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Abstract We show that when selection is extreme—the fittest strategy always repro-
duces or is imitated—the unequivalence between the possible evolutionary game
scenarios in finite and infinite populations resolves, in the sense that the three generic
outcomes—dominance, coexistence, and mutual exclusion—emerge in well-mixed
populations of any size. We consider the simplest setting of a 2-player-2-strategy
symmetric game and the two most common microscopic definitions of strategy
spreading—the frequency-dependentMoran process and the imitation process by pair-
wise comparison—both in the case allowing any intensity of selection. We show that
of the seven different invasion and fixation scenarios that are generically possible in
finite populations—fixation being more or less likely to occur and rapid compared
to the neutral game—the three that are possible in large populations are the same
three that occur for sufficiently strong selection: (1) invasion and fast fixation of one
strategy; (2) mutual invasion and slow fixation of one strategy; (3) no invasion and
no fixation. Moreover (and interestingly), in the limit of extreme selection 2 becomes
mutual invasion and no fixation, a case not possible for finite intensity of selection that
better corresponds to the deterministic case of coexistence. In the extreme selection
limit, we also derive the large population deterministic limit of the two considered
stochastic processes.
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1 Introduction

Evolutionary game theory (Maynard Smith and Price 1973; Taylor and Jonker 1978;
Maynard Smith 1982; Hofbauer and Sigmund 1998) is the standard approach to
describe the spreading of different strategies under frequency-dependent selection—
the fitness or reproductive output of a strategy depending on the type and frequency
of its competitors. In the deterministic limit of large and well-mixed populations, the
dynamics of the frequencies is described by the well-known replicator equation (Tay-
lor and Jonker 1978; Maynard Smith 1982; Hofbauer and Sigmund 1998). Games
are however played within finite groups, and this motivated the stochastic modeling
of games in finite populations (Nowak 2006), with the introduction of two common
microscopic mechanisms of strategy spreading: the frequency-dependent Moran pro-
cess (Nowak et al. 2004; Taylor et al. 2004) and the pairwise comparison of the
expected payoffs (Traulsen et al. 2005, 2006, 2007), i.e., spreading by reproduction
and imitation of the fittest, respectively.

Though both mechanisms lead to the standard (or adjusted) replicator dynamics
in the large population limit (Traulsen et al. 2005), the results for finite populations
turned out to be possibly very different from the corresponding deterministic limit.
For example, among two alternative strategies A and B, strategy A could dominate
B in medium-size populations, while B dominates A in the same game replicator
dynamics (Taylor et al. 2004). Moreover, competition scenarios that do not match
with any of the deterministic cases can occur within finite groups, e.g., scenarios of
mutual invasion in which one strategy has high chances to replace the other after
invasion.

To compare evolutionary game dynamics in finite and infinite populations, the
notions of invasion and replacement after invasion—fixation—have been consistently
defined for the stochastic processes describing the spreading of strategies in finite
populations (Nowak 2006). Specifically for two-strategy games (Taylor et al. 2004,
2006; Antal and Scheuring 2006), strategy A invades B if the transition probability
from 1 to 2 A-individuals is higher than that from 1 to 0, whereas fixation is defined
using the neutral game—the totally random game with equal expected payoffs for
A and B—as benchmark. That is, A is shortly said to fixate in a population of N
individuals if the chances to go from 1 to N A-strategists—the fixation probabil-
ity for A—are more compared to the N -individual neutral game. Moreover, fixation
is said to be fast or slow if the expected number of transitions to fixate—the fix-
ation time—is smaller or larger compared to the neutral game. Of course, by “A
invades B” and “A fixates” we do not mean that invasion and fixation necessar-
ily occur. We can only say that they are favored by selection, in the sense that the
chances to invade/fixate are more than in the absence of a selection mechanism.
Specifically for fixation, note that when the fixation of one strategy is favored by
selection, this is so compared to the neutral game, not against the other strategy.
According to this notation, selection could thus favor the fixation of both strate-
gies.

The above definitions of invasion and fixation induce a classification of 2-strategy
games in finite populations. Considering only the generic situations (i.e., neglecting
the game classes—some of which are interesting—that have zero measure in the set of
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Table 1 Classification of 2-strategy games in finite populations

Class Symbol Competition scenario

1A B→→⇒⇒⇒⇒A Invasion and fast fixation of one strategy

1B B←←⇐⇐⇐⇐A

2A B→←⇒⇒A Mutual invasion and slow fixation of one strategy

2B B→←⇐⇐A

3 B←→⇐⇐⇒⇒A No invasion and no (fast) fixation

4A B→→⇒⇒A Invasion and slow fixation of one strategy

4B B←←⇐⇐A

5A B→←⇒⇒⇒⇒A Mutual invasion and fast fixation of one strategy

5B B→←⇐⇐⇐⇐A

6 B→←⇒⇐A Mutual invasion and slow fixation of both strategies

7A B←→⇒⇒⇒⇒A No invasion and fast fixation of one strategy

7B B←→⇐⇐⇐⇐A

Notation: as in Antal and Scheuring (2006), A and B represent the monomorphic (absorbing) states with
i = N and i = 0 A-strategists, respectively. In the class symbol, B is written before A to have right/left
arrows correspond to increasing/decreasing i . The single and double arrows next to B/A indicate invasion
and fixation of strategy A/B; single/double arrow-tips indicate slow/fast fixation. For example, in class 1A,
the single arrows say that A invades B, and B does not invade A; the double arrows say that A quickly
fixates, and B does not fixate. Recall that “fixation/no fixation” (for one or both strategies) means that
fixation is in any case possible with a probability larger/smaller than in the neutral game. The speed of
fixation refers to the average number of transitions that lead to fixation (note that the distribution of the
fixation time around its mean is known to be broad (Ashcroft et al. 2015), so that the average is not always
informative). The fixation time is the same for A and B (Antal and Scheuring 2006; Taylor et al. 2006), so
the double arrows have in each class the same type of tip

all possible games), there are 12 qualitatively different types of games, summarized in
Table 1, depending on whether A/B invades B/A, A and B fixate or not, and fixation
is fast or slow. And the number of classes reduces to 7 if symmetric situations under
the interchange of A and B are grouped together. Evidently, not all combinations of
invasion and fixation are possible and this was shown by Taylor et al. (2004) (for the
invasion and fixation probabilities) and byAntal and Scheuring (2006) (for the fixation
time) for the Moran process with linear fitness. In the simplest setting of 2-player-2-
strategy symmetric games [as in Taylor et al. (2004) and Antal and Scheuring (2006)],
we show that the same classification holds for the Moran process with exponential
fitness and for the pairwise comparison process with exponential formulation of the
imitation probability—two models later introduced to allow any intensity of selection
(see, e.g., Traulsen et al. (2006, 2007, 2008), respectively).

Note that, among the seven generic cases, the first three qualitatively correspond to
the generic behaviors of the 2-strategy replicator equation—dominance, coexistence,
and mutual exclusion, respectively. And indeed any generic game falls into classes
1–3 when played within a sufficiently large group. This was also shown by Taylor
et al. (2004) and Antal and Scheuring (2006) for theMoran process with linear fitness,
and it is here extended to the Moran and pairwise comparison processes allowing any
intensity of selection.
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The main result of this paper is that the same three classes of games are the only
possiblewhen selection is sufficiently strong. This somehowunifies evolutionary game
dynamics infinite and infinite populations. The samegame (samepayoffs) can however
fall into different classes (among 1–3) if playedwithin a large groupwithmild selection
or within a small group with strong selection. Obviously, the classes come to coincide
if selection intensity is increased in the first case and population size in the second.

We also show that, in the limit of extreme selection, class 2 becomes “mutual
invasion and no (slow) fixation” (B→←⇐⇒A), since for both strategies the probability to
go extinct drops to zero in the limit. Indeed, when selection is extreme under mutual
invasion, both strategies always reproduce in theMoran process and are always copied
in the pairwise comparison when represented by one (or a few) individuals. Note that
this new case is not possible for finite intensity of selection but, interestingly, it better
corresponds to the deterministic case of coexistence than “mutual invasion and slow
fixation of one strategy.” In fact, in a case of coexistence, one would expect the fixation
of a strategy to be less likely to occur than in a totally random game. However, as long
as the intensity of selection is finite, this is not the case for one strategy, though fixation
becomes slower and slower while increasing the strength of selection and this allows
the longer and longer coexistence of the two strategies. As we show in Sect. 2.4, while
increasing the strength of selection, the fixation probability approaches one for the
strategy most represented at coexistence and vanishes for the other. However, both
probabilities drop to zero in the limit.

The paper is organized as follows. In Sects. 2.1 and 2.2 we review the two con-
sidered mechanisms of strategy spreading, and we formulate the results that show the
classification in Table 1 (proofs are reported in “Appendix”). In Sects. 2.3 and 2.4 we
refine the classification, respectively, showing that only games of classes 1–3 are gener-
ically possible in large populations and for strong selection. We also consider the limit
to extreme selection in Sect. 2.4 and derive the large-population-extreme selection
deterministic limit of the two considered stochastic processes. Then, in Sect. 2.5 we
numerically evaluate the trade-off between population size and intensity of selection
in ruling out classes 4–7. Our finding is further discussed and generalized in Sect. 3.

2 Methods

2.1 2-Player-2-Strategy Symmetric Games in Finite Populations

The game is played by two participants—the players—randomly selected from a
population of N individuals, i of which adopt strategy A, the remaining N−i adopting
strategy B. According to the payoff matrix

A B
A a b
B c d
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Fig. 1 The Markov chain governing the evolutionary dynamics (N > 3)

the expected payoffs for the A- and B-strategists are

πA,i = a(i − 1) + b(N − i)

N − 1
and πB,i = c i + d(N − i − 1)

N − 1
. (1)

The spreading of the two strategies is modeled as a random walk through the
states i = 0, 1, . . . , N of the Markov chain in Fig. 1. We consider the following two
mechanisms of strategy transmission from one individual to another.

– The frequency-dependent Moran process (Nowak et al. 2004; Taylor et al. 2004).
It is the birth–death process at each transition of which one individual is selected
for reproduction with probability proportional to its fitness and one individual is
randomly removed from the population. The fitness is a nonnegative measure of
individual performance in the underlying game. It can be simply taken equal to
the expected payoffs for games with nonnegative payoffs (Taylor et al. 2004) or,
more generally, increasing with the payoff (Wu et al. 2010). To discuss the role
of selection, the convex combination of a baseline fitness and the payoff has been
often used (Nowak et al. 2004), the weight of the combination measuring the
strength of selection. This formulation however limits the strength of selection to
1 [the case referred to as strong selection in Fudenberg et al. (2006)], and more
stringent upper bounds are imposed if payoffs are allowed to be negative (Traulsen
and Hauert 2009). To avoid this restriction and allow any strength of selection, we
use the exponential fitness formulation proposed in Traulsen et al. (2008)

f A,i = exp(sπA,i ) and fB,i = exp(sπB,i ), (2)

where s is hereafter called intensity of selection. Modulating s from 0 to ∞,
we describe processes from neutral drift (all individuals reproduce with equal
probability) to extreme selection (the best performing strategy always reproduces).
The transition probabilities of the Markov chain are

T+
i = i f A,i

i f A,i + (N− i) fB,i

N− i

N
and T−

i = (N− i) fB,i

i f A,i + (N− i) fB,i

i

N
. (3)

– The pairwise comparison process (PWC) (Traulsen et al. 2005, 2006, 2007). It
is an imitation process at each transition of which two individuals, focal and role,
are randomly selected (typically the same individual is allowed to be selected
twice) and the focal copies the strategy of the role with a probability pfocal,role,i
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that increases with the payoff difference. A linear increase on the top of a baseline
1
2 probability in case payoffs are equal was proposed (Traulsen et al. 2005), but
this model also sets an upper bound to the strength of selection measured by the
slope of probability increase. Consistently with Eq. (2), we use the exponential
formulation of the imitation probability used in Traulsen et al. (2006, 2007) (first
proposed in Blume (1993) and popularized by Szabó and Tőke (1998), based on
the Fermi function from statistical physics), i.e.,

pfocal,role,i = 1

1 + exp(−s(πrole,i − πfocal,i ))
, (4)

where s is the intensity of selection. Modulating s from 0 to ∞, we again go from
neutral drift ( 12 imitationprobability) to extreme selection (better/worse performing
role players are always/never imitated). The transition probabilities of the Markov
chain are

T+
i = i

N

N− i

N
pB,A,i and T−

i = i

N

N− i

N
pA,B,i . (5)

Note that according to both processes, the states i = 0 (all B) and i = N (all A)
are absorbing. Also note that both processes allow transitions increasing the presence
of the worse performing strategy [this is not possible in the pairwise comparison
process if the imitation probability is set to zero when the copy is not advantageous,
see, e.g., Hofbauer and Sigmund (1998)], though the probabilities of such transitions
vanish with the intensity of selection. Only if selection is extreme (s → ∞), the best
performing strategy monotonically spreads in the random walk. The process remains
however stochastic (also called semi-deterministic) due to the random death in the
Moran process and to the random selection of the focal and role players in the pairwise
comparison (see Altrock and Traulsen (2009), for a deterministic process).

As a further connection between the two processes, note that the imitation proba-
bility in (4) corresponds to

pfocal,role,i = frole,i
ffocal,i + frole,i

, (6)

where ffocal,i and frole,i are the exponential fitnesses of the focal and role strategies as in
theMoran process [seeEq. (2)]. This gives a fitness-based interpretation of the pairwise
comparison process, i.e., the role strategy is copied with a probability proportional to
the role’s performance compared to the focal’s one. Moreover, independently of the
choice of the fitness function, the definition (6) of the imitation probability tightly
links the resulting Moran and pairwise comparison processes, as they turn out to
have the same ratio of the transition probabilities from state i—a key quantity in the
analysis—i.e.,

T−
i

T+
i

=
{ fB,i

f A,i
= exp(−s�πi ) Moran

pA,B,i
pB,A,i

= fB,i
f A,i

PWC
(7)
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where

�πi = πA,i − πB,i = a(i − 1) + b(N − i) − c i − d(N − i − 1)

N − 1
(8)

hereafter denotes the difference between the expected payoffs for strategies A and B
at state i .

A Moran and a pairwise comparison process based on the same fitness then form a
special pair. The choice of the exponential fitness makes the pair even more special,
actually the only pair allowing any intensity of selection in which the imitation prob-
ability is function of the expected payoff difference between focal and role strategies
and for which property (7) holds true (Wu et al. 2015). Although our results are derived
for this very special pair of processes, we show in Sect. 3 that they can be generalized
to other pairs. The discussion will also show that the exponential formulation is the
most natural choice for discussing strong and extreme selection.

Finally, the exponential formulation allows us to scale the game payoffs. Adding
the same constant to all entries of the payoff matrix does not alter the transition prob-
abilities, whereas scaling the payoffs is equivalent to scale the intensity of selection.
We hence consider, with no loss of generality, the payoffs a, b, c, d in [0, 1]. We also
assume s > 0, i.e., that selection acts on payoffs, and N > 3, i.e., that states 1 and
N − 1 are distinct and separated by at least one intermediate state (see Fig. 1).

2.2 The Classification of Invasion and Fixation

We present in this section the classification of the evolutionary dynamics generated by
the two stochastic processes defined in Sect. 2.1. As anticipated in the Introduction,
the classification is based on invasion and fixation criteria, as introduced and shown
for the Moran process with linear fitness by Taylor et al. (2004) (invasion and fixation
probabilities) and by Antal and Scheuring (2006) (fixation time). The same classifica-
tion is here shown to hold for the Moran and pairwise comparison processes allowing
any intensity of selection (as defined in Sect. 2.1).

Strategy A invades B if T+
1 > T−

1 (T+
1 /T−

1 > 1), i.e., if the transition from i = 1
to i = 2 is more likely than the transition from i = 1 to i = 0 (see Fig. 1). This is
the case if the expected payoff for strategy A is higher than that for B at i = 1 [under
s > 0, see Eq. (7)], i.e., A invades B if

�π1 = πA,1 − πB,1 = b − c + d(N − 2)

N − 1
> 0 (9)

(from Eq. (1) with i = 1). Invasion does not necessarily occur, but selection favors it.
Strategy A fixates if the probability to go from i = 1 to i = N ,

PA
fix =

(
1 +

N−1∑
j=1

j∏
r=1

T−
r

T+
r

)−1
(10)

(Taylor et al. 2004), is larger than 1/N , the fixation probability in the neutral game
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a = b = c = d, T+
i = T−

i =
{ i(N−i)

N2 Moran

1
2
i(N−i)
N2 PWC

i = 1, . . . , N − 1. (11)

Again, fixation (all A) does not necessarily occur, but selection favors it. Fixation is
said to be fast/slow if the average fixation time, i.e., the expected number of transitions
from i = 1 to i = N (provided fixation does occur)

t Afix =
N−1∑
k=1

SB0,k−1S
B
k,N−1

T−
N−kq

B
k SB0,N−1

, SB
n,m =

m∑
l=n

qB
l , qB

l =
N−1∏

r=N−l

T+
r

T−
r

, qB
0 = 1 (12)

(Antal and Scheuring 2006), is smaller/larger than N (N − 1) (Moran) or 2N (N − 1)
(pairwise comparison), the average fixation time in the neutral case.

Vice versa, B invades A if T+
N−1 < T−

N−1 (T
+
N−1/T

−
N−1 < 1), i.e., if

�πN−1 = πA,N−1 − πB,N−1 = a(N − 2) + b

N − 1
− c < 0 (13)

(from Eq. (1) with N − 1 under s > 0), and fixates if the probability to go from
i = N − 1 to i = 0

PB
fix =

(
1 +

N−1∑
l=1

N−1∏
r=N−l

T+
r

T−
r

)−1
(14)

is larger than 1/N . The average fixation time for strategy B,

t Bfix =
N−1∑
i=1

SA
0,i−1S

A
i,N−1

T+
i q A

i SA
0,N−1

, SA
n,m =

m∑
j=n

q A
j , q A

j =
j∏

r=1

T−
r

T+
r

, q A
0 = 1, (15)

turns out to be the same as for A (Antal and Scheuring 2006; Taylor et al. 2006) and
is denoted by tfix in the following.

Note the expressions of the fixation probabilities and times. First, thanks to the
property (7), they take the same values for both the Moran and pairwise comparison
processes here considered (Wu et al. 2015). Second, note that we have intentionally
used different indexes to count the number of A-strategists (indexes i and j) and the
number of B-strategists (indexes k and l). Third, the fixation probability and time
for strategy B can be obtained from those for A by the interchange of A and B
(i.e., by considering the mirrored Markov chain in which T±

i are changed to T∓
N−i ).

In particular, while the quantity q A
j is the product of the first j ratios T−

r /T+
r (r =

1, . . . , j), qB
l is the product of the last l reversed ratios T+

r /T−
r (r = N−l, . . . , N−1).

Finally, note that by the definitions in (12) and (15), the fixation probabilities in (10)
and (14) can be expressed as PA

fix = 1/SA
0,N−1 and PB

fix = 1/SB
0,N−1.

The classification is hence based on five criteria: Does A invade? Does B invade?
Does A fixate? Does B fixate? Is fixation fast or slow? Out of the 32 different generic
combinations, the results below show that only 12 are possible, i.e., those in Table 1.
Here by “generic” combinations we mean those where none of the five criteria is
undetermined. The games for which, e.g., T+

1 = T−
1 (because �π1 = 0 or s = 0)
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or PA
fix = 1/N , are exceptional in the set of all possible 2-strategy games. They are

“non-generic” (or “degenerate”)—though not necessarily of little interest—and will
not be considered.

Theorem 1 If A/B invades and B/A does not, then A/B fixates and B/A does not.

Theorem 2 If neither A nor B fixate, then neither A nor B invade.

Theorem 3 If A and B both fixate, then A and B both invade.

Conjecture 1 If neither A nor B invade, then fixation is fast.

Conjecture 2 If A and B both fixate, then fixation is slow.

Theorems 1–3 are proved in “Appendix”. The proofs (for the Moran and pairwise
comparison processes allowing any intensity of selection) retrace (and actually sim-
plify) Theorems 2–4 in Taylor et al. (2004) for the Moran process with linear fitness.
According to the notation in Table 1 (that we use hereafter), Theorem 1 considers the
cases in which the single arrows point in the same direction and excludes the 12 cases
(6 with slow and 6 with fast fixation) with one or both double arrows discordant with
the single ones. Theorem 2 further excludes the two cases (1 slow, 1 fast) with mutual
invasion and no fixation. Theorem 3 further excludes the two cases (1 slow, 1 fast)
with no invasion and fixation of both strategies.

Conjectures 1 and 2 hold true if the population and/or the intensity of selection are
large enough (as shown in Sects. 2.3 and 2.4). For any population size and selection
strength, they are numerically verified in Sect. 2.5 with a Monte Carlo approach,
analogously to what done by Antal and Scheuring (2006) for the Moran process with
linear fitness. Conjecture 1 excludes three more cases, those with no invasion and slow
fixation of at most one strategy (the case with no invasion and slow fixation of both
strategies is already ruled out by Theorem 3). Finally, Conjecture 2 excludes one last
case, that with necessarily mutual invasion (due to Theorem 3) and fast fixation of
both strategies.

The remaining 12 competition scenarios are listed in Table 1 and are all generically
possible, as confirmed by the numerical experiments in Sect. 2.5. Grouping together
the situations that are symmetric under the interchange of strategies (e.g., cases 1A and
1B), there are only 7 generic scenarios, the first three being the only possible in large
populations and/or when selection is sufficiently strong (respectively, see Sects. 2.3
and 2.4). Also note that scenarios 1 and 4 and scenarios 2 and 5 only differ in the speed
of fixation.

2.3 The Case of Large Populations

In the deterministic limit of an infinite population, following Traulsen et al. (2005) and
setting x = i/N and T±(x) = limN→∞ T±

i |i=xN , x converges to the frequency of A-
strategists and the evolutionary dynamics ruled by theMoran and pairwise comparison
processes (with arbitrary but fixed intensity of selection) converge to
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ẋ = T+(x) − T−(x) (16)

in the time scale dt = 1/N .
Defining the expected payoffs of strategies A and B at frequency x

πA(x) = lim
N→∞ πA,i |i=xN = ax + b(1 − x), (17a)

πB(x) = lim
N→∞ πB,i |i=xN = cx + d(1 − x), (17b)

the payoff difference

�π(x) = πA(x) − πB(x) = lim
N→∞ �πi |i=xN = (b − d)(1 − x) + (a − c)x, (18)

the fitness

f A(x) = lim
N→∞ f A,i |i=xN = exp(sπA(x)), (19a)

fB(x) = lim
N→∞ fB,i |i=xN = exp(sπB(x)), (19b)

and using the fitness-based imitation probability (6) and the transition probabilities in
Eqs. (3) and (5), then Eq. (16) becomes

ẋ =
⎧⎨
⎩
x(1 − x)

f A(x) − fB(x)

〈 f (x)〉 = x
fA(x) − 〈 f (x)〉

〈 f (x)〉 Moran

x(1 − x)
f A(x) − fB(x)

f A(x) + fB(x)
= x

fA(x) − 〈 f (x)〉
f A(x) + fB(x)

PWC
(20)

i.e., the (adjusted) replicator dynamics (Maynard Smith 1982), where 〈 f (x)〉 =
x fA(x) + (1 − x) fB(x) is the average fitness in the population.

The classification of the competition scenarios is reported in Table 2 and is—as it
is well known—determined by the payoff differences b − d and a − c, the expected
payoffs difference πA(x) − πB(x) at the absorbing states x = 0 and at x = 1 [see
Eq. (17)]. Positive b−d and negative a−c determine A and B invasion, respectively, as
indicated by single arrows in Table 2. In the case of dominance, the dominant strategy
increases in frequency up to fixation, whereas a stable intermediate frequency

x∗ = (b − d)/(b − d − a + c) (21)

characterizes coexistence, and x∗ is an unstable equilibrium separating the initial con-
ditions leading to x = 0 and x = 1 in the case of mutual exclusion.

In large but finite populations, the classification similarly reduces to three scenarios
and is reported in Table 3 (fixation probabilities and time are indicated in the limit of
large N ). The deterministic dominance corresponds to invasion and fast fixation of the
dominant strategy (scenario 1). Note that the dominant strategy has a finite probability
of fixation, while the chances to fixate exponentially vanish for the dominated strategy
(to be compared with a vanishing 1/N fixation probability in the neutral game), and
that fixation is fast (the fixation time grows as N log N compared to N (N − 1) in the
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Table 2 Classification of 2-player-2-strategy symmetric games in infinite populations

Class Symbol Conditions Competition scenario

1A B→→A b − d > 0, a − c > 0 Dominance

1B B←←A b − d < 0, a − c < 0

2 B→←A b − d > 0, a − c < 0 Coexistence

3 B←→A b − d < 0, a − c > 0 Mutual exclusion

Table 3 Classification of 2-player-2-strategy symmetric games in large populations

Class Symbol Conditions PA
fix PB

fix tfix

1A B→→⇒⇒⇒⇒A b − d > 0, a − c > 0 ≈1− exp(−s(b − d)) ≈ 1/ expN ≈N logN

1B B←←⇐⇐⇐⇐A b − d < 0, a − c < 0 ≈ 1/ expN ≈1− exp(s(a − c)) ≈N logN

2A B→←⇒⇒A b − d > 0, a − c < 0, b − d + a − c > 0 ≈1− exp(−s(b − d)) ≈ 1/ expN ≈expN

2B B→←⇐⇐A b − d > 0, a − c < 0, b − d + a − c < 0 ≈ 1/ expN ≈1− exp(s(a − c)) ≈expN

3 B←→⇐⇐⇒⇒A b − d < 0, a − c > 0 ≈ 1/ expN ≈ 1/ expN ≈N logN

neutral game). Similarly, mutual exclusion corresponds to no invasion and no (fast)
fixation (scenario 3). The deterministic–stochastic correspondence is however less
evident in the case of mutual invasion. When A and B both invade (b − d > 0 and
a − c < 0), the strategy with stronger invasion (i.e., the strategy for which invasion
is more likely, A/B if b − d + a − c ≷ 0) has a finite fixation probability and
fixation becomes almost guaranteed if the intensity of selection is large. The fixation
time however exponentially diverges, so that fixation becomes extremely slow while
approaching the deterministic limit.

In the deterministic coexistence, the equilibrium frequency (21) is closer to fixation
for the stronger invading strategy and this translates into a high fixation probability in
large but finite populations. Fixation is however extremely slow, so the evolutionary
dynamics essentially fluctuate around the equilibrium frequency. This is well known
and not surprising. What is remarkable is that the fixation of the stronger invading
strategy is extremely more likely than in the neutral game, irrespectively of the fact
that the other strategy is also invading. In other words, deterministic coexistencewould
suggest, at first sight, that no fixation is possible, although mutual invasion with no
fixation cannot occur in finite populations by Theorem 2.

Summarizing, the classification in Table 3 works if the population is sufficiently
large, though how large is game-dependent. We can therefore state the following,

Theorem 4 For each generic game (a, b, c, d) there is a population size N∞ such
that the game classification is as in Table 3 for any N > N∞

that is shown in Antal and Scheuring (2006) for the Moran process with linear fitness.
On the same lines, we prove it in “Appendix” for the Moran and pairwise comparison
processes allowing any intensity of selection.
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Table 4 Classification of 2-player-2-strategy symmetric games for strong selection

Class Symbol Conditions PA
fix PB

fix tfix Moran, PWC

1A B→→⇒⇒⇒⇒A Δπ1> 0, ΔπN−1> 0 1 ≈1/exp s < N(N − 1), 2N(N − 1)

1B B←←⇐⇐⇐⇐A Δπ1< 0, ΔπN−1< 0 ≈1/exp s 1 < N(N − 1), 2N(N − 1)

2A B→←⇒⇒A Δπ1> 0, ΔπN−1< 0, Δπ1+ΔπN−1> 0 1 ≈1/exp s ≈ exp s

2B B→←⇐⇐A Δπ1> 0, ΔπN−1< 0, Δπ1+ΔπN−1< 0 ≈1/exp s 1 ≈ exp s

3 B←→⇐⇐⇒⇒A Δπ1< 0, ΔπN−1> 0 ≈1/exp s ≈1/exp s < N(N − 1), 2N(N − 1)

2.4 The Cases of Strong and Extreme Selection

For sufficiently high intensity of selection and any population size, we show that the
game classification is fully analogous to the case of large populations. Indeed, noting
that the payoff differences �π1 and �πN−1, ruling strategy invasion, respectively,
play the roles of b − d and a − c in Table 3 [and indeed converge to b − d and a − c
in the large population limit, see Eqs. (9) and (13)], we show (in “Appendix”) the
following

Theorem 5 For each generic game (a, b, c, d) there is an intensity of selection s∞
such that the game classification is as in Table 4 for any s > s∞.

Tables 3 and 4 are fully analogous. If one strategy invades and the other does not,
the invading strategy quickly fixates (scenario 1). When both strategies invade, the
one favored by selection (A/B if �π1 + �πN−1 ≷ 0) slowly fixates (scenario 2). If
no one invades, then no one (quickly) fixates (scenario 3).

In Table 4 the fixation probabilities and time are indicated in the limit of large s.
Moreover, the sign of the conditions can change with N for a given game, so the
classification is N -dependent. As observed for large populations in the case of mutual
invasion (scenario 2), the equilibrium frequency—represented for finite N by the i
that minimizes |�πi |—is closer to fixation for the stronger invading strategy (A/B
if �π1 + �πN−1 ≷ 0) and this translates into guaranteed fixation for the strategy,
though the required time exponentially diverges with the intensity of selection. Note
that, by the linearity of the payoff differences �πi w.r.t. i , the quantity �π1 +�πN−1
is sign equivalent to the sum of �πi over all transient states (i = 1, . . . , N − 1) of the
Markov chain. Stronger invasion thus also means that the strategy better performs, on
average, over the possible compositions of the population.

We now address the case of extreme selection, in which the fittest strategy certainly
reproduces in the Moran process and is certainly imitated in the pairwise comparison
(technically it is the case with s at ∞). The transition probabilities become

T+
i =

{ N−i
N Moran
i
N

N−i
N PWC

if πA,i >πB,i and T−
i =

{ i
N Moran
i
N

N−i
N PWC

if πA,i <πB,i

(22)
0 otherwise, i = 1, . . . , N − 1, so that it is impossible to step from i to i − 1 if
πA,i >πB,i and to i + 1 if πA,i <πB,i .
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Table 5 Classification of 2-player-2-strategy symmetric games for extreme selection

Class Symbol Conditions PA
fix PB

fix tfix Moran, PWC

1A B→→⇒⇒⇒⇒A Δπ1> 0, ΔπN−1> 0 1 0 < N(N − 1), 2N(N − 1)

1B B←←⇐⇐⇐⇐A Δπ1< 0, ΔπN−1< 0 0 1 < N(N − 1), 2N(N − 1)

2 B→←⇐⇒A Δπ1> 0, ΔπN−1< 0 0 0 –

3 B←→⇐⇐⇒⇒A Δπ1< 0, ΔπN−1> 0 0 0 –

Consequently, the game classification results as in Table 5, where scenario 2 is
indeed the coexistence scenario forbidden for finite populations and finite intensity
of selection. This is not in contrast with Theorem 2, as the fixation probabilities are
computed in Eqs. (10) and (14) assuming nonzero transition probabilities (Taylor et al.
2004). Increasing the selection intensity in scenario 2, some of the probability ratios
in Eqs. (10) and (14) diverge and some others vanish, while their product behaves in
accordance to Tables 3 and 4. For extreme selection, the products in Eqs. (10) and (14)
are undefined and the Markov chain cannot step from state 1 to 0 and from state N −1
to N , so that both fixation probabilities are zero (the fixation time is then undefined,
because averaged by definition on the dynamics leading to fixation; similarly, the
fixation time is undefined in scenario 3).

Finally,wederive the large-population-extreme selection limit of the twoconsidered
stochastic processes. From Eqs. (19) and (20), it immediately follows that when s is
at ∞, the deterministic limit becomes

ẋ =
{
1 − x, −x

if �π(x) ≷ 0 for x ∈ (0, 1)
Moran

x(1 − x), −x(1 − x) PWC
(23)

ẋ = 0 otherwise. The corresponding evolutionary dynamics in scenarios (1A, 2, and
3) in Table 5 is pictured in Fig. 2. In both processes, the evolutionary rate ẋ van-
ishes while approaching the stable pure equilibria (filled dots at x = 0 and at x = 1
in Fig. 2), i.e., evolution slows down while reaching fixation. Indeed, the disappear-
ing strategy has less and less chances to be selected for death in the Moran process
and as focal in the pairwise comparison. In contrast, ẋ is discontinuous at the inter-
nal equilibrium x∗ (see (21)), where it jumps from positive to negative values. The
convergence/departure to/from stable/unstable internal equilibria thus occur at nonva-
nishing speed. Invasion, i.e., the departure from unstable pure equilibria, also occurs
at nonzero speed in the Moran process (top panels), as the death of the resident strate-
gist is guaranteed, whereas invasion gradually develops in the pairwise comparison
(bottom panels) because limited by the selection of the invading strategist as role.

2.5 The (N, s)-Trade-off

The analysis in the two previous sections (summarized in Theorems 4 and 5 and
Tables 3 and 4) shows that when either the population is sufficiently large or selection
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Fig. 2 The evolutionary dynamics (23) in scenarios 1A (left), 2 (middle), and3 (right) inTable 5.Top/bottom
panels: Moran/PWC. Filled/empty dots: stable/unstable equilibria

is sufficiently strong, only the competition scenarios 1–3, out of the 7 scenarios in
Table 1, are possible in the Moran and pairwise comparison processes allowing any
intensity of selection. How large N and s should be is however game-dependent. To
estimate the (N , s) combinations for which the fraction of games showing scenarios
4–7 drops under a prescribed threshold, we have analyzed 105 randomly extracted
games [independently uniformlydistributedpayoffs in [0, 1], as inAntal andScheuring
(2006) and Han et al. (2012)] for (N , s) ranging from N = 4 and s = 10−2 up to
N = 105 and s = 104 (logarithmically spaced, 41 × 61 values). Recall that N ≥ 3 is
required to independently discuss the invasion of strategies A and B, whereas N > 3
assures that fixation is fast in scenario 3 for sufficiently strong selection (see the proof
of Theorem 5 in “Appendix” for more details).

The result is shown in Fig. 3, left and right panels for the Moran and pairwise
comparison processes, respectively, where the gray-scale represents the fraction of
games resulting in scenarios 4–7 for each considered pair (N , s) (from black, fraction
= 1, to white, fraction = 0). The fraction similarly vanishes in the main panels with
both N and s and drops under 10−3 in the considered (N , s) ranges. The fractions of the
four scenarios are separately plotted in the minor panels (4–7) and interestingly show
a few facts.While scenarios 4 (“invasion and slow fixation of one strategy”) is possible
in small populations subject to weak selection and gradually disappear for increasing
N and s, scenarios 5–7 persist to larger N and s (scenarios 5 and 7 in particular). And
while 6 and 7 (“mutual invasion and slow fixation of both strategies” and “no invasion
and fast fixation of one strategy”), perhaps the twomost surprising, aremost significant
under weak selection (and intermediate population size), scenario 5 (“mutual invasion
and fast fixation of one strategy”) requires an interchangeable mix of population size
and selection. Moreover, while performing the analysis, we have checked that all the 7
scenarios (actually 12 scenarios counting symmetries) in Table 1 do occur generically
(i.e., with non vanishing fraction for sufficiently small (N , s)), and that Conjectures 1
and 2 are never violated.
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Fig. 3 Fraction of the competition scenarios 4–7 in Table 1 in 105random games (independently uniformly
distributed payoffs a, b, c, d in [0, 1]), each analyzed on a grid of (logarithmically spaced) 41×61 pairs
(N , s). Left/right: Moran/PWC process. Panels 4–7 separately refer to scenarios 4–7. The contour-lines in
each panel correspond to fractions 10−1, 10−2, and 10−3

The figure does not show how the fractions of scenarios 4–7 is distributed over
scenarios 1–3 while increasing N and s. When N is increased at constant s, this
is known for the Moran process with linear fitness (Taylor et al. 2004; Antal and
Scheuring 2006) and results are similar for the two processes here considered. When
s is increased at constant N , the invasion scenario [that is N -dependent, recall the
payoff differences �π1 and �πN−1 in Eqs. (9) and (13)] does not change, so that
scenarios 4A and 4B turn into 1A and 1B, scenarios 5A and 5B turn into 2A and 2B,
scenario 6 becomes 2A or 2B depending on the sign of �π1 + �πN−1 (that is also
N -dependent), while scenarios 7A and 7B turn into 3.

Figure 3 shows that, while s = 104 is sufficient to rule out scenarios 4–7, the same
cannot be said for N = 105, as a significant fraction of games end up in scenarios
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Fig. 4 Change of competition scenario for increasing N for two critical games with small |b − d| played
under weak (bottom) and strong (top) selection

5 and 7 for large N and mild selection. Some games require a larger population to
adhere to the classification in Table 3. In particular, games characterized by small
|b − d| or |a − c| (recall that our classification only considers generic games, i.e.,
games for which none of the classification criteria is undetermined; indeed none of the
105 extracted games have b = d or a = c). For example, if b− d = ε > 0 and c > d,
then �π1 is positive for sufficiently large N (recall that limN→∞ �π1 = b − d), but
it is negative for N < (c− d)/ε + 1 [easy to check from Eq. (9)], a threshold that can
be arbitrarily large for sufficiently small ε. Vice versa, if b− d = −ε and c < d, then
�π1 is negative for sufficiently large N , though positive for N < (d − c)/ε + 1. And
similarly for the effect of a small |a − c| on �πN−1 [see Eq. (13)].

Figure 4 shows how the competition scenario changes for increasing N in the
two above critical cases, the first (left) with b − d = ε, c > d, a = 0 (B domi-
nance/coexistence at low/high N ), the second (right) with b − d = −ε, c = 0, a > 0
(A dominance/mutual exclusion at low/high N ). Note that even when selection is very
strong (top part of the figure), scenarios 5 and 7 appear while increasing N before the
asymptotic scenario for large N shows up. Thismeans that there are critical games that,
when played in intermediate sized populations, require arbitrarily strong selection to
show the asymptotic scenario for large s. Indeed, regardless of how strong selection
is, fixing N in the range in which the resulting scenario is 5/7 in Fig. 4, left/right, then
a higher intensity of selection is required to reach the asymptotic scenario for large s.
In other words, even if we basically see white in the top part of all panels in Fig. 3,
scenarios 5 and 7 might occur for any s, though the fraction of these critical games
vanishes with both s and N .

Computationally, determining the fixation time for large N is the most expensive
operation and the analysis of a single game for a single pair (N , s) takes memory
and time proportionally to N . In particular, determining the fixation time is more
demanding when fixation is fast, because all elements in the sum defining t Afix or
t Bfix [see Eqs. (12) and (15)] must be computed to check the sum to be smaller than
the fixation time in the neutral game. To save computational time, we have used the
following heuristic: for each considered value of s, if the competition scenario for
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N > 103 is 1 or 3 (i.e., a fast asymptotic scenario for large N ) and fixation results fast
for 5 consecutive values of N (and same s) in our grid, we then assume fast fixation
for larger N and avoid the computation of the fixation time, provided the directions of
the invasion and fixation arrows do not change. So doing, the most demanding games
are of asymptotic scenario 2 for large N (“mutual invasion and slow fixation of one
strategy”), in which however fixation remains fast up to large N (Fig. 4, left). Vice
versa, games in which fixation is asymptotically fast for large N (asymptotic scenarios
1 or 3, see, e.g., Fig. 4, right) are less demanding, because either fixation becomes fast
at intermediate N and our heuristic applies, or fixation remains slow up to large N .

For example, the most demanding game in Fig. 3 turned out to be a = 0.4857,
b = 0.1746, c = 0.6908, d = 0.1745, indeed of the type with b − d = ε = 10−4

and c > d (Fig. 4, left). To be analyzed over all 41 × 61 considered (N , s)-pairs, it
required 47602 s. of CPU time, with worst case of 361 s. for (N , s) = (105, 10−2)

(using an optimized compiled MATLAB script on a dedicated core of a CPU Intel
Xenon E5-2650@2GHz under linux Ubuntu 14.04). On average, each game required
(over all (N , s)-pairs) 645 s. of CPU time, i.e., a total computational time of about
2 years of CPU time for producing Fig. 3 (about one month of physical time on our
32-core machine).

3 Discussion

We have considered the simplest setting of a 2-player-2-strategy symmetric game in
finite populations, equipped with the two most common microscopic models of strat-
egy spreading allowing any intensity of selection—the frequency-dependent Moran
process and the pairwise comparison process both based on the exponential fitness
(see (Traulsen et al. 2006, 2007, 2008), respectively). In line with the literature on
evolutionary games in finite populations (Nowak et al. 2004; Taylor et al. 2004, 2006;
Nowak 2006; Antal and Scheuring 2006), the stochastic evolution of a strategy is char-
acterized by its chances of invasion—whether initial spreading from a single strategist
is more or less likely than extinction—by its chances of fixation—the probability to
take over the whole population starting from a single strategist—and by the expected
fixation time—the average number of transitions to fixate. Specifically, fixation is
defined using the neutral game with equal expected payoffs for both strategies as
benchmark. A strategy is shortly said to fixate if the fixation probability is higher than
in the neutral game and fixation is said to be fast or slow if the average fixation time
is smaller or larger compared to the neutral game.

Our main contribution is showing that when selection is sufficiently strong, out
of the seven invasion and fixation scenarios that are generically possible (reported
in Table 1), only three can occur and are the same three that are possible in large
populations: (1) invasion and fast fixation of one strategy; (2) mutual invasion and
slow fixation of one strategy; (3) no invasion and no (fast) fixation. This somehow
unifies evolutionary game dynamics in finite and infinite populations, though the same
game (same payoff matrix) can still fall into different classes (among 1–3) if played
within a large group with mild selection or within a small group with strong selection.
This is essentially due to the fact that the invasion scenario can change for increasing
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population size, while it is independent of selection intensity. Hence, for a given game,
the limiting classes for large population and extreme selection can differ, though they
coincide if selection intensity is large enough in the first limit and population size in
the second. The result is therefore independent of the order in which the two limits
are taken (compare Tables 3 and 4 and recall that the conditions in Table 4 coincide
with those in Table 3 for large N ), contrary to what found for the opposite extreme of
weak selection (Sample and Allen 2016).

Another interesting contribution comes from the limit to extreme selection, inwhich
the coexistence scenario 2 becomes mutual invasion with no chances for fixation, a
case not possible (by Theorem 2) for finite intensity of selection that better corre-
sponds to the deterministic case of coexistence. Indeed, under mutual invasion and
strong but finite selection, fixation is eventually guaranteed for the stronger invading
strategy—that is also the more frequent strategy at coexistence and the one that better
performs, on average, over the possible compositions of the population—while it is
unreachable for the other strategy. The fixation time, however, exponentially diverges
with the intensity of selection (see Table 4). The two strategies coexist for a long
time by fluctuating around an intermediate frequency—at which the expected pay-
offs essentially balance—before the better performing strategy takes over the whole
population. Discussing fixation for coexistence games in the strong selection limit
has hence limited practical interest, though theoretically it is part of the game clas-
sification. As long as the intensity of selection is finite, coexistence games show an
apparent contradiction, as fixation might seemmore likely while moving at random in
the neutral game than while competing against an invading strategy. When selection is
extreme, this becomes indeed the case, as the fixation probabilities for both strategies
drop to zero (see Table 5).

We give three other (minor) contributions. First, we have shown that the game
classification in Table 1, originally proposed and shown for the Moran process with
linear fitness (Taylor et al. 2004; Antal and Scheuring 2006), works as well for the
Moran and pairwise comparison processes allowing any intensity of selection. To
keep the classification compact, we have focused only on generic games, i.e., games
for which none of the classification criteria is undetermined (because the equal sign
holds true instead of the inequality). Non-generic cases are exceptional in the set of all
possible games, but not necessarily of little interest, e.g., the theoretically important
neutral game.

Second, we have shown how the classification simplifies to the three competition
scenarios 1–3 in large populations, again analogously to what shown for the Moran
process with linear fitness (Taylor et al. 2004; Antal and Scheuring 2006).

Third, in the extreme selection limit, we have derived the large population deter-
ministic limit, showing that for both the Moran and pairwise comparison processes
the replicator dynamics become discontinuous at intermediate equilibria.

We have also numerically estimated the intensity of selection s and the population
size N required to rule out the competition scenarios 4–7, by means of a Monte Carlo
analysis of 105 games (payoff matrices) each on a grid of 41×61 (N , s) pairs. Scaling
the game payoffs in [0, 1], it turned out that s = 104 makes the fraction of games
in scenarios 4–7 drop below 10−3 for all N , whereas N = 105 leaves a small but
significant fraction of such games forweak andmild selection.More specifically,while
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scenario 4 (“mutual invasion and fast fixation of one strategy”) is gradually replaced
by its fast counterpart for increasing s and N , scenarios 5 and 7 (“mutual invasion and
fast fixation of one strategy” and “no invasion and fast fixation of one strategy”) are
possible under arbitrarily strong selection in arbitrarily large populations, whereas the
weird scenario 6 (in which both strategies invade and fixate) is most significant under
weak selection and intermediate population size.

The analysis for populations larger than N = 105 is computationally too expen-
sive and is not presented. Our focus is on strong selection, and our analysis shows
that in small-medium groups (10–1000 individuals) selection needs to be very strong
(s ≈ 104) to rule out scenarios 5 and 7. Thus, though theoretically not possible for suf-
ficiently strong and extreme selection, these scenarios do play a role in many practical
applications.

Although derived for a special pair of processes of strategy spreading—the Moran
and pairwise comparison processes based on the exponential fitness—that share the
same fixation probabilities (Wu et al. 2015), our results can be generalized to other
functional forms for the fitness in the Moran process and for the imitation probability
in the pairwise comparison. Theorems 1–3—on which the classification in Table 1
is essentially based—and Theorem 4—addressing the large population limit—can be
generalized to any increasing fitness function and to any imitation probability that
increases with the expected payoff gain. The proofs would essentially retrace those in
Taylor et al. (2004) and inAntal andScheuring (2006) for theMoranprocesswith linear
fitness. The only relevant change would be the condition in Table 3 that discriminates
who is fixing in a coexistence game in large populations. With the exponential fitness,
this condition turns out to be very simple and interpretable—themore frequent strategy
at coexistence—whereas a more complex expression was, for example, obtained for
the linear fitness (Antal and Scheuring 2006). In general, products of fitness ratios
would be involved for a generically increasing fitness.

To generalize Theorem 5, we need an extra assumption. Indeed, to discuss any
intensity of selection, we need the better performing strategy to reproduce or be copied
with a probability that increases with the strength of selection, and that reaches one
when selection is extreme. This translates into the following limiting property for the
ratio of the transition probabilities from state i , lim

s→∞ T−
i /T+

i = 0 if �πi > 0 (and

consequently the limit diverges to ∞ if �πi < 0). The property requires, for the
Moran process, a fitness function that grows faster than any polynomial, then making
the exponential function the most natural choice, though mathematically there are
other options. What would change by considering other options is again the condition
discriminating who is fixing in a coexistence game. With the exponential fitness, this
condition in Table 4 is fully analogous to that in Table 3, whereas more complex
and less interpretable expressions would be obtained with other functional forms. It
is therefore possible that the same game, played with the same population size and
selection intensity, is differently classified by two different fitness formulations in the
Moran process or twodifferent imitation probabilities in the pairwise comparison.How
the classification changes for increasing N and s—our main contribution—remains
however a general result.
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Strong and extreme selection were previously considered by other authors, though
the analysis of the game classification remained unexplored even in the simple settings
of 2-player-2-strategy symmetric games. Altrock and Traulsen (2009) proposed a
modified Moran process in which selection acts on both reproduction and death, thus
obtaining, in the limit of extreme selection, a deterministic evolutionary dynamics in
finite populations.With respect to their results,we have shown that a fully deterministic
dynamics in finite populations is not necessary for matching the competition scenarios
1–3 in finite and infinite populations. Our two semi-deterministic processes (Moran
and pairwise comparison) are enough.

Antal et al. (2009) and Wu et al. (2013) also considered the pairwise comparison
process under any intensity of selection, both focusing on the relative abundance of two
(or more) strategies in terms of the stationary distribution of the lumpedMarkov chain
between the pure states, with transition triggered by mutations. Surprisingly, while
the ranking of strategy abundances is not affected by the functional form used for
the imitation probability in 2-player-2-strategy games (Antal et al. 2009), differences
are often observed for games with either more strategies or more players (Wu et al.
2013). These results are however not directly comparable with the game classification
here discussed, where mutations are not considered and coexistence games prevent
the discussion of the lumped transitions between pure states. Our intuition is that our
main result—the invasion and fixation scenarios that are possible for strong selection
are the same observed in large populations—remains valid also for games with more
players and/or strategies, independently of the specific choice of the functional forms
of the mechanism of strategy spreading. Checking this intuition is however left for
further research.
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Appendix: Proofs of Theorems 1–5

Before provingTheorems1–5,we recall, for the reader’s convenience, a fewdefinitions
used throughout the proofs.

– The difference between the expected payoffs for strategies A and B at state i

�πi = πA,i − πB,i = �π1(N − 1 − i) + �πN−1(i − 1)

N − 2
, (24a)

i = 1, . . . , N − 1, here rewritten from Eq. (8) in terms of

�π1 = b − c + d(N − 2)

N − 1
and �πN−1 = a(N − 2) + b

N − 1
− c (24b)

ruling strategy invasion.
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– The sum of all, the first j , and the last l expected payoff differences

�π1,N−1 =
N−1∑
i=1

�πi = 1
2 (b − d + a − c)(N − 1) + 1

2 (b + d − a − c),

(25a)

�π1, j =
j∑

i=1
�πi = j

2
(−b+d+a−c) j+2(b−d)(N−1)+(b+d−a−c)

N−1 , (25b)

�πN−l,N−1 =
N−1∑

i=N−l
�πi = l

2
(b−d−a+c)l+2(a−c)(N−1)+(b+d−a−c)

N−1 . (25c)

– The fixation probabilities PA
fix = 1/SA

0,N−1 and PB
fix = 1/SB

0,N−1 for strategies A
and B, where

SA
0,N−1 = 1 +

N−1∑
j=1

q A
j = 1 +

N−1∑
j=1

exp(−s�π1, j ) and (26a)

SB
0,N−1= 1 +

N−1∑
l=1

qB
l = 1 +

N−1∑
l=1

exp(s�πN−l,N−1) (26b)

are rewritten from Eqs. (10) and (14) in terms of the sums in (25b,c).
– The two equivalent formulations for the fixation time

tfix=
N−1∑
i=1

SA
0,i−1S

A
i,N−1

T+
i q A

i SA
0,N−1

, tfix =
N−1∑
k=1

SB0,k−1S
B
k,N−1

T−
N−kq

B
k SB0,N−1

, (27a)

SA
n,m =

m∑
j=n

q A
j =

m∑
j=n

exp(−s�π1, j ), SB
n,m =

m∑
l=n

qB
l =

m∑
l=n

exp(s�πN−l,N−1),

(27b)

where q A
0 = qB

0 = 1 and indexes i, j and k, l count the number of A and
B-strategists, respectively (see Eqs. (12) and (15) and take the transition prob-
abilities (2, 3), and (4, 5) and property (7) into account).

Moreover, we graph in Fig. 5 the quantities in (24) and (25) in six caseswith N = 10
representative of the competition scenarios in Table 1. The figure will support the
statements in the proofs. Throughout this “Appendix” we assume a positive intensity
of selection (s > 0).

Theorem 1 If A/B invades and B/A does not, then A/B fixates and B/A does not.

Proof We need to prove that if �π1 > 0 and �πN−1 > 0 (A invades and B does
not), then PA

fix > 1/N and PB
fix < 1/N (A fixates and B does not). The other case

(�π1 < 0 and �πN−1 < 0) follows by the interchange of A and B.
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k=1
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k∗ i∗

i∗i∗

Δπi Δπ1,j ΔπN−l,N−1 Δπ1,N−1

Fig. 5 Profiles of the payoff differences �πi (linear w.r.t. i , see Eq. (24a), top panel) and of the partial
sums �π1, j and �πN−l,N−1 (quadratic with j and l, see Eqs. (25b, c), bottom panel) in the competition
scenarios in Table 1 (N = 10). Recall that, by the linearity of �πi , the sum of all payoff differences
�π1,N−1 [Eq. (25a)] is sign equivalent to the sum �π1 + �πN−1 of the first and last differences

�π1 > 0 and �πN−1 > 0 imply �π1, j > 0 and �πN−l,N−1 > 0 for all j, l =
1, . . . , N − 1 (see gray and white dots in Fig. 5, 1A, respectively). Consequently, all
elements in the sum in (26a) are smaller thanone and all elements in the sum in (26b) are
larger than one.We hence have PA

fix = 1/SA
0,N−1 > 1/N and PB

fix = 1/SB
0,N−1 < 1/N .

��

Theorem 2 If neither A nor B fixate, then neither A nor B invade.

Proof We prove the theorem by contradiction, i.e., we show that if at least A or B
invades, then at least A or B fixates. If only one strategy invades, the latter statement
is true by Theorem 1. It hence remains to be proved that when A and B both invade
(�π1 > 0 and �πN−1 < 0), then at least A or B fixates (PA

fix > 1/N or PB
fix > 1/N ).
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Assume then�π1 > 0 and�πN−1 < 0. If�π1+�πN−1 > 0, i.e.,�π1,N−1 > 0,
then �π1, j > 0 for all j = 1, . . . , N − 1 (see gray dots in Fig. 5, 2A), so that all
elements in the sum in (26a) are smaller than one and PA

fix = 1/SA
0,N−1 > 1/N (A

fixates). Vice versa, if �π1 + �πN−1 < 0, i.e., �π1,N−1 < 0, then �πN−l,N−1 < 0
for all l = 1, . . . , N − 1 (see white dots in Fig. 5, 2B), so that all elements in the sum
in (26b) are smaller than one and PB

fix = 1/SB
0,N−1 > 1/N (B fixates). ��

Theorem 3 If A and B both fixate, then A and B both invade.

Proof We prove the theorem by contradiction, i.e., we show that if at least A or B
does not invade, then at least A or B does not fixate. If only one strategy invades, the
latter statement is true by Theorem 1. It hence remains to be proved that when neither
A nor B invade (�π1 < 0 and �πN−1 > 0), then at least A or B does not fixate
(PA

fix < 1/N or PB
fix < 1/N ).

Assume then�π1 < 0 and�πN−1 > 0. If�π1+�πN−1 > 0, i.e.,�π1,N−1 > 0,
then�πN−l,N−1 > 0 for all l = 1, . . . , N −1 (see white dots in Fig. 5, 7A), so that all
elements in the sum in (26b) are larger than one and PB

fix = 1/SB
0,N−1 < 1/N (B does

not fixate). Vice versa, if �π1 + �πN−1 < 0, i.e., �π1,N−1 < 0, then �π1, j < 0 for
all j = 1, . . . , N − 1 (see gray dots in Fig. 5, 7B), so that all elements in the sum in
(26a) are larger than one and PA

fix = 1/SA
0,N−1 < 1/N (A does not fixate). ��

Theorem 4 addresses the limit N → ∞. For this, we consider the frequency x =
i/N (or x = j/N ) of A-strategists and the frequency 1− x = k/N (or 1− x = l/N )
of B-strategists, and we rewrite the payoff differences in (24) and the sums in (25) for
large N as

�π(x) = πA(x) − πB(x) = lim
N→∞ �πi |i=xN = (b − d)(1 − x) + (a − c)x,

(28a)

�π(0) = b − d, �π(1) = a − c, (28b)

and

�π1,N−1/N ≈ 1
2 (b − d + a − c), (29a)

�π1, j/N ≈ x
2

(
(−b + d + a − c)x + 2(b − d)

)
, (29b)

�πN−l,N−1/N ≈ 1−x
2

(
(b − d − a + c)(1 − x) + 2(a − c)

)
. (29c)

We also recall the limits for large N of the transition probabilities (2, 3) and (4, 5),
i.e.,

T+(x) = lim
N→∞ T+

i |i=xN =
{

x(1−x)
x+(1−x) exp(−s�π(x)) Moran

x(1−x)
1+exp(−s�π(x)) PWC

(30a)

and

T−(x) = lim
N→∞ T−

i |i=xN =
{

x(1−x)
x exp(s�π(x))+(1−x) Moran

x(1−x)
1+exp(s�π(x)) PWC

(30b)
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and the equilibrium frequency (21)

x∗ = (b − d)/(b − d − a + c), 1 − x∗ = −(a − c)/(b − d − a + c). (31)

To study the fixation time for large N [followingAntal and Scheuring (2006)], we eval-
uate the sums in (27a) around the frequencies x at which the corresponding elements
of the sum diverge with N . Only these dominant elements can give contributions that
are more than linear with N and therefore make fixation slow (recall that the fixation
time is quadratic with N in the neutral game, N (N − 1) and 2N (N − 1) in the Moran
and pairwise comparison cases, respectively).

Before proving Theorem 4, we show the following

Lemma 1

If b − d > 0 and b − d + a − c > 0 then lim
N→∞ SA

0,N−1 = 1
1−exp(−s(b−d))

.

If b − d < 0 or b − d + a − c < 0 then lim
N→∞ SA

0,N−1 ≈ exp N .

If a − c < 0 and b − d + a − c < 0 then lim
N→∞ SB

0,N−1 = 1
1−exp(s(a−c)) .

If a − c > 0 or b − d + a − c > 0 then lim
N→∞ SB

0,N−1 ≈ exp N .

Proof For large N and any finite j , we have �π1, j ≈ j (b − d) [from (25b)] and
�π1,N− j ≈ 1

2 (b − d + a − c)(N − 1) [from (25a)]. Under b − d + a − c > 0, the
sum SA

0,N−1 is then dominated by the first elements and behaves as a geometric series
(convergent if b − d > 0; divergent if b − d < 0). Otherwise, if b − d + a − c < 0,
the last elements of SA

0,N−1 exponentially diverge with N .

The results on the sum SB
0,N−1 similarly follow. For large N and any finite l, we

have �πN−l,N−1 ≈ l(a − c) [from (25c)] and �πl,N−1 ≈ 1
2 (b − d + a − c)(N − 1)

(again from (25a)). Under b−d+a−c < 0, the sum is dominated by the first elements
and behaves as a geometric series (convergent if a − c < 0; divergent if a − c > 0).
Otherwise, if b − d + a − c < 0, the last elements of SB

0,N−1 exponentially diverge
with N . ��

We also recall that the game classification in Table 3 considers only generic games,
i.e., those for which no condition is undetermined.

Theorem 4 For each generic game (a, b, c, d) there is a population size N∞ such
that the game classification is as in Table 3 for any N > N∞.

Proof Separately for each of the five competition scenarios in Table 3, we prove that
the corresponding conditions imply the scenario for sufficiently large N . The theorem
follows by the fact that the union of the five sets of (mutually exclusive) conditions
covers all generic games.

1A If b − d > 0 and a − c > 0 (A invades and B does not), then, by Lemma 1, PA
fix

and PB
fix behave for large N as in Table 3.
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To estimate the fixation time, we use (27a, left) in which we note that SA
0,i−1

increases with i from 1 at i = 1 to SA
0,N−1 (finite by Lemma 1) at i = N and that

SA
i,N−1

q A
i

=
N−1∑
j=i

q A
j

q A
i

= 1 +
N−1∑
j=i+1

exp(−s(�π1, j −�π1,i )) (32)

decreases with i from SA
0,N−1 at i = 0 to 1 at i = N − 1 (also note that �π1, j −

�π1,i > 0 in (32) since j > i , see gray dots in Fig. 5, 1A).
All terms in (27a, left) but the transition probability T+

i are therefore positive and
bounded for x ∈ (0, 1), whereas T+

i (at denominator in tfix) vanishes at x = 0
and x = 1 [see Eq. (30a)], where it behaves as

T+(x)|x=0 ≈
{

x
exp(−s(b−d))

Moran
x

1+exp(−s(b−d))
PWC

(33a)

and

T+(x)|x=1 ≈
{
1 − x Moran

1−x
1+exp(−s(a−c)) PWC

(33b)

The two dominant contributions to tfix hence come from the elements in (27a,
left) around x = 0 and x = 1. Using the asymptotic of the Harmonic series, both
contributions are proportional to

lim
N→∞

N−1∑
j=1

1
x

∣∣
x= j

N
= lim

N→∞N
N−1∑
j=1

1
j ≈ N log N . (34)

1B If b− d < 0 and a− c < 0 (B invades and A does not), the analysis is symmetric
to case 1A (by the interchange of A and B). Specifically, by Lemma 1, PA

fix and
PB
fix behave for large N as in Table 3.

To estimate the fixation time, we use (27a, right) in which we note that SB
0,k−1

increases with k from 1 at k = 1 to SB
0,N−1 (finite by Lemma 1) at k = N and that

SBk,N−1

qB
k

=
N−1∑
l=k

qB
l

qB
k

= 1 +
N−1∑
l=k+1

exp(s(�πN−l,N−1−�πN−k,N−1)) (35)

decreases with k from SB
0,N−1 at k = 0 to 1 at k = N − 1 (also note that

�πN−l,N−1 − �πN−k,N−1 < 0 in (35) since l > k, see white dots in Fig. 5,
1B).
All terms in (27a, right) but the transition probability T−

N−k are therefore positive
and bounded for x ∈ (0, 1), whereas T−

N−k (at denominator in tfix) behaves for
large N as T−

N−k |k=(1−x)N = T−
i |i=xN and vanishes at x = 0 and x = 1 [see

Eq. (30b)], where it behaves as

T−(x)|x=0 ≈
{
x Moran

x
1+exp(s(b−d))

PWC
(36a)
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and

T−(x)|x=1 ≈
{

1−x
exp(s(a−c)) Moran

1−x
1+exp(s(a−c)) PWC

(36b)

The two dominant contributions to tfix hence come from the elements in (27a,
right) around x = 0 and x = 1. As in case 1A, both contributions are proportional
to N log N .

2A If b − d > 0 and a − c < 0 with b − d + a − c > 0 (both A and B invade and
selection favors A), then, by Lemma 1, PA

fix and PB
fix behave for large N as in case

1A.
The fixation time however diverges exponentially due to the contribution of (32)
in (27a, left). In fact, while SA

0,i−1 and the transition probability T+
i behave as in

case 1A, the difference �π1, j − �π1,i in (32) is negative for several i, j . The
most negative value is attained for i = i∗, where �π1,i∗ is the largest of �π1, j
(see gray dots in Fig. 5, 2A; i∗ corresponds to the last positive �πi , see black
dots), and for j = N − 1. For large N , i∗ ≈ �x∗N�, where x∗ ∈ (0, 1) from
(31, left) maximizes the downward parabola �π1, j/N in (29b) (�i� taking the
integer part of i), so that the most negative difference �π1,N−1 − �π1,i∗ behaves
as N

2

(
(b − d + a − c) − (b − d)2/(b − d − a + c)

)
(obtained from (29b) at

x = 1 and at x = x∗). The linear N -dependence of the latter expression makes
(32) exponentially diverging with N .

2B If b − d > 0 and a − c < 0 with b − d + a − c < 0 (both A and B invade and
selection favors B), then, by Lemma 1, PA

fix and PB
fix behave for large N as in case

1B.
The fixation time however diverges exponentially for large N due to the contri-
bution of (35) in (27a, right). In fact, while SB

0,k−1 and the transition probability

T−
N−k behave as in case 1B, the difference �πN−l,N−1 − �πN−k,N−1 in (35) is

positive for several k, l. The most positive value is attained for k = k∗, where
�πN−k∗,N−1 is the most negative of �πN−l,N−1 (see white dots in Fig. 5, 2B;
k∗ corresponds to the last negative �πN−k , see black dots), and for l = N − 1.
For large N , k∗ ≈ �(1− x∗)N�, where 1− x∗ ∈ (0, 1) from (31, right) minimizes
the upward parabola �πN−l,N−1 in (29c), so that the most positive difference
�π1,N−1−�πN−k∗,N−1 behaves as N

2

(
(b−d+a−c)+(a−c)2/(b−d−a+c)

)
(obtained from (29c) at 1−x = 1 and at 1−x = 1−x∗). The linear N -dependence
of the latter expression makes (35) exponentially diverging with N .

3 If b− d < 0 and a − c > 0 (both A and B do not invade), then, by Lemma 1, PA
fix

and PB
fix behave for large N as in Table 3.

To estimate the fixation time, we use (27a, left). If i ≤ i∗, where�π1,i∗ is the most
negative of �π1, j (see gray dots in Fig. 5, 3; i∗ corresponds to the last negative
�πi , see black dots), we exploit q A

i = (T−
i /T+

i )q A
i−1 and rewrite the element of

the sum (27a, left) as
SA
0,i−1S

A
i,N−1

T−
i q A

i−1S
A
0,N−1

. (37)

In (37), we note that limN→∞ SA
i,N−1/S

A
0,N−1 = 1, as the sums SA

i,N−1 and S
A
0,N−1

are dominated for large N by the same element at j = i∗, that
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SA
0,i−1

q A
i−1

=
i−1∑
j=1

q A
j

q A
i−1

= 1 +
i−2∑
j=1

exp(−s(�π1, j −�π1,i−1)) (38)

increases with i from 1 at i = 1 to 1/(1 − exp(s(b − d))) at i = i∗ (using
�π1, j − �π1,i−1 ≈ −(i − 1− j)(b − d) > 0 from (25b) for large N and noting
that i∗ ≈ �x∗N� diverges with N , so the sum in (38) is a convergent geometric
series), and that T−

i at denominator behaves as in (30b). If i > i∗, we directly
use (27a, left) in which limN→∞ SA

0,i−1/S
A
0,N−1 = 1, as the sums SA

0,i−1 and

SA
0,N−1 are those dominated by the element at j = i∗, (32) decreases with i from

1/(1 − exp(−s(a − c))) at i = i∗ (using �π1, j −�π1,i ≈ �πN−( j−i),N−1 ≈
( j−i)(a−c) > 0 from (25c) for large N and noting that N−1−i∗ ≈ �(1−x∗)N�
diverges with N , so the sum in (32) is a convergent geometric series) to 1 at
i = N − 1, and the transition probability T+

i at denominator behaves as in (30a).
The dominant elements in (27a, left) are hence those around x = 0 for i ≥ i∗,

where the transition probability T−
i vanishes as in (36a), and those around x = 1

for i > i∗, where the transition probability T+
i vanishes as in (33b). As in case

1A, both contributions to tfix are proportional to N log N .

��
Theorem 5 addresses the limit s → ∞. For this, we take the limit for large s of the

transition probabilities (2, 3) and (4, 5), obtaining

T+
i =

{
N−i
N , i

N exp(s�πi ) ≈ 1/ exp s
if �πi ≷0

Moran
i
N

N−i
N , i

N
N−i
N

1
1+exp(−s�πi )

≈ 1/ exp s PWC
(39a)

and

T−
i =

{
i
N , N−i

N exp(−s�πi ) ≈ 1/ exp s
if �πi ≶0

Moran
i
N

N−i
N , i

N
N−i
N

1
1+exp(s�πi )

≈ 1/ exp s PWC
(39b)

i = 1, . . . , N − 1, and we show the following

Lemma 2

If �π1 > 0 and �π1 + �πN−1 > 0 then lim
s→∞ SA

0,N−1 = 1.

If �π1 < 0 or �π1 + �πN−1 < 0 then lim
s→∞ SA

0,N−1 ≈ exp s.

If �πN−1 < 0 and �π1 + �πN−1 < 0 then lim
s→∞ SB

0,N−1 = 1.

If �πN−1 > 0 or �π1 + �πN−1 > 0 then lim
s→∞ SB

0,N−1 ≈ exp s.

Proof The lemma directly follows from the expressions of SA
0,N−1 and SB

0,N−1 in
(26), by noting that the four cases, respectively, correspond to �π1, j > 0 for all
j = 1, . . . , N − 1, �π1, j < 0 for some j , �πN−l,N−1 < 0 for all l = 1, . . . , N − 1,
and �πN−l,N−1 > 0 for some l. ��

We also recall that the game classification in Table 4 considers only generic games,
i.e., those for which no condition is undetermined.
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Theorem 5 For each generic game (a, b, c, d) there is an intensity of selection s∞
such that the game classification is as in Table 4 for any s > s∞.

Proof Separately for each of the five competition scenarios in Table 4, we prove that
the corresponding conditions imply the scenario for sufficiently large s. The theorem
follows by the fact that the union of the five sets of (mutually exclusive) conditions
covers all generic games.

1A If�π1 > 0 and�πN−1 > 0 (A invades and B does not), then�π1+�πN−1 > 0,
so that by Lemma 2 PA

fix and PB
fix behave for large s as in Table 4.

To estimate the fixation time, we use (27a, left) in which we note that
lims→∞ SA

0,i−1 = lims→∞ SA
0,N−1 = 1, as all elements but the first (q A

0 = 1)

of both sums vanish as s → ∞, and that lims→∞ SA
i,N−1/q

A
i = 1, as q A

i is

the dominant element in SA
i,N−1 for large s (�π1,i is the smallest of �π1, j for

j = i, . . . , N − 1, see gray dots in Fig. 5, 1A). Using (39a), the fixation time is
then given by

lim
s→∞tfix =

N−1∑
i=1

1
T+
i

=

⎧⎪⎪⎨
⎪⎪⎩

N
N−1∑
i=1

1
N−i < N (N − 1) Moran

N
N−1∑
i=1

N
i(N−i) < 2N (N − 1) PWC

(40)

where the inequalities hold true for N ≥ 3 (Moran: all elements but the last in the
right-most sum are < 1, the last being = 1; PWC: all elements in the right-most
sum are < 2, being all ≤ N/(N − 1) that is < 2 for N ≥ 3).

1B If�π1 < 0 and�πN−1 < 0 (B invades and A does not), the analysis is symmetric
to case 1A (by the interchange of A and B). Specifically, �π1 + �πN−1 < 0, so
that by Lemma 2 PA

fix and PB
fix behave for large s as in Table 4.

To estimate the fixation time, we use (27a, right), in which we note that
lims→∞ SB

0,k−1 = lims→∞ SB
0,N−1 = 1, as all elements but the first (qB

0 = 1)

of both sums vanish as s → ∞, and that lims→∞ SB
k,N−1/q

B
k = 1, as qB

k is

the dominant element in SB
k,N−1 for large s (�πN−k,N−1 is the least negative of

�πN−l,N−1 for l = k, . . . , N − 1, see white dots in Fig. 5, 1B). Using (39b) with
i = N − k, the fixation time then behaves for large s as in case 1A.

2A If �π1 > 0 and �πN−1 < 0 with �π1 + �πN−1 > 0 (i.e., with �π1,N−1 > 0;
both A and B invade and selection favors A), then by Lemma 2 PA

fix and PB
fix

behave for large s as in Table 4.
To show the behavior for large s of the fixation time, we show that the element
at i = i∗ in (27a, left) exponentially diverges with s, where �π1,i∗ is the largest
of �π1, j (see gray dots in Fig. 5, 2A; i∗corresponds to the last positive �πi , see
black dots). At i = i∗, lims→∞ SA

0,i∗−1 = lims→∞ SA
0,N−1 = 1, as all elements

but the first (q A
0 = 1) of both sums vanish as s → ∞, SA

i∗,N−1 is dominated by its

last element q A
N−1 (�π1,N−1 is the smallest of �π1, j for j = i∗, . . . , N − 1, see

gray dots in Fig. 5, 1A), and T+
i∗ is finite from (39a). Consequently, the element

at i = i∗ in (27a, left) exponentially diverges with s as the ratio q A
N−1/q

A
i∗ =

123
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exp(−s(�π1,N−1 − �π1,i∗)), where �π1,N−1 − �π1,i∗ < 0. Note that other
elements in (27a, left) exponentially diverge with s, but this is irrelevant.

2B If �π1 > 0 and �πN−1 < 0 with �π1 + �πN−1 < 0 (i.e., with �π1,N−1 < 0;
both A and B invade and selection favors B), then by Lemma 2 PA

fix and PB
fix

behave for large s as in Table 4.
To show the behavior for large s of the fixation time, we show that the element at
k = k∗in (27a, right) exponentially divergeswith s, where�πN−k∗,N−1 is themost
negative of�πN−l,N−1 (seewhite dots in Fig. 5, 2B; k∗corresponds to the last neg-
ative�πN−k , see black dots). At k = k∗, lims→∞ SB

0,k∗−1 = lims→∞ SB
0,N−1 = 1,

as all elements but the first (qB
0 = 1) of both sums vanish as s → ∞, SB

k∗,N−1 is

dominated by its last element qB
N−1 (�π1,N−1 is the least negative of �πN−l,N−1

for l = k∗, . . . , N − 1, see white dots in Fig. 5, 2B), and T−
N−k∗ = (N − k∗)/N

from (39a). Consequently, the element at k = k∗ in (27a, right) exponentially
diverges with s as the ratio qB

N−1/q
B
k∗ = exp(−s(�π1,N−1 − �π1,k∗)), where

�π1,N−1 − �π1,k∗ > 0. Note that other elements in (27a, right) exponentially
diverge with s, but this is irrelevant.

3 If �π1 < 0 and �πN−1 > 0 (both A and B do not invade), then by Lemma 2 PA
fix

and PB
fix behave for large s as in Table 4.

To estimate the fixation time, we use (27a, left) and distinguish two intervals of
i . If i ≤ i∗ (where �π1,i∗ is the most negative of �π1, j , see gray dots in Fig. 5
3), we consider (37) and note that lims→∞ SA

i,N−1/S
A
0,N−1 = 1, as both sums are

dominated for large s by the same element at j = i∗, and that the ratio in (38) also
converges to 1 for large s, SA

0,i−1 being dominated by its last element. If i > i∗,
we directly use (27a, left) in which lims→∞ SA

0,i−1/S
A
0,N−1 = 1, as both sums are

dominated by the element at j = i∗, and the ratio in (32) also converges to 1 for
large s, SA

i,N−1 being dominated by its first element.
By (39a), the fixation time then given by

lim
s→∞tfix=

i∗∑
i=1

1
T−
i

+
N−1∑

i=i∗+1

1
T+
i

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N

i∗∑
i=1

1
i + N

N−1∑
i=i∗+1

1
N−i < N (N − 1) Moran

N
N−1∑
i=1

N
i(N−i) < 2N (N − 1) PWC

(41)

where the inequalities are guaranteed (for N > 3) similarly to case 1A.

��
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