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Abstract In this paper, we present two mathematical models related to different
aspects and scales of cancer growth. The first model is a stochastic spatiotempo-
ral model of both a synthetic gene regulatory network (the example of a three-gene
repressilator is given) and an actual gene regulatory network, the NF-κB pathway.
The second model is a force-based individual-based model of the development of a
solid avascular tumour with specific application to tumour cords, i.e. a mass of cancer
cells growing around a central blood vessel. In each case, we compare our compu-
tational simulation results with experimental data. In the final discussion section, we
outline how to take the work forward through the development of a multiscale model
focussed at the cell level. This would incorporate key intracellular signalling pathways
associated with cancer within each cell (e.g. p53–Mdm2, NF-κB) and through the use
of high-performance computing be capable of simulating up to 109 cells, i.e. the tis-
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sue scale. In this way, mathematical models at multiple scales would be combined to
formulate a multiscale computational model.

Keywords Multiscale cancer modelling · Gene regulatory network ·
Spatial stochastic model · Individual-based model · Computational simulations

Mathematics Subject Classification 35Q92 · 92C05 · 92C40 · 92C42 · 92C50

1 Introduction

Cancer is a complex, dynamic disease with underlying processes occurring over the
full range of biological scales from genetic, through proteomic, cellular, tissue, organ,
to organism and sometimes even the whole population level. The first detectable (pal-
pable) symptoms are almost always macroscopic, but differences are also present a
priori at the cellular level, and these in turn originate from changes in the individ-
ual’s DNA. Perhaps one of the most difficult questions of modern medicine is how to
intervene and manipulate the complex system of the patient’s body to affect changes
in dynamics, which can bring it back from a state of disease to either full remission
or stabilisation. Given the complexity of the system, one way to answer that question
should be sought by complementing the traditional clinical methods with mathemati-
cal and computational modelling and simulations. However, while developing “good”
predictive models one should remember a few important points. The most crucial
seems to be the consideration of one of the key features of the disease, if not the key
feature, i.e. its multiscale character.

In one of the most influential papers of recent years, summarising our knowl-
edge of the pathogenesis of cancer disease, Hanahan and Weinberg (2000) defined
what they termed to be the six hallmarks of cancer: (1) sustaining proliferative
signalling; (2) evading growth suppressors; (3) activating invasion and metastasis;
(4) enabling replicative immortality; (5) inducing angiogenesis; (6) resisting cell
death. More recently, the authors updated this list to also include two emerging
hallmarks: (1) deregulating cellular energetics and (2) avoiding immune destruc-
tion, and two enabling characteristics: (1) genome instability and mutation and (2)
tumour promoting inflammation (Hanahan and Weinberg 2011). These hallmarks are
linked with phenotypic traits that give cancer cells an evolutionary advantage over
healthy cells. Furthermore they provided a graphical representation of four main
circuits regulating the operation of cells: (1) proliferation circuits; (2) viability cir-
cuits; (3) motility circuits; and (4) cytostasis and differentiation circuits (see Fig. 1).
The failure or dysregulation of these four circuits jointly make up the character-
istic phenotype of cancer cells, corresponding directly with four of the hallmarks
given above. In contrast to healthy cells that carefully control the production of spe-
cific growth and proliferative signals, cancer cells have an abnormal progression
through the cell cycle and divide rapidly. Equally they have much higher viabil-
ity compared to normal cells, resisting cell death, avoiding immune destruction,
genome instability and mutation, all of which make cancer cells somewhat “immor-
tal”. The outcome of all of this is the formation of macroscopic structures such as solid
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1368 Z. Szymańska et al.

Fig. 1 Key intracellular signalling pathways and the cell functions they are connected with, illustrating the
connection between the intracellular scale and the cellular scale. Reprinted from Hanahan and Weinberg
(2011), Copyright (2011), with permission from Elsevier

tumours that can be observed clinically. Despite enormous progress, full understand-
ing of these processes is difficult because we are dealing with a complex interplay
between various subprocesses occurring with different dynamics at different spatial
scales.

One of the most dangerous properties of malignant tumours is their ability to invade
surrounding tissues and to metastasise. The invasion or infiltration of surrounding tis-
sue by cancer cells can impair the tissue or organ function. However, a more dangerous
aspect of invasion is the infiltration of blood and lymph vessels.When cancer cells pen-
etrate the vessel lumen, they may migrate with blood or lymphatic fluid to distant sites
in the body to form new tumours, i.e. metastases. It is worth mentioning that angiogen-
esis also contributes; through the formation of new blood vessels within the tumour, it
facilitates the migration of tumour cells. Metastasis of cancer makes patient treatment
very difficult. It prevents the effective resection of the primary tumour, and new out-
breaks cause recurrence of the disease. There are manymechanisms that enable cancer
cell invasion and metastasis, associated with the motility circuit. For example, the fre-
quently occurring over-expression of genes encoding extracellular matrix-degrading
enzymes such as matrix metalloproteinases (MMPs) that break down the extracellular
matrix surrounding tumour cells and thus facilitate invasion. However, perhaps the
most characteristic change is the loss of the functionality of the protein E-cadherin,
which is the main molecule responsible for binding between epithelial cells.
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While it is clear that there are many different, interconnected temporal and spatial
scales that are important during the development of any tumour, within these there
are three clearly demarcated “fundamental scales” linked to each other that, when
considered together, provide a deeper understanding of the complex phenomenon that
is cancer: the intracellular scale, the cellular scale and the tissue scale. At the level
of intracellular processes, we must include within the description complicated but
essential phenomena such as signal transduction cascades, gene regulatory networks
and cell cycle regulation. Doing so aids our understanding of the differences at the
intracellular level between normal and transformed cells and therefore improves the
efficiency of anti-cancer cell-cycle-dependent drugs. Another challenge while mod-
elling intracellular processes is to understand how the three-dimensional structure of
DNA and chromatin affects gene expression within signalling pathways crucial for
disease development. Although it is known that cancer is most often caused by the
accumulation of mutations in genes involved in cell cycle regulation and apoptosis,
another important issue is how disease progression is influenced by structural or epi-
genetic changes within the cell nucleus.

At the level of cellular colonies and tissue, there are two main approaches towards
modelling complex biological processes like cancer: continuum and discrete. Con-
tinuum methods, which are derived from principles of continuum mechanics, have
proved to be very useful in modelling phenomena at the tissue scale such as solid
tumour growth. However, one of the main drawbacks of continuum modelling is the
difficulty in representing individual cell properties. Including these and intracellu-
lar processes in multiscale phenomena such as cancer is becoming more and more
important as experimental data across multiple scales become available. Alternative
approaches rely on an individual-based description of single cells. The main advan-
tage of such methods is related to the relative simplicity of incorporating detailed
biological processes into dynamics and development of cell populations and tissue.
The main disadvantage is the computational cost which increases rapidly with the
number of simulated cells. However, the problem of high computational complexity
can be addressed by selecting appropriate algorithms and by efficient implementation
on high-performance computing (HPC) systems.

Further milestones related to cancer modelling will be adapting the models for
specific cancer types and specific patients. The latter means not only the acquisition of
biochemical parameters but also the acquisition of medical imaging data for individual
patients. This will be a definite step towards personalised medicine, which has the
potential to completely reformour approach to the patient and treatment.Already today
imaging studies are of great importance in diagnosis and planning surgical procedures.
However, especially for treatment of non-resectable tumours, such imaging studies
could also be important in selecting the appropriate treatment ormonitoring the disease
dynamics.

In this paper, we intend to promote two specific avenues of cancer modelling, which
consider processes at different scales. In Sect. 2,we discuss themodelling of intracellu-
lar dynamics, specifically gene regulatory networks (GRNs), using a spatial stochastic
approach. Firstly, we apply this approach to so-called synthetic GRNs: repressilators,
and explore the role of molecular movement in such systems. Secondly, we apply
this approach to the NF-κB pathway, which is important in diseases such as cancer
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and the inflammatory response. In Sect. 3, we focus on the cell scale, in particular
investigating cell–cell/cell–matrix dynamics using a force-based model. Specifically,
we apply this to modelling avascular tumour cords around blood vessels. In Sect. 4,
we remark on the importance of these two modelling approaches individually and
discuss how coupling these techniques together to form a multiscale framework offers
a new horizon for cancer modelling. In particular using high-performance computing
(HPC), it would be possible to combine these two techniques while at the same time
modelling 106–109 cells, thereby enabling one to model at the tissue scale.

2 Intracellular Dynamics: GRNs

At the heart of cellular function and communication lie segments of DNA (genes)
and their associated gene regulatory networks (GRNs). A GRN can be defined as a
collection of genes in a cell which interact with each other indirectly through their
RNA and protein products. GRNs are vital to intracellular signal transduction and
indirectly control many important cellular functions such as cell division, apoptosis
and adhesion. One specific class of GRN involves proteins called transcription factors,
which alter the transcription rate of genes in response to intra- or extracellular cues.
Transcription factors may reduce or increase the transcription rate of a given gene,
respectively, inhibiting or promoting its production. If the inhibition (or promotion)
is directed towards the transcription factor’s own gene, either directly or indirectly,
there is negative (or positive) feedback. Negative feedback loops are an important
component of many gene networks and are found within a wide range of biological
processes, e.g. inflammation, meiosis, apoptosis and the heat shock response (Lahav
et al. 2004). Mechanically speaking, systems that contain negative feedback should
(and in fact are known to) exhibit oscillations in the levels of the molecules involved.
Furthermore, in many biological processes, it is the oscillatory expression that is of
particular importance.

Mathematical modelling of GRNs began with the papers of Goodwin (1965) and
Griffith (1968), inwhich a negative feedbackmodel for a simple, singlemRNA-protein
feedback system was proposed. However, while GRNs are known to exhibit periodic
fluctuations in mRNA and protein concentrations (e.g. the results for the Hes1 system,
cf. Hirata et al. 2002), these early models, which were restricted to purely temporal
ordinary differential equations (ODEs), could not exhibit oscillatory behaviour. Since
the late 1990s, there has been interest in the study of delay-differential equationmodels
for GRNs (e.g. Smolen et al. 1999, 2001, 2002; Tiana et al. 2002; Jensen et al. 2003;
Lewis 2003; Monk 2003; Bernard et al. 2006), following on from Mackey and Glass
(1977) who introduced the idea of incorporating delays into differential equations two
decades earlier. The inclusion of a delay in ODE models of GRNs (e.g. the Hes1
system, the p53–Mdm2 system and the NF-κB system) has been shown to produce the
required oscillatory behaviour (e.g. Tiana et al. 2002; Jensen et al. 2003; Lewis 2003;
Monk 2003; Bernard et al. 2006).

An alternate approach has been to model GRNs with reaction–diffusion partial dif-
ferential equations (PDEs) rather than ODEs, to incorporate spatial aspects. The first
such spatial models (for theoretical intracellular systems) were proposed in the 1970s
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by Glass and co-workers (Glass and Kauffman 1970; Shymko and Glass 1974) and
similarly in the 1980s by Mahaffy and co-workers (Busenberg and Mahaffy 1985;
Mahaffy 1988; Mahaffy and Pao 1984). The inclusion of spatial terms rather than
a delay equally lead to the necessary oscillations (e.g. Sturrock et al. 2011, 2012;
Szymańska et al. 2014; Lachowicz et al. 2016; Macnamara and Chaplain 2016). Fur-
thermore, Chaplain et al. (2015) rigorously proved, for theHes1 system, thatmolecular
diffusion causes oscillations. It is worth noting that a fewmodels incorporate both spa-
tial aspects and delays (e.g. Momiji and Monk 2008). At a time when biologists are
developing techniques to tag and monitor the movement of molecules in single cells
(e.g. Betzig et al. 2006; Manley et al. 2008; Spiller et al. 2010; Linde et al. 2011; Won
et al. 2011; Bar-On et al. 2012; Hiersemenzel et al. 2013), it is important to develop
appropriate mathematical models that have the ability to analyse the spatial data that
arise from such experiments.

The study of GRNs also plays both a theoretical and practical role in the field
of synthetic biology. Since the pioneering work of Becskei and Serrano (2000) and
Elowitz and Leibler (2000) on E. coli, there has been renewed interest in synthetic
GRNs as a method of designing and constructing predictable biological systems (Bal-
agadde et al. 2008; Chen et al. 2012; Yordanov et al. 2014) with concomitant studies
of a more theoretical nature (Purcell et al. 2010; O’Brien et al. 2012; Macnamara and
Chaplain 2016). Such activities could in future lead to the development of better drug
design, more efficient crop yields and enhanced bioenergy production (Yordanov et al.
2014).

While previousworkmodellingGRNs has offered great insight (showing, for exam-
ple, that spatial aspects are of key importance, e.g. Chaplain et al. 2015), biological
systems are fundamentally noisy and as such it makes sense to consider them stochas-
tically. While GRNs are observed to exhibit periodic fluctuations (e.g. Hirata et al.
2002; Nelson et al. 2004; Geva-Zatorsky et al. 2006), results from intracellular imag-
ing show inherent stochasticity (e.g. Spiller et al. 2010). The noise may be caused by
a combination of the underlying randomness of necessary events (such as the bind-
ing/unbinding of protein and promoter) and the natural variation of production and
degradation rates (since transcription and translation occur in bursts rather than con-
tinually). Adding to that the fact that the molecular species involved are present in
low numbers, continuummodels are unlikely to provide an accurate description of the
real-life situation. Burrage and co-workers (e.g. Barrio et al. 2006; Tian et al. 2007;
Marquez-Lago et al. 2010) were among the first to seek oscillatory behaviour of GRNs
using a stochastic approach. They used a delay SSAmethod, SSA being the stochastic
simulation algorithm developed by Gillespie (1976), and discussed how a time delay
could account for spatial aspects (Marquez-Lago et al. 2010), without the need to
incorporate them explicitly. However, prompted to further investigate the importance
of spatial aspects, Sturrock et al. (2013) designed a model of GRNs (specifically the
Hes1 system) which accounts for the importance of both space and stochasticity. They
used a continuous-time discrete-spaceMarkov process tomodel the reaction–diffusion
kinetics. Since cell populations are naturally heterogeneous, a stochastic description
with spatial aspects built in allows us to incorporate a variety of differences and to
look for emergent behaviour. The approach of Sturrock et al. (2013) can be applied to
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model other natural pathways or synthetic GRNs, and we give two such applications
here.

At the heart of any model for GRNs lies a system of chemical/molecular reactions,
which describe how different species interact. Within a continuum setting we are
able to extrapolate from these a set of differential equations. A discrete approach
by contrast relies on a chemical master equation; the spatial stochastic models we
discuss here are continuous-time, discrete-space Markov processes governed by a
reaction diffusion master equation (RDME). Model reactions (modelled with simple
mass action kinetics) are localised at specific sites or regions within the cell. In the
following section, we give some selected results from the simulations of specific
RDMEs (see “Appendix 1” for more details of the basic model set-up).

2.1 GRN Simulation Results

2.1.1 Synthetic GRNs: n-Gene Repressilators

For a basic spatial stochastic model, we start with a single (or chain of) feedback(s)
between mRNA(s) and protein(s). We consider a single stochastic reaction–diffusion
model, which is developed from that of Sturrock et al. (2013), who modelled the
single negative feedback Hes1 system. The model can be extended to one containing
n-genes, i.e. n mRNAs and n proteins, connected in a cyclical arrangement in which a
gene may activate or inhibit its following gene. Our model reactions are given in Table
1, for i = {1, 2, . . . n}. Consider a gene i , its mRNA is translated producing protein,
within the cytoplasm, at a rate αpi . The (i − 1)th protein is then available to bind
with (and then unbind from) its i th promoter at a specific gene site, with binding and
unbinding rates b1 and b2, respectively. Depending on whether the protein is bound
with its promoter or not determines the rate of mRNA production for the following
gene in the chain. A free (or unbound) promoter transcribes mRNA at the basal rate
αmi , while an occupied (or bound) promoter either enhances or diminishes mRNA
production depending on the value of γi . We assume that both species degrade (at
rates μm and μp, respectively) and diffuse throughout the domain.

This single description may be used to model a variety of synthetic GRNs, with
the nuances of each captured by changes to specific parameters. In particular, we are
able to model repression or activation of an mRNA by a preceding protein through
changes to the parameter γi (Sturrock et al. 2013). If γi < 1, the basal rate of mRNA
transcription is enhanced when the preceding protein is bound to its promoter (there
is positive feedback), whereas the basal rate of mRNA transcription is reduced when
the preceding protein is bound to its promoter for γi > 1 (there is negative feedback).

For this model with n = 1, the system contains a single mRNA and protein pair.
With γ1 > 1, they are coupled by a simple negative feedback loop; this appropriately
models the Hes1 system and was considered as such by Sturrock et al. (2013). Here we
give here simulation results for a three-gene repressilator by taking n = 3 and γi > 1.
Following Macnamara and Chaplain (2016), we consider a repressilator to be a loop
of n-genes where each protein inhibits the production of the subsequent mRNA. We
solve the system for a spherical domain,Ω , see Fig. 2. We approximate the cell as two
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Table 1 List of the i th molecular reactions in an n-gene repressilator system (adapted from the Hes1
system of Sturrock et al. 2013)

Cytoplasmic reaction Description

mRNAi
αpi−−→ mRNAi + proteini Translation of proteini

Reactions at the ith gene site Description

f pi + proteini−1
b1−⇀↽−
b2

opi Binding/unbinding of proteini−1 to the ith free promoter

f pi
αmi−−→ f pi + mRNAi Basal transcription of mRNAi

opi
αmi /γi−−−−→ opi + mRNAi Modified transcription of mRNAi

Global reactions Description

mRNAi
μm−−→ ∅ Degradation of mRNAi

proteini
μp−−→ ∅ Degradation of proteini

Sli
qli j xli−−−−→ Sl j Molecular diffusion

Fig. 2 Computational 3D cellular domain used in the stochastic spatial simulations consisting of a cyto-
plasm (green), a nucleus (blue) and gene binding sites within the nucleus (red). The nucleus has radius
3μm, and the cell has radius 7.5μm. See text for full details

concentric spheres centred on (0, 0) with radii 3 and 7.5μm, respectively; the inner
sphere being the nucleus and the remainder of the domain the cytoplasm. Key to this
modelling approach is the position of promoter sites, where the binding/unbinding
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Table 2 List of parameter values used in the computational simulations (all parameters are within the
ranges reported by Sturrock et al. 2013)

Parameter Description Value

αpi Translation rate of protein 10min−1

b1 Rate of protein binding to promoter 5 × 108 M−1 min−1

b2 Rate of protein unbinding from promoter 0.05min−1

αmi Basal transcription rate of mRNA 0.5min−1

γi Scale of transcriptional repression 25

μm Degradation rate of mRNA 0.08min−1

μp Degradation rate of protein 0.02min−1

D Diffusion coefficient 0.60 5 × 10−12 m2 min−1

and transcription reactions take place. How variations in the spatial location of the
gene site (and also the protein production site) affect the levels of the molecules in
GRNs has been explored in Sturrock et al. (2012) andMacnamara and Chaplain (2016,
2017). This aspect remains to be explored more fully in a spatial stochastic setting.
For our simulations of the three-gene repressilator, the three promoter sites are located
at single voxels tightly clustered together within the nucleus. In Table 2, we give the
parameter values used in the simulations.

Simulation results are given in Fig. 3 where we depict the concentrations of mRNA
and protein as they vary with time along with figures that indicate when each of
the promoters is occupied. The individual gene/promoter sites are located in the
x–y plane equidistant on a circle of radius 0.5μm as follows: promoter 1 site—
(0μm, gy μm); promoter 2 site—(gy cos(π/6)μm,−gy sin(π/6)μm); promoter 3
site—(−gy cos(π/6)μm,−gy sin(π/6)μm) where gy = 0.5. We observe periodic
fluctuations in mRNA and protein concentrations.

2.1.2 Natural GRNs: The NF-κB Pathway

While a generic model of GRNs with simple feedback incorporated offers general
insight into mRNA-protein dynamics, a spatial stochastic approach can easily be
applied to more complex pathways that contain a variety of molecular interactions.
Here, we give a few selected simulation results for a spatial stochastic model of the
NF-κB pathway, which when it works correctly is responsible for coordinating pro-
cesses such as adaptive and innate immunity, development and cell survival but if
dysregulated may lead to chronic inflammatory diseases, autoimmune diseases and
the initiation and progression of cancer. Nuclear factor κB (NF-κB) was discovered in
1986 as a nuclear factor in B lymphocytes responsible for regulating the gene encoding
the immunoglobulin κ light polypeptide chain. It is found to be present in almost all
mammalian cell types and is activated in response to many different stimuli, includ-
ing environmental cues such as hypoxia and ultraviolet radiation; infectious agents,
such as bacteria and viruses; and extra- and intracellular stress, such as inflammatory
cytokines and DNA damage. Due to the diversity of the means to NF-κB activation,
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Fig. 3 Plots showing the copy numbers of mRNA and proteins obtained from a simulation of the three-
gene repressilator system with individual gene sites (promoter sites) clustered together at the origin. The
molecular species are colour coded as follows: mRNA1, protein1—red; mRNA2, protein2—blue; mRNA3,
protein3—green. Top figure mRNA copy numbers; middle figure protein copy numbers; bottom figure the
three promoters in either occupied (1) or free (0) state

123



1376 Z. Szymańska et al.

it is not surprising that NF-κB has been found to have the potential to control the
transcriptional activity of over three hundred genes and to thus play a role in many
different processes.

Nuclear–cytoplasmic oscillations of NF-κB have been observed in experiments
(e.g. Nelson et al. 2004; Ashall et al. 2009; Lee et al. 2014), see, for example, Fig. 4,
and have also been the subject of mathematical models (Hoffmann et al. 2002; Lipni-
acki and Kimmel 2007; Cheong et al. 2008; Pekalski et al. 2013). They are produced
due to negative feedback from gene products such as its inhibitor IκBa and the IKK
deactivator A20 (Skaug et al. 2011). In the canonical NF-κB signalling pathway, NF-
κB (predominantly experimentally observed to be RelA-NF-κB1 heterodimer) is held
inactive in the cytoplasm of unstimulated cells by the family of inhibitor IκB pro-
teins (predominantly IκBa). The binding of IκB to NF-κB masks NF-κB’s nuclear
localisation sequence (NLS), which in turn prevents the binding of NF-κB to nuclear
pore complexes and hence nuclear translocation (O’Dea and Hoffmann 2010). IκB
further spatially regulates NF-κB by actively translocating to the nucleus, binding to
nuclear NF-κB and transporting it back to the cytoplasm (Arenzana-Seisdedos et al.
1997). Particular examples of extracellular stimuli that activate the canonical NF-
κB signalling pathway are the pro-inflammatory cytokine, tumour necrosis factor α

(TNFα), and the bacterial product, lipopolysaccharide (LPS). Upon ligand binding
to a specific cellular membrane receptor, such as tumour necrosis factor α receptor
1 (TNFR1) or Toll like receptor 4 (TLR4), adaptor molecules, kinases and ubiqui-
tin ligases are recruited, leading to the activation of the TAK–TAB complex [TGF
(transforming growth factor) β activated kinase—TAK associated binding protein].
TAK is essential for the activation of the trimeric complex, IKK (the inhibitor of
IκB kinase), which in mammalian cells is composed by IKKα, IKKβ and IKKγ.
IKK activation leads to phosphorylation of the IκBα within an IκB/NF-κB com-
plex at amino acid residue serine 32 and serine 36. This phosphorylation of IκB is
a marker for it to be tagged for ubiquitination. Once ubiquitinated, it is degraded
by the proteasome, thus releasing NF-κB to translocate to the nucleus, where it
binds to κB sites in the promoters and enhancers of its target genes. The full set
of reactions/interactions for the NF-κB pathway is given in Tables 6, 7 and 8 in
Appendix 2.

Here we give simulation results of the RDME for the NF-κB pathway. A single
realisation of the experiment is shown in Fig. 5. Again, in this case the computa-
tional domain consists of two concentric spheres (the outer sphere representing the
cytoplasm—radius 9.5μm—and the inner sphere representing the nucleus—radius
5μm) and three individual gene/promoter sites for NF-κB, IκB and A20 localised
within the nucleus (specifically, the NF-κB gene site is located at the origin, and the
IκB andA20 gene sites have displacements of 2.5 and−2.5μm, respectively, along the
x Cartesian axis from the origin). The plots given in Fig. 5 show periodic fluctuations
in the copy numbers of NF-κB, IκB (and the complex of the two) along with A20 as
well as indicating periodicity in the NF-κB nuclear–cytoplasmic ratio that suggests
nuclear–cytoplasmic oscillations.

Figure 6 indicates the cross-section through the middle of the cell from the full
3D simulation. We show the spatial distribution of NF-κB molecules inside a cell
for discrete values of time. We note changes to the concentration over time both in
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Fig. 4 Top panel. Experimental observation of temporal oscillations of key molecular species in the NF-κB
system. Bottom panel. Experimental observation of spatiotemporal oscillations in NF-κB localisation in
individual cells. This figure shows time-lapse confocal images of NF-κB-containing species fused to a red
fluorescent protein and of IκBa-containing species fused to a green fluorescent protein in SK-N-AS cells
after stimulation with TNFa. The arrow marks one oscillating cell. Nuclear–cytoplasmic translocation of
NF-κB-containing species is apparent. Time is shown in minutes, and the scale bar represents 50μm. From
Nelson et al. (2004). Reprinted with permission from AAAS

general and with regard to location. Specifically, we note that the concentration of NF-
κB alternates between being predominantly in the nucleus with being predominantly
in the cytoplasm. These numerical simulations shown in Figs. 5 and 6 can be directly
compared to experimental data, such as those given in Fig. 4. One way to achieve this
in an objective manner is to estimate the underlying (mean) period of the oscillations.
Figure 7 shows the mean period of total NF-κB for 100 different simulations of the
spatial stochastic model. The (time-dependent) periods were estimated using a Morlet
continuous-time wavelet transform as implemented in WAVOS, with Gaussian edge
elimination used to minimise artefacts in the approximation of the period (cf. Harang
et al. 2012; Sturrock et al. 2013). As can be seen from the plot, the period varies
between100 and180min,which is comparable to that observed byNelson et al. (2004).
Thus, our spatial stochastic model (SSM) is capable of capturing both the spatial–
temporal experimental data within a single cell and the temporal data of molecular
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Fig. 5 Plots showing temporal oscillations of key molecular species in the NF-κB system obtained from
simulations of the spatial stochastic model. From top left to bottom left: time series (spanning 1600min)
for the copy number of (a) total NF-κB, (b) total IκB–NF-κB complex, (c) free NF-κB, (d) free IκB,
(e) total A20, respectively. In the bottom right plot, (f) we give the NF-κB nuclear–cytoplasmic ratio.
Where applicable (in Fig. 1d) the total number of cytoplasmic species is indicated in red and the total
number of nuclear species is indicated in blue. Parameter values given in Appendix 2 in Tables 6, 7
and 8

concentrations. As such, our SSM provides a very accurate in silico description of
complex intracellular signalling pathways.

3 A Multiscale Individual-Based Model of Cancer Growth

While the model of the previous section focussed on (stochastic) spatiotemporal mod-
els of intracellular pathways, both synthetic and actual, as noted in Introduction, these
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Fig. 6 Plots of the spatial distribution of NF-κB molecules inside a cell at times t = 0, 42, 84, 128, 196,
292, 356, 400, 464min. Cross-section through the middle of the cell from the full 3D simulation. Parameter
values given in Appendix 2 in Tables 6, 7 and 8

intracellular pathways control cell-level activities. Therefore, in this section, we will
focus on a model of cancer growth at the individual cell level. There are now a number
of different individual-based modelling approaches that one can adopt, cf. cellular
automata, Cellular Potts Model, hybrid discrete-continuum (Anderson and Chaplain
1998; Alarcón et al. 2003; Andasari et al. 2012; D’Antonio et al. 2013). Here we
adopt an individual-based, force-based model of cell growth which is driven by forces
acting upon the cell and is based upon the model of Ramis-Conde et al. (2008). More
recently, this approach has been extended and implemented on a massively parallel
system (IBM Blue Gene/Q system) allowing hybrid high-performance simulations to
describe, for example, tumour growth in its early clinical stage. Details of the imple-
mentation can be found in Cytowski and Szymańska (2014, 2015a, b). Adopting this
approach, we model each cell as an isotropic elastic object capable of migration and
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Fig. 7 Plot showing themean period (inminutes) of totalNF-κB for 100 simulations of the spatial stochastic
model. The periods were calculated using a Morlet continuous wavelet transform with Gaussian edge
elimination. Parameter values given in Appendix 2 in Tables 6, 7 and 8

division and parameterise it by cell-kinetic, biophysical and cell-biological parame-
ters that can be experimentally measured, from both in vitro and in vivo experiments
(Chu et al. 2004; Gumbiner 2005; Jagiella et al. 2016; Miron-Mendoza et al. 2013;
Näthke et al. 1995; Schlüter et al. 2012, 2015; Ritchie et al. 2001; Zaman et al. 2006).
We assume that an individual cell ci in isolation is spherical and characterise the cell
shape by its radius R. The position of the cell in 3D space is described by the Cartesian
coordinates (xci , yci , zci ) of its centre.

Regarding cell kinetics, we assume that the cell cycle is divided into four phases,
i.e. mitosis: M-phase, followed by G1-, S-, and G2-phases, after which mitosis occurs
again. During a complete cell cycle, the cell must accurately duplicate its DNA once
during S-phase and distribute an identical set of chromosomes equally to two progeny
cells duringM-phase.M-phase consists of twomajor events: the division of the nucleus,
called mitosis, and subsequent cytoplasmic division, called cytokinesis. G1-phase is
an interval between mitosis and the initiation of nuclear DNA replication. It provides
additional time for a cell to grow and to replicate its cytoplasmic organelles. G2-phase
is again an interval between the completion of nuclear DNA replication and mitosis.
Over the course of both theG1- andG2-phases, the cell checks the internal and external
environment to ensure that the conditions are suitable and complete preparation for
entry into either S-phase orM-phase. When DNA is damaged, the cell cycle is arrested
in G1 or G2 so that the cell can repair DNA damage prior to its duplication, or before
cell division.

Cell cycle events must occur in a precise order, which should be maintained, even
when one of the steps takes longer than usual. For instance, this means that cell
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Fig. 8 Schematic diagram showing the cell cycle and cell dependency upon availability of nutrients used
in the individual-based model

division cannot start before DNA replication is complete. Similarly, when DNA is
damaged the cell cycle is arrested so that the cell can repair the damage. This is
possible because the cell is equipped with molecular mechanisms that can stop the
cycle at various checkpoints. Two main checkpoints are located within the G1- and
G2-phases. The G1 checkpoint allows the cell to check whether its environment is
conducive to divisions and whether its DNA is damaged. If environmental conditions
make cell division impossible, instead of entering S-phase a cell can enter a resting
state—G0-phase—where it remains until conditions improve and it continues the
cell cycle. The G2 checkpoint ensures that the cell has no DNA damage, and DNA
replication will be completed before the beginning of mitosis (Alberts et al. 2010). A
simplified schematic of the cell-cyclemodel and cell interactionswith the environment
used in our computational simulations is given in Fig. 8.

Interactions between cells are modelled by taking into account the repulsive and
attractive forces between cells. Upon compression, i.e. with decreasing distance dci c j
between the centres of two adjacent cells, ci and c j , of radii, rci and rc j , both their
surface contact area and the number of adhesive contacts increase, resulting in an
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attractive interaction. We assume that adhesive forces are proportional to ρm , which is
the density of the surface adhesion molecules in the contact zone (which we assume is
given for particular cell type), kB, which is the Boltzmann constant, T , which denotes
temperature and Dci c j , which measures the contact between cells ci and c j and is
calculated as the volume of the common area of intersecting spheres representing
those cells. Experiments suggest that cells only have a small compressibility—the
Poisson numbers are close to 0.5 (Mahaffy et al. 2000; Alcaraz et al. 2003). In this
instance, both the limited deformability and the limited compressibility give rise to a
repulsive interaction. Repulsive forces are inversely proportional to the term Eci ,c j ,
which is calculated from the Young moduli, Eci and Ec j , and Poisson ratios, νci and
νc j . The precise formula is given by:

Eci ,c j = 3

4

(
1 − ν2ci

Eci
+ 1 − ν2c j

Ec j

)
. (1)

We model the combination of the repulsive and attractive energy contributions by a
modified Hertz model (Galle et al. 2005; Schaller and Meyer-Hermann 2005) which
has the advantage that both the interaction energy and the force can be represented as
an analytical expression (Drasdo and Höhme 2005). Inertia terms are neglected due
to the high friction of cells with their environment, and we also do not consider the
existence of any memory term as in Galle et al. (2005):

Vci c j = (rci + rc j − dci c j )
5
2

1

5Eci c j

√
rci rc j

rci + rc j︸ ︷︷ ︸
repulsive interactions

+ ρmDci c j 25kBT︸ ︷︷ ︸
adhesion

. (2)

Cells require access to oxygen from the circulatory system in order to grow and sur-
vive. It is well known that cancer cells grow preferentially around blood vessels. Those
tumour cells that are located more than about 0.2mm away from blood vessels were
found to be quiescent, while others even farther away were found to be necrotic. This
threshold of approximately 0.2mm represents the distance that oxygen can effectively
diffuse through living tissue (Weinberg 2007). Because of the low redox potential and
high activation energy that occurs in living organisms, reactions involving molecular
oxygen occur only in mitochondria. Therefore, we assume that the loss of oxygen in
the tissue takes place only due to its consumption by the cells. The general equation
governing the external oxygen concentration Q(x, t) in the cells’ environment may
be written:

∂

∂t
Q(x, t) = DQ∇2Q(x, t) − G(x, t) + H(x, t), (3)

where DQ is the oxygen diffusion coefficient. The function G(x, t) models the oxy-
gen uptake by cells and the function H(x, t) models the production of oxygen by
vessels. Both of these functions are computed in each time step of the simulation from
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the current spatial organisation of cells and vessels through interpolation. The force
associated with a given cell, ci , is then given by the expression:

Fci = ∇Vci︸︷︷︸
intercellular interactions

+ λ∇Q(x, t)︸ ︷︷ ︸
chemotaxis

(4)

where λ is a measure of a cell’s chemotactic sensitivity to the oxygen concentration
and Vci is given by

Vci =
∑

c j∈Bεci
(ci )

Vci c j (5)

with Bεci
(ci ) a sphere (i.e. a ball in R3) centred on (xci , yci , zci ), radius εci , denoting

the maximum intercellular interaction region.
Summing all the forces between the cells and assuming a frictional force/drag force

proportional to a cell’s velocity and then applying Newton’s second law of motion
allows us to integrate a Langevin-type equation to give the spatial location of the cells
over time. The direct use of equations of motion for the cells permits one to include
more easily the limiting case of very small (or no) noise and is more intuitive. In this
approach, cells move under the influence of forces and a random contribution to the
locomotion which results from the local exploration of space.

Solving the oxygen concentration (which is a global field) together with the
individual-based particle system of up to 109 cells is a challenging task in the context
of parallel processing. First of all, it requires the use of appropriate data structures to
optimise the computations of interactions between lattice-free cells. In our approach,
the main data structure that stores information about cells is an octal tree. We assume
that the domain of simulation is a 3D cube. The cells are arranged in a tree based on the
position of their centres. The tree is built recursively starting from the whole domain
of simulation, which corresponds to the root of the tree. Subsequently, the cubes are
divided recursively into eight equal cubes with edges reduced by a factor of a half.
This procedure is repeated until in the cube under consideration there is only one cell
centre.

In order to perform large-scale simulations and to minimise the execution time and
enable good parallel scalability on massively parallel systems, we need to perform an
appropriate data partitioning across available processes. In our approach, we use two
different domain decompositions. Firstly, we need to distribute the cells between the
available processors. The solution we adopted is based on Peano–Hilbert space filling
curves and is encoded in the following algorithm: for each cell in a 3D box we look
for its corresponding value in the interval [0, 1]; then, the interval [0, 1] is divided
into equal parts according to a given specific measure. Such a measure may be, for
example, the number of cells contained in a given part. In our case, themeasure is based
on computed cell density. The particular parts are assigned to different processors.
Such a load-balancing method (e.g. geometrical load-balancing method) has the very
nice property of geometrical locality that is very important when computing cell–cell
interactions in a given neighbourhood, see Fig. 9.
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Fig. 9 A 2D example of domain
decomposition assigning cells to
different processors. Local cells
of each process are denoted by
the same colour. Our aim was to
minimise the execution time and
enable good parallel scalability
on massively parallel systems.
Our decomposition algorithm is
based on Peano–Hilbert space
filling curves. Such a method
ensures the property of
geometrical locality, which is
very important when computing
cell–cell interactions in a given
neighbourhood

The equation governing the external oxygen concentration is equipped with Dirich-
let boundary conditions and is discretised with an implicit in time finite difference
scheme. The resulting linear system is then defined in the ParCSR parallel format
and solved with the conjugate gradient method preconditioned by the BoomerAMG
algebraic multigrid method (both available in the Hypre library, cf. Baker et al. 2012).
The domain decomposition scheme used for the finite difference numerical scheme is
different from the one used for a particle system. For data modelled in a continuous
manner, the data decomposition is achieved by assigning 3D grid blocks to different
processes.

The system is updated repeatedly as the program runs through a loop. During one
time step, for each cell its cell-cycle phase is computed, i.e. its phase is checked and,
if necessary, updated. The level of oxygen and nutrients available to a cell determines
whether or not it dies (i.e. the probability of cell death increases as the oxygen and
glucose concentrations decrease). A cell divides if it has sufficient space around it to
place its daughter cell. Scheme1 presents the computational algorithm followed during
the simulation. Each iteration of the simulation begins with domain decomposition
and a construction of an optimal data structure (i.e. an oct tree) for storing the cells
and then follows the steps of the algorithm and ends with cells being moved to new
spatial positions.

3.1 Application to Tumour Cords

In this section, we present the results of computational simulations carried out on
our individual-based model. Previous work applying the individual-based model to
cancer growth has already focussed on avascular multicell (multicellular) spheroids
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Scheme 1 Pseudo-code outlining the algorithm followed in the HPC simulation of the
individual-based model
i ter ← 0
while i ter ≤ max_i ter do
Step 1: Perform domain decomposition;
Step 2: Build tree;
Step 3a: Find exchange regions and initiate data exchange;
for all local cells do
Step 4a: Find cell’s neighbours ← local data;
Step 5a: Compute potential and density functions ← local data;

end for
Step 3b: Wait until data exchange is finished;
for all local cells do
Step 4b: Find cell’s neighbours ← remote data;
Step 5b: Compute potential and density functions ← remote data;

end for
Step 6: Interpolate cells to global fields grid;
Step 7: Compute global fields;
Step 8: Interpolate global fields to cells;
for all local cells do
Step 9: Update cells’ cycle;
Step 10: Compute forces and move cells to their new positions;

end for
iter ++;

end while

(Shirinifard et al. 2009; Cytowski and Szymańska 2014, 2015a, b), cancer invasion
(Ramis-Conde et al. 2008) and metastasis (Ramis-Conde et al. 2009). However, here
we choose to focus on a less well-studied solid tumour “structure” observed in vivo,
that of “tumour cords” or “tumour cuffs”. In this case, tumour cells grow around a
central blood vessel with those cells further away from the blood vessel experiencing
lower nutrient levels. Since nutrient concentration (e.g. oxygen and glucose) decreases
with increasing distance from the blood vessel, there is a region of viable cells close
to the blood vessel, with necrosis appearing at a certain distance from the vessel. For
example, in the Dunning rat model of prostate carcinoma, this is observed to be around
110μm, see Fig. 10 (Hlatky et al. 2002). Previous modelling work in this area has
adopted a continuum approach (Bertuzzi and Gandolfi 2000 and Bertuzzi et al. 2005).
This is the first time (to our knowledge) that an individual-based approach has been
adopted for tumour cords.

3.2 Parameter Estimation

Whenever possible parameter values are estimated from available experimental data.
Most of the parameters used in the simulations concern mouse breast cancer—EMT6
cell line. Given that the length of phases of the cell cycle is for cultivation of cells
in favourable conditions, i.e. assuming adequate amounts of nutrients and space for
development. We also assume that proliferating cells that lack oxygen stop at the G1
checkpoint and become quiescent. Quiescent cells that are inG0 need less oxygen than
proliferating cells, see Table 3. If the level of oxygen available to the cells falls below
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Fig. 10 Tumour cells surrounding a central blood vessel from a Dunning rat prostate carcinoma xenograft
(Hlatky et al. 2002). Regions of viable tumour cells (cuffs) are formed around the central vessel. The dashed
black line indicates the boundary of the region. Cuff size is roughly indicative of the metabolic burden of
the carcinoma cells. Tumour cells within approximately 110μm of the vasculature are viable. Beyond this
zone, oxygen and nutrient levels drop below a critical threshold, and an area of necrosis is observed. From
Hlatky et al. (2002), by permission of Oxford University Press

the level needed to survive, the cells become necrotic. Because of the high perme-
ability of cell membrane to oxygen (Alberts et al. 2010), we also assume that oxygen
concentration inside the cell is equal to the extracellular concentration (Bertuzzi et al.
2010). The volume of a living EMT6 cell is about 4.975 × 10−9 cm3 (Casciari et al.
1992) giving the cell diameter as approximately 10.6μm. A list of all the baseline
parameters used in the individual-based model is given in Table 3.

3.3 Computational Simulation Results

In Figs. 11 and 12, we show computational simulation results for a tumour cord
growing around a blood vessel for the baseline parameter case, as detailed in Table 3.
Specifically the simulation is of an avascular cancer; the cancer cells are initiated
around a central small blood vessel that secretes oxygen. The oxygen concentration is
held constant on the vessel boundary and then diffuses to zero over a distance of around
200μm.We observe that as the mass of tumour cells grows, cells become hypoxic and
then subsequently necrotic at which point they are coloured black. The numbers of
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Table 3 Description of the parameters used in the individual-based model and their values along with the
relevant reference

Description Value References

Average cell diameter (EMT6
tumour cell line)

10μm Casciari et al. (1992)

G1 phase length (EMT6 tumour
cell line)

11h Zacharaki et al. (2004)

S phase length (EMT6 tumour
cell line)

8h Zacharaki et al. (2004)

G2 phase length (EMT6 tumour
cell line)

4h Zacharaki et al. (2004)

M phase length (EMT6 tumour
cell line)

1h Zacharaki et al. (2004)

Oxygen diffusion coefficient in
multicellular spheroids

[1.65–1.9]×10−5 cm2 s−1 Mueller-Klieser and
Sutherland (1984)

Oxygen consumption rate of
proliferating cells (EMT6
tumour cell line)

16.9 × 10−17 mol s−1 cell−1 Walenta and
Mueller-Klieser (1987)

Oxygen consumption rate of
quiescent cells (EMT6 tumour
cell line)

9.6 × 10−17mol s−1 cell−1

Walenta and
Mueller-Klieser (1987)

Fig. 11 Plots showing results of numerical simulations of our model of a growing tumour cord around a
central blood vessel at times 332, 443, 776 and 1332h. As the tumour cord grows, cells further away from
the vessel become necrotic (black). At the final time of 1332h, there is a total of 10,279 cells comprising
3801 viable cancer cells and 6478 necrotic cells. See text for details

viable and necrotic cells at various times from the computational simulation are given
in Table 4. This mirrors the experimental findings of Hlatky et al. (2002), see Fig. 10.
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Fig. 12 Plot from our model simulations showing cross-sections of the growing tumour cord around a
central blood vessel at times 332, 443, 776 and 1332h. As the tumour cord grows, cells further away from
the vessel become necrotic (black). At the final time of 1332h, there is a total of 10,279 cells comprising
3801 viable cancer cells and 6478 necrotic cells. See text for details

Table 4 Numbers of viable and
necrotic cells at various times
from the computational
simulation shown in Figs. 11
and 12

Time (h) # viable cancer cells # necrotic cells

332 739 54

443 1287 377

776 2443 2204

1332 3801 6478

In Figs. 13 and 14, we repeat the simulation but this time with a reduced oxygen
consumption rate for both quiescent and proliferating cells. Once again we observe
that a mass of tumour cells develops around the blood vessel; again cells that are
coloured black have become necrotic. In this case, the necrotic zone is of a smaller
size and the overall diameter of the tumour cord is larger, as is to be expected from
the reduction in O2 consumption. At the level of the whole tumour cord, we see the
evolution of a shorter but fatter structure around the central vessel. The numbers of
viable and necrotic cells at various times from the computational simulation are given
in Table 5.

In Fig. 15, we show the computational simulation results for the final structure of a
tumourmass that has grown around two vessels—“double cuff”. This shows the ability
of the code to simulate tumour growth around multiple vessels. This more closely
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Fig. 13 Plots showing results of numerical simulations of our model of a growing tumour cord around a
central blood vessel under reduced oxygen consumption at times 332, 443, 776 and 1332h. As the tumour
cord grows, cells further away from the vessel become necrotic (black). At the final time of 1332h, there is
a total of 16,723 cells comprising 9271 viable cancer cells and 7452 necrotic cells. See text for details

aligns with a realistic tissue environment, which is perfused with many capillaries in
close proximity with each other.

The figures shown in this section give an indication of the potential for this type of
modelling. It offers the capability to determine how a tumour mass would grow and
take shape in a given environment. This prospect is something we will discuss in more
detail in the following discussion section.

4 Discussion and Conclusions

As noted in Introduction, the development of cancer is a true multiscale process con-
necting many scales through time and across space (cf. Hanahan and Weinberg 2000,
2011). In this paper, we have presented models for aspects of cancer growth at two of
the “fundamental scales”; the intracellular level and the cellular level.

In Sect. 2, we considered spatial stochastic models of gene regulatory networks that
permit the study of intracellular dynamics. In particular, through numerical simulations
of reaction–diffusion master equations, we showed that it is possible to investigate
time-dependent changes to concentration levels of genes and gene products, such as
mRNA and proteins. The simulation results demonstrated the periodic fluctuations of
these concentrations as well as capturing their noisy nature, offering a better match to
experimental results than non-stochastic models. We have shown that this technique
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Fig. 14 Plots from numerical simulations of our model showing cross-sections of the growing tumour cord
around a central blood vessel under reduced oxygen consumption at times 332, 443, 776 and 1332h. As
the tumour cord grows, cells further away from the vessel become necrotic (black). At the final time of
1332h, there is a total of 16,723 cells comprising 9271 viable cancer cells and 7452 necrotic cells. See text
for details

Table 5 Numbers of viable and
necrotic cells at various times
from the computational
simulation shown in Figs. 13
and 14

Time (h) # viable cancer cells # necrotic cells

332 815 1

443 2033 67

776 5469 1569

1332 9271 7452

can be applied to relatively simple intracellular signalling systems (such as n-gene
repressilators) and yet insight is not lost nor computational difficulty increased when
we extend the approach to more complex systems of specific GRNs associated with
cancer, such as theNF-κBpathway.Wewould encourage researchersworking onGRN
models to consider adopting such a modelling approach since it provides quantitative,
as well as qualitative, connection to experimental data. Furthermore, we believe that
coupling a model of intracellular behaviour with one based at the cell level, as we
discuss next, would further strengthen our understanding of cancer dynamics.

In Sect. 3, we discussed a multiscale computational framework that focussed on the
cell scale. At the heart of the framework is an individual-based, force-based model of
cancer cell growth. The model was originally developed by Ramis-Conde et al. (2008)
who in turn developed earlier work byDrasdo andHöhme (2005). By taking advantage
of recent developments in high-performance computing techniques, we have carried
out our simulations of the model on a massively parallel computer. This has enabled
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Fig. 15 Plots showing the computational simulation results of a tumour cord interacting with two blood
vessels. (a) Tumour cord growing around two vessels, (b) tumour cord growing around two vessels later
time. (c) Oxygen profile levels in the tumour cord, (d) cross-section showing corresponding development
of tumour cells

us to simulate up to the level of tens of thousands of cells in an acceptable timeframe.
We have shown some simple proof of concept simulations to illustrate how the model
can replicate solid tumour growth. In particular, we have considered the proliferation
of cancer cells around blood vessels—so-called tumour cords.

The use of HPC will allow our computational framework for the individual-based
model to reach the tissue scale (109 individual, interacting cells that translates into a
volume of approximately 1cm3, i.e. a sizeable volume at the tissue scale), and as such
it can be used to simulate tissue-level phenomena. The feasibility of such an approach
in terms of computational time has been explored by Cytowski et al. (2017) where the
growth of a solid tumour developing in healthy tissue was simulated. A single tumour
cell was placed in the centre of an initial mass of 194,100,035 (≈1.9×108) healthy
cells and allowed to grow in response to an external oxygen field. The final tissue
configuration consisted of 245,890,017 healthy cells (≈2.5×108) and 73,836 cancer
cells, with the simulation taking a single day using 128 cores of the IBM Power 775
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system (Cytowski et al. 2017). The results of this study concluded that a single time
step of the simulation, corresponding to 1h in real time, took 100s of computational
time. Therefore, for example, to simulate a (real time) three-month growth period
of a solid tumour would take 100 s × (24 h × 30 days × 3) = 216,000 s = 60 h =
2.5 days.

More importantly since themodel itself considers cell–cell/cell–matrix interactions
and can also incorporate intracellular data, coupling it with models of intracellular sig-
nalling pathways, as detailed above, allows a true multiscale investigation of tumour
development. Specifically, we have formulated a multiscale mathematical model of
cancer capable of simulating to a level at which solid tumours are distinctly palpable
and so such a model has the potential to enable quantitative predictions of cancer
growth and treatment. While in isolation the two models discussed in this paper offer
insight into two different aspects of cancer progression, i.e. modelling at multiple
scales, their incorporation into a single multiscale model is the natural next stage in
this type of cancer modelling. Such a multiscale model will need to combine events
occurring at the different spatial and temporal scales, from intracellular molecular
interactions through to tissue scale phenomena, a challenging task from a modelling
perspective with implications also for the time taken computationally. From a mod-
elling perspective, there is a need to incorporate the interactions between the cancer
cells and the microenvironment, i.e. the tissue/stroma surrounding the cancer cells
(extracellular matrix and other cells, e.g. fibroblasts), explicitly (currently accounted
for in the model implicitly through the external frictional/drag force). This could be
done in several ways—model the tissue/stroma as a different cell type (Cytowski et al.
2017), model the tissue/stroma as a collection of individual fibres (Schlüter et al.
2015), model the tissue/stroma as another cell type and a collection of individual
fibres, model the tissue/stroma as another external field satisfying a PDE similar to
the external oxygen (Jagiella et al. 2016). Any one of these approaches would be more
akin to modelling the cells moving through a porous medium. The approaches of
Cytowski et al. (2017) and Jagiella et al. (2016) would have minimal increase in com-
putational time, but the approach of Schlüter et al. (2015) is computationally more
expensive. The computational cost of simulating large numbers of cells interacting
with individual fibres in 3D would have to be explored, although initial estimates in
2D for small numbers of cells can be found in Schlüter et al. (2015). Incorporating
intracellular signalling pathways into the multiscale model will also increase the com-
putational simulation time. Indeed, embedding a system of stochastic PDEs within
each cancer cell would be computationally prohibitive. However, it is also not nec-
essary since many of the key gene regulatory networks associated with cancer (e.g.
p53–Mdm2, NF-κB) are not operative continually, but begin to function and upreg-
ulate the molecules when there is some external stimulus—in the case of p53, when
DNA damage occurs or a cell experiences hypoxia. The oscillations in the levels of the
molecules in such systems are normally on the order of a few hours which is shorter
than the growth timescale of a solid tumour. One approach that would be computa-
tionally feasible would be to exploit the difference in timescales, i.e. stop the growth
of the cancer cells when an external stimulus was applied, carry out simulations of
the intracellular GRNs modelling a period of several hours at which point the effect
of the GRNs at a cell/phenotypic level could be determined. Key cell-level param-
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eters connected to the activity of the GRNs, e.g. cell cycle arrest, cell proliferation
rate, apoptosis, could then be modified in a number of the cancer cells. Modelling the
intracellular activity would then be halted, and the modelling of the growth of the cells
would then continue. A similar computational strategy has been successfully adopted
by McDougall et al. (2006) in modelling the growth of blood vessel networks—the
different time scales between blood flow dynamics and endothelial cell growth have
been exploited to model a so-called dynamic-adaptive blood vessel network.

Further developments of the multiscale model presented in this paper could follow
any one of several directions. The computational approach of the proposed multiscale
model, coupled with developments in visualisation software, also enables the simula-
tion of initial data and tissue structures (e.g. blood vessels), which have been imported
from actual medical images and is therefore a significant milestone towards develop-
ing a system of personalised medicine. Clinical imaging data acquisition requires the
use of sophisticated visualisation methods giving detailed insight into the anatomy of
tissues and organs. The next step is to carry out a three-dimensional reconstruction
of the relevant anatomical structures, such as blood vessels. For this purpose, it will
be possible to use VisNow (http://visnow.icm.edu.pl), which is an open-access soft-
ware developed at the Interdisciplinary Centre for Mathematical and Computational
Modelling (ICM,Warsaw), allowing complex visual analysis and segmentation of the
geometry to be studied. On the basis of the chosen geometry, we can develop digitised
input data for our computational model. Figure 16 shows an example of a blood vessel
geometry imported from heart microtomography. First, the relevant clinical/medical
structures are segmented. Then, on the basis of the geometry obtained, again applying
the VisNow package, we create a mesh that, after some smoothing and filtering proce-
dures, is used as the input for the generation of the actual initial data. At each point of
the mesh, we locate a cell. The final step consists of removing unnecessary cells, i.e.
those that are too close to others. As imagining techniques develop further, they will
be able to provide even finer detail, higher resolution and image smaller structures,
and it should be possible to create “computational capillaries” at the correct spatial
scale around which cancer is initiated. The model of solid tumour growth and inter-
action with blood vessels can also be further developed to explicitly include blood
flow through the vessels and the impact that flow has on the vessel network structure
through dynamic adaptation (cf. McDougall et al. 2006; Macklin et al. 2009). This in
turn could lead to a multiscale model of chemotherapy treatment of cancer. In more
general terms, the modelling approach can be applied to many other important pro-
cesses such as wound healing, embryogenesis, tissue engineering and cardiac tissue
modelling where tissue-level phenomena depend upon, and also in turn influence,
interactions and phenomena at both the cell and intracellular levels.

Finally, given the timing of this special issue, it is perhaps apposite to end with a
quotation from Professor Sir D’ArcyWentworth Thompson, whose seminal book “On
Growth and Form” was published exactly one century ago:

…numerical precision is the very soul of science, and its attainment affords the
best, perhaps the only criterion of the truth of theories and the correctness of
experiments …I know that in the study of material things number, order, and
position are the threefold clue to exact knowledge: and that these three, in the
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Fig. 16 Figure showing the three main steps in creating a “computational blood vessel” (input data) from
an actual clinical image. (a) Actual vessel geometry from microtomography after segmentation procedure
with VisNow software, (b) the mesh obtained after the segmentation procedure, and finally, (c) the vessel
structure with individual (spherical) cells overlaid on the underlying mesh forming a “computational blood
vessel”

mathematician’s hands, furnish the first outlines for a sketch of the Universe.
(Thompson 1917).

While “sketching the universe” is on yet another completely different scale, the
essence of the above quotation, that mathematical modelling can provide quantitative
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insight to biomedical systems, is still relevant and even more timely today. Echoing
the words of D’Arcy Thompson, one century on, we may say that computational
multiscale mathematical modelling furnishes not only the first outlines for a sketch
of cancer growth but provides the basis for the development of a virtual solid tumour.
Cura ex macchina—in silico oncology has arrived.
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Appendix 1: The Reaction–Diffusion Master Equation

Here we describe the formulation of the spatial stochastic model for intracellular GRN
dynamics. We describe the computational domain and how reaction and diffusion
events are incorporated into the reaction-diffusion master equation (RDME). We also
provide some notes on how simulations are produced. For a more detailed description,
see the supplementary material of Sturrock et al. (2013).

The Computational Domain

The computational domain (see Fig. 2, for example) is set up using COMSOL and
a mesh is imposed. In general, the domain Ω is meshed into V tetrahedra-shaped
subvolumes, voxels, Ωk, k ∈ {1, . . . , V } such that,

Ω =
V⋃

k=1

Ωk, and Ωi ∩ Ω j = ∅,∀i �= j, i, j ∈ {1, . . . , V }.

At any given time, the state of the system is described by the number of each chem-
ical species within the domain. Changes to the state will either be by the chemical
reactions at the voxel level or the movement (diffusion jumps) of a molecule between
neighbouring voxels.

Chemical Reactions

We consider reactions that occur due to molecular contact. We assume that the species
of our system, within each subvolume, are uniformly distributed and in thermal equi-
librium, such that the motion of each molecule is random.We consider the probability
of a collision occurring between two reactant molecules. The likelihood of a reaction
occurring, changing the state of the system from x to x + Nr , is determined by its
reaction rate, described by the reaction propensity function ωr (x). As such, reactions
can be described by
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x
ωr (x)−−−→ x + Nr ,

where Nr ∈ Z
S is the transition step, defined by the r th column of the stoichiometric

matrix M and ωr (x) is the probability that the reaction occurs during a infinitesimal
time interval, i.e.

ωr (x) = lim
dt→0

P(x + Nr , t + dt) − P(x, t)

dt

Molecular Diffusion

The movement of a chemical species Sl from a voxel ψi to a randomly selected
adjacent voxel ψ j describes the molecular diffusion and is modelled as a first-order
event. As such, we treat the diffusive process in a similar way to a reactive process
and consider the probability of a transition taking place, i.e. the probability for one of
the lth species to make a jump from the i th subvolume to an adjacent j th subvolume.
Hence, we consider the following,

Sli
qli j xli−−−→ Sl j ,

where xli is number of species l located in voxel i and qli j is the diffusion rate constant
that depends on the macroscopic diffusion coefficient of species l (Dl ) and the mesh
of the domain, specifically the shape and size of voxels ψi and ψ j . Note each qli j is
only non-zero for connected mesh elements and of the types of species we model only
mRNAs and proteins diffuse, the free and occupied promoters remain permanently
within the voxel assigned as the promoter site.

Solving the System

The temporal evolution of the probability distribution of each state in the state space
is governed by the RDME. We complete the model set-up with zero-flux boundary
conditions at the cell membrane, while we impose continuity of flux on the nuclear
membrane. For initialisation, we suppose that there is only a single free promoter
within each promoter site. All simulations found in this paper are produced using
the URDME (Unstructured Reaction-DiffusionMaster Equation) software framework
(Drawert et al. 2012), which implements the next subvolume method (NSM) (Gibson
and Bruck 2000); the NSM being far more computationally efficient than the clas-
sical SSA for a 3D domain such as ours. URDME uses unstructured tetrahedral and
triangular meshes (such as shown in Fig. 2) for which diffusion rate constants qli j are
automatically computed (Engblom et al. 2009; Drawert et al. 2012).

Appendix 2: NF-κB Reactions

Here we give the reactions for the NF-κB pathway (Tables 6, 7, 8).

123



Computational Modelling of Cancer Development and Growth… 1397

Ta
bl

e
6

C
yt
op

la
sm

ic
re
ac
tio

ns

C
yt
op
la
sm

ic
re
ac
tio

n
D
es
cr
ip
tio

n
Pa
ra
m
et
er

va
lu
e

St
im

ul
us

α −→
IK

K
a

A
ct
iv
at
io
n
of

IK
K
a
vi
a
in
te
ra
ct
io
n
w
ith

st
im

ul
us

α
=

0.
00

15
M

m
in

−1

IK
K
a
+I

κ
B
N
F-

κ
B

A
1 −−→

IK
K
aI

κ
B
N
F-

κ
B

Fo
rm

at
io
n
of

IK
K
a
an
d
Iκ
B
N
F-

κ
B
co
m
pl
ex

A
1

=
9

×
10

10
M

−1
m
in

−1

IK
K
aI

κ
B
N
F-

κ
B

C
1 −−→

IK
K
a
+N

F-
κ
B

C
at
al
yt
ic
de
gr
ad
at
io
n
of

Iκ
B
in

th
e
IK

K
aI

κ
B
N
F-

κ
B
co
m
pl
ex

C
1

=
1
M

−1
m
in

−1

Iκ
B
tr
an

S I −→
Iκ
B
tr
an

+I
κ
B

T
ra
ns
la
tio

n
of

Iκ
B
pr
ot
ei
n

S I
=

1.
5
m
in

−1

A
20
tr
an

S
A −−→

A
20
tr
an

+A
20

T
ra
ns
la
tio

n
of

A
20

pr
ot
ei
n

S
A

=
1.
25

m
in

−1

A
20

+I
K
K
a
A
D

−−
→

A
20

+I
K
K
n

D
ea
ct
iv
at
io
n
of

IK
K
a
vi
a
in
te
ra
ct
io
n
w
ith

A
20

A
D

=
7

×
10

8
M

−1
m
in

−1

IK
K
a

d k −→
IK

K
n

Sp
on
ta
ne
ou
s
de
ac
tiv

at
io
n
of

IK
K
a

d k
=

0.
05

5
m
in

−1

A
20

d
p −→

∅
D
eg
ra
da
tio

n
of

A
20

d
p

=
0.
07

m
in

−1

N
F-

κ
B
tr
an

S N −−→
N
F-

κ
B
tr
an

+N
F-

κ
B

N
F-

κ
B
sy
nt
he
si
s

S N
=

1
m
in

−1

N
F-

κ
B

N
σ
on

−−−
−⇀

↽
−−

−−
N

σ
of
f
N
F-

κ
B
m
ic

N
F-

κ
B
bi
nd

in
g/
un

bi
nd

in
g
to

m
ic
ro
tu
bu
le

N
σ
on

=
1

×
10

9
m
in

−1

N
σ
of
f

=
10

m
in

−1

Iκ
B

Iσ
on

−−
−⇀

↽
−−

−
Iσ

of
f
Iκ
B
m
ic

B
in
di
ng

/u
nb

in
di
ng

of
Iκ
B
to

m
ic
ro
tu
bu
le

Iσ
on

=
1

×
10

9
M

−1
m
in

−1

Iσ
of
f

=
10

m
in

−1

N
σ
i

v −→
N

σ
j

R
ad
ia
lly

di
re
ct
ed

ac
tiv

e
tr
an
sp
or
to

f
N
F-

κ
B
be
tw
ee
n
co
nn
ec
te
d
vo
xe
ls

v
=

3
×

10
−5

m
m
in

−1

Iσ
i

v −→
Iσ

j
R
ad
ia
lly

di
re
ct
ed

ac
tiv

e
tr
an
sp
or
to

f
Iκ
B
be
tw
ee
n
co
nn
ec
te
d
vo
xe
ls

v
=

3
×

10
−5

m
m
in

−1

S i
j

d
ji
k

−−
→

S i
k

M
ol
ec
ul
ar

di
ff
us
io
n

D
=

5
×

10
−1

1
m
2
m
in

−1

123



1398 Z. Szymańska et al.
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Table 8 Global reactions

Global reactions Description Parameter value

IκB+NF-κB
A2−−→ IκBNF-κB Formation of IκB and NF-κB

complex
A2 = 9 × 1011 M−1 min−1

IκBNF-κB
IDC−−→ NF-κB Natural degradation of IκB

within IκBNF-κB
IDC = 0.000055min−1

IκBNF-κB
NDC−−−→ IκB Natural degradation of NF-κB

within IκBNF-κB
NDC = 0.000025min−1

IκBtran
dm−−→ ∅ Degradation of IκBtran dm = 0.02min−1

IκB
dp−→ ∅ Degradation of IκB dp = 0.07min−1

A20tran
dm−−→ ∅ Degradation of A20tran dm = 0.02min−1

Nuclear reactions Description Parameter value used

Sij
d jik−−→ Sik Molecular diffusion of species

not containing IKKa
D = 5 × 10−11 m2 min−1
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Cytowski M, Szymańska Z (2014) Large scale parallel simulations of 3-D cell colony dynamics. IEEE
Comput Sci Eng 16(5):86–95
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Cytowski M, Szymańska Z, Umiński P, Andrejczuk G, Raszkowski K (2017) Implementation of an agent-
based parallel tissue modelling framework for the Intel MIC architecture. Sci Program 2017, Article
ID 8721612, 11 pages. doi:10.1155/2017/8721612

D’Antonio G,Macklin P, Preziosi L (2013) An agent-basedmodel for elasto-plastic mechanical interactions
between cells, basement membrane and extracellular matrix. Math Biosci Eng 10:75–101

Drasdo D, Höhme S (2005) A single-cell-based model of tumor growth in vitro: monolayers and spheroids.
Phys Biol 2:133–147

Drawert B, Engblom S, Hellander A (2012) URDME: a modular framework for stochastic simulation of
reaction-transport processes in complex geometries. BMC Syst Biol. doi:10.1186/1752-0509-6-76

ElowitzMB, Leibler S (2000)A synthetic oscillatory network of transcriptional regulators. Nature 403:335–
338

Engblom S, Ferm L, Hellander A, Lötstedt P (2009) Simulation of stochastic reaction–diffusion processes
on unstructured meshes. SIAM J Sci Comput 31:1774–1797

Galle J, Loeffler M, Drasdo D (2005) Modelling the effect of deregulated proliferation and apoptosis on
the growth dynamics of epithelial cell populations in vitro. Biophys J 88:62–75

Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P,
Lahav G, Alon U (2006) Oscillations and variability in the p53 system. Mol Syst Biol. doi:10.1038/
msb4100068

Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical species and many channels.
J Phys Chem 104:1876–1889

Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. J Comput Phys 22(4):403–434

Glass L, Kauffman SA (1970) Co-operative components, spatial localization and oscillatory cellular dynam-
ics. J Theor Biol 34:219–237

Goodwin BC (1965) Oscillatory behaviour in enzymatic control processes. Adv Enzyme Regul 3:425–428
Griffith JS (1968) Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol

20:202–208
Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat RevMol Cell Biol

6:622–634

123

http://dx.doi.org/10.1155/2017/8721612
http://dx.doi.org/10.1186/1752-0509-6-76
http://dx.doi.org/10.1038/msb4100068
http://dx.doi.org/10.1038/msb4100068


Computational Modelling of Cancer Development and Growth… 1401

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
Harang R, Bonnet G, Petzold LR (2012)WAVOS: aMATLAB toolkit for wavelet analysis and visualization

of oscillatory systems. BMC Res Notes 5:163
Hiersemenzel K, Brown ER, Duncan RR (2013) Imaging large cohorts of single ion channels and their

activity. Front Endocrinol. doi:10.3389/fendo.2013.00114
Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory

expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843
Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of anti-angiogenic therapy: microvessel

density, what it does and doesn’t tell us. J Natl Cancer Inst 94(12):883–893
Hoffmann A, Levchenko A, Scott M, Baltimore D (2002) The IκB–NF-κB signaling module: temporal

control and selective gene activation. Science 298:1241–1245
Jagiella N, Müller B, Müller M, Vignon-Clementel IE, Drasdo D (2016) Inferring growth control mech-

anisms in growing multi-cellular spheroids of nsclc cells from spatial-temporal image data. PLoS
Comput Biol 12(2):e1004412

Jensen MH, Sneppen J, Tiana G (2003) Sustained oscillations and time delays in gene expression of protein
Hes1. FEBS Lett 541:176–177
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