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Abstract The sequence of amino acid monomers in the primary structure of a protein
is decided by the corresponding sequence of codons (triplets of nucleic acidmonomers)
on the template messenger RNA (mRNA). The polymerization of a protein, by incor-
poration of the successive amino acidmonomers, is carried out by amolecularmachine
called ribosome. We develop a stochastic kinetic model that captures the possibilities
of mis-reading of mRNA codon and prior mis-charging of a tRNA. By a combination
of analytical and numerical methods, we obtain the distribution of the times taken
for incorporation of the successive amino acids in the growing protein in this math-
ematical model. The corresponding exact analytical expression for the average rate
of elongation of a nascent protein is a ‘biologically motivated’ generalization of the
Michaelis–Menten formula for the average rate of enzymatic reactions. This general-
ized Michaelis–Menten-like formula (and the exact analytical expressions for a few
other quantities) that we report here display the interplay of four different branched
pathways corresponding to selection of four different types of tRNA.

Keywords Michaelis–Menten equation · Master equation · Translation · Ribosome ·
Dwell time

1 Introduction

Enzymes are known to play crucial roles in almost all kinds of intracellular processes
(Rittie and Perbal 2008). For the simplest enzymatic reaction studied theoretically by
Michaelis and Menten more than a century ago (Johnson and Goody 2011; Michaelis
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and Menten 2013), the rate of the formation of the product in bulk is given by the so-
called Michaelis–Menten (MM) equation (Johnson 2013; Michel and Ruelle 2013).
However, at extremely low population of an enzyme, the time taken for each enzy-
matic cycle fluctuates from one cycle to another; the time taken in each round is often
referred to as the turnover time. The distribution of the turnover time is the key sta-
tistical characteristics of reactions studied by single-molecule enzymology (Grima
et al. 2014). Interestingly, in spite of the fluctuations in the turnover time, the mean
turnover time for a large class of enzymatic reactions still follows the MM equation
(Xie 2013b). Over the last century, various generalizations of the MM equation have
emerged in several different contexts (Schnell and Maini 2003). In this paper, we
present a generalization that emerges naturally in the context of biophysical chemistry
of protein synthesis.

Proteins are polymers whose monomeric subunits are amino acids. The specific
sequence of the amino acid species in the primary linear structure of a given protein is
directed by the corresponding sequence of codons (triplets of nucleotide monomers)
on the corresponding template messenger RNA (mRNA). The template-directed poly-
merization of a protein, called translation, is carried out by a molecular machine called
ribosome (Spirin 2002; Rodnina et al. 2011; Frank 2011; Frank and Gonzalez 2010;
Chowdhury 2013a, b) that consists of two loosely connected subunits designated as
large and small. Transfer RNA (tRNA) molecules play crucial roles in translation
(Kim 2014). When “charged” (amino-acylated) by a specific enzyme, called amino-
acyl tRNA synthetase (aa-tRNA synthetase) (Ling et al. 2009; Reynolds et al. 2010;
Yadavalli and Ibba 2012), one end of each species of these “adapter” molecules car-
ries a specific amino acid. The amino acid brought in by a correctly charged cognate
tRNA is also the correct one, as directed by the corresponding template; the other
end of the same cognate tRNA molecule, referred to as anticodon, matches perfectly,
by complementary base pairing, with the codon on the template mRNA. In contrast,
increasing degree of mismatch makes the tRNA near-cognate or non-cognate.

Most aa-tRNA synthetases employ editing mechanisms to ensure correct charging
of the corresponding tRNAmolecules. However, because of the intrinsic stochasticity
of aminoacylation, and occasional failure of the editing mechanism of those aa-tRNA
synthetase that are capable of correcting erroneous aminoacylation, a mis-charged
tRNA may be produced (Ling et al. 2009; Yadavalli and Ibba 2012). Therefore, even
when it turns out to be a cognate tRNA for a given codon, such a mis-charged tRNA
compromises the translational fidelity by contributing an amino acid which is different
from that dictated by the mRNA template. Erroneous substitution of one amino acid
by another is called mis-sense error. Pre-translational mis-charging of tRNA is not
the only possible cause of mis-sense error. Erroneous selection of a correctly charged
near-cognate or non-cognate tRNA, i.e., a co-translational mis-reading of a codon,
also contributes to mis-sense error (Parker 1989; Cochella and Green 2005; Zaher and
Green 2009; Johansson et al. 2008; Rodnina 2012).

Thus, at the beginning of each elongation cycle the macromolecular complex
consisting of the ribosome and accessory molecules select one of the four possi-
ble pathways indicated by the tRNA selected: (i) correctly charged cognate tRNA,
(ii) incorrectly charged cognate tRNA, (iii) correctly charged near-cognate tRNA, and
(iv) correctly charged non-cognate tRNA. Along each of these pathways, the sequence
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of intermediate steps is identical although the molecular identities of the complexes
are different. In other words, the network of mechano-chemical states consists of four
distinct cycles that shares the same initial state.

The time taken by a ribosome to incorporate a single amino acid in the growing
protein is also the duration of the ribosome’s dwell at the corresponding codon on the
mRNA template. The distribution of the dwell times (DDT) characterizes the intrinsic
stochastic nature of the process of elongation of the nascent protein by the ribosome.
Here, we develop a stochastic kinetic model for the elongation phase of translation
capturing, within a single mathematical framework, all the four cycles that branch
out from the initial state. Our model also distinguishes between the concentrations
of four distinct types of tRNA molecules, namely correctly charged cognate tRNA,
incorrectly charged cognate tRNA, correctly charged near-cognate tRNA and cor-
rectly charged non-cognate tRNA. Solving the corresponding master equations (a set
of coupled ordinary differential equations), for an appropriate initial condition that
captures the beginning of translation of a codon, we obtain the DDT of the ribosome.
Moreover, using the steady-state solutions of these master equations, we derive the
exact analytical expression for the average velocity of the ribosome which is also the
average rate of amino acid incorporation (i.e., average rate of elongation of the nascent
protein) catalyzed by the ribosomal machinery. This expression is a generalization of
the MM equation and, as we demonstrate explicitly, it reduces to the standard form of
MM equation in the appropriate special limits of our model. Few graphical plots of the
average rate of elongation, corresponding to some typical values of the rate constants,
are presented to provide an intuitive understanding of the relative contributions of the
four competing cycles.

Three of the four pathways originating from the initial state lead to translational error
if the cycle is completed by adding an amino acid to the growing protein. Therefore, as
a by-product of our calculation, we also get exact expressions for the translation error.
The more stringent is the mechanism of selection of incoming tRNA the lower is the
mis-reading error. But, increasing the probability of rejecting near-cognate and non-
cognate tRNAs would increase the likelihood of accepting not only correctly charged
cognate tRNA but also that of a mis-charged cognate tRNA. A few illustrative plots
display the interplay of the effects of micharging of tRNA and mis-reading of mRNA
in the overall mis-sense error in translation.

2 Model

Sharma and Chowdhury (2010) developed a five-state stochastic kinetic model (from
now onwards referred to as SC model) for the elongation cycle of translation (see
Fig. 1). The arrival of a aa-tRNA molecule, bound to GTP and EF-Tu, and its rejec-
tion because of the codon-anticodon mismatch is captured by the forward and reverse
transitions 1 � 2. The second stage of quality control (kinetic proofreading) involves
hydrolysis of GTP by EF-Tu (2 → 3) followed by either rejection (3 → 1) or incorpo-
ration (3 → 4) in the growing protein by formation of a peptide bond [see Blomberg
(2007) for a pedagogical introduction to kinetic proofreading]. The first of the two-
step translocation process consists of the Brownian rotation of large subunit of the
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Fig. 1 (Color figure online) Pictorial depiction of the elongation cycle in the SC model (see the text for
details)

ribosome with respect to the small subunit and simultaneous reversible transitions of
the tRNAs between the so-called classical and hybrid states. The second, and the final,
step of translocation, driven by hydrolysis of another molecule of GTP by EF-G com-
pletes the cycle irreversibly. More detailed stochastic models of mechano-chemical
kinetics of each elongation cycle have been developed [see, for example, Xie (2013a),
Kinz-Thompson et al. (2015)]. However, in order to capture some other aspects of
translational kinetics, we describe the kinetics of elongation cycle by the simpler SC
model. Nevertheless, the strategy of modeling followed here can be implemented also
using the more detailed descriptions as the basic models of elongation cycle.

The SCmodel was used further to account for the stochastic alternating pause-and-
translocation kinetics of a single ribosome (Sharma and Chowdhury 2011a) as well
as for analyzing collective spatio-temporal organization of ribosomes in a polysome
(Sharma and Chowdhury 2011b). Because of the extreme simplicity of the SC model
model, no clear distinction could bemade, in terms of different rate constants, between
processes involving near-cognate and non-cognate tRNAs. More importantly, the SC
model captured the possibility of mis-sense error arising from only mis-reading of
the codons; it was not possible to incorporate the contributions from both mis-reading
and mis-charging errors explicitly. The non-trivial extension of the SC model that
we present here does not suffer from any of the above-mentioned limitations of the
original SC model.

Webegin formulation of themodelwith the four alternative elongation cycles shown
in Fig. 2 which correspond to the four different mutually exclusive pathways that open
up with the arrival of (a) correctly charged cognate tRNA, (b) incorrectly charged
cognate tRNA, (c) correctly charged near-cognate tRNA, and (d) correctly charged
non-cognate tRNA.Note that each of these cycles is formally identical to the only cycle
that appeared in the original SCmodel. However, by opening up the possibility of four
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Fig. 2 (Color figure online) Pictorial depiction of the four possible alternative mutually exclusive pathways
that open up, in each chemo-mechanical cycle of a single ribosome, upon the arrival of a correctly charged
cognate aa-tRNA, b incorrectly charged cognate aa-tRNA, c correctly charged near-cognate tRNA, and d
correctly charged non-cognate tRNA (see the text for details)

distinct pathways, each associated with a distinct identity of aa-tRNA, this model not
only allows for a clear distinction between non-cognate, near-cognate and cognate
tRNAs but also that between correctly and incorrectly charged cognate tRNAs.

Next, we simplify the model by exploiting some well known facts from the existing
literature (Spirin 2002; Rodnina et al. 2011; Frank 2011). First, we note thatωa, ω′

a, ω′′
a

and ω′′′
a are proportional to the concentrations of the corresponding aa-tRNA species;

therefore, we assume:

ωa = ω0
a,c1[tRNA]c1 (correctly charged cognate tRNA)

ω′
a = ω0

a,c2[tRNA]c2 (incorrectly charged cognate tRNA)

ω′′
a = ω0

a,n[tRNA]n (correctly charged near-cognate tRNA)

ω′′′
a = ω0

a,N [tRNA]N (correctly charged non-cognate tRNA) (1)

where the symbol [.] denotes the concentration of the corresponding tRNA species and
the prefactors are measures of the intrinsic rates of the reactions for unit concentration
of the tRNA species. Thus, as stated in the introduction, concentrations of all the four
types of tRNA molecules are incorporated explicitly.

The assumption (1) is valid under the “abundant substrate” condition, i.e., all four
species of tRNA molecules are much more abundant than the ribosomes. This condi-
tion is commonly used in the stochastic models of enzyme kinetics although strong
deviation from this condition can lead to drastically different results (Grima and Leier
2017).

Wedonot distinguish 4′ from4and5′ from5because both the pathways 3 → 4 → 5
and 3′ → 4′ → 5′ involve movement of cognate tRNAs (see Fig. 3). Similarly,

123



1010 A. Dutta, D. Chowdhury

Fig. 3 (Color figure online) Pictorial depiction of the full chemo-mechanical kinetics in the elongation cycle
of a single ribosome, along with the corresponding rate constants. It is obtained from Fig.2 by combining
the four cycles (see the text for details)

assuming the rates of translocation of near-cognate and non-cognate tRNA molecules
to be comparable, but discriminating these from the corresponding cognate tRNAs, we
assume 4′′ ≡ 4′′′ = 4∗ �≡ 4 and 5′′ ≡ 5′′′ = 5∗ �≡ 5 (see Fig. 3). These assumptions
help in combining the four pathways shown in Fig. 2 within the single and simpler
kinetic scheme depicted in Fig. 3 thereby also reducing the number of parameters
(rate constants). From now onwards, unless stated otherwise, all our discussions will
be based on the model kinetic scheme shown in Fig. 3.

We use the symbol Pμ( j, t) to denote the probability at time t that the ribosome is
in the “chemical” state μ and is decoding the j th codon. In the steady state, all the
probabilities Pμ( j, t) become independent of time. We define translational fidelity by
the fraction

φ = ωp P3

ωp P3 + ω′
p P ′

3 + �p P ′′
3 + �′

p P ′′′
3

= ωp P3

ωp P3 + ω′
p P ′

3 + �h2P∗
5

(2)

where we have used the relation �p P ′′
3 + �′

p P ′′′
3 = �h2P∗

5 .
The total mis-sense error E = 1 − φ is defined by the relation

E = ω′
p P ′

3 + �h2P∗
5

ωp P3 + ω′
p P ′

3 + �h2P∗
5

(3)

which is the sum of the total mis-charged mis-sense error (i.e., mis-sense error arising
solely from mis-charged tRNAs)

Emc = ω′
p P ′

3

ωp P3 + ω′
p P ′

3 + �h2P∗
5

(4)

and the total mis-reading mis-sense error (i.e., mis-sense error arising only from mis-
reading of codons)
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Emr = �h2P∗
5

ωp P3 + ω′
p P ′

3 + �h2P∗
5

. (5)

Similarly, the fraction

εmc = ω′
p P ′

3

ω′
p P ′

3 + �h2P∗
5

(6)

is the fraction of mis-sense error caused by mis-charged cognate tRNAs, while the
corresponding fraction of mis-sense error caused by mis-reading is defined by

εmr = �h2P∗
5

ω′
p P ′

3 + �h2P∗
5

(7)

Obviously, the average velocity of a ribosome in the steady-state can be obtained
by substituting the expressions of P5 and P∗

5 into the defining relation

V = �c
(
ωh2P5 + �h2P∗

5

)
(8)

where �c is the length of a codon. We also note that the average velocity V of a
ribosome is same as the average rate of elongation of the protein that it polymerizes.

We define the rejection factors

R =
(

ωr1

ωr1 + ωh1

)(
ωr2

ωr2 + ωp

)

R′ =
(

ω′
r1

ω′
r1 + ω′

h1

)(
ω′

r2

ω′
r2 + ω′

p

)

R′′ =
(

ω′′
r1

ω′′
r1 + ω′′

h1

)(
ω′′

r2

ω′′
r2 + �p

)

R′′′ =
(

ω′′′
r1

ω′′′
r1 + ω′′′

h1

)(
ω′′′

r2

ω′′′
r2 + �′

p

)
(9)

The four rejection factors characterize the frequencies of rejection of the incoming
charged tRNAmolecules in the four alternative pathways depicted in Fig. 3. The higher
the value of a rejection factor the more frequent is the corresponding futile cycles.

The analytical results for this model that we report here are exact, i.e., these are
derived without making any mathematical approximations. The derivations of these
analytical expressions do not require imposition of any condition on the numerical
values of the rate constants. However, we now list some biologically motivated con-
straints on the relative magnitudes of the rate constants that we’ll use later in this paper
only for presenting the results graphically for biologically relevant situations. Based
on the levels of base-pair complementarity between the codon and the anticodon of the
incoming tRNA, we expect that under normal physiological conditions the following
conditions would be satisfied: ω′′′

r1 > ω′′
r1 > ω′

r1 = ωr1. Motivated by similar consid-
erations, for graphical plots, we also assume ω′′′

r2 > ω′′
r2 > ω′

r2 = ωr2. Continuing
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similar justification for the reduction in the number of model parameters, we assume
�p � �′

p � ω′
p < ωp.

3 Results

We begin our theoretical analysis by first solving the master equations (26) under
steady-state conditions to get the corresponding expressions for Pμ; the full analytical
expressions are given in Appendix A. Then, using those expressions for Pμ, we cal-
culate the quantities of our interest namely, φ, Emc, Emr, εmc, εmr and V . The results
are listed below.

φ = A

A + B + C + D
(10)

and, hence,

E = 1 − φ = B + C + D

A + B + C + D
(11)

which is sum of the two contributions

Emc = B

A + B + C + D
(12)

and

Emr = C + D

A + B + C + D
. (13)

Similarly, we get

εmc = B

B + C + D
(14)

and

εmr = 1 − εmc = C + D

B + C + D
. (15)

In all the expressions (10)–(15) A, B, C and D are given by

A = ωa

[1 + (ωr1/ωh1)]
[
1 + (ωr2/ωp)

]

B = ω′
a

[
1 + (ω′

r1/ω
′
h1)

] [
1 + (ω′

r2/ω
′
p)

]

C = ω′′
a[

1 + (ω′′
r1/ω

′′
h1)

] [
1 + (ω′′

r2/�p)
]
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D = ω′′′
a

[
1 + (ω′′′

r1/ω
′′′
h1)

] [
1 + (ω′′′

r2/�′
p)

] (16)

The expressions (10)–(15) can be easily justified by intuitive physical arguments. Let
us first consider the special case where ωr1 = ω′

r1 = ω′′
r1 = ω′′′

r1 = 0 = ωr2 = ω′
r2 =

ω′′
r2 = ω′′′

r2. In this case, the expressions for A, B, C and D reduce to A = ωa, B =
ω′

a, C = ω′′
a and D = ω′′′

a , respectively. Consequently, φ = ωa/(ωa +ω′
a +ω′′

a +ω′′′
a )

is the probability of following the path 1 → 2, instead of the other three alternatives,
namely 1 → 2′, 1 → 2′′ and 1 → 2′′′. Similarly, in this special case, the expression
εmc = ω′

a/(ω′
a + ω′′

a + ω′′′
a ) is expected because εmc is the probability of following

the path 1 → 2′, instead of the two alternatives 1 → 2′′ and 1 → 2′′′.
In the general case, the rate of transition 1 → 2 → 3 → 4 is given by

ωa
ωh1

ωh1 + ωr1︸ ︷︷ ︸
Prob. for 2→3

ωp

ωp + ωr2︸ ︷︷ ︸
Prob. for 3→4

= A (17)

The quantities B, C and D have similar interpretations as rates for the transitions
1 → 2′ → 3′ → 4, 1 → 2′′ → 3′′ → 4∗ and 1 → 2′′′ → 3′′′ → 4∗, respectively.
Once the system reaches the state 4 it cannot return to state 1 without completing the
full cycle. Therefore, fidelity φ is the ratio A/(A+ B +C + D). The expressions (12)–
(15) for Emc, Emr and εmc, εmr also follow from the same interpretations of A, B, C
and D.

Ribosome is an enzyme; interestingly, at any given instant of time its substrate-
specificity depends on the codon that it is engaged in translating. In recent years,
the average rate of translation has been shown to be a generalization of the rate of
enzymatic reactions. Recall that for the Michaelis–Menten (MM) enzymatic reaction

E + S
k+1�
k−1

[ES]
k2→ E + P (18)

the rate of the reaction under steady-state condition is given by the MM equation

1

V
= 1

Vmax
+ KM

Vmax

1

[S]
(19)

where the Michaelis constant KM = (k−1 + k2)/k+1 and Vmax = k2[E]0, with [E]0
being the initial (total) concentration of the enzyme. In the past, the average rate of
translation by a ribosome has been shown to follow a generalized MM-like equation
where the concentration of aa-tRNA is interpreted as the substrate concentration. For
simpler models of translation reported earlier, the average rate of translation has been
expressed as generalized MM equation (Garai et al. 2009; Chowdhury 2014).
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For the full kinetic model shown in Fig. 3, the average rate of translation (i.e., the
average velocity V of a ribosome) is given by

1

V
= 1

A + B + C + D

+ A

A + B + C + D

(
1

VA

)
+ B

A + B + C + D

(
1

VB

)

+ C

A + B + C + D

(
1

VC

)
+ D

A + B + C + D

(
1

VD

)
(20)

where

1

VA
=

[
1

ωh1

(
1 + ωr2

ωp

)
+ 1

ωp
+ 1

ωb f

(
1 + ωbr

ωh2

)
+ 1

ωh2

]

1

VB
=

[
1

ω′
h1

(
1 + ω′

r2

ω′
p

)
+ 1

ω′
p

+ 1

ωb f

(
1 + ωbr

ωh2

)
+ 1

ωh2

]

1

VC
=

[
1

ω′′
h1

(
1 + ω′′

r2

�p

)
+ 1

�p
+ 1

�b f

(
1 + �br

�h2

)
+ 1

�h2

]

1

VD
=

[
1

ω′′′
h1

(
1 + ω′′′

r2

�′
p

)
+ 1

�′
p

+ 1

�b f

(
1 + �br

�h2

)
+ 1

�h2

]
(21)

Equation (20) is a generalized version of the MM equation (19) for our model. An
intuitive derivationof the expression (20), that provides a deeper physical interpretation
of this formula, is given in Appendix B.

The connection between the two can be elucidated by considering a special case
of our model. In the limit [tRNA]c2 = [tRNA]n = [tRNA]N = ωr2 = ωbr = 0 and
ωp → ∞, ωb f → ∞, ωh2 → ∞, the model reduces to

Ribosome + tRNAc1

ω0
a,c1�
ωr1

2
ωh1→ 5. (22)

which is, formally, identical to the MM reaction (18). In this limit, the expression (20)
reduces to

1

V
= 1

ωh1
+

(
(ωh1 + ωr1) /ω0

a,c1

ωh1

)
1

[tRNA]c1
(23)

which is identical toMM equation (19) because of the correspondence ωh1 ←→ k2 =
Vmax and (ωh1 +ωr1)/ω

0
a,c1 ←→ (k−1 + k2)/k1 = KM . Thus, on the right-hand side

of the equation (20), the sum of the last four terms is the generalized counterpart of
1/Vmax, while the first term is the generalized analog of KM/Vmax[S].

Note that, from the perspective of enzymatic reactions, in each elongation cycle
four distinct species of substrates (tRNAmolecules) compete for the same enzyme. In
order to graphically demonstrate the effects of this competition among the substrates,
in Fig. 4 we plot 1/V as a function of 1/[tRNA]c1 under four different conditions.
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Fig. 4 (Color figure online) 1/V is plotted against 1/[tRNA]c1 for our model; this plot is the analog of
Lineweaver–Burk plot for the Michaelis–Menten reaction. For all the four plots (a–d), except for ωa , ω′

a ,
ω′′

a , ω
′′′
a , the numerical values assigned to the rate constants for all the four tRNA species are those listed

in the first column of Table 1 while ωa is varied from 0 to 50 s−1. The other parameters are as follows: a
ω′

a = 0, ω′′
a = 0 and ω′′′

a = 0; b ω′
a = 25 s−1, ω′′

a = 0 and ω′′′
a = 0; c ω′

a = 25 s−1, ω′′
a = 25 s−1 and

ω′′′
a = 0; and d ω′

a = 25 s−1, ω′′
a = 25 s−1 and ω′′′

a = 25 s−1

Figure4a corresponds to the simplest scenario where only correctly charged tRNA
molecules are present. In this case, because of the absence competition among sub-
strates, the plot is linear. This linear plot in Fig. 4a is the characteristic ofMM equation
displayed inwhat is knownas theLineweaver–Burk plot. Byfitting the data of Fig. 4a to
theMM equation (19), where the substrate concentration [S] is identified as [tRNA]c1,
we find Km/Vmax = 1.44 and 1/Vmax = 0.208; hence Km � 6.9 and Vmax � 4.8
amino acids per second (or, equivalently, codons per second). The deviation from the
linearity, as shown in Fig. 4b, arises from the presence of the competing second species
of the tRNA molecules. The corresponding plots in Fig. 4c, d exhibit the increasing
deviations from the single-substrate MM equation as the number of competing sub-
strates increases. Interestingly, all the curves plotted in Fig. 4a–d have the same slope
1.44 in the limit 1/[tRNA]c1 → 0, i.e., [tRNA]c1 → ∞. One way of characterizing
the extent of the deviation of the curves in Fig. 4b–d from linearity, with the increasing
number of competing substrates, is by computing the saturation values of these curve
in the limit 1/[tRNA]c1 → ∞; these values are approximately 0.27, 0.24 and 0.23,
respectively.

The numerical values assigned to the rate constants for the plots in Fig. 4 are not
realistic in the sense that these do not reflect the intuitively expected relative strengths
of the corresponding rates for the four different species of tRNA molecules. The sole
purpose of treating all the four species of tRNA molecules on equal footing is to
demonstrate the trend of increasing deviation from linearity on the Lineweaver–Burk
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Table 1 Values for different parameters

For correctly
charged cognate
tRNA

For incorrectly
charged cognate
tRNA

For near-cognate
tRNA

For non-cognate
tRNA

ωa = 25 s−1 ω′
a = 10 s−1 ω′′

a = 10 s−1 ω′′′
a = 5 s−1

ωr1 = 5 s−1 ω′
r1 = 5 s−1 ω′′

r1 = 20 s−1 ω′′′
r1 = 25 s−1

ωr2 = 5 s−1 ω′
r2 = 5 s−1 ω′′

r2 = 20 s−1 ω′′′
r2 = 25 s−1

ωh1 = 25 s−1 ω′
h1 = 25 s−1 ω′′

h1 = 10 s−1 ω′′′
h1 = 5 s−1

ωp = 25 s−1 ω′
p = 10 s−1 �p = 10 s−1 �′

p = 10 s−1

ωh2 = 25 s−1 ωh2 = 25 s−1 �h2 = 10 s−1 �h2 = 10 s−1

ωb f = 25 s−1 ωb f = 25 s−1 �b f = 10 s−1 �b f = 10 s−1

ωbr = 25 s−1 ωbr = 25 s−1 �br = 10 s−1 �br = 10 s−1

Fig. 5 (Color figure online) The fraction εmc of error caused by mis-charged tRNA is plotted in 3D against
the rejection factorsR′′ andR′′′ of the near-cognate and non-cognate tRNAs, respectively. The parameters
ω′′

r2 and ω′′′
r2 have been varied from 0 to 50 s−1 keeping the values of all the other parameters fixed at those

listed in Table1

plot with the increasing number of competing substrates. For plotting all the remaining
graphs, we have used the parameter values as given in the Table1.

The two-dimensional plots of the error fractions εmc and εmr against the rejection
factorsR′′ andR′′′ are shown in Figs. 5 and 6, respectively. Both show how the error
fraction εmr decreases, while the fraction εmc increases with increasing R′′ and R′′′.
The total mis-sense error can also decrease because, under favorable conditions, the
increase of Emc with R′′ is more than compensated by the simultaneous decrease of
Emr, as shown in Fig. 7.

One of the main results reported above is the analytical expression for the average
rate of translation, as given byEq.20, in the steady state. This average rate is the inverse
of themean time of dwell of a ribosome at successive codons (Sharma and Chowdhury
2011a) in the stochastic model reported in this paper. Ideally, for any such stochastic
model of translational kinetics it is desirable to derive the full probability density for
the dwell times of a ribosome. Therefore, we now give an outline of our derivation of
the probability density f (t) of the dwell times of a ribosome in our model.
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Fig. 6 (Color figure online) Same as in Fig. 5, except that the fraction εmr of error caused by mis-reading
of mRNA is plotted against R′′ andR′′′

Fig. 7 (Color figure online) The errors Emc, Emr and E are plotted against the rejection factor R′′ for a
fixed value ofR′′′ The parameter ω′′

r2 has been varied from 0 to 25 s−1 keeping the values of all the other
parameters fixed at those listed in Table1

In order to simplify our calculations, following the trick used in Sharma andChowd-
hury (2011a), we assume that the ribosome makes a transition to a hypothetical state
1̃ at the ( j + 1)-th codon, after reaching the chemical state 5 or 5∗ at the j-th codon.
It then relaxes to the chemical state 1 at the same codon j + 1 at a rate δ. We can
recover our original model by taking δ → ∞. The probability of finding the ribosome
in this hypothetical state is denoted by P̃1( j + 1, t). Now, we define the dwell time of
the ribosome at a particular codon, say the j-th, by the time taken by the ribosome to
reach state 1̃ at the ( j + 1)-th codon, starting from the state 1 at the j-th codon. The
master equations governing the time evolution of the probabilities, the normalization
condition as well as the initial conditions for the set of master equations are given
in Appendix C. The probability of incorporation of one amino acid to the growing
polypeptide in the time interval between t and t + �t is f (t)�t where f (t) is given
by Sharma and Chowdhury (2011a)

f (t) = �P̃1(t)

�t
= ωh2P5(t) + �h2P∗

5 (t). (24)

Since Pμ(t) are time-dependent solutions under the specific initial condition men-
tioned above, we cannot use the steady-state (i.e., time-independent) solutions derived
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Fig. 8 (Color figure online) The probability density of dwell times is plotted for four different values of
ωa keeping all the other parameters fixed at the values listed in Table1. The lines have been obtained by
inverse Laplace transform of analytically derived expressions in Laplace space for the specific parameter
values listed in Table1 (see the text for details). The data obtained from the alternative direct numerical
solution of the master equations (see the text for details) have been plotted using discrete symbols

in Appendix A. Instead, we adopted two alternative approaches for finding the proba-
bility density f (t). In the first, which is essentially an analytical approach, we found
f (t) by the use of a standard technique (Sharma and Chowdhury 2011a) based on
Laplace transform. However, the analytical expressions of P5(s) and P∗

5 (s) in the
Laplace space are too long (covering several pages) to be reproduced here. Therefore,
instead, we have substituted the numerical values of the parameters listed in Table1
and, then, carried out the inverse Laplace transform that involved finding the roots of
a 5th degree polynomial which were calculated numerically. The four curves plotted
graphically (by lines) in Fig. 8 have been obtained by repeating this procedure for
four different values of ωa . In the second approach, for the given initial condition, we
numerically solved the master equations given in Appendix C (which are essentially a
set of coupled ordinary differential equations) by a standard ODE solver in MATLAB
and hence obtained f (t) by substituting P5(t) and P∗

5 (t) into (24). These numerical
results for f (t) are plotted in Fig. 8 by discrete symbols. Results obtained by the two
methods are in excellent agreement with each other.

As ωa increases the probability density f (t) becomes sharper. This trend of vari-
ation of the width of the distribution is consistent with the intuitive expectation that
fluctuations in the dwell time, caused by the low concentration of tRNA,would become
stronger with the decrease of ωa which is directly proportional to [tRNA]c1. To quan-
tify the relative strength of the fluctuation and mean of the dwell times, we have
computed the numerical values of the randomness parameter, defined as

r = 〈t2〉 − 〈t〉2
〈t〉2 , (25)

for the four curves plotted in Fig. 8; these data are presented in Table2.
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Table 2 The numerical values
of the randomness parameter
r = (〈t2〉 − 〈t〉2)/〈t〉2 for the
four curves plotted in Fig. 8

ωa (s−1) Randomness parameter (r )

0.1 0.434293

10.0 0.392075

25.0 0.371798

50.0 0.363056

Fig. 9 (Color figure online) A mRNA template with a homogeneous (poly-U) coding sequence and the
corresponding sequence of amino acids (Phe) are shown to propose an experimental test of our theoretical
predictions (see the text for details)

Naturally occurring mRNA templates in living cells consist of a heterogeneous
sequence of nucleotides and, consequently, not all the codons are identical, in general.
This feature of real mRNA templates can be captured in our theoretical model by
assigning to each of rate constant different numerical values for translating different
codons. However, only numerical results can be obtained in such cases. But, in order
to derive the results analytically (in terms of closed form mathematical formulae), in
this paper, we have considered the special case where the numerical values of each
rate constant is independent of the type of the codon.

Wenowpropose an in vitro experimental setup for testing our theoretical predictions
reported in this paper. A sequence homogeneousmRNA template (for example, a poly-
U, as shown schematically in Fig. 9) would be ideally suited for this purpose. Such
templates are used routinely for in vitro experiments (Uemura et al. 2010). The coding
sequence in such a mRNA template that is actually translated consists of Nc number of
identical codons UUU; in the poly-U template of Fig. 9, Nc = 6. The coding sequence
is preceded by a normal start codon (AUG) and is followed by a stop codon (UAA).
The untranslated region (UTR) upstream from the start codon is required not only for
assembling the ribosome from its subunits but also for stabilizing the pre-initiation
complex. At the 3′-end, the stop codon is followed by a sequence of noncoding codons
UUU; this region merely ensures the absence of any ‘edge effect’, i.e., the translation
is not affected when the ribosome approaches the 3′-end of the codon sequence.

The optical method proposed here exploits labeling of the four species of tRNA
molecules by four different fluorescent dyes of four distinct colors. Each UUU codon
codes for the amino acid phenylalanine (abbreviated Phe or F). Targeted (site specific)
mutation at the editing site of the aa-tRNA synthetase would produce a defective
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variant of the enzymewhose editing mechanism has been disabled. The cognate tRNA
molecules labeled by red fluorescent dye should be charged with amino acid Phe by
the wild-type aa-tRNA synthetase. In contrast, the cognate tRNA molecules labeled
by green fluorescent dye should be separately charged with some amino acid other
than Phe by the mutated aa-tRNA synthetase. Although the latter charging reaction is
expected to proceed at a much slower rate than the former, yield can still be significant
if the concentration of the amino acid substrate is sufficiently high. Thus, red and green
fluorescence would signal correctly charged and mis-charged cognate tRNA species,
respectively.

A good choice for the corresponding near-cognate tRNA would be tRNALeu
because it is cognate for the codon CUU which codes for leucine (abbreviated L).
The correctly charged near-cognate tRNA can be labeled by orange dye while the
non-cognate tRNA can be labeled by yellow dye. The color of the fluorescence pulse
identifies the monomer species that elongates the polypeptide by one unit; monitoring
the colors of the fluorescence pulses, one would get an estimate of mis-sense error
arising separately from mis-charging of tRNA and mis-reading of mRNA. Moreover,
the time interval between the arrival of the successive aa-tRNA molecules provides
an estimate of the dwell times of the ribosome. Usually, the coding sequence of such
poly-U mRNA strands is quite short. Therefore, for collecting enough data to extract
the DDT, the experiment has to be repeated sufficiently large number of times.

4 Summary and Conclusion

In this paper, we have developed a theoretical model that includes both the effects
of mis-charging of tRNA and mis-reading of mRNA during the elongation cycle of
gene translation. It also allows explicit distinction between (i) correctly charged cog-
nate tRNA, (ii) incorrectly charged cognate tRNA, (iii) correctly charged near-cognate
tRNA, and (iv) correctly charged non-cognate tRNA. For each of the four species, the
master equations capture only the essential steps of the elongation cycle. From these
equations, we obtain the distribution of the dwell times of the ribosome at succes-
sive codons which is identical to the distribution of the times taken to incorporate the
successive amino acids in the growing protein. From the steady-state solutions of the
master equations, we also derive exact analytical formulae (10)–(15) that character-
ize various aspects of the erroneous protein polymerization process, particularly the
average speed and fidelity of polymerization. The average speed of the ribosome, i.e.,
the average rate (20) of elongation of the protein, is an interesting generalization of
the Michaelis–Menten equation that governs the average rate of a very simple enzy-
matic reaction. Some important implications of the analytical results reported here
have been emphasized by plotting the results graphically. In particular, the plots show
how with increasing rates of rejection of the near-cognate and non-cognate tRNAs the
relative contribution of the mis-charged cognate tRNAs to the overall mis-sense error
increases.

Most of the experimental works on mis-reading error have been carried out for
bacteria. So far as the eukaryotes are concerned, a comprehensive analysis of transla-
tional mis-reading error in budding yeast has been reported by Kramer et al. (2010).
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Mis-charging of tRNA and the failure of the editing mechanisms have been investi-
gated separately for a long time (Ling et al. 2009; Yadavalli and Ibba 2012). However,
to our knowledge, the relative contribution of mis-charging error to the overall mis-
sense error has not been measured quantitatively in any experiment on translational
kinetics. It is worth pointing out that a mis-charging error is not always detrimental
for biological function of a cell and are believed to play some regulatory roles under
special conditions (Pan 2013; de Pouplana et al. 2014; Ruan et al. 2008; Fan et al.
2015).

The dependence of the frequencies of mis-reading error on the codon usage and
tRNA concentration have been investigated extensively in the past (Garai et al. 2009;
Fluitt et al. 2007; Zouridis andHatzimanikatis 2008; Basu and Chowdhury 2007; Shah
and Gilchrist 2010; Rudorf and Lipowsky 2015); typical frequencies of mis-reading
error can be as high as 1 in 103 (Kramer and Farabaugh 2007). But, to our knowledge,
mis-charging has not been incorporated so far in any mathematical model of kinetics
of translation because under normal circumstances mis-charging error is as low as 1
in 105 (or even lower). But, when subjected to various types of stress, at least ten
fold increase in mis-charging has been observed (Netzer 2010). The model and the
analytical formulae derived here will be useful in analyzing the data collected in future
experiments that might be performed for investigation of the same phenomenon.

Next, we point out some features of the model that should be reflected in the exper-
imental set up which may, in near future, be analyzed with the analytical formulae
reported in this paper. For a natural mRNAmolecule, because of its sequence inhomo-
geneity, the identity of the cognate tRNA keeps changing from one codon to another.
On the other hand, the rate constants in our mathematical derivation is based on the
assumption that the rates are independent of the position of the ribosome, i.e., inde-
pendent of the identity of the codons. Thus, the sequence heterogeneity of natural
mRNA molecules make those unsuitable for direct comparison with the analytical
formulae reported here. Nevertheless, the model can be simply extended by assigning
codon-dependent rate constants; but, in that case the results cannot be derived analyt-
ically (with closed form mathematical expressions) although all the quantities can be
evaluated numerically. Since no experimental data for direct comparison is available
at present, we have not carried out numerical study of the sequence-dependent model.

As an alternative to sequence inhomogeneous real mRNA, a synthetic mRNA with
homogeneous sequence can be used to directly test the validity of our analytical
formulae reported here. For example, poly-U, along with the necessary start-, stop
codons and untranslated region (UTR) upstream from the start codon (Sharma and
Chowdhury 2011a) could be a good candidate for this purpose. For any study of
mis-sense error, the tRNA species which contribute the successive amino acids of the
growing protein have to be identified. Fluorescence-based optical techniques (Uemura
et al. 2010; Chen and Tsai 2012) seem to be ideally suited for this purpose. The model
will have to be extended in future also to incorporate the effects of microenvironment,
cell cycle phase, etc. on translation.We hope that the relative quantitative contributions
of mis-charging of tRNA and mis-reading of mRNA will be measured experimentally
in near future and the analytical formulae derived here will find use in analyzing the
experimental data. The experimental data will also guide extension of the model to
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make it more realistic by capturing features that are missing from the simple version
reported in this paper.
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Appendix A: Master Equations and Steady-State Probabilities

The master equations governing the time evolution of the probabilities can be written
as:

dP1(t)

dt
= − (

ωa + ω′
a + ω′′

a + ω′′′
a

)
P1(t)

+ωr1P2(t) + ω′
r1P ′

2(t) + ω′′
r1P ′′

2 (t)

+ω′′′
r1P ′′′

2 (t) + ωr2P3(t) + ω′
r2P ′

3(t)

+ω′′
r2P ′′

3 (t) + ω′′′
r2P ′′′

3 (t)

+ωh2P5(t) + �h2P∗
5 (t)

dP2(t)

dt
= ωa P1(t) − (ωr1 + ωh1) P2(t)

dP3(t)

dt
= ωh1P2(t) − (

ωp + ωr2
)

P3(t)

dP4(t)

dt
= ωp P3(t) + ω′

p P ′
3(t) + ωbr P5(t) − ωb f P4(t)

dP5(t)

dt
= ωb f P4(t) − (ωh2 + ωbr ) P5(t)

dP ′
2(t)

dt
= ω′

a P1(t) − (
ω′

r1 + ω′
h1

)
P ′
2(t)

dP ′
3(t)

dt
= ω′

h1P ′
2(t) −

(
ω′

r2 + ω′
p

)
P ′
3(t)

dP ′′
2 (t)

dt
= ω′′

a P1(t) − (
ω′′

r1 + ω′′
h1

)
P ′′
2 (t)

dP ′′
3 (t)

dt
= ω′′

h1P ′′
2 (t) − (

�p + ω′′
r2

)
P ′′
3 (t)

dP ′′′
2 (t)

dt
= ω′′′

a P1(t) − (
ω′′′

h1 + ω′′′
r1

)
P ′′′
2 (t)

dP ′′′
3 (t)

dt
= ω′′′

h1P ′′′
2 (t) −

(
�′

p + ω′′′
r2

)
P ′′′
3 (t)

dP∗
4 (t)

dt
= �p P ′′

3 (t) + �br P∗
5 (t) + �′

p P ′′′
3 (t) − �b f P∗

4 (t)
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dP∗
5 (t)

dt
= �b f P∗

4 (t) − (�br + �h2) P∗
5 (t) (26)

with the normalization condition

P1(t) + P2(t) + P3(t) + P4(t) + P5(t) + P ′
2(t) + P ′

3(t) + P ′′
2 (t) + P ′′

3 (t)

+P ′′′
2 (t) + P ′′′

3 (t) + P∗
4 (t) + P∗

5 (t) = 1. (27)

The steady-state solutions Pμ of equations (26) are given by

P1 = 1

X1
(28)

where

X1 = A

[
1

ωh1

(
1 + ωr2

ωp

)
+ 1

ωp
+ 1

ωb f

(
1 + ωbr

ωh2

)
+ 1

ωh2

]

+ B

[
1

ω′
h1

(
1 + ω′

r2

ω′
p

)
+ 1

ω′
p

+ 1

ωb f

(
1 + ωbr

ωh2

)
+ 1

ωh2

]

+ C

[
1

ω′′
h1

(
1 + ω′′

r2

�p

)
+ 1

�p
+ 1

�b f

(
1 + �br

�h2

)
+ 1

�h2

]

+ D

[
1

ω′′′
h1

(
1 + ω′′′

r2

�′
p

)
+ 1

�′
p

+ 1

�b f

(
1 + �br

�h2

)
+ 1

�h2

]

P2 = A

[
1

ωh1

(
1 + ωr2

ωp

)]
P1 (29)

P3 = A

[
1

ωp

]
P1 (30)

P4 = (A + B)

[
1

ωb f

(
1 + ωbr

ωh2

)]
P1 (31)

P5 = (A + B)

[
1

ωh2

]
P1 (32)

P ′
2 = B

[
1

ω′
h1

(
1 + ω′

r2

ω′
p

)]
P1 (33)

P ′
3 = B

[
1

ω′
p

]
P1 (34)

P ′′
2 = C

[
1

ω′′
h1

(
1 + ω′′

r2

�p

)]
P1 (35)

P ′′
3 = C

[
1

�p

]
P1 (36)

P ′′′
2 = D

[
1

ω′′′
h1

(
1 + ω′′′

r2

�′
p

)]
P1 (37)
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P ′′′
3 = D

[
1

�′
p

]
P1 (38)

P∗
4 = (C + D)

[
1

�b f

(
1 + �br

�h2

)]
P1 (39)

P∗
5 = (C + D)

[
1

�h2

]
P1 (40)

Appendix B: Intuitive Derivation of the Expression for Average Rate of
Translation

Following Cleland’s approach Cleland (1975) for replacing complex network of bio-
chemical pathways by a simpler equivalent network and deriving the effective rates
of the transitions of that network, we derive the expression for the average velocity of
the ribosome in our model. To illustrate the method, we consider a simpler reaction

X
k1�

k−1
Y

k2→ Z

The effective rate constant, k′
1, for X

k′
1−→ Y, is given by

k′
1 = k1k2

k−1 + k2

The same treatment can be applied to our model.
Let us first assume that only correctly charged cognate tRNAs are present (i.e.,

assuming that mis-charged cognate, near-cognate and non-cognate tRNAs are absent
in the surrounding). For the five consecutive steps of the cycle, we denote the transit
times by T1, T2, T3, T4 and T5, respectively. It is straightforward to see that

T1 = 1

ωa

(
1 + ωr1

ωh1

)(
1 + ωr2

ωp

)
= 1

A
(41)

T2 = 1

ωh1

(
1 + ωr2

ωp

)
(42)

T3 = 1

ωp
(43)

T4 = 1

ωb f

(
1 + ωbr

ωh2

)
(44)

T5 = 1

ωh2
(45)

Therefore, for the above cycle, i.e., when only correctly charged cognate tRNA
molecules are present in the surrounding, the average velocity of the ribosome would
be
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1

Vc1
= Tc1 = T1 + T2 + T3 + T4 + T5 (46)

Similarly, for the other three cycles we can specify the transit times in a similar man-
ner. For mis-charged cognate tRNA, the corresponding symbols are T ′

1, T ′
2, T ′

3, T ′
4, T ′

5,
respectively, while for near-cognate tRNA, ths symbols are T ′′

1 , T ′′
2 , T ′′

3 , T ′′
4 , T ′′

5 ,
respectively. For non-cognate tRNA, we have T ′′′

1 , T ′′′
2 , T ′′′

3 , T ′′′
4 , T ′′′

5 , respectively.
Next, let us consider the general case when all the four different substrates are

present in the surrounding; the kinetics of the system is described by full model
shown in Fig. 3. The transit times are analogous to resistances in electrical circuits,
which means that for a series of reaction, the transit times are additive and for parallel
reaction pathways, the reciprocals of the transit times are additive. Hence, the average
velocity for the complete model is

1

Vtot
= Ttot = A

A + B + C + D

(
T1,eff + T2 + T3 + T4 + T5

)
(47)

+ B

A + B + C + D

(
T1,eff + T ′

2 + T ′
3 + T ′

4 + T ′
5

)
(48)

+ C

A + B + C + D

(
T1,eff + T ′′

2 + T ′′
3 + T ′′

4 + T ′′
5

)
(49)

+ D

A + B + C + D

(
T1,eff + T ′′′

2 + T ′′′
3 + T ′′′

4 + T ′′′
5

)
(50)

where

1

T1,eff
= 1

T1
+ 1

T ′
1

+ 1

T ′′
1

+ 1

T ′′′
1

≡ A + B + C + D (51)

AppendixC:MasterEquations andDerivation ofDwellTimeDistribution

The master equations governing the time evolution of the probabilities are identical
to those given in Appendix A, except for the following:

dP1(t)

dt
= − (

ωa + ω′
a + ω′′

a + ω′′′
a

)
P1(t)

+ωr1P2(t) + ω′
r1P ′

2(t) + ω′′
r1P ′′

2 (t)

+ω′′′
r1P ′′′

2 (t) + ωr2P3(t) + ω′
r2P ′

3(t)

+ω′′
r2P ′′

3 (t) + ω′′′
r2P ′′′

3 (t)

d P̃1(t)

dt
= ωh2P5(t) + �h2P∗

5 (t) (52)
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and the normalization condition becomes

P1(t) + P2(t) + P3(t) + P4(t) + P5(t) + P ′
2(t) + P ′

3(t) + P ′′
2 (t) + P ′′

3 (t)

+P ′′′
2 (t) + P ′′′

3 (t) + P∗
4 (t) + P∗

5 (t) + P̃1(t) = 1. (53)

Here, we take the initial conditions to be P1(0) = 1, and P2(0) = P3(0) = P4(0) =
P5(0) = P ′

2(0) = P ′
3(0) = P ′′

2 (0) = P ′′
3 (0) = P ′′′

2 (0) = P ′′′
3 (0) = P∗

4 (0) =
P∗
5 (0) = P̃1(0) = 0.
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