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Abstract In this work, we present a pedagogical tumour growth example, in which
we apply calibration and validation techniques to an uncertain, Gompertzian model
of tumour spheroid growth. The key contribution of this article is the discussion and
application of these methods (that are not commonly employed in the field of cancer
modelling) in the context of a simple model, whose deterministic analogue is widely
known within the community. In the course of the example, we calibrate the model
against experimental data that are subject to measurement errors, and then validate the
resulting uncertain model predictions. We then analyse the sensitivity of the model
predictions to the underlying measurement model. Finally, we propose an elementary
learning approach for tuning a threshold parameter in the validation procedure in order
to maximize predictive accuracy of our validated model.

Keywords Bayesian calibration · Tumour growth · Model validation

1 Introduction

The treatment of cancer represents a significant challenge in modern health care and
has given cause for the development of numerous mathematical and computational

Joe Collis and Anthony J. Connor have contributed equally to this work

B Joe Collis
Joe.Collis@nottingham.ac.uk

1 School of Mathematical Sciences, University of Nottingham, Nottingham, UK

2 Mathematical Institute, University of Oxford, Oxford, UK

3 Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, UK

4 Department of Computer Science, University of Oxford, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-017-0258-5&domain=pdf
http://orcid.org/0000-0001-8715-2813


940 J. Collis et al.

models of tumour growth and invasion over many decades. As our level of scientific
understanding increases and we have access to ever greater computational power, we
are able to create increasingly realistic mathematical models of biological phenomena
and to compute numerical approximations of model solutions with greater accuracy.
It is therefore natural to consider the transfer of mathematical and computational
models from a purely theoretical, informative or qualitative setting to the clinic, as
a possible means of guiding patient therapy via prediction (Savage 2012; Gammon
2012; Yankeelov et al. 2013). However, if we wish to make clinically relevant, patient-
specific predictions, it is of vital importance that these predictions are made in a safe
and reliable manner.

Output from computational models differs from physical observations for a multi-
tude of reasons. For instance, as parameter values are often inferred from experimental
data, there is uncertainty associated with their values, and often solutions to systems
of equations are subject to numerical errors associated with their discretization. Per-
haps most fundamentally, however, mathematical models are abstractions of reality,
necessarily simplifying or omitting phenomena and, as such, even exact solutions
obtained from precise data may yield non-physical results. In order for computational
model outputs to be viewed as sufficiently reliable for safety–critical applications,
such as predictive treatment planning, any parametric or structural uncertainties must
be quantified, as well as any inaccuracies resulting from numerical approximation.

There has been much recent work from the engineering and physical sciences com-
munities surrounding the development of techniques for assessing the credibility of
quantitative computational model predictions in safety critical applications. This field
is often referred to as verification, validation and uncertainty quantification (VVUQ),
and provides a formalism, techniques and best practices for assessing the reliability of
complex model predictions (Oberkampf et al. 2004; Oden et al. 2010a, b; NRC 2012;
Oberkampf and Roy 2010; Roache 2009). The growing importance of VVUQ in engi-
neering and the physical sciences is highlighted by the extensive guidelines and stan-
dards for verification and validation in solid mechanics, fluid dynamics and heat trans-
fer produced by the American Society of Mechanical Engineers (ASME 2006, 2009,
2012). Furthermore, the US National Research Council (NRC) recently published an
extensive report on VVUQ (NRC 2012) which, in addition to providing an extensive
review of the literature with informative examples, highlights the importance of train-
ing young scientists in VVUQ as a field of importance in the twenty-first century. The
primary purpose of this article is to serve as a pedagogical tool for members of the
(continuummechanics) cancer modelling community, introducing a range of concepts
and techniques from the field of VVUQ for a simple and familiar biological example,
in a manner similar to that adopted in Aguilar et al. (2015) and Allmaras et al. (2013).

Following the terminology set out in NRC (2012), we refer here to verification as
‘the process of determining how accurately a computer program correctly solves the
equations set out in themathematical model’, validation as ‘the process of determining
the degree to which a model is an accurate representation of the real world from the
perspective of the real-world uses of the model’ and uncertainty quantification as ‘the
process of quantifying uncertainties associated with model calculation of true physical
quantities of interest’. Furthermore, we refer here to calibration as the process of
inferring the values ofmodel parameters from indirect measurements. In the context of
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predictions of tumour growth and invasion, these techniques provide us with a means
of quantifying the robustness of our calibrated model predictions against empirical
data, subject to measurement errors, and deficiencies in our biological understanding
(manifested in an inherently incorrect description due to our mathematical model).

The application of validation and uncertainty quantification techniques in the math-
ematical modelling of solid tumour growth is currently limited. In Hawkins-Daarud
et al. (2013), the authors set out a Bayesian framework for calibration and validation
based on that described in Babuška et al. (2008) in a computational engineering con-
text. However, the authors consider synthetic data as opposed to in vitro or in vivo
experimental data. InAchilleos et al. (2013, 2014), a stochasticmixturemodel updated
in a Bayesian manner is introduced and its tumour-specific predictions are validated
against experimental data from amousemodel. In other areas ofmathematical biology,
VVUQ techniques are gaining recognition, e.g. in cardiac modelling (Pathmanathan
and Gray 2013).

In order to make suitably accurate and reliable predictions, we are required to
estimate parameter values, such as reaction rates and diffusion coefficients. Often, it is
impossible to measure these parameters directly; they must be inferred. The classical,
deterministic approach is to find the single set of parameter values that among all
possible parameter choices best matches the observed data, in some appropriate sense.
There are many available methods for determining this set; however, any approach
that yields a single choice does not fully account for any uncertainty in the empirical
data, nor any possible uncertainty regarding the mathematical model (Allmaras et al.
2013), and as such, does not account for uncertainty in the estimated parameters. Here,
we consider a statistical (Bayesian) approach to parameter estimation to determine a
probability density function (pdf) for the parameters, that updates anyprior information
we have regarding the parameters by incorporating new information obtained from
the observed data. In this setting, our model predictions are no longer the solution of a
deterministic mathematical model, but rather a description of the random variable, or
randomfield, that is a solution of the underlying stochasticmodel.We refer toAllmaras
et al. (2013), Aguilar et al. (2015), Kaipio and Somersalo (2006) and Tarantola (2005)
for a more thorough discussion regarding Bayesian model calibration. We remark that
it is also possible to infer information regarding parameter uncertainty in the classical
inference setting, though we consider here the Bayesian approach only.

Once the model is suitably calibrated, we validate its performance by consider-
ing various behaviours and responses. Firstly, the model must reproduce observed
behaviour of the physical system for appropriate parameter values; we refer to Gel-
man et al. (2014a) for a thorough description of a range of checks for model fit in a
Bayesian framework. Moreover, the output of the model must be robust to perturba-
tions that are likely in the context of the intended use of themodel. Such validationmay
simply involve direct comparison between model results and physical measurements.
However, for complex models a sophisticated statistical approach may be required,
combining hierarchical models1 and multiple sources of physical data with subjective
expert judgment.

1 That is, we model observable outcomes conditionally on parameters which themselves are given a prob-
abilistic description in terms of further parameters known as hyperparameters.
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In this article, we embark upon a process ofmodel calibration and validation against
in vitro experimental data, quantifying uncertainties in our model predictions and
assessing the robustness of our modelling assumptions for a Gompertzian model of
tumour spheroid growth (Gompertz 1825; Laird 1964). We adopt a similar procedure
for prediction validation as set out in Hawkins-Daarud et al. (2013). However, we
consider additional posterior predictive checks for our model, as described in Gelman
et al. (2014a), and further assess the sensitivity of our predictions to assumptions
in our statistical model. The primary contribution of this work is to demonstrate the
application of existing VVUQ techniques to amathematically simple model of tumour
growth bymeans of an educational example. The simplicity of the Gompertzianmodel
permits us to neglect any issues surrounding spatial and temporal discretizations,
and focus solely on practical issues regarding the statistical approach adopted, in a
similar manner to that in Allmaras et al. (2013) and Aguilar et al. (2015). While the
computations presented here are not directly applicable to the clinic, over the longer
term the statistical techniques discussed here could form the basis of a robust means
of assessing quantitative model predictions for clinical applications based on in vivo
data, potentially involving significantly more complex models.

The remainder of this article is organized as follows: in Sect. 2, we introduce the
underlying model of tumour growth, describe the procedure used for collecting the
experimental data and specify the quantity of interest we wish to predict. In Sect.
3, we introduce the Bayesian framework and describe the computational techniques
employed to determine the joint pdf for the parameters in the model. We assess how
well our predictive model fits to the data employed in the calibration in Sect. 4, and in
Sect. 5 we assess the extrapolative predictive capability of our calibratedmodel against
a validation data set. In Sect. 6, we assess the robustness of our predictions against
assumptions in our statistical model, and in Sect. 7 we consider the application of the
techniques set out in the previous sections to multiple experiments. To conclude this
article, we depart from the pedagogical example of the previous sections to discuss
extensions to clinically relevant predictions in Sect. 8, and finally, in Sect. 9 we draw
conclusions about the work presented in this article, and highlight ongoing and future
work.

2 Problem Description

In this section, we formally describe the biological modelling problem under consid-
eration, with minimal reference to the statistical framework employed in subsequent
sections. To this end, we first set out the mathematical model for tumour spheroid
growth considered in the remainder of this article. We then specify details of the
experimental data available for the proceeding analysis and describe the calculation of
an approximate error in the measurements. Finally, we define the quantity of interest
(QoI) we wish to predict using our calibrated mathematical model.

2.1 Tumour Growth Model

In this work, we consider a Gompertzian model of tumour spheroid growth (Gompertz
1825; Laird 1964), in which the tumour volume V at time t is given by
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Fig. 1 (Color figure online) Exemplar images of a tumour spheroid. a Raw image. b Boundary of the
spheroid obtained using image segmentation software superimposed on the raw image

V (t) = K exp

(
log

(
V0
K

)
exp (−αt)

)
, (1)

where V0 denotes the initial tumour volume at t = 0, K denotes the carrying capacity
(the maximal tumour size for nutrient-limited growth) and α denotes a growth rate
related to the proliferative ability of the cells. In the deterministic setting, each of the
parameters, V0, K andα, takes a single constant value for a given data set, whereas here
in the uncertain setting, we view each one as a random variable V0, K , α : Ω → R

+,
where Ω denotes a suitable sample space. Under this assumption, we note that the
tumour volume V (t) is also a random variable.

2.2 Experimental Data

Two-dimensional images of a tumour spheroid were captured at 14 time points over a
period of 28 days. The times at which the measurements were taken are given in Table
6 in Appendix. The resultant images were analysed using SpheroidSizer (Chen et al.
2014). In particular, the length of the major and minor axes of the spheroid, denoted
�1 and �2, respectively, were identified. Figure 1 shows a representative image of a
tumour spheroid, and a processed image inwhich the boundary of the tumour is shown.

2.2.1 Partioning into Subsets

In Hawkins-Daarud et al. (2013), the notion of calibration and validation data sets
are discussed. The calibration set is employed in the calibration of the model and the
validation set is utilized to validate the calibratedmodel.We adopt this same procedure
here and define two sets SC and SV corresponding to calibration and validation data,
respectively. For demonstrative purposes, however, we additionally reserve the data
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associated with the final time point for a final predictive check. Ordinarily, all data
would be employed in calibration and validation.We depart from this approach here in
order to demonstrate whether our model predictions coincide with the value measured
in experiment, to make the tutorial more informative. The precise selection of the
calibration and validation data employed in this study, along with the rationale behind
their selection, is discussed in greater detail in Sect. 3.2.3.

2.2.2 Volume Calculation

In order to estimate the true length of the major and minor axes, we must calibrate
the image scale, i.e. we must establish the physical dimensions of a single pixel in
an image obtained from the microscope. To perform this calibration, we place a rule
of length 100μm under the microscope and count how many pixels extend along its
length. In our experimental configuration, 100μm corresponds to 40 pixels; thus, the
scale of each image is calculated as s = 2.5μm per pixel. We estimate the volume of
the spheroid by assuming that the length of the third axis, �3, is given by the geometric
mean of �1 and �2, i.e. �3 = √

�1�2. The volume of the spheroid is then estimated by

V = π

6
�1�2�3 ≡ π

6
(�1�2)

3/2 . (2)

2.2.3 Measurement Error Model

The volume measurements introduced in the previous section are subject to exper-
imental noise. We assume that this noise is independently and normally distributed
with a mean of zero and a standard deviation of σV . To estimate σV we approximate
the error introduced at each of the image processing steps:

1. Image scale calibration The first point at which we may introduce an error into
our calculation is in the estimation of the scale, s. Assuming we count n pixels
(accurate to the nearest pixel), then the potential error in n is given by

σn = 0.5. (3)

This results in a potential error in the calculation of s, denoted σs , given by

σs =
∣∣∣∣ ∂s∂n

∣∣∣∣ σn = 100

n2
σn = 0.03125µm per pixel. (4)

2. Measurement ofmajor andminor axesWeassume that the automated segmentation
procedure adopted by SpheroidSizer identifies the tumour boundary accurate to
the nearest pixel. The length of the major and minor axes in units of pixels, d1 and
d2, respectively, are then subject to a potential error of σd1,2 = √

2. The error in
�1,2 (= s · d1,2) is then given by:

σ�1,2 =
√
d21,2σ

2
s + s2σ 2

d1,2
. (5)
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Fig. 2 A plot showing the experimental tumour volume data at times t1, . . . , t14, with error bars corre-
sponding to ±2σV where σV is defined by (6)

3. Inference of the length of the third axis We assume that the true value of �3 , �∗
3,

is subject to an error, ξ , i.e. �∗
3 = √

�1�2 + ξ . We assume that this error has zero
mean and standard deviation σ�3 ≈ (�1−�2)

2 .

The above errors are combined using conventional error propagation to obtain the
following estimate for σV :

σV =
√(

∂V

∂�1

)2

σ 2
�1

+
(

∂V

∂�2

)2

σ 2
�2

+
(

∂V

∂�3

)2

σ 2
�3

. (6)

Figure 2 shows the spheroid volume at {t1, . . . , t14} as described above, with error
bars corresponding to ±2σV .

2.3 Predictive Quantity of Interest

The process of validation and uncertainty quantification is applicable only for a spec-
ified QoI; acceptable predictive model performance for one particular QoI does not
necessarily imply acceptable performance for all possible QoI. In particular, here we
select a QoI that is of practical relevance to the real world applications of the model.
In this study, we consider the tumour volume at t14 as our predictive QoI because, in
clinical applications of these techniques, it is likely that a QoI such as tumour volume
at a given time may be employed as a proxy for patient prognosis. Recalling the dis-
cussion in Sect. 2.2.1, for illustrative purposes in the context of the tutorial nature of
this article, we withhold the data obtained at t14 from all calibration processes so that
we may compare our model prediction to experimental data.

We remark that typically, extrapolative predictions are more challenging than inter-
polative predictions. Intuitively, we see that the extrapolative case may introduce
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additional phenomena that are notwellmodelled, causing the prediction to have greater
errors than indicated by a poorly designed validation study. As such, when we come to
define our calibration and validation data sets, we adopt the best practice of validating
our calibrated model against data that is as close to our predictive scenario as possible.
We discuss the selection of calibration and validation data sets in greater detail in Sect.
3.2.3.

2.4 Overview of the Calibration and Validation Process

Now that the biological problem has been fully specified (i.e. the growthmodel, exper-
imental data and QoI), we can outline the process employed in subsequent sections
to predict the QoI and determine whether this prediction is not invalid. Algorithm 2.1
highlights the steps taken to perform model calibration and validation for our tumour
growth example.

Algorithm 2.1 Calibration and Validation Process
1: Specify the calibration and validation data denoted SC and SV , respectively.
2: Calibrate the model using the data SC following the procedure set out in Sect. 3.
3: Assess the ability of the model to reproduce the observed data SC following the procedure set out in

Sect. 4.
4: Compute the pdf for the QoI using the model calibrated using SC .
5: Calibrate the model using the data SV .
6: Assess the ability of the model calibrated using SV to reproduce the observed data SV .
7: Compute the pdf for the QoI using the model calibrated using SV .
8: Validate the prediction of the QoI made in 4. following the procedure set out in Sect. 5.

3 Model Calibration

In this section, we set out the Bayesian framework for model calibration. We then
describe the numerical algorithms used to calibrate our model, briefly discussing the
criteria we use to assess convergence of the algorithms. Finally, we apply these numer-
ical algorithms to calibrate the Gompertzian model given in (1) against a subset of the
experimental data described in Sect. 2.2.

3.1 Bayesian Calibration

We first recall that calibration refers to the process of inferring the values of model
parameters from indirect measurements. The basis of the Bayesian approach is to
enhance a subjective belief surrounding the probability of an event via the incor-
poration of experimental data. This process is inherently subjective and differs
fundamentally from the frequentist approach, by which probabilities are assigned
based on the frequency of their observations for large numbers of repeated experi-
ments under identical conditions. The subjective nature of probability in the Bayesian
framework provides a natural environment for assessing the chance of an event occur-
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ring when the concept of multiple repeated experiments under identical conditions
is flawed. For instance, in a purely frequentist approach it is difficult to define an
adequate notion of probability for patient mortality in a patient-specific model, as
there can be no notion of assessing multiple patients with truly identical conditions.
There are many examples in the literature of frequentist validation, e.g. Oberkampf
and Barone (2006); in this work, however, we adopt a Bayesian framework and discuss
the frequentist standpoint no further.

Before setting out the Bayesian method, we first introduce the relevant notation
and terminology, where possible following the approach in Gelman et al. (2014a). We
denote by θ a vector of unobserved quantities, and we denote by y = (y1, y2, . . . , yn)
the observed data. Further, we denote conditional and marginal pdfs by p(·|·) and
p(·), respectively. In the Gompertzian model of Sect. 2.1, θ corresponds to the model
parameters in (1), i.e. θ = (V0, K , α) and y corresponds to the volume of the tumour
spheroid obtained at the time points in the calibration data set SC .

The model predictions of observable outputs are related to the input parameters by

y = V(t; θ , e), (7)

where V and e denote the measured volume of the tumour spheroid and measurement
error, respectively. Given the parameter θ and measurement error e, V(t; θ , e) invokes
the solution of the forward problem and combination with the measurement error to
yield y, the observable variables. The relationship between the observable outputs, in
our case the volume of the spheroid, and model inputs at time t is then denoted by

y = V (t; θ) + e, (8)

where e denotes the error and the volume V (· ; ·) is equivalent to that defined in (1),
though now viewed as a function of t and θ = (V0, K , α), via a simplifying abuse of
notation. We note that there are also means of quantifying systematic discrepancies in
the mathematical model, in which the data are modelled as

y = V (t; θ) + δ(t) + e,

where δ(t) denotes a discrepancy function. This approachmay be suitable if we neglect
significant biological effects in our underlying mathematical model or if we incur
substantial discretization errors in the numerical approximation of PDE solutions. We
proceed here employing the former model, and, as such, do not consider systematic
model discrepancies explicitly. We refer to Kennedy and O’Hagan (2001), Higdon
et al. (2005) and Bayarri et al. (2007) for further details of these methodologies.

In order tomake probabilistic statements regarding θ and y, wemust introduce their
joint probability density function, pJOINT(θ, y). This joint density can be written as the
product of the prior distribution on θ , denoted pPRIOR(θ), which corresponds to our a
priori knowledge surrounding our model parameters, and the sampling distribution
pSAMPLE( y|θ), thus yielding
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pJOINT(θ , y) = pPRIOR(θ)pSAMPLE( y|θ). (9)

We may view pPRIOR(θ) as a summary of our subjective beliefs surrounding the
distribution of the parameters at the outset of the calibration, which we further enhance
via conditioning on observed experimental data. As such, we condition on y and
employBayes’ theorem to obtain the conditional probability assigned to the parameter,
referred to as the posterior density, that is given by

pPOST(θ | y) = pPRIOR(θ)pSAMPLE( y|θ)

pPRED
PRIOR( y)

, (10)

where pPRED
PRIOR( y) denotes the marginal distribution

pPRED
PRIOR( y) =

∫
pPRIOR(θ)pSAMPLE( y|θ) dθ , (11)

referred to as the prior predictive distribution. We consider the density pSAMPLE( y|θ) as
a function of θ rather than of y, and refer to it as the likelihood function. The likeli-
hood may then be interpreted as how ‘likely’ a parameter value is, given a particular
outcome. The prior predictive distribution corresponds to the marginal distribution for
the observable data obtained by averaging the likelihood over all possible parameter
values with respect to the prior density. As such, the posterior distribution then cor-
responds to the enhanced degree of belief obtained via incorporation of the observed
experimental data.

In order to make predictions regarding an unknown observable ỹ from the same
source as y, we define the posterior predictive distribution, denoted pPRED

POST ( ỹ| y), by

pPRED
POST ( ỹ| y) =

∫
pSAMPLE( ỹ|θ)pPOST(θ | y) dθ , (12)

That is, the posterior predictive distribution is the marginal distribution for new
data ỹ conditioned on the observed data y that we obtain by averaging the likelihood
over all possible parameter values with respect to the posterior density.We remark that
all integrals are to be understood as being over the full range of the variable, which
should be clear from context. Further discussion regarding these distributions may be
found in Gelman et al. (2014a) and the references therein.

3.2 Model Identifiability

A key consideration in model calibration is identifiability. A model is deemed iden-
tifiable if it is possible to uniquely determine the values of the unobservable model
parameters from the experimental data. Similarly, a model is non-identifiable if mul-
tiple parameterizations are observationally equivalent. Identifiability is of crucial
importance to the field of clinical predictions because if a model’s parameters are
not well constrained, the resulting predictions of that model may be subject to an
unacceptable degree of posterior uncertainty.
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Two types of non-identifiability are distinguishable:

Structural: in which the model structure precludes the identification of parameters
irrespective of the data (see, for example, Cobelli and DiStefano 1980);

Practical: in which the data is insufficient (either in terms of quality or quantity) to
identify the parameters.

While it is beyond the scope of this work either to discuss methods for determining
structural identifiability, or to provide a wider exposition of practical identifiability,
it is important to note that, given an amount of data of a certain quality, it is not
necessarily guaranteed that model parameters may be determined unambiguously.
Indeed it is often the case that experimental data are insufficient to calibrate even
modestly complex mathematical models of biological systems. We refer the reader to
Bellman and Åström (1970), Cobelli and DiStefano (1980)and Raue et al. (2009) for
further discussion.

3.2.1 Selection of Prior Distribution

We now specify the prior distribution of our parameters θ . The prior distribution
indicates the degree of belief in the values of the parameters before any measurements
are made. Where possible, the choice of prior should incorporate any quantitative
knowledge about the parameters, but may also incorporate subjective expert opinion.

We have no quantitative knowledge about the parameters, or additional expert opin-
ion, other than biologically appropriate bounds on their ranges. It is clear from our
biological understanding that V0, K and α are all greater than 0. Moreover, from
the data presented in Fig. 2 it is reasonable to suppose that V0 < 0.2mm3 and
K < 5.0mm3. In the light of these observations, and the fact we have no further
information regarding the parameter values, we take the marginal prior distribution of
each parameter to be uniform over the interval given in Table 1, implying that prior
distribution of θ is given by

θ ∼ U (0, 0.2) U (0.3, 5) U (0, 1), (13)

where U (a, b) denotes a uniform distribution over the interval (a, b). As pPRIOR(θ) is
a pdf, it must integrate to 1 and since each parameter is uniformly distributed it must

Table 1 Upper and lower
bounds on the parameter values
employed in specification of the
prior distribution

Parameter Unit Prior knowledge

Lower bound Upper bound

V0 mm3 0.0 0.2

K mm3 0.3 5.0

α s−1 0.0 1.0
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be constant. Therefore, pPRIOR(θ) satisfies

1 = pPRIOR

∫ 0.2

0

∫ 5

0.3

∫ 1

0
1 dθ , (14)

thus implying that pPRIOR(θ) is given by

pPRIOR(θ) = 1

0.94
. (15)

The boundswehave chosen for our parameters and assumption of flat priors lead to a
relatively uninformative prior distribution.As a consequence, the posterior distribution
will be determined primarily by the data, via the likelihood function described in Sect.
3.2.2. If, however, we had some additional knowledge regarding the parameters, we
could incorporate this into the prior distribution to (potentially) increase accuracy in
our predictions.

We note that our choice of prior is not the only reasonable choice. If, for instance, we
were less certain of the upper bound on the parameters, we could impose a half-normal
or half-Cauchy prior distribution. This would still impose the biologically motivated
positivity constraint on the parameters, but would be weakly informative in terms of
determining the posterior distribution. Further discussion on the choice of priors may
be found in, e.g. Gelman et al. (2014a); Simpson et al. (2014).

Finally, we highlight that in the clinical setting, patient-specific data may be sparse
due to the cost of imaging, etc. In this context, the use of informative priors would
provide a means of incorporating population data to potentially increase the accuracy
and reliability of a patient-specific computation, a point to which we return to in Sect.
8.

3.2.2 Selection of the Likelihood

We now specify the likelihood function for the parameter θ , given data y. In the
Bayesian framework, it is the likelihood function that determines how the underlying
biological model for the tumour volume given in Sect. 2.1 and the data, y (described
in Sect. 2.2), inform the posterior distribution.

We assume that the errors in the measurement of the tumour volume at each time
point are independent and that the processes determining the true volume are deter-
ministic. Furthermore, we assume that the experimental noise is normally distributed
about 0, with variance σV (t) (where σV (t) denotes σV defined in (6) evaluated at time
t). Under these assumptions, the likelihood is given by

pSAMPLE( y|θ) =
∏
i∈SC

1√
2πσ 2

V (ti )
exp

(
− (yi − V (ti ; θ))2

2σ 2
V (ti )

)
. (16)

In the framework described in Sect. 3.1, we require that the data are exchangeable.
It is clear that the data y are not themselves exchangeable. However, if we consider
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time as a covariate, then the set of pairs {(yi , ti )}14i=1 are exchangeable. We refer the
reader to Schervish (1995) for a more thorough discussion on exchangeability.

We have assumed the particular form of the likelihood given in (16) based on the
assumption of normally distributed measurement errors. However, this may prove
to be incorrect. As such, it is important to investigate the robustness of any model
predictions to this choice of likelihood, as this determines how the observed data
impact our calibrated model. We address this point further in Sect. 6.

3.2.3 Selection of the Calibration and Validation Sets

As discussed briefly in Sect. 2.2, we partition the data obtained at t1, . . . , t13 into two
sets, SC and SV , for calibration and validation, respectively. When specifying SC and
SV several factors must be born in mind:

1. SC should be sufficiently large and contain data of sufficient quality that the model
is practically identifiable. In the context of this study, if only data from early time
points are chosen (i.e. in the early nutrient-rich growth phase), it is possible that
the parameter K may be unidentifiable as this parameter determines the long time
behaviour of the system.

2. As with SC , SV should also be of sufficient size and quality to result in a practically
identifiable model.

3. In line with the hierarchy of data described in NRC (2012), Oden et al. (2010a, b)
and Hawkins-Daarud et al. (2013), SV should be of higher quality in the sense
that the data are obtained for an experimental setup as close as possible to the
predictive case. In our application, this corresponds to including volume data in
SV obtained at a time closer to t14 than is included in SC .

In practical terms, we recommend a preliminary study employing, synthetic data,
in order to assess:

1. The identifiability of the model given various choices of SC and SV ;
2. Whether the validation procedure that results from a given choice of SV is capable

of discerning models, the predictions of which are not acceptable in the context of
their intended real-world use.

In the light of these considerations, we consider SC = {t1, . . . , t12} and SV =
SC ∪ {t13}. We note that there are no strict rules regarding the selection of calibration
and validation data. In the reporting of validation experiments, the selection of data
must be made explicit. The sparsity of data available in this tutorial presents particular
challenges, as we would ideally have disjoint calibration and validation sets. However,
if we impose this constraint, we typically arrive at the situation where either the
calibration or validation posterior is dominated by the prior due to lack of data, thus
leading to validated predictions of questionable practical use due to a large posterior
uncertainty.
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3.3 Sampling of the Posterior Distribution

While for certain combinations of prior distribution and likelihood it is possible to
obtain analytical expressions for the posterior distribution, in general this is not the
case.As such,we are often required to sample from the posterior distribution pPOST(θ | y)
via a discrete approximation. This sampling process represents a significant computa-
tional challenge for complex models with a large number of inferred parameters. For
the problem at hand, it is possible for us to sample the posterior distribution employing
a regular grid in the parameter space, cf. Hawkins-Daarud et al. (2013) and Gelman
et al. (2014a). However, we employ here a member of the popular family of methods
for sampling the posterior distribution, known asMarkov chainMonteCarlo (MCMC),
so as to demonstrate how one may perform calibration for a more complex model.

It is beyond the scope of the current work to fully describe the theory associated
with MCMC. As such, we refer the interested reader to Gilks et al. (1996), Chib and
Greenberg (1995), Kaipio and Somersalo (2006) and Gelman et al. (2014a) and the
references contained therein, for a more complete discussion.We do, however, present
a brief overviewof theMetropolis–HastingsMCMCalgorithm, and an adaptive variant
employed here. The key idea behind MCMC is to generate a Markov chain whose
stationary distribution corresponds to the posterior distribution (10) in our Bayesian
formulation.We refer the reader to Norris (1998) for an introduction toMarkov chains.
The Metropolis–Hastings algorithm (Hastings 1970) itself is a generalization of a
method first employed in Metropolis and Ulam (1949) and Metropolis et al. (1953);
the algorithm is shown in Algorithm 3.1. We forgo a discussion regarding selection of
the proposal distribution Ji and initial distribution p0 and instead refer the reader to
the references provided above.

Algorithm 3.1Metropolis–Hastings

1: Draw θ0 such that p
(
θ0

)
> 0 from an initial distribution p0(θ) based on sampling from a regular grid,

or some other crude estimate.
2: for i = 1, imax do
3: Sample a proposal θ∗ from a proposal distribution at time i , Ji

(
θ∗|θ i−1

)
.

4: Calculate the ratio r = p(θ∗| y)/Ji
(
θ∗|θ i−1

)

p
(
θ i−1| y

)
/Ji

(
θ i−1|θ∗) .

5: Set θ i to θ∗ with probability min{1, r}, or θ i−1 otherwise.
6: end for

In order to enhance the rate at which the chains generated by the Metropolis–
Hastings algorithm converge to the posterior distribution, various classes of adaptive
algorithms have been proposed; see, for example, Andrieu and Thoms (2008) and the
references therein. In this work, we employ Andrieu and Thoms (2008, Algorithm 4),
which permits more rapidmovement through regions in parameter space of low proba-
bility. AMatlab implementation of this algorithm applied to the Gompertzian model
of tumour growth is available in Connor (2016). In Algorithm 3.2, we provide pseu-
docode describing the generic form of the algorithm employed here, where N (·, ·)
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denotes a multivariate normal distribution. As Algorithm 3.2 proceeds, the proposal
distribution is adapted to achieve more rapid convergence. Again, we forgo discussion
regarding precise choices for β and the updates for λi , μi , and Σi and refer the reader
to Andrieu and Thoms (2008).

Algorithm 3.2 Generic Adaptive MCMC

1: Draw θ0 such that p
(
θ0

)
> 0.

2: for i = 1, imax do
3: Sample a proposal θ∗ from a proposal distribution N

(
θ i−1, λi−1Σ i−1

)
.

4: Calculate the ratio β (defined in a similar manner to r in Alg. 3.1).
5: Set θ i to θ∗ with probability min{1, β}, or θ i−1 otherwise.
6: Compute λi , μi , and Σ i .
7: end for

Intuitively, theMCMC algorithms presented correspond to generating sequences of
points in parameter space by iteratively suggesting movement to new points in param-
eter space via a proposal distribution, whereby a movement is accepted or rejected
on the basis of the relative likelihood of the current and proposed points. It is in the
computation of the acceptance ratios r in Algorithm 3.1 and β in Algorithm 3.2 that
we may observe the dependence of the output from the algorithm on the experimental
data, via the computation of the likelihood. Moreover, we may observe the potentially
huge computational cost, in that each evaluation of the acceptance ratio necessitates
a model evaluation. For the simple model considered in the current study, this is not
too demanding; however, if we were to consider a time-dependent PDE model, this
would represent a significant cost.

As MCMC is an iterative algorithm, we must consider its convergence in the sense
of whether the generated points are distributed according to the posterior distribution,
as this clearly affects the reliability of any resultant analysis. In particular, if the
iterative process has not proceeded for a sufficiently long period of time, then the
simulations may not be representative of the target distribution. In order to diminish
any dependence on the starting values we discard a number of early iterations as
warm-up. Moreover, we compute multiple chains so that we may monitor whether
‘in’-chain variation is approximately equal to ‘between’-chain variation as an indicator
of convergence.

We now describe, following Gelman et al. (2014a), how we assess the convergence
of the algorithm. Let m denote the number of chains and n denote the length of each
chain, and for each scalar estimandψ we identify the simulations asψi j , for 1 ≤ i ≤ n
and 1 ≤ j ≤ m. We now define the between- and within-chain variances, denoted B
and W , respectively, as

B := n

m − 1

m∑
j=1

(
ψ̄· j − ψ̄··

)2
, (17)
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and

W := 1

m

m∑
j=1

s2j , (18)

where

ψ̄· j = 1

n

n∑
i=1

ψi j , ψ̄·· = 1

m

m∑
j=1

ψ̄· j , and s2j = 1

n − 1

n∑
i=1

(
ψi j − ψ̄· j

)2
.

The marginal posterior variance of the estimand var(ψ | y) may then be estimated
by a weighted average of W and B,

v̂ar+(ψ | y) := n − 1

n
W + 1

n
B. (19)

In order to monitor convergence of the algorithm, we estimate the factor by which
the scale of the current distribution for ψ might be reduced if the simulations were
continued for the limit n → ∞ using the quantity

R̂ =
√
v̂ar+(ψ | y)

W
. (20)

A large value of R̂ indicates that further simulations may improve the inference
about the target distribution of ψ . As such, we specify a tolerance TOL, such that if
R̂ < TOL for some i < imax, we view the chains as having converged to the stationary
distribution. Regarding the choice of the number of chains and imax, we refer the reader
to the aforementioned references discussing MCMC.

In the proceeding examples, we perform computations employing the following:

– We count the first 10,000 iterations as ‘warm-up’ and do not include these points
in the sample;

– We compute 3 chains (m = 3);
– We compute at least 25,000 iterations, but no more than 160,000 iterations
(25, 000 < n < 160, 000); and

– We specify the TOL as 1.05.

Any further details required to reproduce our computations may be found in the
complete code and data employed in the current work, available in the online resource
Connor (2016).

3.4 Model Calibration for the Gompertzian Model

We proceed now by calibrating the Gompertzian model of tumour growth described
in Sect. 2.1 with the experimental data described in Sect. 2.2. Figure 3 shows discrete
approximations of the marginal posterior distributions for θ , obtained from draws of
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Fig. 3 (Color figure online) Approximations of a range of marginal and joint posterior pdfs for V0(mm3),
K (mm3) and α(s−1) obtained via application of Algorithm 3.2 implemented in Connor (2016) to compute
the joint posterior distribution (10). These approximations are computed employing the prior distribution
(15) and likelihood (16), together with the calibration data SC . The vertical line corresponds to the mean
of the marginal posterior distribution for each parameter

the posterior distribution generated by the adaptive MCMC algorithm, Algorithm 3.2.
This corresponds to samples from the distribution defined in (10) obtained under the
assumption of prior distribution (15) and likelihood (16). From this figure, we see that
the marginal posterior distributions for V0, K , and α are unimodal, and are centred
around values that are not close to the bounds we imposed in the definition of the prior
distributions (thus indicating our assumption on the prior distribution is not inherently
inconsistent with the data). Moreover, there are no issues surrounding identifiability
of the parameters.

4 Model-Data Consistency

In Sect. 3, we calibrated the Gompertzian model introduced in Sect. 2.1, i.e. we
obtained a posterior distribution pPOST(θ | y) that combines our prior knowledge sur-
rounding the unobservable parameters pPRIOR(θ) and observed data y in the calibration
data set SC . The first stage of the validation procedure we set out in this work is to
verify whether outputs from the calibrated model are consistent with the observed
calibration data. Or rather, does the calibration data look plausible under the poste-
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rior predictive distribution? In this section, we describe a selection of data misfit tests
that seek to ascertain whether there are systematic differences between the calibrated
model outputs and the calibration data. We first describe graphical checks and then
describe more quantitative posterior predictive p values test. We apply each method-
ology to our calibrated model from Sect. 3. We refer the reader to the bibliographic
note in Gelman et al. (2014a, Chp. 6) for further references.

As noted in Hawkins-Daarud et al. (2013) andNRC (2012), it is important to realize
that we may never fully validate a model. The strongest statement we can make is that
under certain tests, the model has not been invalidated. This observation is key when
interpreting the implications of passing the model fit tests described in this section, or
the model validation checks described in Sect. 5.

In each of the tests described below, we require the concept of replicated data, i.e.
data that could have been observed, or data that could be obtained were we to perform
the experiment again. Again, we follow the notation of Gelman et al. (2014a), and
distinguish between the replicated data yrep and the notation for general predictive
outcomes ỹ. We take the distribution for yrep to be the current state of knowledge in
the posterior predictive distribution, i.e.

pPRED
POST

(
yrep| y) =

∫
pSAMPLE

(
yrep|θ)

pPOST (θ | y) dθ . (21)

4.1 Graphical Checks

The main idea of graphical checks is to display the observed data with replicated data
obtained from the calibrated model in order to assess whether there are any systematic
discrepancies between the real and simulated data. InGelman et al. (2014a), the authors
describe three kinds of graphical display (direct, summary or parameter inference, and
model-data discrepancy); however, given the relative simplicity of the model here we
consider only direct display of the data against a collection of replications.

Figure 4 shows 5000 replications drawn from the posterior predictive distribution.
From the figure, it appears as though there are no large systematic discrepancies
between our observed data y and the replicated data yrep.

4.2 Posterior Predictive p Values

In measuring the discrepancy or degree of fit of the model to the data, it is necessary
to define appropriate test quantities that we may check. A test quantity, or discrepancy
measure, T ( y, θ), is a scalar summary of parameters and data that we may use as a
standard for comparing data to predictive simulations. These quantities are analogous
to test statistics in classical statistical testing.

Posterior predictive p values in the Bayesian framework are defined as the prob-
ability that the test quantity for the replicated data yrep is more extreme than for the
observed data, i.e.

123



Bayesian Calibration, Validation and Uncertainty… 957

Fig. 4 Experimental data for times {t1, . . . , t12} and error bars showing±2σV , together with 5000 replica-
tions obtained from the posterior predictive distribution for the calibration model. Replication data obtained
by evaluating (1) at 5000 points drawn from the posterior distribution (10) obtained via application of Algo-
rithm 3.2 with prior distribution (15) and likelihood (16), with the calibration data SC

pB = Pr
(
T

(
yrep, θ

) ≥ T ( y, θ) | y) ,

=
∫ ∫

IT ( yrep,θ)≥T ( y,θ) pSAMPLE

(
yrep|θ)

pPOST (θ | y) d yrep dθ , (22)

where IA denotes the indicator function for event A.
We view amodel as being questionable if pB takes a value that is close to either zero

or one, indicating that it would be unlikely to observe y in the replications of the data,
if the model were true. Extreme values for pB indicate significant discrepancies in
the model that need to be addressed by expanding the model appropriately or altering
assumptions in the model. However, finding an extreme value for pB and deeming the
model as suspect should not signal the end of the analysis. It will often be the case that
the nature of the failure will suggest improvements to the model or identify certain
data that are subject to additional error.

For our application, we consider the tumour volume at {t1, t2, . . . , t12} as the test
quantities. In Table 2, we show the Bayesian p values obtained for the tumour volume
at each time point, for the posterior predictive distribution. We observe that there are
no extreme values for pB , and, as such, conclude that our model is not inconsistent
with the observed data.

5 Model Validation and Prediction

Now that the calibrated model of Sect. 3 has passed the data consistency checks set out
in Sect. 4, we investigate its predictive properties by attempting to validate it against
a validation model that has been calibrated using the validation data, SV . Recall that
validation is the process of determining the degree to which a model represents the
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Table 2 Posterior predictive p
values at each time point
computed employing the
calibration model

Time pB 0.01 ≤ pB ≤ 0.99

t1 0.5162 True

t2 0.2440 True

t3 0.7544 True

t4 0.2830 True

t5 0.3108 True

t6 0.2360 True

t7 0.2462 True

t8 0.1214 True

t9 0.4610 True

t10 0.6300 True

t11 0.6512 True

t12 0.5634 True

real world in the context of its real-world uses. In this section, we explain how we
validate our model by comparing the calibrated model against the validation model,
based on the procedure set out in Hawkins-Daarud et al. (2013), and demonstrate its
application to our example.

5.1 Model Validation Procedure

The validation data, SV , contain additional information regarding the behaviour of
the physical system that should lead to a more accurate model of tumour growth. We
denote the data in the validation set by yVAL. The first stage of the validation process is
to calibrate the Gompertzianmodel of tumour growth described in Sect. 2.1 against the
validation data set to obtain a validation posterior density, denoted pVALPOST

(
θ | yVAL

)
, and

validation posterior predictive distribution, denoted pVALPRED

(
ỹ| yVAL

)
, which are defined

analogously to (10) and (12), respectively, but are instead calculated employing the
data in SV .

The next stage of the validation is to test whether the validation posterior predictive
distribution passes the model-data consistency checks described in Sect. 4. If so, we
proceed by testing whether the knowledge gained from the new data is very different
from that obtained in the calibration experiments. To this end, we denote the pdf for
our predictive quantity of interest, as described in Sect. 2.3, and obtained by calibrating
the model with SC and SV , by pC and pV , respectively. We say that the model is not
invalidated if

M (pC , pV ) ≤ THRESHOLD, (23)

whereM is some appropriate metric, and THRESHOLD denotes a validation threshold we
specify a piori. That is to say, our model is not invalidated if the posterior predictive
distributions of our quantity of interest for the calibration and validation models are
close in some appropriate sense. We recall our earlier remark that this is the strongest
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statement we might make, and further highlight that this statement is valid for our
specified QoI only.

While there are many other appropriate choices of metric, in Hawkins-Daarud et al.
(2013) the authors consider

M1 (pC , pV ) = sup
y∈[γ1,γ2]

∣∣∣F−1
C (y) − F−1

V (y)
∣∣∣ , (24)

where FC and FV denote the cumulative distribution functions (cdfs) of the calibration
and validationmodels, respectively, and γ1 and γ2 are chosen to exclude comparison of
the tails of the distributions. Alternatively one could test the information gain from the
additional data using such measures as the Kullback–Leibler divergence (Kullback
and Leibler 1951). In addition to the metrics referenced in Hawkins-Daarud et al.
(2013), we remark that it is possible to compare the empirical cdfs for the calibra-
tion and validation model via a two-sample Kolmogorov–Smirnov (KS) test (Massey
1951; Miller 1956). Furthermore, techniques for estimating out-of-sample predictive
accuracy of the model may be applied as a possible means of comparing the calibra-
tion and validation models. In particular, formulae such as the Akaike information
criterion (AIC) (Akaike 1973), deviance information criterion (DIC) (Spiegelhalter
et al. 2002) andWatanabe–Akaike (or widely available) information criterion (WAIC)
(Watanabe 2010) provide means of estimating the predictive accuracy of the model
in an approximately unbiased manner (see Gelman et al. (2014b) for a detailed dis-
cussion of these techniques). However, we seek to make extrapolative predictions, so
the AIC, DIC, and WAIC are less applicable than if we were making interpolative
predictions.

In this work, we compare the validation and calibration posterior predictive pdfs
for the QoI via the test statistic of the two-sample KS test, in which the tails of the
distributions are discounted (for details, see Connor 2016), i.e. the quantity

M2(pC , pV ) = sup
x∈[η1,η2]

|FC (x) − FV (x)| , (25)

for suitably chosen {η1, η2}. Furthermore, we set THRESHOLD to 10%. In Sect. 7, we
propose a possible method for selecting THRESHOLD to maximize predictive accu-
racy of the validation procedure by means of comparison to multiple repeated
experiments.2

Other possible validation procedures have been discussed in the literature (e.g.
one-step forecast with re-estimation, multistep forecast with/without re-estimation,
three-way cross-validation). A complete discussion of these techniques is beyond the
scope of this work; as such, we refer the reader to Arlot and Celisse (2010) and NRC
(2012) and the references therein for a thorough review.

2 While repeated experiments are not available in the patient-specific clinical setting, we may view this as
data from multiple individual patients in a similar population.
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5.2 Validation of Gompertzian Model

The first stage in the validation of our calibrated model described in Sect. 3 is to
obtain the validation model by calibrating the Gompertzian model of tumour growth,
as described in Sect. 2.1, against the validation data SV .When calibrating the validation
model we employ the same prior distribution (13) and likelihood function (16) as for
the calibrated model of Sect. 3. As we chose flat priors for the parameters and the
posterior marginal pdfs in Fig. 3 were far from the bounds on the parameters imposed
through the prior, there is no reason to choose an alternative prior for the validation
model. Furthermore, we chose the same likelihood function because here we wish
to assess whether the knowledge gained from the validation data differs from that in
the calibration experiments, rather than the sensitivity of the predictions to choice of
likelihood function, a point we address in Sect. 6.

Figure 5 shows discrete approximations of the marginal posterior distributions for
θ obtained from draws of the posterior distribution generated by the adaptive MCMC
algorithm, based on the validation data set SV . As was also the case for the calibrated
model, we see that the distributions are unimodal and are not close to the bounds
imposed in the definition of the prior.

Now we have obtained our validation model, we perform the same tests of model
fit as for the calibration model outlined in Sect. 4, i.e. we assess whether the validation

Fig. 5 (Color figure online) Approximations of a range of marginal and joint posterior pdfs for V0(mm3),
K (mm3), and α(s−1) obtained with the validation data SV . Results obtained via same methods as those in
Fig. 3. Vertical line indicates the mean of the marginal posterior distribution for each parameter
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Fig. 6 Experimental data for times {t1, . . . , t13} with error bars showing ±2σV , together with 5000
replications obtained from the posterior predictive distribution for the validation model. Replication data
obtained by evaluating (1) at 5000 points drawn from the posterior distribution (10) obtained via application
of Algorithm 3.2 with prior distribution (15) and likelihood (16), with the validation data SV

data are likely to occur as a replication obtained via the validation model posterior
predictive distribution. Figure 6 presents 5000 replications of the data drawn from
the posterior predictive distribution of the validation model, shown together with the
experimental data and error bars corresponding to ±2σV . Once more, we see no large
structural discrepancies between the replications and the experimental data. In Table
3, we present the Bayesian p values for the tumour volume at each of the 13 time
points in the validation data set. As with the calibration data, we see no extreme p
values and hence conclude that the posterior predictive distribution is not inconsistent
with the observed experimental data.

Given that we have judged our validation model as suitably fitting the validation
data based on the graphical checks and the posterior predictive p values, we proceed
now to compare the posterior predictive distributions for the QoI set out in Sect.
2.3, i.e. we assess whether the predictive properties of our model are suitable for the
proposed application. Figure 7 shows a comparison of the experimental data and errors,
along with model predictions of the calibration and validation models (represented by
the mean, with error bars corresponding to twice the standard deviation), and the
experimental data for the tumour spheroid at t14.

Figure 8 shows a discrete approximation of the posterior predictive pdf for our
QoI obtained with both the validated calibration model and the validation model. In
addition, as a comparison, we have also included the value of our QoI obtained from
experiment. From Fig. 8 we see that the observed tumour volume at t14 appears likely
under the posterior predictive distribution, i.e. the model has made a good prediction
for the data we have excluded in the calibration and validation procedure.
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Table 3 Posterior predictive p
values at each time point
computed employing the
validation model

Time pB 0.01 ≤ pB ≤ 0.99

t1 0.4976 True

t2 0.2316 True

t3 0.7720 True

t4 0.2838 True

t5 0.3138 True

t6 0.2334 True

t7 0.2400 True

t8 0.1134 True

t9 0.4554 True

t10 0.6350 True

t11 0.6530 True

t12 0.5548 True

t13 0.5964 True

Fig. 7 Summary of all experimental data, errors and model predictions. The data presented at the final time
point have been artificially perturbed so that both model predictions and the experimental data are visible

The value of the test statistic M2(pC , pV ) computed for the calibration and valida-
tion models was approximately 6%, and as such, we deem the model not invalidated
under the procedure set out above.

6 Sensitivity Analysis

While we have shown in Sect. 5 that our calibration model is not invalid under the vali-
dation procedure set out above, we have made several assumptions in the development
of the statistical model which could be replaced with others that appear equally valid a
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Fig. 8 Posterior predictive pdf for the QoI obtained employing the calibration and validation models, with
spheroid volume obtained at t14

priori. For instance, there are many appropriate choices for error measurement model,
other than that detailed in Sect. 2.2.3, which may affect the predictive capability of the
calibratedmodel. Similarly, the choice of normally distributed errors for the likelihood
function and the choice of prior each hold influence over the model predictions.

In robust Bayesian analysis, a prediction is viewed as robust if it does not depend
sensitively on the assumptions and inputs on which the model is based. Robust
Bayesian methods address the difficulty associated with defining precise priors and
likelihoods (Berger 1984; Pericchi and Peréz 1994; Insua andRuggeri 2000; Lopes and
Tobias 2011). It is beyond the scope of this work to perform a full robustness analysis.
However, possible means of making the present analysis more robust include replac-
ing the normally distributed errors in the likelihood with a Student’s t-distribution, or
a more flexible likelihood such as a mixture of normals.

As an example, we focus here on the inference of the length of third axis �3, in
the error calculation. In Sect. 2.2.3, we assume a given standard deviation in �3. This
will affect the resultant variation in our model predictions, possibly increasing the
posterior uncertainty in the prediction of the QoI. In order to test the sensitivity of our
prediction to this assumption, we now introduce an additional parameter, se, which
we refer to as the experimental scale, that may be calibrated with experimental data.
That is, we now consider θ = (V0, K , α, se). This parameter is introduced into the
likelihood via an alternative definition of the variance σ̂ 2

V , which we define as

σ̂V =
√(

∂V

∂�1

)2

σ 2
�1

+
(

∂V

∂�2

)2

σ 2
�2

+
(

∂V

∂�3

)2

σ̂ 2
�3

, (26)

where σ̂�3 = se(�1−�2).Assuming that the prior distribution for se isU [1 × 10−7, 0.5],
we may compute the posterior marginal distribution for se as shown in Fig. 9. From
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Fig. 9 Posterior marginal pdf (unscaled) for the experimental scale parameter, se

Fig. 10 Experimental data for times {t1, . . . , t12} with error bars showing ±2σ̂V employing the modal
value for se , together with 5000 replications obtained from the posterior predictive distribution for the
calibration model with experimental scale estimate for tumour volume

this figure, we can observe a modal value that is of the order 10−3, thus indicating
we may have overestimated the variation in �3 (as previously, there was an implicit
definition that se = 1/2, given the Gompertzian model for tumour growth and our
experimental data.

We proceed now by assessing the fit of our enhanced model calibrated on SC to
the data and the validity of this model. This process is performed as described in
Sects. 4 and 5. Figure 10 shows 5000 replications with the experimental data and
error bars corresponding to ±2σ̂V , in which we fix se at its modal value. Here, we see
much tighter error bars on the experimental data, and greatly reduced variation in the
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Table 4 Posterior predictive p
values at each time point
computed employing the
calibration model

Time pB 0.01 ≤ pB ≤ 0.99

t1 0.2500 True

t2 0.0538 True

t3 0.9992 False

t4 0.5422 True

t5 0.6720 True

t6 0.2066 True

t7 0.1312 True

t8 0.0006 False

t9 0.7858 True

t10 0.9396 True

t11 0.8500 True

t12 0.2216 True

Fig. 11 Summary of all experimental data, errors and model predictions for model with experimental scale
estimate for tumour volume. The data presented at the final time point have been artificially perturbed so
that both model predictions and the experimental data are visible

replications when compared to Fig. 4. However, here we observe that the data at t8
lies outside of the replications. This is a concern; however, as we wish to predict late
time behaviour, we place greater emphasis on the fact that the data and replications
appear consistent for t9 to t12. Table 4 shows the Bayesian p values for the data, based
on the replications shown in Fig. 10. The p values confirm the inconsistency at t8 and
further highlight additional inconsistency at t3, which is not visible in the graphical
data. However, we again proceed on the basis of the intended use of themodel.We now
perform the validation procedure set out in Sect. 5 for this enhanced model. Figure
11 shows a summary of all data, errors and model predictions (cf. Fig. 7) and Fig. 12
shows the posterior predictive pdf for the QoI for the calibration and validation models
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Fig. 12 Posterior predictive pdf for the QoI obtained employing the calibration and validation models with
experimental scale estimate for tumour volume, together with spheroid volume obtained at t14

(cf. Fig. 8). The key difference we observe in this model, compared to the original,
is the reduction in posterior variation of the QoI. However, when we evaluate the test
statistic, we see M2( p̂C , p̂V ) ≈ 12% and, as such, we deem this prediction invalid
under the choice of THRESHOLD employed in Sect. 5.

As the focus of this work is to provide a pedagogical example, we proceed no
further with this analysis; in practice, one might continue the analysis by investigating
the sensitivity of all assumptions in the model (perhaps comparing models, via Bayes
factors (Gelman et al. 2014a) for instance). However, we remark that this example
serves to highlight potential difficulties associated with obtaining accurate and reliable
models in more complex settings, and the importance of reliable interpretation of any
analysis.

7 Selection of Threshold

When the experimental data on which the previous sections were based was collected,
nine additional experimentswere carried out on other spheroids from the same cell line.
In this section, we use the data obtained from those additional experiments to assess the
validity of our calibration model with experimental scale in a more informed manner.
To this end, we adopt a simple learning approach based on assessing the accuracy of
models obtained from calibration against additional sets of experimental data. Figure
13 shows data obtained from 9 additional experiments, which we now employ to tune
THRESHOLD.

In this work, we judge a model to be valid (that is to say, not invalid) if the test
statistic of the two-sample KS test applied to the calibration and validation posterior
predictive pdfs of our QoI is not greater than some threshold, TK S . Previously, we have
employed the notation THRESHOLD for this quantity; we now depart from this notation
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Fig. 13 Summaries of all experimental data, errors andmodel predictions obtained from repeat experiments
(cf. Figs. 7, 11). The legend for these plots is identical to that in Figs. 7 and 11. The data presented at the
final time point have been artificially perturbed so that both model predictions and the experimental data
are visible. a Experiment 1. b Experiment 2. c Experiment 3. d Experiment 4. e Experiment 5. f Experiment
6. g Experiment 7. h Experiment 8. i Experiment 9

to highlight that this is now a parameter that may be tuned to enhance the accuracy of
themodelling/validation procedure set out here. Separately, a prediction obtained from
a calibrated model is judged to be good if, after the QoI is measured experimentally,
that measurement value lies within the credible interval of the predicted QoI (details
of how the credible interval is calculated can be found in Connor 2016). In an ideal
validation procedure, valid models would result in good predictions, whereas invalid
models would not. As such, we seek here to jointly maximize

(i) The number of not invalid models for which the observed QoI falls within the
credible interval of the predicted QoI, and

(ii) The number of invalid models for which the observed QoI falls outside the cred-
ible interval of the predicted QoI,

by tuning the threshold, TK S . Table 5 describes the terms associated with all four
possible combined outcomes of the prediction–experimental comparison.
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Table 5 Possible outcomes
relating to validation process
and experimental data

QoI credible QoI not credible

Model not invalid True positive False positive

Model invalid False negative True negative

Fig. 14 Accuracy of the validated model for varying TK S . Vertical dashed lines highlight the region for
which the greatest accuracy is obtained

We now proceed by performing the model calibration procedure using both the
calibration and validation data sets, SC and SV , respectively, for each of the nine
additional experimental data sets. For each experimental data set (discounting those
for which themodel is unable to adequately replicate the calibration data), we compare
the calibration and validation posterior predictive pdfs of the QoI, calculating the two-
sample KS test statistic. Further, for each model we check whether the measured QoI
lies within the credible interval of the calibration posterior predictive pdf of the QoI.
We then select TK S ∈ [0, 1], to maximize the accuracy of the prediction, defined by

Accuracy = (#True Positive) + (#True Negative)

(Total#experiments)
. (27)

We may then use the tuned threshold, TK S , to assess the validity of the model
obtained by calibrating the Gompertzian model against the initial experimental data
set in a more informed manner. Through this process of evaluating the accuracy for
multiple experiments for which data for theQoI are available, we are able to ameliorate
some of the arbitrary nature associated with the choice of THRESHOLD.

Figure 14 demonstrates the variation of accuracy with TK S , having neglected exper-
iments 4, 6 and 7 on the basis of model-data consistency checks (as described in Sect.
4). We may observe that accuracy is optimized for values of TK S between 7 and 18%.
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Moreover, if we choose THRESHOLD of 15%, then the calibration model obtained in
Sect. 6 is now not invalid. This seems reasonable given the experimentally measured
value for our predictive QoI and the pdf obtained from the calibration and validation
models, as compared in Fig. 12.

7.1 Summary of the Calibration and Validation Process

In the preceding sections,wehave set out a process of calibration andvalidation,which,
for an individual experiment, may be summarized as follows. Firstly, we calibrate a
mathematical model against partitioned experimental data, employing the Bayesian
approach, to obtain so-called calibration and validation posterior predictive distribu-
tions for a biological quantity of interest. We then compare these two distributions
using an appropriate metric to assess the validity of our calibration model predictions.
The THRESHOLD employed in the validation procedure is chosen based on an elemen-
tary optimization procedure that compares model predictions to experimental data
obtained for the biological quantity of interest for similar, prior experiments. Figure
15 presents a flow chart highlighting the process described in this work.

The method outlined above is immediately transferable to more clinically relevant
applications. In particular, the simple learning technique introduced in the previous
section could be valuable in a clinical setting, in which model predictions of tumour
growth (and response to therapy) could be compared with clinical outcomes to judge
the accuracy and validity of a prediction for a range of THRESHOLD values. Such
comparisons could then be used, as in our simple example, to improve the accep-
tance criterion for not invalid models for future patients. With further data, then, we
could better establish which model predictions we should trust and which we should
discard.

Fig. 15 Schematic diagram demonstrating the calibration and validation process
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8 Discussion

In Sects. 2–7, we have presented a simple example of calibration, validation and
uncertainty quantification for predictive modelling of tumour growth in a Bayesian
framework. For this discussion, however, we depart from the example presented above
and further discuss the wider application of these techniques, with a view to making
patient-specific predictions in the clinic for the purpose of therapy planning.

As highlighted in Pathmanathan and Gray (2013), it is of vital importance to assess
the reliability and accuracy of any model that might be used in a safety–critical appli-
cation in the clinic. The Bayesian framework provides advantages over the frequentist
framework in that it requires no notion of repeated experiments on an identical popu-
lation, which is problematic for patient-specific predictions. Moreover, it provides
advantages over methods which result in a single value for model parameters as
opposed to distributions, even if confidence intervals for the parameters are supplied.
A point we have not yet addressed in this article is the importance of presenting
appropriate information regarding uncertainty to decision makers. While expectations
and variances (covariances) provide full descriptions in the case of Gaussian random
variables (fields), if the distribution is far fromGaussian thismay be potentially insuffi-
cient. Furthermore, as the complexity of the underlyingmathematical model increases,
for instance to nonlinear partial differential equations, calibration to a single param-
eter value appears inadequate, as there may be significant skew or long tails in the
distribution of the outputs, as a result of the nonlinearity, which could affect decisions.
As such, we question whether in order to make well-informed clinical decisions, more
information regarding the uncertain outputs of the model is required than is attainable
via classical means of calibration.

That is not to say these methods are without flaws. It may be the case that there are
insufficient data available to properly identify the distributions of the parameters given
complex models and expensive and/or noisy data acquisition (via medical imaging for
instance). In fact, for even the simplest models (such as that considered here) it is likely
that there would be insufficient data to parameterize a personalized patient model. For
example, there may be only two data points available: the tumour volume at diagnosis
and pre-treatment. In such case, the Bayesian approach provides a natural framework
for incorporating population data via an informative prior, as described in Achilleos
et al. (2013, 2014), or via expert opinion to constrain the priors.

In addition to the validation and uncertainty quantification procedures described
here, in a clinical setting there is a vital need for verification of the computational
model. We highlight two forms of verification here: software verification (i.e. is the
computational model correctly implemented?) and solution verification (i.e. is the
solution of the computational model sufficiently close to the solution of the mathe-
matical model?). For the model considered in this work there are analytical solutions
to the deterministic problem, and thus, verification is not of vital importance. However,
for more sophisticated models requiring the solution of PDEs verification is extremely
important. It is beyond the scope of the current work to discuss verification fully, and
we refer to NRC (2012) for a more complete introduction to these fields.

The computational cost of the methods and model implemented in the course of
this work is low. However, as the complexity of the underlying mathematical model
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increases, so does the computational cost. As such, the construction of surrogate
models via Gaussian process emulation (Kennedy and O’Hagan 2001), (generalized)
polynomial chaos expansions (Ghanem and Spanos 1991; Ghanem and Red-Horse
1999; Ghanem 1999; Xiu and Karniadakis 2002, 2003; Najm 2009; Babuška et al.
2004) or stochastic collocation (Xiu and Hesthaven 2005; Tatang et al. 1997; Nobile
et al. 2008a, b; Babuška et al. 2007), for instance, and model reduction techniques are
extremely important. Again, it is beyond the scope of this work to review these fields
(we refer to NRC 2012 and the references therein for a full discussion).

If computational models are to be integrated into clinical practice in order to make
personalized predictions about tumour growth and treatment for models of greater
complexity than that presented here, successful application of verification and emula-
tion techniques will be of critical importance, in addition to the calibration, validation
and uncertainty quantification techniques described here.

9 Conclusions

In this article, we have presented an educational example in which we calibrate a
simple mathematical model of tumour growth against experimental data subject to
measurement errors, and subsequently validate the model predictions. Moreover, we
present an elementary learning approach for determining the validation threshold to
maximize the predictive accuracy of the model. Despite the simplicity of the mathe-
matical model, and the fact the experimental data were obtained in vitro, we feel that
this example illustrates clearly how these methods might be applied to patient-specific
models in the clinic.

There are many natural extensions to the work in this article. For example, the
techniques we have presented could be applied to more complex models of tumour
growth and spatially resolved MRI and PET data from cancer patients undergoing
treatment (Baldock et al. 2013). The use of more complex models will likely require
the incorporation of surrogate models and/or model reduction. Finally, it is natural
to consider the application of verification techniques in addition to the calibration,
validation and uncertainty quantification described here.

Acknowledgements J. Collis and M. E. Hubbard acknowledge the support of EPSRC Grant Number
EP/K039342/1. This project has received funding from the European Unions Seventh Framework Pro-
gramme for research, technological development and demonstration under Grant Agreement No. 600841.

Appendix: Measurement Times

The times at which measurements were taken in the experiments described in Sect. 2.2
are given in Table 6.
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Table 6 Times at which
measurements of the spheroids
were taken measured after an
initial seed of 2000 tumour cells
per spheroid were implanted at
t = 0

Time Point Time

t1 65h (2.7days)

t2 92h (3.8days)

t3 112h (4.7days)

t4 159h (6.6days)

t5 207h (8.6days)

t6 257h (10.7days)

t7 303h (12.6days)

t8 328h (13.7days)

t9 376h (15.7days)

t10 449h (18.7days)

t11 497h (20.7days)

t12 545h (22.7days)

t13 595h (24.8days)

t14 664h (27.7days)
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