1983). These invasion probabilities are often
approximated by a multitype Galton–Watson branching process (GWbp) theory (Ball
1983; Ball and Donnelly 1995). In GWbp theory, individuals in the population are
categorised into a finite number of types and each individual’s behaviour is indepen-
dent of the other. An individual of a given type can produce offsprings of possibly all
types, and individuals of the same type have the same offspring distribution (Karlin
and Taylor 1975).

4.1 The Galton–Watson Branching Process

The GWbp theory is often used to calculate disease invasion and extinction proba-
bilities. The theory addresses questions about extinction and survival in ecology and
evolutionary biology (Allen 2012). If information about the number of infections pro-
duced by a single infectious deer or a single infectious tick is known, the GWbp theory
is capable of approximating the probabilities of ultimate disease extinction and of a
major disease outbreak. We first present a general theory for the branching process
and then later apply it to our stochastic epidemic model in order to approximate the
probability of disease extinction and of a major outbreak.

Definition 1 (Allen 2012) A multitype GWbp {−→I (t)}∞t=0 is a collection of vector

random variables
−→
I (t), where each vector consists of k different types,

−→
I (t) =

(I1(t), I2(t), . . . , Ik(t)) and each random variable Ii (t) has k associated offspring
random variables for the number of offsprings of type j = 1, 2, · · · , k from a parent
of type i .

The GWbp theory is applicable to infectious populations only and assumes that
susceptible populations are at the DFE (Allen and van den Driessche 2013; Allen
and Lahodny 2012; Lahodny and Allen 2013). The multitype branching process
is linear near the disease-free equilibrium, it is time-homogeneous, and births and
deaths/recovery are independent. Therefore, we can define offspring probability gen-
erating functions (pgfs) for the birth and death/recovery of the infectious populations,
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which are then used to approximate the probability of disease extinction and that of a
major outbreak (Lahodny and Allen 2013).

Assuming that infectious individuals of type i, Ii , give birth (that is, successful
disease transmission) to individuals of type j, I j , and the number of offspring gen-
erated by an individual of type i is independent of the number of offspring generated
by either type i or type j , j 	= i . Furthermore, infectious individuals of type i have
the same offspring pgf. Let {Z ji }nj=1 be defined as the offspring random variables for
type i, i = 1, 2, 3, . . . , n such that Z ji is the number of offspring of type j generated
by an infective of type i .

The offspring pgf for infectious populations Ii is defined when there is initially a
single infectious individual at the start of an epidemic process, say, I (0) = 1 and all
other types are zero, I j (0) = 0. Thus, the offspring pgf fi : [0, 1]n → [0, 1], for type
i given Ii (0) = 1 and I j (0) = 0, j 	= i , is defined as

fi (u1, . . . , un) =
∞∑

kn=0

. . .

∞∑
k1=0

Pi (k1, . . . , kn)u
k1
1 · · · uknn , (14)

where Pi (k1, . . . , kn) = Prob{Z1i = k1, . . . , Zni = kn} is the probability that one
infected individual of type i gives birth to k j individuals of type j and there is always a
fixed point at fi (1, 1, . . . , 1) = 1 (Allen 2012; Lahodny and Allen 2013; Allen 2015).
fi (0, 0, . . . , 0) denotes the probability of extinction for Ii given that Ii (0) = 1 and
I j (0) = 0 for all other types.

We define the expectation matrix MMM = [m ji ] as an n × n, nonnegative and irre-
ducible matrix where the entrym ji is the expected number of offsprings of individuals
of type j produced by an infective individual of type i . The elements of matrix MMM are
calculated from Eq. (14) by differentiating fi with respect to u j and then evaluating
all the uuu variables at 1, that is,

m ji = ∂ fi
∂u j

∣∣∣∣
u=1u=1u=1

.

The probability of disease extinction or persistence for the multitype GWbp is
determined by the size of the spectral radius of expectation matrix MMM, ρ(MMM). Thus,
if ρ(MMM) ≤ 1, then the probability of ultimate disease extinction is one as t → ∞ but
if ρ(MMM) > 1, then there is a positive probability that the disease may persist (Karlin
and Taylor 1975). Following (Allen and van den Driessche 2013; Lahodny and Allen
2013; Allen 2015; Allen and Lahodny 2012), the conditions for the probability of
disease extinction or persistence are summarised in the following theorem:

Theorem 2 Let the initial sizes for each type be Ii (0) = ii , i = 1, 2, . . . , k. Suppose
the generating functions fi for each of the k types are nonlinear functions of u j with
some fi (0, 0, . . . , 0) > 0. Also, suppose that the expectation matrix MMM = [m ji ] is an
n × n nonnegative and irreducible matrix, and ρ(MMM) is the spectral radius of matrix
MMM.
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(i) If ρ(MMM) < 1 or ρ(MMM) = 1 (subcritical and critical case respectively), then the
probability of ultimate extinction is one:

lim
t→∞Prob{−→I (t) = −→

0 } = 1.

(ii) If ρ(MMM) > 1 (supercritical case), then the probability of ultimate disease extinc-
tion is less than one:

lim
t→∞Prob{−→I (t) = −→

0 } = qi11 q
i2
2 . . . qikk < 1,

where (q1, q2, . . . , qk) is the unique fixed point of the k offspring pgf,
fi (q1, q2, . . . , qk) = qi and 0 < qi < 1, i = 1, 2, . . . , k. The value of qi is
the probability of disease extinction for infectives of type i and the probability of
an outbreak is approximately

1 − qi11 q
i2
2 . . . qikk .

4.1.1 Application of the Multitype GWbp

In our CTMC model, the disease is spread by individuals of two types: infected deer
and infected ticks. During tick feeding, infected ticks may infect susceptible deer or
infected deer may infect susceptible ticks, thereby producing infected deer and ticks.
Thus, the number of infected individuals in the tick–deer systemduring the early stages
of the epidemic process can be approximated by a two-type GWbp. Let the infected
deer be individuals of type 1 and infected ticks be of type 2.

We use the state transitions and rates for the CTMC epidemic model in Table 2
to define the offspring pgfs for the infectious populations Y and X . We assume that
T (0) = T ∗ and S(0) = S∗ are sufficiently large and are at the DFE. If initially there
is a single infected deer, Y (0) = 1, and no infected ticks, X (0) = 0, then we define
the offspring pgf for infected deer Y using Eq. (14). During tick feeding, an infected
deer can infect a susceptible tick at a rate Ā, but the infected deer does not die which
results in two infectious individuals, that is, one infected deer and one infected tick,
and we obtain Āu11u

1
2 = Āu1u2. The infected deer may also die or recover before

transmitting the disease at a rate (βd + b + ν) which results in zero infectious ticks
and decreases the deer’s infected population by one while the tick population remains
unchanged. Therefore, we obtain (βd +b+ν)u01u

0
2 = (βd +b+ν). The rates become

probabilitieswhen they are divided by the sumof the rate of birth and death or recovery.
The probability of birth and of death or recovery is P2 = Āu1u2/( Ā + βd + b + ν)

and P0 = (βd + b + ν)/( Ā + βd + b + ν), respectively. Hence, the offspring pgf for
Y is given by

f1(u1, u2) = P0 + P2 = Āu1u2 + (βd + b + ν)

Ā + βd + b + ν
u1, u2 ∈ [0, 1]. (15)
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Similarly, the offspring pgf for X given that Y (0) = 0 and X (0) = 1 is

f2(u1, u2) = Âu1u2 + (βt + b̂)

Â + βt + b̂
u1, u2 ∈ [0, 1]. (16)

The elements m ji of the expectation matrix obtained from the offspring pgfs (15)
and (16) are given by

m11 = ∂ f1(u1, u2)

∂u1

∣∣∣∣
u1=1,u2=1

= Ā

Ā + βd + b + ν

m12 = ∂ f2(u1, u2)

∂u1

∣∣∣∣
u1=1,u2=1

= Â

Â + βt + b̂

m21 = ∂ f1(u1, u2)

∂u2

∣∣∣∣
u1=1,u2=1

= Ā

Ā + βd + b + ν

m22 = ∂ f2(u1, u2)

∂u2

∣∣∣∣
u1=1,u2=1

= Â

Â + βt + b̂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

which leads to the expectation matrix

MMM =

⎡
⎢⎢⎢⎣

Ā

Ā + βd + b + ν

Â

Â + βt + b̂
Ā

Ā + βd + b + ν

Â

Â + βt + b̂

⎤
⎥⎥⎥⎦ . (18)

We apply Theorem 2 to matrix (18). The eigenvalues of matrix MMM are the roots of
the characteristic equation

λ2 − (a + b)λ = 0, (19)

where a = Ā

Ā + βd + b + ν
and b = Â

Â + βt + b̂
.

The spectral radius ρ(MMM) of matrix MMM obtained from Eq. (19) is given by

ρ(MMM) = Ā( Â + βt + b̂) + Â( Ā + βd + b + ν)

( Ā + βd + b + ν)( Â + βt + b̂)
. (20)

The probability of ultimate disease extinction is one if ρ(MMM) < 1 in (20) which is
the case when

Ā( Â + βt + b̂) + Â( Ā + βd + b + ν) < ( Ā + βd + b + ν)( Â + βt + b̂). (21)
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Expanding and simplifying inequality (21) leads to

Ā Â < (βt + b̂)(βd + b + ν),

which reduces to

R2
0 = Ā Â

(βt + b̂)(βd + b + ν)
< 1 ⇒ R0 < 1. (22)

The result in (22) agrees with the deterministic threshold for disease elimination,
and we conclude that the probability of disease extinction in the CTMC model is one
if and only if

ρ(MMM) < 1 ⇒ R0 < 1. (23)

Allen and van den Driessche (2013) established the general relationship that exists
between extinction threshold ρ(M) and R0 in stochastic and deterministic epidemic
models given by

R0 < 1,= 1,> 1 if and only if ρ(MMM) < 1,= 1,> 1, (24)

It can be easily shown that our model satisfies this relationship. For the supercrit-
ical case, ρ(MMM) > 1 (and R0 > 1), there is a positive probability of a major disease
outbreak occurring. This implies that there exists a fixed point of the offspring pgfs
on (0, 1)2 which gives the probability of disease extinction of which one minus this
probability is the probability of a major outbreak (Lahodny and Allen 2013). The fixed
point can be found by setting fi (q1, q2) = qi , qi ∈ (0, 1),∀i = 1, 2. From the pgfs
(15) and (16), we compute the fixed point by simultaneously solving the pair of equa-
tions f1(q1, q2) = q1 and f2(q1, q2) = q2. The values q1 and q2 are the probabilities
of ultimate disease extinction of infected deer and infected ticks respectively. The pair
(q1, q2) = (1, 1) is always a solution but there may exist another fixed point (Allen
and Lahodny 2012). Thus, we solve the following system of equations:

Āq1q2 + (βd + b + ν)

Ā + βd + b + ν
= q1, (25)

Âq1q2 + (βt + b̂)

Â + βt + b̂
= q2. (26)

Expressing q2 in terms of q1 in Eq. (26) gives

q2 = βt + b̂

Â(1 − q1) + βt + b̂
. (27)

Substituting Eq. (27) into Eq. (25) and then simplifying, we obtain the quadratic
equation

H1q
2
1 + H2q1 + H3 = 0, (28)
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where

H1 = Â( Ā + βd + b + ν),

H2 = Ā(βt + b̂) − Â(βd + b + ν) − ( Ā + βd + b + ν)( Â + βd + b + ν),

H3 = (βd + b + ν)( Â + βt + b̂).

Solving Eq. (28) for q1 and then substituting its expression in Eq. (27) leads to the
following expressions for q1 and q2:

q1 = (βd + b + ν)( Â + βt + b̂)

Â( Ā + βd + b + ν)
,

q2 = (βt + b̂)( Ā + βd + b + ν)

Ā( Â + βt + b̂)
.

We express q1 and q2 in terms of the basic reproduction number (11) to obtain

q1 = Ā

Ā + βd + b + ν

(
1

R2
0

)
+ βd + b + ν

Ā + βd + b + ν
,

q2 = Â

Â + βt + b̂

(
1

R2
0

)
+ βt + b̂

Â + βt + b̂
.

The probability q1 can be interpreted epidemiologically as follows: an infectious
deer will either transmit the disease to a susceptible tick with probability Ā/( Ā+βd +
b + ν) or die or recover before transmitting the disease with probability (βd + b +
ν)/( Ā+βd + b+ ν). Likewise, the probability q2 has the following interpretation: an
infectious tick will either transmit the disease to a susceptible deer with probability
Â/( Â+ βt + b̂) or die before transmitting the disease with probability (βt + b̂)/( Â+
βt + b̂). If tick to deer transmission is successful, then the probability of transmission
from an infectious tick to a susceptible tick is (1/R2

0).
We compute the probability of disease extinction and of an outbreak using q1 and

q2. If Y (0) = y0 and X (0) = x0 are the initial sizes of infected deer and infected ticks,
respectively, then the probability of ultimate disease extinction is approximately

P0 = qy0
1 qx02 =

[
Ā + (βd + b + ν)R2

0

( Ā + βd + b + ν)R2
0

]y0 [
Â + (βt + b̂)R2

0

( Â + βt + b̂)R2
0

]x0

. (29)

Hence, the probability of a major disease outbreak Pm is given by

Pm = 1 − P0 = 1 −
([

Ā + (βd + b + ν)R2
0

( Ā + βd + b + ν)R2
0

]y0 [
Â + (βt + b̂)R2

0

( Â + βt + b̂)R2
0

]x0)
.

The fixed point in (0, 1)2 of the offspring pgfs is (q1, q2) = (0.5495, 0.9881). Table 3
summarises the probability of disease extinctionP0 for different initial sizes of infected
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Table 3 Probability of disease
extinction P0 computed from the
branching process (qy01 q

x0
2 ) and

numerical approximation based
on 5000 sample paths of the
stochastic model for different
initial sizes of infected deer and
infected ticks with parameter
values β = 0.2, β̂ = 0.75, K =
120, M = 200, b = 0.01, b̂ =
0.01, Â = 0.02, A = 0.07, ν =
0 and initial conditions T (0) =
114, S(0) = 22496, Y (0) = y0
and X (0) = x0

y0 x0 P0 Approximation

1 0 0.5495 0.5473

0 1 0.9881 0.9822

1 1 0.5430 0.5441

2 0 0.3019 0.3098

0 2 0.9764 0.9642

2 2 0.2948 0.2899

3 0 0.1659 0.1702

0 3 0.9648 0.9590

3 3 0.1601 0.1609
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Fig. 2 (Color figure online) Probability of disease extinction P0, calculated from the branching process,
for varying initial sizes of infected deer and infected ticks on a surface plot and b contour plot. Parameter
values are: β = 0.2, β̂ = 0.75, K = 120, M = 200, b = 0.01, b̂ = 0.01, Â = 0.02, A = 0.07 and ν = 0

deer and infected ticks which is compared to the numerical approximation based on
5000 sample paths of the stochastic epidemic model. The approximation is accom-
plished by computing the proportion of sample paths out of 5000 sample paths of the
stochastic model in which the number of infected individuals in both the deer and tick
populations, (Y (t) + X (t)), reaches zero (implying disease extinction) before an out-
break takes off. The numerical approximation of the probabilities of extinction of the
stochastic model is in excellent agreement with the calculated probability of disease
extinction, P0.

The probability of disease extinction is very high if the disease emerges from
infected ticks with few ticks initially present at the beginning of the epidemic as shown
in Table 3 and Figure 2. However, as the initial number of infected ticks becomes
large, there is a high probability of a disease outbreak as illustrated by Fig. 2. The
probability of disease extinction is significantly small if a few infected deer introduce
the disease and it continues to decrease as the number of infected deer increases.
Thus, the disease dynamics in this system at the beginning of the epidemic are being
driven by the initial number of infected deer, y0, as shown in Fig. 2 and Table 3.
This behaviour is attributed to the situation where a single infected deer is capable of
infecting at most 200 susceptible ticks (maximum number of ticks per deer, M) which
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may in turn infect more non-infected deer, thereby reducing the probability of disease
extinction and increasing the probability of a major disease outbreak. In addition, deer
are the reservoir host for the pathogens that cause the disease and it takes a long time
for them to be disease free; hence, the high probability of an outbreak if the disease
is introduced by them. Figure 2 shows the graphs of probability of disease extinction
and disease outbreak for varying initial sizes of infected deer and infected ticks. The
behaviour in Fig. 2 implies that any policy or intervention to halt the spread of the
disease at the beginning of an outbreak must focus more on controlling the infected
deer population. If more effort to control the disease is focussed on the infected ticks,
then it is very unlikely that the disease can be eliminated.

5 Numerical Simulations

In this section, we illustrate the disease dynamics of the stochastic model using param-
eter values in Table 1. The multitype branching process assumes that susceptible
populations are sufficiently large and are at the disease-free equilibrium. Therefore,
initial conditions for susceptible host and ticks population are T (0) = T ∗ = 114 and
S(0) = S∗ = 22496 respectively. Initial conditions for the infectives are indicated in
the caption of each graph.

Figures 3 and 4 show simulation results for sample paths of the stochastic epidemic
model graphed with the corresponding deterministic solution for varying initial sizes
of infectives of both populations.

For the given initial conditions and parameter values, the disease dynamics of the
stochastic model are different but not far from those of the deterministic model as
shown in Figs. 3 and 4. Some sample paths in Fig. 4 go to zero (that is, the population
following these sample paths is quickly absorbed and eventually becomes disease-free)
in finite time even though R0 = 1.3571 > 1 and ρ(MMM) = 1.0117 > 1 while the other
sample paths illustrate occurrence of disease outbreak, similar to the prediction by
the deterministic model. In other words, even if R0 > 1 the stochastic model predicts
the possibility of disease extinction as shown in Fig. 4 while the deterministic model
predicts with certainty that disease outbreak occurs as illustrated in Fig. 3. It is clear
from Table 3 that the probability of disease extinction or of disease outbreak depends
on the initial sizes of infected deer and infected ticks. Thus, increasing the number
of initially infected deer at the beginning of an epidemic increases the probability of
a disease outbreak. However, increasing the initial number of infected ticks has very
little effect on the probability of a disease outbreak as illustrated in Table 3.

Figure 5 shows the approximate probability distribution of the sizes of infected deer
and infected ticks using 5000 sample paths.

The graph in Fig. 5a is negatively skewed (skewed to the left) which implies that
the impact of the disease is felt with only a few infected deer present. This behaviour
is in agreement with the results in Table 3 that there is disease outbreak when a few
infected deer are present at the beginning of an epidemic. In Fig. 5b, the graph is
positively skewed (skewed to the right) and implies that the effect of infected ticks
on the disease is noticeable when there are more infected ticks. In other words, as the
number of infected ticks increases, the probability of disease extinction decreases.
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Fig. 3 (Color figure online) Two sample paths of the stochastic model and the corresponding deterministic
solution (dashed curve). Parameter values are: β = 0.2, β̂ = 0.75, K = 120, M = 200, b = 0.01, b̂ =
0.01, Â = 0.02, A = 0.07, ν = 0 with initial conditions T (0) = 114, S(0) = 22496, Y (0) = 0 and
X (0) = 1. The value of the basic reproduction number R0 = 1.3571 and ρ(MMM) = 1.0117. The probability
of a major outbreak is Pm = 1 − P0 = 0.0119

6 Discussion

Tick-borne disease outbreaks have become a critical problem to human health, live-
stock and wildlife in tick-infested areas.We investigated the transmission dynamics of
a tick-borne disease (HME) in a single population using aCTMCmodel. The stochastic
model is based on an existing deterministic metapopulation model by Gaff and Gross
(2007). The extinction threshold in the deterministicmodel provides information about
disease extinction or occurrence of an outbreak. The corresponding stochastic model
not only provides information about disease extinction or outbreak, but also the prob-
ability of occurrence of these outcomes. This is obtained by applying the multitype
branching process theory when there are a few infectives at the beginning of an epi-
demic, a scenario deterministic models cannot handle (Allen and van den Driessche
2013).

Our analytical and numerical results showed that the probability of disease extinc-
tion, P0, calculated from the multitype branching process theory is in excellent
agreement with the numerically approximated probability computed using a propor-
tion of sample paths that go to zero before an outbreak occurs. Further, we derived
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Fig. 4 (Color figure online)Three sample paths of the stochastic epidemicmodel for the infected individuals
in both populations and the corresponding deterministic solution (dashed curve). Parameter values are:
β = 0.2, β̂ = 0.75, K = 120, M = 200, b = 0.01, b̂ = 0.01, Â = 0.02, A = 0.07, ν = 0 with initial
conditions T (0) = 114, V (0) = 22496; Y (0) = 1, X (0) = 0 in graphs (a) and (b); Y (0) = 1, X (0) = 1
in graphs (c) and (d) and Y (0) = 2, X (0) = 0 in graphs (e) and (f). Some sample paths in the graphs
go to zero rapidly (disease extinction). Disease extinction, P0, occurs with probability 0.5495, 0.5430 and
0.3019 (see Table 3) in graphs (a) and (b), (c) and (d) and (e) and (f), respectively. The value of the basic
reproduction number R0 = 1.3571 and ρ(MMM) = 1.0117

the stochastic threshold for disease extinction ρ(MMM) and showed the relationship that
exists between R0 and ρ(MMM) in terms of disease extinction and outbreak in the deter-
ministic and stochastic models respectively. This relationship as shown in Eq. (24)
is significant in the prediction of disease extinction and outbreak (Allen and van den
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Fig. 5 (Color figure online) Approximate probability distribution for the number of infectives with initial
conditions and parameter values β = 0.2, β̂ = 0.75, K = 120, M = 200, b = 0.01, b̂ = 0.01, Â =
0.02, A = 0.07, ν = 0; T (0) = 114, S(0) = 22496, Y (0) = 0 and X (0) = 5. On the y − axis,
Prob = P × 104 and n is the number of infectives. The basic reproduction number R0 = 1.3571 and
ρ(MMM) = 1.0117

Driessche 2013). It was also shown that both deterministic and stochastic models pre-
dict disease extinction when R0 and ρ(MMM) are less than unity, that is, R0 < 1 and
ρ(MMM) < 1. However, the predictions by these models are different when R0 > 1
and ρ(MMM) > 1. In this case, the deterministic model predicts with certainty a stable
endemic equilibrium and hence disease outbreak while the stochastic model has two
possible outcomes, that is, either there is disease extinction, as shown by some sample
paths in Fig. 4, or disease outbreak as shown in Figs. 3c, d and 4. Thus, with stochastic
models, it is possible to attain a disease-free status in finite time even when R0 > 1.
In addition, Fig. 4 indicates that initial conditions do not affect the dynamics of the
deterministic model while the stochastic model is affected. Thus, the dynamics of the
stochastic model are highly dependent on the initial conditions (see Table 3; Fig. 2)
and should not be ignored.

The probabilities of disease extinction for different initial sizes of infected deer
and infected ticks were approximated analytically and then compared to numerical
approximations for disease extinction. Our results indicate that the probability of
eliminating the disease in the deer-tick environment is very high if the disease emerges
from infected ticks unlike if it emerges from infected deer at the beginning of the
epidemicwhen there are few infectives. As a consequence, we propose that any control
measure to reduce or eliminate the disease must target the infected deer population
more than the infected tick population. We thus concur with Gaff and Gross’ (2007)
suggestion that it is possible to reduce or eliminate the disease in the single population
without wiping out the entire tick population. The model results indicate that it is
highly unlikely for the establishment of the pathogen if the initial infected population
is a single tick, but the probability of establishment is far higher if an infected host is
introduced. This study can be extended by incorporating migration of individuals in
one or both populations so that we investigate the effect of movement on the disease
transmission dynamics of the stochastic model with regard to disease extinction and
persistence.
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