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Abstract Malaria is an infectious disease caused by Plasmodium parasites and is
transmitted among humans by female Anopheles mosquitoes. Climate factors have
significant impact on both mosquito life cycle and parasite development. To consider
the temperature sensitivity of the extrinsic incubation period (EIP) of malaria para-
sites, we formulate a delay differential equations model with a periodic time delay.
We derive the basic reproduction ratio R0 and establish a threshold type result on
the global dynamics in terms of R0, that is, the unique disease-free periodic solution
is globally asymptotically stable if R0 < 1; and the model system admits a unique
positive periodic solution which is globally asymptotically stable if R0 > 1. Numeri-
cally, we parameterize the model with data fromMaputo Province, Mozambique, and
simulate the long-term behavior of solutions. The simulation result is consistent with
the obtained analytic result. In addition, we find that using the time-averaged EIP may
underestimate the basic reproduction ratio.
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1 Introduction

Malaria is the most prevalent human vector-borne disease, with an estimated 214
million cases and about 438 thousand deaths worldwide in 2015 (World Health Organ-
isation 2015).Malaria is caused byPlasmodium protozoan parasites and is transmitted
among humans by the bites of female Anopheles mosquitoes. More precisely, female
Anopheles mosquitoes pick up Plasmodium parasites in a blood meal taken from an
infectious human host. The parasites then go through several developmental stages
before they migrate to the mosquito salivary glands. Once in the salivary glands, the
parasites can be transmitted to a susceptible human host when the mosquito takes
another blood meal (Beier 1998; Beck-Johnson et al. 2013). The time parasites spent
in completing its developmentwithin themosquito andmigrating to the salivary glands
is known as the extrinsic incubation period (EIP).

Both the mosquito life cycle and the parasite development are strongly influenced
by seasonally varying temperature. Understanding the role of temperature in malaria
transmission is of particular importance in light of climate change (Ngarakana-Gwasira
et al. 2014). The first mathematical model of malaria transmission was proposed by
Ross (1911) and later extended byMacdonald (1957). Since then, a number of malaria
models have been developed to study the climate impact on malaria transmission
(see, e.g., Craig et al. 1999; Lou and Zhao 2010; Ngarakana-Gwasira et al. 2014;
Wang and Zhao 2017; Wang and Zhao, and the references therein). Malaria parasites
manipulate a host to be more attractive to mosquitoes via the chemical substances
(Lacroix et al. 2005). Kingsolver (1987) proposed the first malaria model to account
for the greater attractiveness of infectious humans to mosquitoes. Chamchod and
Britton (2011) modeled such vector-bias effect in terms of the different probabilities
that a mosquito arrives at a human at random and picks the human if he is infectious
or susceptible. Recently, the vector-bias effect has also been incorporated into some
climate-based malaria models (see, e.g., Wang and Zhao 2017; Wang and Zhao).

In our recent work, we developed a periodic vector-bias malaria model with incu-
bation period and established the global dynamics in terms of the basic reproduction
ratio. We remarked that the constant delay in the model may be modified to a time-
dependent delay since the EIP is highly sensitive to temperature, and we left this
interesting problem for future investigation (Wang and Zhao 2017). The aim of the
current work is to solve this problem.We develop a delay differential equations model
of malaria transmission in which the delay is periodic in time. To our knowledge, this
is the first mosquito-borne disease model that takes into account the time-dependent
delay. Several population models with time-dependent delays have been developed
(see, e.g., Beck-Johnson et al. 2013; McCauley et al. 1996; Molnár et al. 2013; Nis-
bet and Gurney 1983; Omori and Adams 2011; Rittenhouse et al. 2016; Wu et al.
2015). However, little mathematical analysis is carried out to understand the asymp-
totic behavior of these models. Recently, Lou and Zhao (2017) studied the global
dynamics of a host–macroparasite model with seasonal developmental durations by
introducing a periodic semiflow on a suitably chosen phase space. We will use the
theoretical approach developed in Lou and Zhao (2017) to analyze our model.

The rest of the paper is organized as follows. In the next section, we give the
underlying assumptions and formulate themodel. In the following section,we establish
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the threshold dynamics of themodel in terms of the basic reproduction ratio. In Sect. 4,
we carry out a case study for Maputo Province, Mozambique. A brief discussion
concludes the paper.

2 Model Formulation

The purpose of this section is to formulate a mathematical model of malaria transmis-
sion that incorporates a temperature-dependent delay.We startwith a brief introduction
of the model of malaria transmission proposed by Wang and Zhao (2017). Since
malaria is transmitted among humans by mosquitoes, we consider the dynamics of
both human and mosquito populations. Let the state variables Ih(t), Sm(t), Im(t) be
the number of infectious humans, susceptible and infectious adult female mosquitoes
at time t , respectively. We suppose that the total number of humans stabilizes at a
constant value H . Then the number of susceptible humans at time t is H − Ih(t). We
incorporate climate factors into the model by assuming that all the parameters related
to mosquitoes are periodic functions. Let β(t) be the biting rate of mosquitoes. Let
μ(t) be the recruitment rate at which female adult mosquitoes emerge from larvae,
and let dm(t) be the death rate of mosquitoes. To depict the vector-bias effect, we
introduce two parameters p and l, that is, the probabilities that a mosquito arrives
at a human at random and picks the human if he is infectious and susceptible,
respectively. Let τ be the length of the EIP. The model of the reference (Wang
and Zhao 2017) is governed by the following system of time-delayed differential
equations:

dIh(t)

dt
= cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t) − (dh + ρ)Ih(t),

dSm(t)

dt
= μ(t) − bβ(t)pIh(t)

pIh(t) + l(H − Ih(t))
Sm(t) − dm(t)Sm(t),

dIm(t)

dt
= −dm(t)Im(t) + e− ∫ t

t−τ dm (s)ds bβ(t − τ)pIh(t − τ)Sm(t − τ)

pIh(t − τ) + l(H − Ih(t − τ))
. (1)

We refer the readers to Wang and Zhao (2017) for more details about the derivation
of model (1). To introduce the temperature-dependent incubation period, we use the
arguments similar to those inNisbet andGurney (1983), Omori andAdams (2011).We
consider the exposed compartment where mosquitoes are infected but not infectious
yet. Let Em(t) be the number of the exposed mosquitoes at time t , and M(t) be the
number of newly occured infectious mosquitoes per unit time at time t . Then we have
the following system:

dIh(t)

dt
= cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t) − (dh + ρ)Ih(t),

dSm(t)

dt
= μ(t) − B(t, Ih(t), Sm(t)) − dm(t)Sm(t),
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dEm(t)

dt
= B(t, Ih(t), Sm(t)) − M(t) − dm(t)Em(t),

dIm(t)

dt
= M(t) − dm(t)Im(t), (2)

where B(t, Ih(t), Sm(t)) = bβ(t)pIh(t)Sm(t)
pIh(t)+l(H−Ih(t))

. Let q be the development level of
infection such that q increases at a temperature-dependent rate γ (T (t)) = γ (t),
q = qE = 0 at the transition from Sm to Em , and q = qI at the transition from Em to
Im . The variable q describes how complete the parasite developmental stages are in
the mosquito (in other words, how complete the latency stage is). Let ρ(q, t) be the
number of mosquitoes with development level q at time t . Then M(t) = γ (t)ρ(qI , t).

Let J (q, t) be the flux, in the direction of increasing q, of mosquitoes with infection
development level q at time t . Then we have the following equation (see, e.g., Kot
2001)

∂ρ

∂t
= −∂ J

∂q
− dm(t)ρ.

Since J (q, t) = γ (t)ρ(q, t), we have

∂ρ(q, t)

∂t
= − ∂

∂q
[γ (t)ρ(q, t)] − dm(t)ρ(q, t). (3)

For the Em state, system (3) has the boundary condition

ρ(qE , t) = B(t, Ih(t), Sm(t))

γ (t)
.

To solve system (3) with this boundary condition, we introduce a new variable

η = h(t) := qE +
∫ t

0
γ (s)ds.

Let h−1(η) be the inverse function of h(t), and define

ρ̂(q, η) = ρ(q, h−1(η)), d̂m(η) = dm(h−1(η)), γ̂ (η) = γ (h−1(η)).

In view of (3), we then have

∂ρ̂(q, η)

∂η
= −∂ρ̂(q, η)

∂q
− d̂m(η)

γ̂ (η)
ρ̂(q, η). (4)

This equation is identical in form to the standard von Foerster equation (see Nisbet
and Gurney 1982). Let V (s) = ρ̂(s + q − η, s). It follows from (4) that

dV (s)

ds
= − d̂m(s)

γ̂ (s)
V (s).
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Since η − (q − qE ) ≤ η, we have

V (η) = V (η − (q − qE ))e
− ∫ η

η−(q−qE )
d̂m (s)
γ̂ (s) ds

,

and hence,

ρ̂(q, η) = ρ̂(qE , η − q + qE )e
− ∫ η

η−q+qE
d̂m (s)
γ̂ (s) ds

.

Define τ(q, t) to be the time taken to grow from infection development level qE to
level q by a mosquito who arrives at infection development level q at time t . Since
dq
dt = γ (t), it follows that

q − qE =
∫ t

t−τ(q,t)
γ (s)ds, (5)

and hence,

h(t − τ(q, t)) = h(t) −
∫ t

t−τ(q,t)
γ (s)ds = h(t) − (q − qE ).

By a change of variable s = h(ξ), we then see that

∫ η

η−q+qE

d̂m(s)

γ̂ (s)
ds =

∫ t

t−τ(q,t)
dm(ξ)dξ.

It follows that

ρ(q, t) =ρ̂(q, h(t))

= ρ(qE , t − τ(q, t))e− ∫ t
t−τ (q,t) dm (ξ)dξ

= B(t − τ(q, t), Ih(t − τ(q, t)), Sm(t − τ(q, t)))

γ (t − τ(q, t))
e− ∫ t

t−τ (q,t) dm(ξ)dξ
.

Define τ(t) := τ(qI , t). We then obtain

γ (t)ρ(qI , t) = B(t − τ(t), Ih(t − τ(t)), Sm(t − τ(t)))
γ (t)

γ (t − τ(t))
e− ∫ t

t−τ (t) dm(ξ)dξ
.

Letting q = qI in (5), we have

qI − qE =
∫ t

t−τ(t)
γ (s)ds (6)
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Taking the derivative with respect to t on both sides of (6), we obtain

1 − τ ′(t) = γ (t)

γ (t − τ(t))
.

Thus, there holds 1−τ ′(t) > 0. In virtue of (6), it easily follows that if γ (t) is a periodic
function, then so is τ(t) with the same period. Substituting M(t) = γ (t)ρ(qI , t) into
system (2), we arrive at the following model system:

dIh(t)

dt
= cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t) − (dh + ρ)Ih(t),

dSm(t)

dt
= μ(t) − B(t, Ih(t), Sm(t)) − dm(t)Sm(t),

dEm(t)

dt
= B(t, Ih(t), Sm(t)) − dm(t)Em(t)

− (1 − τ ′(t))B(t − τ(t), Ih(t − τ(t)), Sm(t − τ(t)))e− ∫ t
t−τ (t) dm (ξ)dξ

,

dIm(t)

dt
= (1 − τ ′(t))B(t − τ(t), Ih(t − τ(t)), Sm(t − τ(t)))e− ∫ t

t−τ (t) dm(ξ)dξ

− dm(t)Im(t), (7)

where all constant parameters are positive, and μ(t), β(t), dm(t), τ(t) are positive,
continuous and ω-periodic functions t for some ω > 0. The biological interpretations
for parameters are listed in Table 1. It is easy to see that the function

a(t) := e− ∫ t
t−τ (t) dm (ξ)dξ

is also ω-periodic. Thus, model (7) can be written as u′(t) = F(t, ut ) with F(t +
ω, φ) = F(t, φ) (see the proof of Lemma 2), and hence, it is an ω-periodic functional
differential system. Note that the term 1 − τ ′(t) is involved in the development rate
from the Em state to the Im state, which is different from previous works with constant
time delays [see, e.g., system (1) in Wang and Zhao (2017)].

3 Threshold Dynamics

In this section,we study the global dynamics of system (7). Thebasic reproduction ratio
is a key threshold parameter providing information for disease risk and control (see,
e.g., Diekmann et al. 1990; Driessche and Watmough 2002). There have been quite
a few investigations on R0 analysis for population models in a periodic environment
(see, e.g., Bacaër andAit Dads 2012; Bacaër andGuernaoui 2006; Inaba 2012; Thieme
2009;Wang andZhao 2008; Zhao 2017 and the references therein). Inwhat follows,we
will use the theory recently developed in Zhao (2017) to derive the basic reproduction
ratio R0. Since the third equation of system (7) is decoupled from the other equations,
it suffices to study the following system:
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Table 1 Biological interpretations for parameters of model (7)

Parameters Description

τ(t) Extrinsic incubation period

b Transmission probability per bite from infectious humans to mosquitoes

c Transmission probability per bite from infectious mosquitoes to humans

β(t) Mosquito biting rate

μ(t) Recruitment rate at which female adult mosquitoes emerge from larvae

dm (t) Natural death rate of female adult mosquitoes

dh Natural death rate of humans

ρ Removal rate of humans from the infectious compartment (i.e., recovery rate and
disease-induced death rate)

p Probability that a mosquito arrives at a human at random and picks the human if he
is infectious

l Probability that a mosquito arrives at a human at random and picks the human if he
is susceptible

H The total number of humans

dIh(t)

dt
= cβ(t)l(H − Ih(t))

pIh(t) + l(H − Ih(t))
Im(t) − (dh + ρ)Ih(t),

dSm(t)

dt
= μ(t) − B(t, Ih(t), Sm(t)) − dm(t)Sm(t),

dIm(t)

dt
= (1 − τ ′(t))B(t − τ(t), Ih(t − τ(t)), Sm(t − τ(t)))e− ∫ t

t−τ (t) dm (ξ)dξ

−dm(t)Im(t). (8)

It is easy to see that the scalar linear periodic equation

dSm(t)

dt
= μ(t) − dm(t)Sm(t) (9)

has a unique positive ω-periodic solution

S∗
m(t) =

[ ∫ t

0
μ(r)e

∫ r
0 dm (s)dsdr +

∫ ω

0 μ(r)e
∫ r
0 dm(s)dsdr

e
∫ ω
0 dm (s)ds − 1

]

e− ∫ t
0 dm(s)ds,

which is globally attractive in R.
Linearizing system (8) at its disease-free periodic solution (0, S∗

m(t), 0), we then
obtain the following system of periodic linear equations for the infective variables Ih
and Im :

dIh(t)

dt
= −a11(t)Ih(t) + a12(t)Im(t),

dIm(t)

dt
= a21(t)Ih(t − τ(t)) − a22(t)Im(t),

(10)
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where a11(t) = dh + ρ, a12(t) = cβ(t), a22(t) = dm(t), and

a21(t) = (1 − τ ′(t))bβ(t − τ(t))pS∗
m(t − τ(t))e− ∫ t

t−τ (t) dm (ξ)dξ

lH
.

Let τ̂ = max0≤t≤ω τ(t), C = C([−τ̂ , 0],R2), C+ = C([−τ̂ , 0],R2+). Then
(C,C+) is an orderedBanach space equippedwith themaximumnormand the positive
coneC+. For anygiven continuous functionv = (v1, v2) : [−τ̂ , σ ) → R

2 withσ > 0,
we define vt ∈ C by

vt (θ) = (v1(t + θ), v2(t + θ)), ∀θ ∈ [−τ̂ , 0],

for any t ∈ [0, σ ). Let F : R → L(C,R2) be a map and V (t) be a continuous 2 × 2
matrix function on R defined as follows:

F(t)ϕ =
[

a12(t)ϕ2(0)
a21(t)ϕ1(−τ(t))

]

, V (t) =
[
a11(t) 0
0 a22(t)

]

.

Then the internal evolution of the infective compartments Ih and Im can be expressed
by

dv(t)

dt
= −V (t)v(t).

Let Φ(t, s), t ≥ s, be the evolution matrix of the above linear system. That is,
Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s,

and

Φ(s, s) = I, ∀s ∈ R,

where I is the 2 × 2 identity matrix. It then easily follows that

Φ(t, s) =
[
e− ∫ t

s a11(r)dr 0

0 e− ∫ t
s a22(r)dr

]

.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions
from R to R

2, which is equipped with the maximum norm and the positive cone
C+

ω := {v ∈ Cω : v(t) ≥ 0 for all t ∈ R}.
Suppose that v ∈ Cω is the initial distribution of infectious individuals. Then for

any given s ≥ 0, F(t − s)vt−s is the distribution of newly infectious individuals at
time t − s, which is produced by the infectious individuals who were introduced over
the time interval [t − s − τ̂ , t − s]. Then Φ(t, t − s)F(t − s)vt−s is the distribution
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of those infectious individuals who newly became infectious at time t − s and remain
in the infectious compartments at time t . It follows that

∫ ∞

0
Φ(t, t − s)F(t − s)vt−sds =

∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds

is the distribution of accumulative new infections at time t produced by all those
infectious individuals introduced at all previous time to t .

Define a linear operator L : Cω → Cω by

[Lv](t) =
∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds, ∀t ∈ R, v ∈ Cω.

Following Zhao (2017), we define R0 = r(L), the spectral radius of L . Let P̂(t) be
the solution maps of system (10), that is, P̂(t)ϕ = ut (ϕ), t ≥ 0, where u(t, ϕ) is
the unique solution of (10) with u0 = ϕ ∈ C . Then P̂ := P̂(ω) is the Poincaré map
associated with linear system (10). Let r(P̂) be the spectral radius of P̂ . By Zhao
(2017, Theorem 2.1), we have the following result.

Lemma 1 R0 − 1 has the same sign as r(P̂) − 1.

Let

W := C([−τ̂ , 0], [0, H ]) × C([−τ̂ , 0],R+) × R+.

Then we have the following preliminary result for system (8).

Lemma 2 For any ϕ ∈ W, system (8) has a unique nonnegative bounded solution
u(t, ϕ) on [0,∞) with u0 = ϕ, and ut (ϕ) := (u1t (ϕ), u2t (ϕ), u3(t, ϕ)) ∈ W for all
t ≥ 0.

Proof For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ W , we define

f̃ (t, ϕ) =

⎛

⎜
⎜
⎝

cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH ϕ3 − (dh + ρ)ϕ1(0)

μ(t) − bβ(t)pϕ1(0)
(p−l)ϕ1(0)+lH ϕ2(0) − dm(t)ϕ2(0)

−dm(t)ϕ3 + (1 − τ ′(t)) bβ(t−τ(t))pϕ1(−τ(t))ϕ2(−τ(t))
(p−l)ϕ1(−τ(t))+lH e− ∫ t

t−τ (t) dm(ξ)dξ

⎞

⎟
⎟
⎠ .

Since f̃ (t, ϕ) is continuous in (t, ϕ) ∈ R+ ×W , and f̃ (t, ϕ) is Lipschitz in ϕ on each
compact subset of W , it then follows that system (8) has a unique solution u(t, ϕ) on
its maximal interval [0, σϕ) of existence with u0 = ϕ (see, e.g., Hale and Verduyn
Lunel (1993, Theorems 2.2.1 and 2.2.3)).

Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ W be given. If ϕi (0) = 0 for some i ∈ {1, 2}, then
f̃i (t, ϕ) ≥ 0. If ϕ3 = 0, then f̃3(t, ϕ) ≥ 0. If ϕ1(0) = H , then f̃1(t, ϕ) ≤ 0. By Smith
(1995, Theorem 5.2.1 and Remark 5.2.1), it follows that for any ϕ ∈ W , the unique
solution u(t, ϕ) of system (1) with u0 = ϕ satisfies ut (ϕ) ∈ W for all t ∈ [0, σϕ).
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Clearly, 0 ≤ u1(t, ϕ) ≤ H for all t ∈ [0, σϕ). In view of the second and third
equations of system (8), we have

du2(t)

dt
≤ μ(t) − dm(t)u2(t),

du3(t)

dt
≤ −dm(t)u3(t) + (1 − τ ′(t))bβ(t − τ(t))u2(t − τ(t))e− ∫ t

t−τ (t) dm (ξ)dξ
,

for all t ∈ [0, σϕ). Thus, both u2(t) and u3(t) are bounded on [0, σϕ), and hence, Hale
and Verduyn Lunel (1993, Theorem 2.3.1) implies that σϕ = ∞. 
�

For any given ϕ ∈ W, let u(t, ϕ) = (u1(t), u2(t), u3(t)) be the unique solution of
system (8) satisfying u0 = ϕ. Let

w(t) := e− ∫ t
t−τ (t) dm (s)dsu2(t − τ(t)) + u3(t).

Then (u1(t), u3(t)) can be regarded as a solution of the following nonautonomous
system:

du1(t)

dt
= cβ(t)l(H − u1(t))

(p − l)u1(t) + lH
u3(t) − (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) + (1 − τ ′(t))bβ(t − τ(t))pu1(t − τ(t))

(p − l)u1(t − τ(t)) + lH
[w(t) − u3(t)].

(11)
It easily follows that w(t) satisfies

dw(t)

dt
= −dm(t)w(t) + μ(t − τ(t))(1 − τ ′(t))e− ∫ t

t−τ (t) dm (s)ds
, (12)

and system (12) has a unique positive ω-periodic solution

K (t) := e− ∫ t
t−τ (t) dm (s)ds S∗

m(t − τ(t)),

which is globally attractive in R. Thus, system (11) has a limiting system:

dv1(t)

dt
= cβ(t)l(H − v1(t))

(p − l)v1(t) + lH
v2(t) − (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) + (1 − τ ′(t))bβ(t − τ(t))pv1(t − τ(t))

(p − l)v1(t − τ(t)) + lH
(K (t) − v2(t)).

(13)
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Note that z(t) = (u1(t), u3(t), w(t)) satisfies the following ω-periodic system:

du1(t)

dt
= cβ(t)l(H − u1(t))

(p − l)u1(t) + lH
u3(t) − (dh + ρ)u1(t),

du3(t)

dt
= −dm(t)u3(t) + (1 − τ ′(t))bβ(t − τ(t))pu1(t − τ(t))

(p − l)u1(t − τ(t)) + lH
(w(t) − u3(t)),

dw(t)

dt
= −dm(t)w(t) + μ(t − τ(t))(1 − τ ′(t))e− ∫ t

t−τ (t) dm(s)ds
.

(14)
Clearly, system (8) is equivalent to (14). It suffices to study system (14). Let

Ω := C([−τ̂ , 0], [0, H ]) × R
2+.

We then have the following preliminary result for system (14).

Lemma 3 For any ϕ ∈ Ω , system (14) has a unique solution z(t, ϕ) with z0 = ϕ,
and zt (ϕ) := (z1t (ϕ), z2(t, ϕ), z3(t, ϕ)) ∈ Ω for all t ≥ 0.

Proof For any ϕ ∈ Ω , define

f̂ (t, ϕ) =
⎛

⎜
⎝

cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH ϕ2 − (dh + ρ)ϕ1(0)

− dm(t)ϕ2 + (1 − τ ′(t)) bβ(t−τ(t))pϕ1(−τ(t))
(p−l)ϕ1(−τ(t))+lH (ϕ3 − ϕ2)

− dm(t)ϕ3 + μ(t − τ(t))(1 − τ ′(t))e− ∫ t
t−τ (t) dm (s)ds

⎞

⎟
⎠ .

Since f̂ (t, ϕ) is continuous in (t, ϕ) ∈ R × Ω , and f̂ (t, ϕ) is Lipschitz in ϕ on each
compact subset of Ω , it then follows that system (14) has a unique solution z(t, ϕ)

with z0 = ϕ on its maximal interval [0, σϕ) of existence.
Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ Ω be given. If ϕ1(0) = 0, then f̂1(t, ϕ) ≥ 0. If ϕi = 0 for

some i = 2, 3, then f̂i (t, ϕ) ≥ 0. If ϕ1(0) = H , then f̂1(t, ϕ) ≤ 0. By Smith (1995,
Theorem 5.2.1 and Remark 5.2.1), it follows that for any ϕ ∈ Ω , the unique solution
z(t, ϕ) of system (14) with u0 = ϕ satisfies zt (ϕ) ∈ Ω for all t ∈ [0, σϕ).

Since system (12) has a globally attractive periodic solution K (t), it follows that
z3(t, ϕ) = w(t) is bounded on [0, σϕ), that is, there exists B > 0 such that w(t) ≤ B
for all t ∈ [0, σϕ). In view of the second equation of system (14), we have

du3(t)

dt
≤ −dm(t)u3(t) + b(1 − τ ′(t))β(t − τ(t))B, ∀t ∈ [0, σϕ).

Hence, z2(t, ϕ) = u3(t) is also bounded on [0, σϕ). Then Hale and Verduyn Lunel
(1993, Theorem 2.3.1) implies that σϕ = ∞. 
�

Let

Y (t) := C([−τ̂ , 0], [0, H ]) × [0, K (t)], t ≥ 0.

Then we have the following result for system (13).
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Lemma 4 For any ϕ ∈ Y (0), system (13) has a unique solutionw(t, ϕ) withw0 = ϕ,
and wt (ϕ) := (w1t (ϕ),w2(t, ϕ)) ∈ Y (t) for all t ≥ 0.

Proof For any ϕ ∈ Y (0), define

f (t, ϕ) =
(

cβ(t)l(H−ϕ1(0))
(p−l)ϕ1(0)+lH ϕ2 − (dh + ρ)ϕ1(0)

−dm(t)ϕ2 + (1 − τ ′(t)) bβ(t−τ(t))pϕ1(−τ(t))
(p−l)ϕ1(−τ(t))+lH (K (t) − ϕ2)

)

.

Since f is continuous in (t, ϕ) ∈ R × Y (0), and f is Lipschitz in ϕ on each compact
subset of Y (0), it then follows that system (13) has a unique solution w(t, ϕ) with
w0 = ϕ on its maximal interval [0, σϕ) of existence.

Let ϕ = (ϕ1, ϕ2) ∈ Y (0) be given. If ϕ1(0) = 0, then f1(t, ϕ) ≥ 0. If ϕ2 = 0, then
f2(t, ϕ) ≥ 0. If ϕ1(0) = H , then f1(t, ϕ) ≤ 0. By Smith (1995, Theorem 5.2.1 and
Remark 5.2.1), it follows that the unique solution w(t, ϕ) of system (13) with w0 = ϕ

satisfies wt (ϕ) ∈ C([−τ̂ , 0], [0, H ]) × R+.
It remains to prove that w2(t) ≤ K (t) for all t ∈ [0, σϕ). Suppose this does not

hold. Then there exists t0 ∈ [0, σϕ) and ε0 > 0 such that

w2(t0) = K (t0) and w2(t) > K (t), ∀t ∈ (t0, t0 + ε0).

Since

dw2(t0)

dt
= −dm(t0)w2(t0) = −dm(t0)K (t0) <

dK (t0)

dt
,

there exists ε1 ∈ (0, ε0) such that w2(t) ≤ K (t) for all t ∈ (t0, t0 + ε1), which is
a contradiction. This proves that wt (ϕ) ∈ Y (t) for all t ∈ [0, σϕ). Clearly, wt (ϕ)

is bounded on [0, σϕ), and hence, Hale and Verduyn Lunel (1993, Theorem 2.3.1)
implies that σϕ = ∞. 
�

Let

G(t) := C([−τ(0), 0], [0, H ]) × [0, K (t)], t ≥ 0.

Lemma 5 For any ϕ ∈ G(0), system (13) has a unique solution v(t, ϕ) with v0 = ϕ,
and vt (ϕ) := (v1t (ϕ), v2(t, ϕ)) ∈ G(t) for all t ≥ 0.

Proof Let τ̄ = mint∈[0,ω] τ(t). For any t ∈ [0, τ̄ ], since t − τ(t) is strictly increasing
in t , we have

−τ(0) = 0 − τ(0) ≤ t − τ(t) ≤ τ̄ − τ(τ̄ ) ≤ τ̄ − τ̄ = 0,

and hence,

v1(t − τ(t)) = ϕ1(t − τ(t)).
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Therefore, we have the following ordinary differential equations for t ∈ [0, τ̄ ]:

dv1(t)

dt
= cβ(t)l(H − v1(t))

(p − l)v1(t) + lH
v2(t) − (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) + (1 − τ ′(t))bβ(t − τ(t))pϕ1(t − τ(t))

(p − l)ϕ1(t − τ(t)) + lH
(K (t) − v2(t)).

Given ϕ ∈ G(0), the solution (v1(t), v2(t)) of the above system exists for t ∈ [0, τ̄ ].
In other words, we have obtained values of ψ1(θ) = v1(θ) for θ ∈ [−τ(0), τ̄ ] and
ψ2(θ) = v2(θ) for θ ∈ [0, τ̄ ]. It is easy to see that v1(t) ≤ H and v2(t) ≤ K (t) for
all t ∈ [0, τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τ(0) = 0 − τ(0) ≤ τ̄ − τ(τ̄ ) ≤ t − τ(t) ≤ 2τ̄ − τ(2τ̄ ) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence, v1(t − τ(t)) = ψ1(t − τ(t)). Solving the following system of ordinary
differential equations for t ∈ [τ̄ , 2τ̄ ] with v1(τ̄ ) = ψ1(τ̄ ) and v2(τ̄ ) = ψ2(τ̄ ):

dv1(t)

dt
= cβ(t)l(H − v1(t))

(p − l)v1(t) + lH
v2(t) − (dh + ρ)v1(t),

dv2(t)

dt
= −dm(t)v2(t) + (1 − τ ′(t))bβ(t − τ(t))pψ1(t − τ(t))

(p − l)ψ1(t − τ(t)) + lH
(K (t) − v2(t)).

We then get the solution (v1(t), v2(t)) on [τ̄ , 2τ̄ ]. We also have v1(t) ≤ H and
v2(t) ≤ K (t) for all t ∈ [τ̄ , 2τ̄ ]. Repeating this procedure for t ∈ [2τ̄ , 3τ̄ ], [3τ̄ , 4τ̄ ],...,
it then follows that for any ϕ ∈ G(0), system (13) has a unique solution v(t, ϕ) with
v0 = ϕ, and vt (ϕ) := (v1t (ϕ), v2(t, ϕ)) ∈ G(t) for all t ≥ 0. 
�
Remark 1 By the uniqueness of solutions in Lemmas 4 and 5, it follows that for any
ψ ∈ Y (0) and φ ∈ G(0) with ψ1(θ) = φ1(θ) for all θ ∈ [−τ(0), 0] and ψ2 = φ2,
we have w(t, ψ) = v(t, φ) for all t ≥ 0, where w(t, ψ) and v(t, φ) are solutions of
system (13) satisfying w0 = ψ and v0 = φ, respectively. Similarly, we define

Π := C([−τ(0), 0], [0, H ]) × R
2+,

and

Ψ := C([−τ(0), 0], [0, H ]) × C([−τ(0), 0],R+) × R+.

For any ψ ∈ Ω and φ ∈ Π with ψ1(θ) = φ1(θ) for all θ ∈ [−τ(0), 0] and ψ2 = φ2,
ψ3 = φ3, we have z(t, ψ) = z̃(t, φ) for all t ≥ 0, where z(t, ψ) and z̃(t, φ) are
solutions of system (14) satisfying z0 = ψ and z̃0 = φ, respectively. It follows
that Π is positively invariant for system (14). For any ψ ∈ W and φ ∈ Ψ with
ψ1(θ) = φ1(θ), ψ2(θ) = φ2(θ) for all θ ∈ [−τ(0), 0] and ψ3 = φ3, we have
u(t, ψ) = ũ(t, φ) for all t ≥ 0, where u(t, ψ) and ũ(t, φ) are solutions of system
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(8) satisfying u0 = ψ and ũ0 = φ, respectively. It then follows that Ψ is positively
invariant for system (8).

Let S(t) be the solution maps of system (13), that is, S(t)ϕ = vt (ϕ), t ≥ 0,
where v(t, ϕ) is the unique solution of system (13) with v0 = ϕ ∈ G(0). By similar
arguments to those in Lou and Zhao (2017, Lemma 3.5), we have the following result.

Lemma 6 S(t) : G(0) → G(t) is anω-periodic semiflow in the sense that (i) S(0) =
I ; (i i) S(t + ω) = S(t) ◦ S(ω) for all t ≥ 0; (i i i) S(t)ϕ is continuous in (t, ϕ) ∈
[0,∞) × G(0).

Note that the linearized system of (13) at (0, 0) is

dv1(t)

dt
= −(dh + ρ)v1(t) + cβ(t)v2(t),

dv2(t)

dt
= (1 − τ ′(t))bβ(t − τ(t))pK (t)

lH
v1(t − τ(t)) − dm(t)v2(t).

(15)

Let P be the Poincaré map of the linear system (15) on the space C([−τ(0), 0],
R) × R, and r(P) be its spectral radius. Then we have the following threshold type
result for system (13).

Lemma 7 The following statements are valid:

(i) If r(P) ≤ 1, then v∗(t) = (0, 0) is globally asymptotically stable for system (13)
in G(0).

(ii) If r(P) > 1, then system (13) admits a unique positiveω-periodic solution ṽ(t) =
(ṽ1(t), ṽ2(t))which is globally asymptotically stable for system (13) in G(0)\{0}.

Proof It follows from Remark 1 that S(t) maps G(0) into G(t), and S := S(ω) :
G(0) → G(ω) = G(0) is the Poincaré map associated with system (13). By the
continuity and differentiability of solutions with respect to initial values, it follows
that S is differentiable at zero and the Frechét derivative DS(0) = P .

For any given ϕ,ψ ∈ G(0) with ϕ ≥ ψ , let v̄(t) = v(t, ϕ) and v(t) = v(t, ψ)

be the unique solutions of system (13) with v0 = ϕ and v0 = ψ , respectively. Let
τ̄ = mint∈[0,ω] τ(t). Define

A(t) =: v̄1(t − τ(t))

(p − l)v̄1(t − τ(t)) + lH
, B(t) := v1(t − τ(t))

(p − l)v1(t − τ(t)) + lH
.

Since

−τ(0) = 0 − τ(0) ≤ t − τ(t) ≤ τ̄ − τ(τ̄ ) ≤ τ̄ − τ̄ = 0, ∀t ∈ [0, τ̄ ],

we have

v̄1(t − τ(t)) = ϕ1(t − τ(t)) and v1(t − τ(t)) = ψ1(t − τ(t)), ∀t ∈ [0, τ̄ ],
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and hence, A(t) ≥ B(t) for all t ∈ [0, τ̄ ]. In view of v̄(0) = ϕ(0) ≥ ψ(0) = v(0),
the comparison theorem for cooperative ordinary differential systems implies that
v̄(t) ≥ v(t) for all t ∈ [0, τ̄ ].

Repeating this procedure for t ∈ [τ̄ , 2τ̄ ], [2τ̄ , 3τ̄ ], ..., it follows that v(t, ϕ) ≥
v(t, ψ) for all t ∈ [0,∞). This implies that S(t) : G(0) → G(t) is monotone for each
t ≥ 0. Next we show that the solution map S(t) is eventually strongly monotone. Let
ϕ > ψ and denote v(t, ϕ) = (ȳ1(t), ȳ2(t)), v(t, ψ) = (y1(t), y2(t)).

Claim 1 There exists t0 ∈ [0, τ̄ ] such that ȳ2(t) > y2(t) for all t ≥ t0.

We first prove that ȳ2(t0) > y2(t0) for some t0 ∈ [0, τ̄ ]. Otherwise, we have
ȳ2(t) = y2(t) for all t ∈ [0, τ̄ ], and hence, d ȳ2(t)

dt = dy2(t)
dt for all t ∈ (0, τ̄ ). Thus, we

have
[
bβ(t − τ(t))pȳ1(t − τ(t))

(p − l)ȳ1(t − τ(t)) + lH
− bβ(t − τ(t))py1(t − τ(t))

(p − l)y1(t − τ(t)) + lH

]

(1 − τ ′(t))(K (t) − y2(t)) = 0, ∀t ∈ [0, τ̄ ]. (16)

Since ϕ > ψ and ϕ2 = ȳ2(0) = y2(0) = ψ2, we have ϕ1 > ψ1. Then there exists
an open interval (a, b) ⊂ [−τ(0), 0] such that ϕ1(θ) > ψ1(θ) for all θ ∈ (a, b). Let
h(t) = t − τ(t). Since h′(t) > 0, the inverse function h−1(t) exists. It follows from
(16) that y2(t) = K (t) for all t ∈ (h−1(a), h−1(b)), and hence,

dK (t)

dt
= dy2(t)

dt
= −dm(t)K (t), ∀t ∈ (h−1(a), h−1(b)),

which contradicts the fact that

dK (t)

dt
= −dm(t)K (t) + μ(t − τ(t))(1 − τ ′(t))e− ∫ t

t−τ (t) dm (s)ds
.

Let

g1(t, y) := −dm(t)y + (1 − τ ′(t))bβ(t − τ(t))py1(t − τ(t))

(p − l)y1(t − τ(t)) + lH
(K (t) − y).

Since

d ȳ2(t)

dt
= −dm(t)ȳ2(t) + (1 − τ ′(t))bβ(t − τ(t))pȳ1(t − τ(t))

(p − l)ȳ1(t − τ(t)) + lH
(K (t) − ȳ2(t))

≥ −dm(t)ȳ2(t) + (1 − τ ′(t))bβ(t − τ(t))py1(t − τ(t))

(p − l)y1(t − τ(t)) + lH
(K (t) − ȳ2(t))

= g1(t, ȳ2(t)),

we have

d ȳ2(t)

dt
− g1(t, ȳ2(t)) ≥ 0 = dy2(t)

dt
− g1(t, y2(t)), ∀t ≥ t0.

Since ȳ2(t0) > y2(t0), the comparison theorem for ordinary differential equations (see
Walter (1997, Theorem 4)) implies that ȳ2(t) > y2(t) for all t ≥ t0.
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Claim 2 ȳ1(t) > y1(t) for all t > t0.

Wefirst prove that for any ε > 0, there exists an open interval (c, d) ⊂ [t0, t0+ε] such
that H > ȳ1(t) for all t ∈ (c, d). Otherwise, there exists ε0 > 0 such that H = ȳ1(t)
for all t ∈ (t0, t0 + ε0). It then follows from the first equation of system (13) that
0 = −(dh + ρ)H , which is a contradiction. Let

f1(t, y) := cβ(t)l(H − y)

(p − l)y + lH
y2(t) − (dh + ρ)y.

Then we have

d ȳ1(t)

dt
= cβ(t)l(H − ȳ1(t))

(p − l)ȳ1(t) + lH
ȳ2(t) − (dh + ρ)ȳ1(t)

>
cβ(t)l(H − ȳ1(t))

(p − l)ȳ1(t) + lH
y2(t) − (dh + ρ)ȳ1(t)

= f1(t, ȳ1(t)), ∀t ∈ (c, d),

and hence,

d ȳ1(t)

dt
− f1(t, ȳ1(t)) > 0 = dy1(t)

dt
− f1(t, y1(t)), ∀t ∈ (c, d).

Since ȳ1(t0) ≥ y1(t0), it follows from Walter (1997, Theorem 4) that ȳ1(t) > y1(t)
for all t > t0.

In view of Claims 1 and 2, we obtain

(ȳ1(t), ȳ2(t)) � (y1(t), y2(t)), ∀t > t0.

Since t0 ∈ [0, τ̄ ], it follows that

(ȳ1t , ȳ2(t)) � (y1t , y2(t)), ∀t > τ̄ + τ(0),

that is, vt (ϕ) � vt (ψ) for all t > τ̄ + τ(0). This shows that S(t) : G(0) → G(t) is
strongly monotone for any t > τ̄ + τ(0).

For any givenϕ � 0 inG(0) and λ ∈ (0, 1), let v(t, ϕ) and v(t, λϕ) be the solutions
of system (13) satisfying v0 = ϕ and v0 = λϕ, respectively. Denote x(t) = λv(t, ϕ)

and z(t) = v(t, λϕ). As in the proof of Lemma 5, by the comparison theorem for
ordinary differential equations, we have x(t) > 0 and z(t) > 0 for all t ≥ 0.Moreover,
for all θ ∈ [−τ(0), 0], we have

x1(θ) = λϕ1(θ) = z1(θ), x2(0) = λϕ2 = z2(0).

123



A Malaria Transmission Model with Temperature-Dependent… 1171

For any t ∈ [0, τ̄ ], we have −τ(0) ≤ t − τ(t) ≤ τ̄ − τ̄ = 0, and hence, z1(t − τ(t)) =
x1(t−τ(t)) = λϕ1(t−τ(t)). Thus, x(t) satisfies the following differential inequality:

dx1(t)

dt
<

cβ(t)l(H − x1(t))

(p − l)x1(t) + lH
x2(t) − (dh + ρ)x1(t),

dx2(t)

dt
< −dm(t)x2(t) + (1 − τ ′(t))bβ(t − τ(t))pz1(t − τ(t))

(p − l)z1(t − τ(t)) + lH
(K (t) − x2(t)),

for all t ∈ [0, τ̄ ]. Since x(0) = z(0), it follows from the comparison theorem for
ordinary differential systems (see Walter (1997, Theorem 4)) that x1(t) < z1(t) and
x2(t) < z2(t) for all t ∈ (0, τ̄ ]. By similar arguments for any interval (nτ̄ , (n + 1)τ̄ ],
n = 1, 2, 3, · · · , we can get x1(t) < z1(t) and x2(t) < z2(t) for all t > 0, that is,
v(t, λϕ) � λv(t, ϕ) for all t > 0. Therefore, vt (λϕ) � λvt (ϕ) for all t > τ(0).

Now we fix an integer n0 such that n0ω > τ̄ + τ(0). It then follows that Sn0 =
S(n0ω) : G(0) → G(0) is stronglymonotone and strictly subhomogeneous. Note that
DSn0(0) = DS(n0ω)(0) = P(n0ω) = Pn0(ω) = Pn0 , and r(Pn0) = (r(P))n0 . By
Zhao (2003, Theorem 2.3.4 and Lemma 2.2.1) as applied to Sn0 , we have the following
threshold type result:

(a) If r(P) ≤ 1, then v∗(t) = (0, 0) is globally asymptotically stable for system (13)
in G(0).

(b) If r(P) > 1, then there exists a unique positive n0ω-periodic solution ṽ(t) =
(ṽ1(t), ṽ2(t)), which is globally asymptotically stable for system (13) inG(0)\{0}.

It remains to prove that ṽ(t) is also an ω-periodic solution of system (13). Let ṽ(t) =
v(t, ψ). By the properties of periodic semiflows, we have Sn0(S(ψ)) = S(Sn0(ψ)) =
S(ψ), which implies that S(ψ) is also a positive fixed point of Sn0 . By the uniqueness
of the positive fixed point of Sn0 , it follows that S(ψ) = ψ . So ṽ(t) is an ω-periodic
solution of system (13). 
�

Next, we use the theory of chain transitive sets (see Hirsch et al. (2001) and Zhao
(2003, Section 1.2)) to lift the threshold type result for system (13) to system (14).

Theorem 1 The following statements are valid:

(i) If r(P) ≤ 1, then the periodic solution (0, 0, K (t)) is globally asymptotically
stable for system (14) in Π ;

(ii) If r(P) > 1, then system (14) admits a unique positive ω-periodic solution (ṽ1(t),
ṽ2(t), K (t)), which is globally asymptotically stable for system (14) in Π\({0} ×
{0} × R+).

Proof Let P̃(t) be the solution maps of system (14), that is, P̃(t)ϕ = zt (ϕ), t ≥ 0,
where z(t, ϕ) is the unique solution of system (14) with z0 = ϕ ∈ Π.Then P̃ := P̃(ω)

is the Poincaré map of system (14). Then {P̃n}n≥0 defines a discrete-time dynamical
system on Π . For any given ϕ̄ ∈ Π, let z̄(t) = (u1(t), u3(t), w(t)) be the unique
solution of system (14) with z̄0 = ϕ̄ and let ω(ϕ̄) be the omega limit set of the orbit
{P̃n(ϕ̄)}n≥0 for the discrete-time semiflow P̃n .

Since equation (12) has a unique positive ω-periodic solution K (t), which is glob-
ally attractive, we have limt→∞(w(t) − K (t)) = 0, and hence, limn→∞ (P̃n(ϕ̄))3
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= K (0). Thus, there exists a subset ω̃ of C([−τ(0), 0], [0, H ]) × R+ such that
ω(ϕ̄) = ω̃ × {K (0)}.

For any φ = (φ1, φ2, φ3) ∈ ω(ϕ̄), there exists a sequence nk → ∞ such
that P̃nk (ϕ̄) → φ, as k → ∞. Since u1nkω ≤ H and u3(nkω) ≤ w(nkω), let-
ting nk → ∞, we obtain 0 ≤ φ1 ≤ H, 0 ≤ φ2 ≤ K (0). It then follows that
ω̃ ⊆ C([−τ(0), 0], [0, H ]) × [0, K (0)] = G(0). It is easy to see that

P̃n|ω(ϕ̄)(φ1, φ2, K (0)) = Sn|ω̃(φ1, φ2) × {K (0)}, ∀(φ1, φ2) ∈ ω̃, n ≥ 0,

where S is the Poincaré map associated with system (13). By Zhao (2003, Lemma
1.2.1), ω(ϕ̄) is an internally chain transitive set for P̃n on Π . It then follows that ω̃ is
an internally chain transitive set for Sn on G(0).

In the case where r(P) ≤ 1, it follows from Lemma 7 (i) that (0, 0) is globally
asymptotically stable for Sn in G(0). By Zhao (2003, Theorem 1.2.1), we have ω̃ =
{(0, 0)}, and hence, ω(ϕ̄) = {(0, 0, K (0))}. Then P̃n(ϕ̄) → (0, 0, K (0)) as n → ∞.
Clearly, (0, 0, K (0)) is a fixed point of P̃ . This implies that statement (i) is valid.

In the case where r(P) > 1, by Lemma 7 (ii) and Zhao (2003, Theorem 1.2.2), it
follows that either ω̃ = {(0, 0)} or ω̃ = {(ṽ10, ṽ2(0))}, where ṽ10(θ) = ṽ1(θ) for all
θ ∈ [−τ(0), 0]. We further claim that ω̃ �= {(0, 0)}. Suppose, by contradiction, that
ω̃ = {(0, 0)}, then we have ω(ϕ̄) = {(0, 0, K (0))}. Thus, limt→∞(u1(t), u3(t)) =
(0, 0), and for any ε > 0, there exists T = T (ε) > 0 such that |w(t) − K (t)| < ε for
all t ≥ T . Then for any t ≥ T , we have

du1(t)

dt
≥ cβ(t)l(H − u1(t))

(p − l)u1(t) + lH
u3(t) − (dh + ρ)u1(t),

du3(t)

dt
≥−dm(t)u3(t)+(1 − τ ′(t))bβ(t − τ(t))pu1(t − τ(t))

(p − l)u1(t−τ(t))+lH
(K (t) − ε − u3(t)).

(17)

Let rε be the spectral radius of the Poincarémap associated with the following periodic
linear system:

du1(t)

dt
= −(dh + ρ)u1(t) + cβ(t)u3(t),

du3(t)

dt
= (1 − τ ′(t))bβ(t − τ(t))pu1(t − τ(t))

lH
(K (t) − ε) − dm(t)u3(t). (18)

Since limε→0+ rε = r(P) > 1, we can fix ε small enough such that rε > 1. By similar
result to Lemma 7 (ii), it follows that the Poincaré map of the following system

du1(t)

dt
= cβ(t)l(H − u1(t))

(p − l)u1(t) + lH
u3(t) − (dh + ρ)u1(t),

du3(t)

dt
=−dm(t)u3(t)+(1 − τ ′(t))bβ(t − τ(t))pu1(t − τ(t))

(p − l)u1(t − τ(t))+lH
(K (t)−ε − u3(t))

(19)
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admits a globally asymptotically stable fixed point (ū10, ū3(0)) � 0. In the casewhere
ϕ̄ ∈ Π\({0} × {0} × R+), we have (u1(t), u3(t)) > 0 in R

2 for all t > 0. In view of
(17) and (19), the comparison principle implies that

lim inf
n→∞ (u1nω(ϕ̄), u3(nω, ϕ̄)) ≥ (ū10, ū3(0)) � 0,

which contradicts limt→∞(u1(t), u3(t)) = (0, 0). It then follows that ω̃ =
{(ṽ10,ṽ2(0))}, and hence, ω(ϕ̄) = {(ṽ10, ṽ2(0), K (0))}. This implies that limt→∞
(z̄(t) − (ṽ1(t), ṽ2(t), K (t))) = (0, 0, 0). 
�

By the definition of w(t), we have u2(t − τ(t)) = (w(t) − u3(t))e
∫ t
t−τ (t) dm (s)ds . In

the case where r(P) ≤ 1, we have

lim
t→∞(u2(t − τ(t)) − S∗

m(t − τ(t)))

= lim
t→∞(w(t) − u3(t) − K (t))e

∫ t
t−τ (t) dm(s)ds

= 0.

It follows that limt→∞(u2(t) − S∗
m(t)) = 0. In the case where r(P) > 1, we have

lim
t→∞(u2(t − τ(t)) − û2(t)) = 0,

where û2(t) := e
∫ t
t−τ (t) dm (s)ds

(K (t) − ṽ2(t)) is a positive ω-periodic function. Let
x = h(t) := t − τ(t). Then we have limx→∞(u2(x)− û2(h−1(x))) = 0 and x +ω =
t + ω − τ(t) = t + ω − τ(t + ω) = h(t + ω). It follows that û2(h−1(x + ω)) =
û2(t + ω) = û2(t) = û2(h−1(x)). Replacing x by t , we have

lim
t→∞(u2(t) − û2(h

−1(t))) = 0,

where û2(h−1(t)) is a positive ω-periodic function.
As a straightforward consequence of Theorem 1, we have the following result for

system (8).

Theorem 2 The following statements are valid for system (8):

(i) If r(P) ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0) is globally

asymptotically stable for system (8) in Ψ ;
(ii) If r(P) > 1, then system (8) admits a positive ω-periodic solution (ṽ1(t),

û2(h−1(t)), ṽ2(t)), which is globally asymptotically stable for system (8) in
Ψ \ ({0} × C([−τ(0), 0],R+) × {0}).

By the same arguments as in Lou and Zhao (2017, Lemma 3.8), we have r(P) =
r(P̂). Combining Lemma 1 and Theorem 2, we have the following result on the global
dynamics of system (8).

Theorem 3 The following statements are valid for system (8):
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(i) If R0 ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0) is globally asymp-

totically stable for system (8) in Ψ ;
(ii) If R0 > 1, then system (8) admits a positive ω-periodic solution (ṽ1(t),

û2(h−1(t)), ṽ2(t)), which is globally asymptotically stable for system (8) in
Ψ \({0} × C([−τ(0), 0],R+) × {0}).

In the rest of this section, we derive the dynamics for the variable Em(t) in system
(7). It is easy to see that

Em(t) =
∫ t

t−τ(t)
B(ξ, Ih(ξ), Sm(ξ))e− ∫ t

ξ dm (s)dsdξ. (20)

In the case where R0 ≤ 1, we have

lim
t→∞[(Ih(t), Sm(t)) − (0, S∗

m(t))] = 0.

It then follows from (20) that

lim
t→∞ Em(t) = 0.

In the case where R0 > 1, we have

lim
t→∞[(Ih(t), Sm(t)) − (ṽ1(t), û2(h

−1(t)))] = 0.

By using the integral form (20), we obtain

lim
t→∞

[

Em(t) −
∫ t

t−τ(t)
B(ξ, ṽ1(ξ), û2(h

−1(ξ)))e− ∫ t
ξ dm (s)dsdξ

]

= 0.

Moreover, it is easy to verify that

E∗
m(t) =

∫ t

t−τ(t)
B(ξ, ṽ1(ξ), û2(h

−1(ξ)))e− ∫ t
ξ dm (s)dsdξ

is a positive ω-periodic function. Consequently, we have the following result on the
global dynamics of system (7).

Theorem 4 The following statements are valid for system (7):

(i) If R0 ≤ 1, then the disease-free periodic solution (0, S∗
m(t), 0, 0) is globally

asymptotically stable;
(ii) If R0 > 1, then system (7) admits a unique positive ω-periodic solution (ṽ1(t),

û2(h−1(t)), E∗
m(t), ṽ2(t)), which is globally asymptotically stable for all nontriv-

ial solutions.
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4 A Case Study

In this section, we study the malaria transmission case in Maputo Province, Mozam-
bique. Mozambique is a malaria-endemic country in sub-Saharan Africa. The
topography and the climate ofMaputo Province are favorable formalaria transmission.
We will use the same values as those inWang and Zhao (2017) for all the constant and
periodic parameters except τ(t). The constant parameter values are listed in Table 2.
The values of p and l may vary from 0 to 1 and p ≥ l (see Chamchod and Britton
2011; Kesavan and Reddy 1985; Lacroix et al. 2005). In the following simulations,
we take p = 0.8 and l = 0.6.

The estimations for the periodic parameters β(t), dm(t) and μ(t) are given by

β(t) = 6.983 − 1.993 cos(π t/6) − 0.4247 cos(π t/3) − 0.128 cos(π t/2)

− 0.04095 cos(2π t/3) + 0.0005486 cos(5π t/6) − 1.459 sin(π t/6)

− 0.007642 sin(π t/3) − 0.0709 sin(π t/2) + 0.05452 sin(2π t/3)

− 0.06235 sin(5π t/6)Month−1,

dm(t) = 3.086 + 0.04788 cos(π t/6) + 0.01942 cos(π t/3) + 0.007133 cos(π t/2)

+ 0.0007665 cos(2π t/3) − 0.001459 cos(5π t/6) + 0.02655 sin(π t/6)

+ 0.01819 sin(π t/3) + 0.01135 sin(π t/2) + 0.005687 sin(2π t/3)

+ 0.003198 sin(5π t/6)Month−1,

and

μ(t) = k × β(t),

where k = 5 × 1205709.
According to Craig et al. (1999), the relationship between the EIP and the temper-

ature is given by

τ(T ) = 111

T − 16
,

Table 2 Constant parameter values

Parameter Value Dimension References

H 1,205,709 Dimensionless Wang and Zhao (2017)

dh 0.157% Month−1 Wang and Zhao (2017)

ρ 0.0187 Month−1 Chitnis et al. (2008)

c 0.011 Dimensionless Chitnis et al. (2008)

b 0.2 Dimensionless Chitnis et al. (2008)

p (0, 1) Dimensionless Chamchod and Britton (2011)

l (0, 1) Dimensionless Chamchod and Britton (2011)
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Table 3 Monthly mean temperature for Maputo Province (in ◦C)

Month Jul Aug Sep Oct Nov Dec

Temperature 19.19 20.77 22.23 23.66 24.57 26.08

Month Jan Feb Mar Apr May June

Temperature 26.75 26.65 26.22 24.61 21.94 19.77

Fig. 1 Fitted curve of EIP

where T is temperature in ◦C, 111 is the total degree days required for parasite devel-
opment, and 16 is the temperature at which the parasite development ceases. As in the
case study of Wang and Zhao (2017), we take July 1 as the starting point. By using the
monthly mean temperatures of Maputo Province (see Table 3, obtained from Climate
Change Knowledge Portal website: http://sdwebx.worldbank.org/climateportal), we
obtain the following approximation for the periodic time delay τ(t) in CFTOOL (see
Fig. 1):

τ(t) =1/30.4(17.25 + 8.369 cos(π t/6) + 4.806 sin(π t/6) + 3.27 cos(π t/3)

+ 2.857 sin(π t/3) + 1.197 cos(π t/2) + 1.963 sin(π t/2)

+ 0.03578 cos(2π t/3) + 1.035 sin(2π t/3) − 0.3505 cos(5π t/6)

+ 0.6354 sin(5π t/6) − 0.3257 cos(π t) + 0 sin(π t))Month.

To compute R0 numerically, we first write the operator L into the integral form of
Posny and Wang (2014) by using the similar method to that in Lou and Zhao (2017).
Since

F(t − s)ϕ =
(

a12(t − s)ϕ2(0)
a21(t − s)ϕ1(−τ(t − s))

)

,
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we have

[Lv](t) =
∫ ∞

0
Φ(t, t − s)F(t − s)v(t − s + ·)ds

=
∫ ∞

0

(
e− ∫ t

t−s a11(r)dr 0

0 e− ∫ t
t−s a22(r)dr

)(
a12(t − s)v2(t − s)

a21(t − s)v1(t−s−τ(t−s))

)

ds

=
( ∫ ∞

0 e− ∫ t
t−s a11(r)dr a12(t − s)v2(t − s)ds

∫ ∞
0 e− ∫ t

t−s a22(r)dr a21(t − s)v1(t − s − τ(t − s))ds

)

.

Let t − s − τ(t − s) = t − s1. Since the function y = h(x) = x − τ(x) is strictly
increasing, the inverse function x = h−1(y) exists. Solving t − s1 = h(t − s), we
obtain s = t − h−1(t − s1), ds1 = d(s + τ(t − s)) = (1 − τ ′(t − s))ds and ds =

1
1−τ ′(h−1(t−s1))

ds1. Therefore,

∫ ∞

0
e− ∫ t

t−s a22(r)dr a21(t − s)v1(t − s − τ(t − s))ds

=
∫ ∞

τ(t)

e
− ∫ t

h−1(t−s1)
a22(r)dr a21(h−1(t − s1))v1(t − s1)

1 − τ ′(h−1(t − s1))
ds1

=
∫ ∞

τ(t)

e
− ∫ t

h−1(t−s)
a22(r)dr a21(h−1(t − s))v1(t − s)

1 − τ ′(h−1(t − s))
ds.

Define

K21(t, s) =
⎧
⎨

⎩

0, s < τ(t),

e
− ∫ t

h−1(t−s)
a22(r)dr

a21(h−1(t−s))
1−τ ′(h−1(t−s))

, s ≥ τ(t),

and K12(t, s) = e− ∫ t
t−s a11(r)dr a12(t − s), K11(t, s) = K22(t, s) = 0. Then we can

rewrite

[Lv](t) =
∫ ∞

0
K (t, s)v(t − s)ds

=
∞∑

j=0

∫ ( j+1)ω

jω
K (t, s)v(t − s)ds

=
∞∑

j=0

∫ ω

0
K (t, jω + s)v(t − s − jω)ds

=
∫ ω

0
G(t, s)v(t − s)ds,

whereG(t, s) = ∑∞
j=0 K (t, jω+s). Consequently, we can use the numerical method

in Posny and Wang (2014) to compute R0. We set ω = 12 months. By using the
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Fig. 2 Long-term behavior of the solution of system (7) when R0 = 3.1471 > 1

obtained parameter values above, together with initial functions Ih(θ) = 337598,
Sm(θ) =2,712,343, Em(0) = 1000, Im(0) = 2000 for all θ ∈ [−τ̂ , 0], we get
R0 = 3.1471 > 1. In this case, the disease will persist and exhibit periodic fluctuation
eventually (see Fig. 2). By employing some malaria control measures such as using
insecticide-treated nets, spraying or clearance of mosquito breeding sites, if we can
decrease the biting rate to 0.7β(t), and increase themosquitomortality rate to 1.5dm(t),
then R0 = 0.6591 < 1. In this case, we observe that the infectious human population,
the exposed and the infectious mosquito populations tend to 0, which means that the
disease is eliminated from this area eventually (see Fig. 3). These numerical simulation
results consist with the analytic results in the previous section.

We define the time-averaged EIP duration as

[τ ] := 1

ω

∫ ω

0
τ(t)dt.

It follows that [τ ] = 17.2500/30.4 month. By using this time-averaged EIP duration
and keeping all the other parameter values the same as those in Fig. 2, we obtain
R0 = 1.8540, which is less than 3.1471 in Fig. 2. Figure 4 compares the long-term
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Fig. 3 Long-term behavior of the solution of system (7) when R0 = 0.6591 < 1

behaviors of the infectious compartments of model (7) under two different values of
the EIP durations: the periodic τ(t) and the constant [τ ]. Figure 4a indicates that the
use of the time-averaged EIP [τ ] may underestimate the number of infectious humans
inMaputo. In Fig. 4b, we see that the amplitude of the periodic fluctuation of infectious
mosquitoes is obviously smaller when [τ ] is used. In addition, the peak and the nadir
of the periodic fluctuation of Im are underestimated and overestimated, respectively.

5 Discussion

Malaria is strongly linked to climate conditions through the impact of climate on the
vector and the parasite ecology. Of all the environmental conditions, temperature plays
the most important role in malaria transmission. Both the mosquito Anopheles and the
parasite Plasmodium are extremely sensitive to temperature. In particular, the duration
of the EIP of Plasmodium is determined by temperature (see, e.g., Beck-Johnson et al.
2013; Ngarakana-Gwasira et al. 2014). An increasing number of malaria models have
incorporated the effects of temperature on mosquito life cycle. However, none of the
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Fig. 4 Comparison of the long-term behaviors of the infectious compartments of model (7) under two
different EIP durations (red curve: temperature-dependent EIP; blue curve: time-averaged EIP) (Color
figure online)

existing deterministic malaria models has taken into account the dependence of the
EIP on temperature.

In this paper, we developed a malaria transmission model that, for the first time,
incorporates a temperature-dependent EIP. The model is a system of delay differential
equations with a periodic time delay. By using the theory recently developed by Zhao
(2017), we derived the basic reproduction ratio R0. Incorporation of the periodic delay
increases challenges for theoretical analysis. Fortunately, the work by Lou and Zhao
(2017) throws light onmathematical analysis of delay differential systemwith periodic
delays. Following the theoretical approach in Lou and Zhao (2017), we defined a phase
space onwhich the limiting systemgenerates an eventually stronglymonotone periodic
semiflow. By employing the theory of monotone and subhomogeneous systems and
the theory of chain transitive sets, we established a threshold type result on the global
dynamics in terms of the basic reproduction ratio R0: if R0 < 1, then malaria will be
eliminated; if R0 > 1, then the disease will persist and exhibit seasonal fluctuation.

Using some published data from Maputo Province, Mozambique, and formula
related tomosquito life cycle, we obtained estimations for all the constant and periodic
parameters. We fitted the curve of the EIP for Maputo Province by appealing to the
Detinova prediction curve. With the algorithm proposed by Posny and Wang (2014),
we numerically calculated the basic reproduction ratio R0. The numerical simulation
about the long-term behavior of solutions is consistent with the obtained analytic
result. To compare our results with those for the constant EIP case, we also conducted
numerical simulations for the long-term behavior of infectious compartments by using
the time-averaged EIP. It turns out that the adoption of the time-averaged EIP may
underestimate both the number of infectious humans and the basic reproduction ratio.
Thus, the models incorporating the temperature-dependent EIP are more helpful for
the control of the malaria transmission.

In the present work, we only considered the extrinsic incubation period (EIP) in
mosquitoes. Indeed, the malaria parasites also undergo the intrinsic incubation period
(IIP) in human hosts, that is, the time elapsed between exposure to malaria parasites
and when symptoms and signs are first apparent. In most cases, the IIP varies from
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7 to 30 days. We may consider the EIP and the IIP simultaneously when developing
malaria models in future.

As proposed by Ai et al. (2012), most of the existing malaria models consider
only adult mosquitoes. In fact, there are four distinct development stages during a
mosquito’s lifetime: egg, larva, pupa, and adult. While only adult mosquitoes are
involved in malaria transmission, the dynamics of the first three aquatic stages have
great impact on themosquito population dynamics, and hence the disease transmission
dynamics (see Ai et al. 2012). It is worthwhile to develop a mosquito-stage-structured
malariamodelwith temperature-dependent incubationperiod.We leave this interesting
problem as a future work.

Acknowledgements We are very grateful to two anonymous referees for their careful reading and helpful
suggestions which led to an important improvement of our original manuscript.
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