
Bull Math Biol (2017) 79:1426–1448
DOI 10.1007/s11538-017-0291-4

ORIGINAL ARTICLE

Modeling the Dichotomy of the Immune Response
to Cancer: Cytotoxic Effects and Tumor-Promoting
Inflammation

Kathleen P. Wilkie1,2 · Philip Hahnfeldt1

Received: 8 April 2015 / Accepted: 4 May 2017 / Published online: 5 June 2017
© Society for Mathematical Biology 2017

Abstract Although the immune response is often regarded as acting to suppress tumor
growth, it is now clear that it can be both stimulatory and inhibitory. The interplay
between these competing influences has complex implications for tumor development,
cancer dormancy, and immunotherapies. In fact, early immunotherapy failures were
partly due to a lack in understanding of the nonlinear growth dynamics these com-
peting immune actions may cause. To study this biological phenomenon theoretically,
we construct a minimally parameterized framework that incorporates all aspects of
the immune response. We combine the effects of all immune cell types, general prin-
ciples of self-limited logistic growth, and the physical process of inflammation into
one quantitative setting. Simulations suggest that while there are pro-tumor or antitu-
mor immunogenic responses characterized by larger or smaller final tumor volumes,
respectively, each response involves an initial periodwhere tumor growth is stimulated
beyond that of growth without an immune response. The mathematical description is
non-identifiable which allows an ensemble of parameter sets to capture inherent bio-
logical variability in tumor growth that can significantly alter tumor–immunedynamics
and thus treatment success rates. The ability of this model to predict non-intuitive yet
clinically observed patterns of immunomodulated tumor growth suggests that it may
provide a means to help classify patient response dynamics to aid identification of
appropriate treatments exploiting immune response to improve tumor suppression,
including the potential attainment of an immune-induced dormant state.
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1 Introduction

The role of the immune response in tumorigenesis is now generally accepted to be
both stimulatory and inhibitory (Mantovani et al. 2008; de Visser et al. 2006). While
the cytotoxic role of the immune system in tumor eradication has been known for cen-
turies, it is only recently that the concept of immune stimulation of tumor development
has becomewell accepted (deVisser et al. 2006; Hanahan andWeinberg 2011; Griven-
nikov et al. 2010; Rakoff-Nahoum 2006; Prehn 1972). One important mechanism of
the pro-tumor immune response, inflammation, has been linked to tumor initiation
(Kraus and Arber 2009), tumor progression (Mantovani et al. 2008; Grivennikov et al.
2010; Balkwill and Coussens 2004), and metastasis (Condeelis and Pollard 2006).
Even inflammation, however, can be either stimulatory or inhibitory to tumor growth
(Nelson and Ganss 2006).

The polarity of the tumor microenvironment, whether it be tumor-promoting or
tumor-inhibiting, is determined by the intercellular interactions and cytokine signaling
milieu. Tumormicroenvironments include, among the extracellularmatrix and stromal
cells, a variety of innate immune cells (includingmacrophages, neutrophils, mast cells,
myeloid derived suppressor cells, natural killer cells, and dendritic cells) and adaptive
immune cells (including B and T lymphocytes). Each immune cell type may have
both tumor-promoting and tumor-inhibiting actions. Macrophages, for example, can
recognize and engulf cancer cells, but they can also promote tumor growth through the
expression of cytokines and chemokines, which in turn stimulates angiogenesis (De
Palma et al. 2005; Albini 2005), lymphangiogenesis (Ji 2012), and matrix remodeling
(Condeelis and Pollard 2006). More generally, mechanisms of immune stimulation of
cancer development include the induction of DNA damage by the generation of free
radicals, the promotion of angiogenesis and tissue remodeling through growth factor,
cytokine, chemokine, and matrix metalloproteinase production, the suppression of
antitumor immune activities, and the promotion of chronic inflammation in the tumor
microenvironment (de Visser et al. 2006).Mechanisms of immune inhibition of cancer
development include the inhibition of tumor growth through direct cancer cell lysis,
cancer cell apoptosis induced by perforin and granzymes or Fas/Fas-ligand binding,
and the pro-inflammatory but antitumor production of cytokines such as IL-2, IL-12,
and IFN-γ (Nelson andGanss 2006). In fact, the shift of the inflammatory environment
from pro-tumor and pro-angiogenic (with factors such as IL-4, IL-6, IL-10, and TGF-
β) to antitumor and anti-angiogenic (with factors such as IL-2, IL-12, IP-10, MIG, and
IFN-γ) may be crucial for tumor elimination, as even vascular endothelial cells have
been shown to lyse target tumor cells once activated with TNF-α and IFN-γ (Li et al.
1991). Thus, the cytokines and growth factors present in the tumor microenvironment
are not only crucial for the determination of the differentiated state of the immune
response, but also for the determination of the response of local stromal cells to tumor
presence.
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Tumor microenvironments can be modified by the adaptive immune response, and
this effect can be enhanced by immunotherapy (Nelson and Ganss 2006). Cancer
immunotherapy aims to improve tumor suppression by increasing cytotoxic strength.
One type of cytokine immunotherapy involves the repeated injection of IL-2, which
primes the T cell response with CD4+ and CD8+ T cells. With intratumoral injection
of IL-2, tumor regression was shown to correlate with a reduction in tumor blood
vessels and this process was shown to be dependent on functional CD8+ lymphocytes
(Jackaman et al. 2003). The efficacy of this treatment, however, declined with increas-
ing tumor size, which may be associated with a less effective immune response. The
ability of the immune response to modify tumor vasculature suggests a potential anti-
cancer strategy of cytokine-based immunotherapy, with inflammatory factors such as
IFN-γ, to shift the pro-angiogenic and immunosuppressive tumor microenvironment
to an anti-angiogenic microenvironment that supports cytotoxic immune activities.
These cytotoxic activities could then be enhanced by cell-based immunotherapies
such as adoptive T cell transfer or dendritic cell activation (Nelson and Ganss 2006).
Figure 1 summarizes the significant immune cells and cytokines or growth factors
involved in the pro-tumor and antitumor inflammatory responses.

To identify and track the complex mechanistic interplays underlying tumor devel-
opment in the context of the immune response, we sought to distill the fundamental
reciprocal interactions controlling the process into one quantitative framework.
Heretofore, several approaches have been applied to quantify cancer–immune inter-
actions. Perhaps the most common is to describe the system as a set of ordinary
differential equations that capture the time-varying dynamics at the population level
(DeLisi and Rescigno 1977; Kuznetsov et al. 1994; Kirschner and Panetta 1998; de
Pillis et al. 2005; d’Onofrio 2005; d’Onofrio and Ciancio 2011; Eftimie et al. 2010;
Wilkie 2013; Wilkie and Hahnfeldt 2013). Other approaches focus on random effects
with stochastic differential equations (Lefever andHorsthemke 1978), spatio-temporal
dependence with partial differential equations (Matzavinos et al. 2004; Roose et al.
2007; Al-Tameemi et al. 2012), and individual cell–cell interactions using agent-based
methods (Takayanagi et al. 2006; Roose et al. 2007; Enderling et al. 2012). Among
the several excellent reviews on the subject are those covering discrete tumor–immune
competition approaches (Adam and Bellomo 1997), non-spatial, time-varying models
(Eftimie et al. 2010), and analyses of the dormant or near-dormant tumor state (Wilkie
2013).

Despite the overwhelming evidence of direct immune stimulation of tumor growth,
mathematical treatments of tumor–immune interactions have, until recently, focused
solely on the cytotoxic actions of immune cells. Two new models describe immune
stimulation of tumor growth directly, through an increased basal growth rate (den
Breems and Eftimie 2016; Louzoun et al. 2014). Others describe it indirectly as a by-
product of cytotoxic inhibitory actions (Kuznetsov 1988; Joshi et al. 2009). We show
here that inclusion of immune stimulation, through increased tumor growth rate and
carrying capacity, explain observations of tumor promotion prior to tumor suppression
over the course of immunotherapy (Wolchok et al. 2009). Importantly, observations
of this early tumor promotion contributed to the failure of many early immunotherapy
programs (Hoos 2012). The model presented here demonstrates that such unexpected
outcomes are in fact a natural consequence of the dichotomous roles of the immune
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Fig. 1 Pro-tumor and antitumor inflammatory responses are composed of different (or differently polarized)
immune cells and cytokines/growth factors. The cytokine milieu present in the environment determines the
polarization of newly differentiating immune cells. The cytokines produced by these new cells allows for a
strong feedback mechanism to enhance the polarity of the immune response. Over time, these mechanisms
may lead to the development of either a pro-tumor immunity that enhances vascularization and tumor pro-
gression, or an antitumor immunity that reduces vascularization and enhances tumor regression. Therapies
that target the immune cells and cytokines present in the environment attempt to shift a pro-tumor immunity
to an antitumor immunity to improve tumor suppression (Color figure online)

response. Below, we present and analyze a mathematical framework that incorporates
both immune-mediated tumor stimulation and inhibition. This newmodel is capable of
analyzing a more complete view of the interactions between cancer and immune cells,
and is therefore more suited for analysis and prediction of cancer treatment strategies,
especially immunotherapies.

2 Model Equations and Assumptions

In this work, cancer and immune cell populations are assumed to grow according to a
generalized logistic law that is mechanistically modified by their cellular interactions.
A brief review of a generalization of this model can be found in Kareva et al. (2014).
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2.1 Cancer Population Growth

The cancer population, C(t), grows intrinsically up to a limiting size, the carrying
capacity KC (t), according to generalized logistic growth.Recall that generalized logis-
tic growth has the form:

dC

dt
= μ

α
C

(
1 −

(
C

KC

)α)

where μ
α
is the unregulated growth rate, μ is the “intrinsic” growth rate, and α is

the reciprocal of the strength of regulation that the carrying capacity imposes on the
population. Notice that α = 1 gives regular logistic growth, and the limit as α → 0 (or
1
α

→ ∞, very strong regulation), gives Gompertzian growth
(
dC
dt = μC ln

(
KC
C

))
,

both with growth rate μ.
In this model, cancer growth is inhibited by the immune system through predation,

Ψ = Ψ (I,C) ≤ 0, which modulates the growth rate (discussed later), and it is
stimulated by the immune system through an inflammatory process incorporated in
the carrying capacity, KC = KC (I,C). The cancer population is thus governed by

dC

dt
= μ

α
(1 + Ψ )C

(
1 −

(
C

KC

)α)
, C(0) = C0. (1)

The carrying capacity is determined by a balance of stimulatory (pro-angiogenic) and
inhibitory (anti-angiogenic) terms. Based on a diffusion-consumption partial differen-
tial equation and arguments of the relative clearance rates for pro- and anti-angiogenic
signals, it was suggested (Hahnfeldt et al. 1999) that the stimulation term be pro-
portional to tumor volume to the power 1 (say V 1) and that the inhibition term be

proportional to tumor volume to the power 5
3 , (or V

5
3 ). We modify these terms to

include the pro- and anti-angiogenic signals produced by immune cells also present in
the tumor mass, in addition to those produced by cancer cells. Hence, we assume that
pro-angiogenic signals produced by cancer cells, immune cells, and their interactions,
are proportional to volume to the first power: that is, V 1 ∝ (B + I )aC1−a , where B is
a background constant enabling the cancer to stimulate its own growth in the absence
of an immune response and a is the weight of immune contribution, 0 ≤ a ≤ 1.

Similarly, cancer cells, immune cells, the current microenvironment, and their
interactions, produce anti-angiogenic signals in proportion to volume to the 5/3rd

power: that is V
5
3 ∝ K 1

C (B + I )bC
2
3−b, where b is the weight of immune contribu-

tion, 0 ≤ b ≤ 2
3 . The choice of weights K 1

C and C
2
3 were suggested in Hahnfeldt

et al. (1999). Taken together, this mathematical formulation allows both pro- and anti-
angiogenic signals to be produced by cancer cells, immune cells, and their interactions.
Defining B = 1 allows for cancer growth without any extrinsic stimulation, and thus
the cancer carrying capacity is governed by

dKC

dt
= p(1 + I )aC1−a − qKC (1 + I )bC

2
3 −b, KC (0) = KC,0, (2)
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where p is the stimulation coefficient and q is the inhibition coefficient.
We assume that the majority of these signals should originate from the cancer

population and thus require a and b to be small. Again, a controls the weight of
immune-produced tumor-promoting factors (i.e. pro-angiogenic signals) that act to
increase the tumor’s carrying capacity, and b controls the weight of immune-produced
tumor-inhibiting factors (i.e. anti-angiogenic signals) that act to limit the tumor’s car-
rying capacity. A pro-angiogenic tumor-promoting inflammatory microenvironment
is associated with immunosuppressive myeloid cells, Th2 immunity, and cytokines
such as TGF-β, IL-4, IL-6, and IL-10 (DeNardo et al. 2010). Cytotoxic T cell activity,
Th1 immunity, and cytokines such as IFN-γ, IL-2, and IL-12 are significant factors
contributing to an anti-angiogenic tumor-inhibiting inflammatory microenvironment
(Nelson and Ganss 2006). See Fig. 1.

When a > b, more weight is placed on immune-mediated tumor-promoting effects
than tumor-inhibiting effects, and we label this case as pro-tumor immunity. When
a < b, more weight is placed on immune-mediated tumor-inhibiting effects and we
label this case as antitumor immunity. In this work, we chose a = 2

10 , which allows
immune cells to contribute to tumor promotion but requires themajority of stimulation
to originate from the tumor itself. We then choose b = 1

10 (a value slightly less than
a) for pro-tumor immunity and b = 3

10 (a value slightly greater than a) for antitumor
immunity.

2.2 Immune Population Growth

The immune population, I (t), which includes all various immune cell types, is gov-
erned by logistic growth and maintains a homeostatic (equilibrium) healthy level,
Ie. In the healthy state when C = 0 the carrying capacity is this homeostatic level:
KI = Ie. Immune population growth is stimulated by the cancer’s presence through
direct recruitment, rC , and through cancer–immune interactions that increase the car-
rying capacity, KI = KI (I,C), giving:

dI

dt
= λ (I + rC)

(
1 − I

KI

)
, I (0) = I0, (3)

where λ is the unregulated growth rate and r is the cancer-induced recruitment param-
eter. Note that logistic growth is assumed here for simplicity and a lack of experimental
data on immune growth dynamics.

The associated carrying capacity is determined by a balance of stimulatory,
inhibitory, and homeostatic terms:

dKI

dt
= x I

1
2C

1
2 − yKI I

1
3C

1
3 − z (KI − Ie) , KI (0) = KI,0. (4)

where x , y, and z, are the stimulation, inhibition, and homeostatic coefficients, respec-
tively. Following the same arguments as used in determining the cancer carrying
capacity, the stimulation term above prescribes equal weight to the two popula-
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tions, giving V 1 ∝ I
1
2C

1
2 . And the inhibition term, prescribing equal weight, is

V
5
3 ∝ KI I

1
3C

1
3 . Control of the immune response is obtained through the actions

of checkpoint blockades and regulatory T cells, as well as other mechanisms, and
thus is determined by cancer–immune interactions. The last term on the right-hand
side represents an organismic tendency of the immune response to return to a healthy
homeostatic state after disease elimination.

2.3 Immune Predation of Cancer Cells

The dynamics of cytotoxic immune actions targeted against cancer cells depend on
the specific immune cell types. Here, we include all types, and model predation by

Ψ = −θ

(
I β

φCβ + I β
+ εlog10(1 + I )

)
, (5)

where the term θ Iβ

φCβ+Iβ describes the saturation kinetics of strong cytotoxic actions
(de Pillis et al. 2005) and the term εθ log10(1 + I ) allows for a gradual increase
to this saturation level with significant increase in immune presence. Here, θ is the
saturationmaximum, andφ andβ are saturation shapeparameters. The ratio-dependent
saturation term was shown to describe cytotoxic effects of T cells (de Pillis et al.
2005), but we also require contributions from innate immunity (natural killer cells and
macrophages) which does not exhibit saturation in cytotoxic assays (Diefenbach et al.
2001). The logarithmic term accounts for innate immunity at large population sizes
and phenomenologically maps the actions into a range appropriate for Ψ . For small
immune populations, innate and adaptive predation can be combined into the ratio-
dependent term, but for large populations, innate immunity should still have some
effect (here we assume it small and set ε = 0.01). Without an increasing predation
threshold, tumor growth dynamics, especially after periods of immune-induced tumor
dormancy, would not reflect the still growing immune presence, which could have
significant implications on immunotherapy predictions. Thus, this form accounts for
adaptive and innate cytotoxic effects over a wide range of immune population sizes,
which are both required for tumor elimination (Koebel et al. 2007).

Note that in Eq. (1), immune predation is a multiplicative factor. This implies
that when the cancer population reaches capacity and cancer growth stops, effective
immune predation is also restricted. That is, once capacity is reached, the immune
response cannot change this fate. This form models the biological resistance mecha-
nisms cancer cells develop to overcome immune attack: namely physical overcrowding
leading to difficult immune penetration into the mass and immune checkpoint activa-
tion through CTLA-4 and PD1, for example Pardoll (2012).

3 Experimental Data and Parameter Estimation

Equations (1)–(4) govern a system of four dependent variables, C(t), I (t), KC (t),
and KI (t), which describe the growth dynamics of a tumor in the presence of a com-
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plete and competent immune system capable of both stimulating and inhibiting cancer
growth. Parameters for tumor growth are estimated in stages using a Markov Chain
MonteCarlo (MCMC)method (Robert andCasella 2010;Cirit andHaugh 2012). From
an initial guess, a Markov chain of permitted parameter sets is created by randomly
perturbing the previous parameter set and accepting this perturbed set with a probabil-
ity determined by a measure of the goodness of fit, here the sum of squared deviations.
Each parameter is perturbed and tested for acceptance independently, except parame-
ters μ and α, which are perturbed and tested together since they are inherently related
in Eq. (1) as the unregulated growth rate μ

α
.

Tumor growth parameters (μ,α, p,q, KC,0) and the immune homeostatic parameter
(Ie) are estimated from subcutaneous fibrosarcoma growth data (Tanooka et al. 1982).
These tumors, grown in wild-type (immune competent) mice, are nonimmunogenic
due to early immunoediting (Cohen et al. 2010) and contain regulatory T cells which
inhibit immune-mediated tumor rejection (Betts et al. 2007). We therefore assume
that growth after the tumor reaches the palpable size of about 1.3 × 107 cells occurs
in a host with negligible immune recruitment or immune predation. This simplifying

assumption sets dI
dt = dKI

dt = 0 in Eqs. (3) and (4), maintaining immune presence at
the homeostatic level I (t) = KI (t) = Ie, and it sets Ψ = 0 in Eq. (1), enforcing zero
immune predation. This assumption underestimates the role of immune stimulation in
tumor growth, butwe accept this limitation in favor of simplifying the parameterization
procedure.

To estimate the tumor growth parameters, our MCMC method was run 10 times
with 20,000 trials per parameter in each run. Fitting Eqs. (1) and (2) with a = 2

10 ,
b = 3

10 , C0 = 1.3 × 107, and I (t) = KI (t) = Ie, to the experimental growth
data gives the 10 parameter sets for antitumor immunity listed at the top of Table 1.
Fitting the same equations to the data with b = 1

10 gives the 10 parameter sets for
pro-tumor immunity listed at the bottom of Table 1. See “Appendix 1” for antitumor
and pro-tumor predicted growth curves fitted to data.

This approach results in two ensembles of 10 parameter sets, one for antitumor
immunity and one for pro-tumor immunity. Due to limited experimental data and
the necessary level of complexity in our mathematical model, some parameter val-
ues are non-identifiable, as seen through the variability of the 10 sets, see Table 1
and “Appendix 2”. The problem of parameter identifiability is becoming increasingly
important, especially in the growing areas of nonlinear ODE modeling with applica-
tions to biological networks and immunemodels for viral infections and cancer. It may
be resolved by measuring or acquiring additional data (which may not be possible)
or by model reduction, techniques of which are still under development (Miao et al.
2011; Meshkat et al. 2011; Raue et al. 2011). Our approach is to instead generate an
ensemble of parameter sets that represent 10 individual in-silico patients with their
own inherent variabilities instead of considering one parameter set representing an
“average responder” (or one local minima in a very complex parameter space). This
ensemble approach allows one to better explore the implications of cancer–immune
interactions on tumor growth dynamics for a population of individuals.

To estimate immune predation parameters, we use experimental data for tumor
growth resulting from co-injections of specifically trained immune cells and fibrosar-
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Table 2 Parameter values for pro- or antitumor immunity, and immune predation, growth, and recruitment

Antitumor immunity a = 2
10 b = 3

10

(chosen such that
a < b, both small)

Weight of
tumor-promoting
immune function

Weight of
tumor-inhibiting
immune function

Pro-tumor immunity a = 2
10 b = 1

10

(chosen such that
a > b, both small)

Weight of
tumor-promoting
immune function

Weight of
tumor-inhibiting
immune function

Immune predation θ = 2.5 φ = 50 β = 0.5

(estimated from data
in Prehn 1972)

Saturation kinetic
maximum

Saturation shape
parameter

Saturation shape
parameter

Immune
growth/recruitment

λ = 0.2 (day−1) r = 0.001

Unregulated growth rate Recruitment rate

Immune carrying
capacity regulation

x = 6 (day−1) y = 10−7[(cell no.)−2/3

day−1]
z = 0.09 (day−1)

Stimulation coefficient Inhibition coefficient Homeostatic
coefficient

The homeostatic immune presence parameter, Ie , is determined by the MCMC fitting method and is thus
specific to each parameter set listed in Table 1

coma cells (Prehn 1972). In these experiments, mice were subjected to whole body
irradiation and thymectomized so that host immunity is negligible. Thus, the injected
immune cells are the only immune cells present in the system; their actions may be
stimulatory or inhibitory to tumor growth, but it is assumed that no immune recruit-
ment or proliferation may occur. Again, this allows us to simplify the equations by

setting dI
dt = dKI

dt = 0 in Eqs. (3) and (4).

In Prehn’s experiment, varying numbers of splenocytes were mixed with 104 sar-
coma cells, injected subcutaneously, and allowed to grow until the largest tumor
reached a diameter of 10 mm. Results suggest that specifically trained immune cells
stimulate tumor growth when mixed at ratios smaller than parity and inhibit tumor
growth when mixed at ratios larger than parity. This dose–response curve was ideal-
ized to a parabolic shape with a maximum located at cancer–immune parity (Prehn
2007, 1972).

To estimate immune predation parameters θ , φ, and β from Eq. (5), these param-
eters were manually tuned (via trial and error over a broad range of values) until
maximal tumor stimulation occurred near cancer–immune parity and tumor elimina-
tion occurred with sufficient immune presence, recapitulating the parabolic shape. The
resulting parameter estimates are listed in Table 2.

The final stage of parameterization involves estimating parameters that describe
immune growth and recruitment in the wound healing process. Due to a lack of exper-
imental data, we estimate these parameters based on the assumption that the immune
response should grow approximately as fast and as large as the tumor mass. These
parameter values are also listed in Table 2.
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4 Numerical Simulations and Results

Ten parameter sets are estimated using an MCMC method for both the antitumor and
pro-tumor immunity cases, see Table 1. Significant variability exists in the numerical
values for each parameter and yet each set fits the experimental data equally well (see
Table 1 and “Appendices 1 and 2”). This parameter variability can cause significant
changes in the phase-space (cancer–immune dynamics) of the model, as shown by the
phase portraits in “Appendix 3”. Figure 2a shows the phase-space dynamics for an
average and an outlier parameter set from both the antitumor and pro-tumor immunity
cases. Outlier parameter sets were identified visually from “Appendix 3” by choosing

Antitumor Immunity Protumor Immunity 
Parameter Set 5 Parameter Set 9 Parameter Set 2 Parameter Set 3 

(a) 

(b) 

(c) 

Fig. 2 The behavior of antitumor and pro-tumor immunity with both typical (sets 5 and 2) and outlier (sets
9 and 3) parameter sets. Phase portraits (a) demonstrate cancer–immune dynamics. The effect of parameter
variability is demonstrated by the striking differences apparent between these phase portraits. Tumors are
simulated to grow from an initial injection of C0 = 104 cancer cells and varying numbers of immune
cells (I0 = γC0). The ranges (values of γ ) that divide the behavior between tumor growth (red) or tumor
suppression (blue), are listed below the plots. Simulations result from solving the full system of equations
(1)–(4) with direct predation through Ψ , Eq. (5). Axes indicate diameter of spherical population in mm.
Immune stimulation with (c) and without (b) predation is demonstrated. In (b) tumors are simulated to
grow from an initial injection of 104 cancer cells mixed with 0 (solid black), 100 (dotted blue), 104 (dashed
green), or 106 (dash-dotted red) immune cells. Simulations result from solving Eqs. (1) and (2) with I (t)
and KI (t) constant and Ψ = 0. In (c), tumors are simulated to grow from an initial injection of 104 cancer
cells mixed with varying numbers of immune cells ranging from 0 to 108. Three time snapshots of the
dose–response (in terms of percent change after the indicated number of days) are shown in each plot along
with the experimental data (Prehn 1972). Simulations result from solving Eqs. (1) and (2) with I (t) and
KI (t) constant and Ψ given by Eq. (5) (Color figure online)
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the phase portraits that predicted little-to-no elimination range (set 9 for antitumor and
set 3 for pro-tumor immunity).

The functional form of Eq. (2), describing the cancer carrying capacity, incorpo-
rates effects of both immune-mediated stimulation and inhibition. Figure 2b shows the
effect of constant immune presence on tumor growth in both antitumor (a < b) and
pro-tumor (a > b) environments without predation (Ψ = 0). Under this assumption,
antitumor immunity stimulates tumor growth but also limits the final tumor burden.
That is, the tumormay initially grow fasterwith immune stimulation, but themaximum
obtainable size is ultimately reduced. In fact, the amount of this early-stimulation and
late-inhibition arising from immune presence is sensitive to the tumor growth param-
eters, and thus is a feature inherent to the individual tumor, the tumor’s microenviron-
ment, and the host. When pro-tumor immunity is assumed, however, more weight is
placed on the pro-angiogenic activities of inflammation and, as a result, tumors are pre-
dicted to grow faster and larger than those predicted to growwithout immune presence.

The pro-tumor and antitumor cases present two fundamentally different classes of
possible outcomes: immunomodulation causing tumors to grow faster but be ultimately
smaller, or faster and ultimately larger, than those growing in the absence of an immune
response. When a = b in Eq. (2), immune stimulation of tumor growth is predicted,
causing the tumors to grow faster in the presence of immune cells, but the ultimate
tumor size is fixed and independent of immune presence.

Dose–response curves for both pro-tumor and antitumor immunity are shown in
Fig. 2c. Again, average and outlier parameter sets are shown for each type of immunity.
Tumors are simulated to growwith varying initial numbers of immune cells, predation
is included but no immune growth occurs. Dose–responses at three time points are
compared to the experimental data from Prehn (1972). Average and outlier parameter
sets behave differently (hence the different time points used and indicted in each
figure plot), but all predict immune-mediated stimulation and inhibition of tumor
growth according to a parabolic shape. Importantly, the model is able to predict the
ratio-dependence of tumor stimulation by immune cells, as observed by Prehn. That
is, immune stimulation of tumor growth occurs when cancer cells outnumber immune
cells and inhibition occurs when immune cells outnumber cancer cells.

As the phase portraits in Fig. 2a demonstrate, ultimate tumor fate is determined by
the initial conditions of this deterministic model. Biologically, this may translate to the
level and polarization of the immune response once the cancer reaches a critical size.
Biological determinants of immune presence when the critical cancer size is reached
may include the antigenicity of the cancer cells, which is related to their accumulated
mutations, and the location of the cancer, as different tissues have different levels of
immune surveillance. To compare our simulations, we say that this critical size is the
same as our initial cancer size, C0 = 104 cells, and thus relate the initial immune
presence to this value via I0 = γC0, where γ is a constant. The integer bounds for γ

for each parameter set (found numerically) are shown in the figures of “Appendix 3”.
Each parameter set has a different threshold value for γ , wherein immune presence
less than γC0 results in tumor escape and that greater than γC0 in elimination. Before
these dichotomous outcomes are achieved, however, seemingly contradictory events
may occur, such as a transient period of dormancy prior to tumor escape, or growth
and stimulation prior to elimination.
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Pro-tumor inflammatory environments likely have immunosuppressive mecha-
nisms that reduce predation efficacy. Such mechanisms, not yet considered by this
model, may alter the predation parameters φ, β, and θ , and thus the dose–response
curves predicted here. Furthermore, this framework does not allow for the evolution of
antitumor immunity into pro-tumor immunity during tumor development.We note that
excluding these immunosuppressive and immunoevasive mechanisms are limitations
of our model and leave them to future work.

For improved tumor control, the polarization of the microenvironment should be
shifted from pro-tumor to antitumor immunity via immunotherapies. We thus focus
on antitumor immunity for parameter sensitivity using a parameter set demonstrating
typical behavior (set 5 from Table 1). Immunotherapies that enhance the antigenicity
of cancer cells can be incorporated into the model through the immune recruitment
parameter r . Increases in recruitment result in improved tumor suppression and a
reduction in tumor stimulation, as shown in Fig. 3.

Effects of variations in homeostatic regulation, z, are also shown in Fig. 3. As
resistance to altering the immune homeostatic state is increased, tumor suppression
is reduced and immune-mediated dormancy may become more difficult to achieve.
As seen in Fig. 3c, increased homeostatic resistance slows immune growth, requir-
ing higher initial immune presence for elimination. Thus, with increased homeostatic
resistance, dormant tumors appear smaller and require larger initial immune presence
to be obtained. Biologically, thismay translate into periods of tumor dormancy for only
highly immunogenic cancers in hosts with large homeostatic resistances, a parame-
ter that may change with host health and age. Homeostatic regulation is an intrinsic
patient-specific parameter that is often neglected in mathematical models, however,
as demonstrated here, it may significantly affect tumor growth dynamics, and in par-
ticular, tumor dormancy. Increased immune recruitment, on the other hand, seems to
improve tumor suppression while maintaining the ability to achieve a dormant tumor
state, Fig. 3d.

Contour plots for parameter sensitivity are shown in Fig. 4 for the following
immune-related parameter pairs: homeostasis and recruitment (r, z), immune growth
rate and predation efficacy (λ, θ), and predation shape parameters (β, φ). For each pair
three time points are shown. After 150 days, most of the predicted tumor fates have
already been established. That is, either the tumor has been eliminated or escaped.
Of interest, are the intermediate regions as they represent tumors whose fates may
be altered through immunotherapies to achieve elimination or prolong dormancy.
Since immune-induced dormancy is observed in experimental models (Quesnel 2008),
parameters predicted to modify this state, such as homeostatic strength or immune
recruitment, may be desirable targets for immunotherapy. In Fig. 4, the intermediate
shades are intervention windows, or parameter ranges where intervention can affect
tumor fate. The paired plots suggest alternate intervention strategies. For example,
to achieve elimination in Fig. 4b, one can aim to increase λ, increase θ , or both, if
possible. Since these windows shrink considerably over time, combination therapies
may be necessary to re-open the window for immune intervention.

Figure 5 demonstrates parameter sensitivity for immune-related model parameters
on atypical tumor growth behavior (outlier antitumor parameter set 9 from Table 1).
With this parameter set, the model does not predict significant dormant periods prior
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68

9

14

(a) (b) 

(c) 

(d) 

Fig. 3 Parameter sensitivity for the homeostasis parameter z (a) and the immune recruitment parameter r
(b) with the corresponding phase portraits (c, d) for antitumor immunity (a < b) and parameter set 5 from
Table 1. Phase portraits are shown in (c) for three different values of the immune homeostasis parameter z
corresponding to the highlighted curves in (a). Increasing immune homeostatic resistance results in reduced
tumor suppression and possibly a decreased ability to achieve tumor dormancy. Phase portraits are shown
in (d) for three different values of the immune recruitment parameter r corresponding to the highlighted
curves in (b). Increasing immune recruitment results in a reduction of tumor stimulation and improved
tumor suppression (Color figure online)

to elimination. For immune recruitment and homeostasis parameters, larger changes
are required to see an alteration in tumor fate compared to set 5. An increased immune
growth rate of λ = 0.4, for example, may delay tumor growth, but not alter the
fate (compare contour plots at 50 and 100 days). Comparing Figs. 3 and 4 to Fig. 5
demonstrates that treatment outcomes depend on the intrinsic growth dynamics that
are captured here by the parameter ensembles of Table 1. For example, a treatment
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φ φ φ

(a) 

(b) 

(c) 

elim elim elim 

esc esc esc 

esc esc esc 

esc esc esc 

elim elim elim 

elim elim elim 

Fig. 4 Parameter sensitivity contour plots of tumor fate for the parameter pairs (r, z), (λ, θ), and (β, φ)

are shown for antitumor immunity (a < b) with parameter set 5 from Table 1. Contour plots at various
times demonstrate the dependence of tumor fate on parameter values. Blue (elim) corresponds to tumor
elimination and red (esc) to tumor escape. Shades of purple in between these limits correspond to tumors
of intermediate size at the given time. These intermediate contour bands (especially at 100 and 150 days in
(a) and at 100 days in (b) and (c) indicate that tumor fate is susceptible to intervention early on, but that this
window closes rapidly with time. This suggests that immunotherapies that modulate these parameters may
need to be combined with alternate treatments to prolong these intervention windows (Color figure online)

intended to increase immune recruitment based on successful predictions of tumor
elimination from Fig. 3 with parameter set 5 (say to the level of r = 1), may not alter
tumor fate at all for parameter set 9 in Fig. 5.

5 Discussion

To investigate the role of tumor-promoting inflammation, an emerging hallmark of
cancer (Hanahan andWeinberg 2011), a newmathematical model for cancer–immune
interactions was presented. This framework captures both pro-angiogenic, tumor-
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φ

(a) (b) 

(c) (d) (e) (f) 

esc 

elim esc 

elim 

esc 

elim 

esc 

elim 

Fig. 5 Parameter sensitivity for antitumor immunity (a < b) and the outlier parameter set 9 from Table 1.
Tumor fate is altered as the homeostasis (a) and immune recruitment (b) parameters are increased. No
significant dormant periods are predicted. Contour plots of tumor fate for the parameter pairs (r, z), (β, φ),
and (λ, θ) are shown in (c–e) at 50 days, as well as (λ, θ) at 100 days in (f) (Color figure online)

progressing actions and anti-angiogenic, tumor-inhibiting actions of immunity. The
use of generalized logistic growth captures some of the inherent variability underlying
tumor growth dynamics in an immune competent host, often neglected in macroscopic
measurements and mathematical models. Model simulations suggest that two types of
inflammatory responses (pro-tumor or antitumor) resolve into two fundamentally dif-
ferent classes of outcomes, where inflammation-enhanced tumor progression results
in either a decreased tumor burden, as in the antitumor case, or an increased tumor
burden, as in the pro-tumor case. Thus, near- and long-term responses of a tumor to
immune interaction may be opposed; that is, a response dynamic that appears to pro-
mote growth in the near term may be superior at curtailing growth in the long-term,
even to the point of establishing dormancy, while the other allows for tumor escape.
Indeed, such seemingly contradictory dynamics (tumor burden decrease only follow-
ing an initial increase) have been reported following immunotherapy (Wolchok et al.
2009). And a lack in understanding of the cause of such non-intuitive cancer–immune
dynamics contributed to the early failures of immunotherapy trials (Hoos 2012). Our
results help improve the basic understanding of cancer–immune dynamics and suggest
that, in some cases, stimulated tumor growth early on may be advantageous, if it leads
to a significantly smaller tumor burden. In such cases, treatments may be targeted to
enhance the stability of an antitumor inflammatory environment instead of immediate
tumor regression.
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A Markov chain Monte Carlo method was used to estimate parameter sets that
predict tumor growth equally well, but that, at the same time, also predict funda-
mentally different underlying dynamics. The results underscore the ultimately polar
nature of final tumor fate (escape or elimination) and, at the same time, indicate that
persistent regions of near-dormancy may precede either of these two outcomes. The
striking variability observed across the parameter sets (see Table 1 and “Appendix
2”) demonstrates the significance of intrinsic and immeasurable factors determining
the complex biological processes involved in tumor growth in an immune competent
host. The underlying variability in tumor dynamics, often neglected by mathematical
formulations, is captured here by generalized logistic growth with a dynamic carrying
capacity. The choices made in this work for the mathematical forms in Eqs. (1)–(4),
and in particular, the values of parameters a and b, determine the model dynamics and
resulting biological implications discussed herein.

We propose that this variability, which is not measurable through macroscopic
observations, may be due to the sensitivity of cancer cells and host stromal cells to
growth and regulatory signals present in themicroenvironment.Biological contributors
to this variability may include the response rate of the host to pro- or anti-angiogenic
signals or the strength of (or sensitivity to) the size-limiting signals originating from
the tumor microenvironment (carrying capacity). Consequently, if treatment strategies
are designed based on an average behavior parameter set (or patient), the treatment
cannot be expected to result in the same outcome for all parameter sets (or patients). In
fact, this variabilitymay explainwhy treatments, including immunotherapies, work for
some cases, but not all, and it emphasizes the importance of patient-specific treatment
planning.

This quantitative framework also demonstrates an important and often oversimpli-
fied feature of tumor dormancy—that dormancy is a transient state.Manymathematical
models predict dormancy as a stable equilibrium solution that is attained and main-
tained for infinite time (Wilkie 2013). The model presented here, however, describes
dormancy as a transient phase that exists between tumor elimination and tumor escape,
and it suggests that while treatments may prolong this state, by the fundamental nature
of dormancy, the period must eventually transition to either elimination or escape. A
deeper discussion on the dynamics of tumor dormancy can be found in Wilkie and
Hahnfeldt (2013).

Immunotherapies, which aim to boost patient immune responses to control or elim-
inate the disease, have met with some success, but have failed to produce a broadly
effective treatment option (Phillips 2012). The immune-stimulating drug Levamisole,
for example, has been reported to inhibit tumor growth at low doses but to have
no inhibitory effect, compared to control, at high doses (Sampson et al. 1977). This
dose–responsemay result from small doses enhancing the antitumor immune response,
while large doses over stimulate the response, promoting a conversion from antitumor
to pro-tumor immunity, and ultimately enhancing tumor development. Such hypothe-
ses highlight the need for theoretical investigation of treatment targets, dose–response,
and dose–scheduling in treatment planning,which can be performedwith our proposed
framework since both direct tumor-inhibiting and direct tumor-promotingmechanisms
of the immune response are considered. The model simulations and results discussed
here suggest that key factors for improved tumor control by immunotherapies include
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an understanding (and incorporation) of patient-specific inherent variability in tumor
growth dynamics, consideration of the type of immune response active within the
tumor microenvironment (pro-tumor versus antitumor), and optimal treatment targets,
dosages, and schedules (the subject of ongoing work).
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Appendix 1

See Fig. 6.

(a) 

(b) 

Antitumor: Predicted Tumor Growth Curves and Experimental Data

Pro-Tumor: Predicted Tumor Growth Curves and Experimental Data

Experimental Data 

Experimental Data 

Fig. 6 Results of the data fitting: predicted tumor growth curves are shown over-laid with the experimental
data for both antitumor and pro-tumor parameter set ensembles. Values of the parameters for each set are
listed in Table 1 (Color figure online)
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Appendix 2

See Fig. 7.

(a) (b) 

Fig. 7 Box plots showing the variability in the pro-tumor and antitumor parameter ensembles. Parameter
values are rescaled for easier comparison by the normalization formula: xi → xi−μx

σx
where μx is the

average, and σx is the standard deviation, of the set of values for parameter x (Color figure online)

Appendix 3

See Fig. 8.

Parameter Set 1 Parameter Set 2 Parameter Set 3 Parameter Set 4 Parameter Set 5

Parameter Set 6 Parameter Set 7 Parameter Set 8 Parameter Set 9 Parameter Set 10

(a)

Fig. 8 Cancer–immune phase portraits demonstrate the variability across the 10 parameter sets in the
antitumor (a) and pro-tumor (b) immunity ensembles (values listed in Table 1). Tumors are simulated to
grow from an initial injection of C0 = 104 cancer cells and varying numbers of immune cells (I0 = γC0).
The ranges (values of γ ) that divide the behavior between tumor growth (red) or tumor suppression (blue)
are listed below the plots. Simulations result from solving the full system of equations (1)–(4) with direct
predation through Ψ , Eq. (5). Axes indicate diameter of spherical population in mm (Color figure online)
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Parameter Set 1 Parameter Set 2 Parameter Set 3 Parameter Set 4 Parameter Set 5

Parameter Set 6 Parameter Set 7 Parameter Set 8 Parameter Set 9 Parameter Set 10

(b)

Fig. 8 continued
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