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Abstract In this paper, we present computational techniques to investigate the effect
of surface geometry on biological pattern formation. In particular, we study two-
component, nonlinear reaction–diffusion (RD) systems on arbitrary surfaces.We build
on standard techniques for linear and nonlinear analysis of RD systems and extend
them to operate on large-scale meshes for arbitrary surfaces. In particular, we use
spectral techniques for a linear stability analysis to characterise and directly compose
patterns emerging from homogeneities. We develop an implementation using surface
finite element methods and a numerical eigenanalysis of the Laplace–Beltrami opera-
tor on surface meshes. In addition, we describe a technique to explore solutions of the
nonlinear RD equations using numerical continuation. Here, we present a multireso-
lution approach that allows us to trace solution branches of the nonlinear equations
efficiently even for large-scale meshes. Finally, we demonstrate the working of our
framework for two RD systems with applications in biological pattern formation: a
Brusselator model that has been used to model pattern development on growing plant
tips, and a chemotactic model for the formation of skin pigmentation patterns. While
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these models have been used previously on simple geometries, our framework allows
us to study the impact of arbitrary geometries on emerging patterns.

Keywords Reaction diffusion · Pattern formation · Bifurcation analysis · Linear
stability analysis · Marginal stability analysis · Branch tracing · Nonlinear PDEs ·
Surface FEMs · Large-scale systems · Multigrid approach · Cross-diffusion

1 Introduction

Reaction–diffusion (RD) is often used to model the development of biological sys-
tems, most prominently in the study of biological pattern formation (Kondo andMiura
2010). The mathematical representation of these models results in systems of nonlin-
ear partial differential equations (PDEs) (Turing 1952). The analysis of these systems
of PDEs aim at answering two fundamental questions: (i) what are the possible solu-
tions that satisfy the given system of PDEs, and how can these solutions be discovered
systematically; and (ii) which of these solutions are stable against minor perturbations.
Two strategies are commonly used to perform this analysis. First, linear stability anal-
ysis can predict the emergence of new patterns near trivial, homogeneous solutions
(homogeneities) of the PDEs (Murray 2003). This happens with small changes in one
or more critical parameters in the system, called bifurcation parameters. The emer-
gent patterns correspond to sudden qualitative changes to the state of an RD system
and, hence, constitute bifurcations from the homogeneity. Second, nonlinear analy-
sis provides solutions of the nonlinear RD equations far away from the homogeneous
steady states. To construct these solutions, numerical continuation techniques are used
to follow continuous branches of solutions starting from initial bifurcation patterns
constructed using the linear analysis (Seydel 2010). Solutions vary gradually with one
of the system parameters, called the continuation parameter,1 along each branch.

Several existing tools allow to delineate solutions for an RD system through linear
and nonlinear bifurcation analyses. However, many of them are constrained to work
with only simple surface geometries such as rectangles or hemispheres, and at low res-
olutions. These are serious limitations given that surface geometry plays an important
role in pattern formation (Murray 2003, page 108) and most of the interesting biolog-
ical domains for RD systems have rather arbitrary shapes. In addition, corresponding
patterns are too complex to be resolved with low-resolution meshes.

In this paper, we develop a framework to perform bifurcation analysis for generic
RD systems with two components, with or without cross-diffusion, acting on arbitrary
surfaces. Unlike standard detection-based approaches that iteratively step along a
trivial branchof patternless homogeneous solutions to detect bifurcation points (Seydel

1 Throughout this paper, we deal with cases with only one parameter of interest, at a time, to study
bifurcations. Thus, we use terms ‘bifurcation parameter’ and ‘continuation parameter’ interchangeably to
refer to the same system parameter and denote it by α. We refer to α as a bifurcation parameter when
the context pertains to pattern emergence. Similarly, we refer to α as the continuation parameter when the
context relates to branch tracing and continuation algorithms. We always perform continuation with the
same parameter as that was used to locate the bifurcation at the first instance. However, this is not a strict
requirement and our framework can be used for branch tracing with a different continuation parameter.
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790 D. S. J. Dhillon et al.

2010, Chapter 5), our proposed framework uses an analysis–synthesis approach to
directly determine bifurcation points and construct emerging patterns along the trivial
branch. In our approach,we exploit theHermitian nature of theLaplace–Beltrami (LB)
operator acting on a given arbitrary surface (Lévy and Zhang 2010), which enables the
computation of a spectral basis for emerging patterns. This, in turn, allows us to derive
formulae to directly compose emergent bifurcation patterns from eigenfunctions (also
called eigenmodes or wavemodes) of the LB operator. Similarly, given a bifurcation
pattern in terms of its eigenvectors and eigenvalues, we can directly compute the
corresponding bifurcation point. We elaborate on our analysis–synthesis approach in
Sect. 3 along with several boundary conditions for our framework that are common
for biological systems and ensure that the LB operator is Hermitian. Unlike detection-
based approaches, our analysis–synthesis approach avoids missing out on bifurcations
due to potential failures of a test function (Refer to Seydel (2010, Sect. 5.2) for details
on test functions). In addition, our approach allows for tracing multiple and mixed-
mode bifurcations apart from simple bifurcations.

For accurate branch tracing with complex bifurcation patterns, we require higher
resolution meshes to triangulate surfaces. This increases computational complexities.
We propose amultiresolution approach that decouples branch tracing complexity from
the complexity of dealing with a large-scale system at a higher resolution.

We demonstrate the working of our framework for a Brusselator system with zero
Dirichlet boundary conditions to study the emergent patterns of cotyledons on a conifer
tip (Nagata et al. 2003). We also demonstrate its working with Murray’s chemotactic
model for pattern formation of skin pigmentation (Murray and Myerscough 1991),
subject to zero Neumann boundary conditions. In both cases, we illustrate the influ-
ence of surface shape on pattern formation using several example geometries. Finally,
we evaluate the computational performance of our multiresolution branch tracing
approach. In summary, our contributions include:

– A framework for analysing two-component RD systems with or without cross-
diffusion that supports arbitrary triangulated surface domains.

– A direct analysis–synthesis approach for computing emergent patterns and locat-
ing bifurcation points along the trivial branch based on spectral analysis of the
Laplace–Beltrami operator on arbitrary triangulated surface domains.

– A progressive geometric multigrid approach supporting high-resolution FEM dis-
cretisation to determine patterns along nonlinear branches.

– Two case studies illustrating the effect of arbitrary geometries on pattern formation.

2 Related Work

2.1 Emergent Patterns Near Homogeneity

Linear stability analysis with two-component RD systems is often employed to study
the emergence of new patterns from near homogeneous patternless initial conditions.
Nagata et al. (2003, 2013) study the relation between the shape and size of a conifer
embryo and the emergent cotyledon patterns. They use a Brusselator RD system act-
ing on a parametric family of spherical caps while imposing zero Dirichlet boundary
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conditions near homogeneity. With this, they explain how the number of emergent
cotyledons is simply the selection of a spherical cap harmonic based on the radius
of the conifer and its curvature (Nagata et al. 2013). Winters et al. (1990) explain
emergence of heterogeneous snake skin colour patterns with a chemotactic RDmodel
with cross-diffusion (i.e. where the flux of one component is driven by gradients in
the concentration of the second component). They perform numerical simulations
on flat rectangular domains and illustrate the similarity of emergent patterns to the
patterns observed in nature, for different snake species. Winters et al. use zero Neu-
mann boundary conditions for their RD system. Similarly, Gambino et al. (2013)
discuss pattern formation due to cross-diffusion for Lotka–Volterra kinetics between
two components in a 2D rectangular domain, commonly used to model predator–
prey populations. Kealy and Wollkind (2012) use linear stability analysis to study
onset of various spatial Turing patterns for vegetation in an arid flat land using a two-
component RD system. They also apply a weak nonlinear stability analysis to predict
the long-term behaviour of these emerging vegetation patterns. Murray (2003, Chap-
ter 3) demonstrates the effect of both geometry and scale on the emergence of patterns
under a two-component RD system and discusses the relevance of these parameters
for explaining animal coat patterns. He derives an analytical form for the stripe and
spot patterns that emerge on a tapering cylinder representing an animal tail. Also, he
presents the selection of different stripe or patchy patterns (modes) with changes in the
size of a planar 2D shape representing an animal coat. Most studies on the emergence
of patterns, such as those discussed above, are limited to simple, well-defined surface
geometries with analytically defined emergent patterns. Recently, Tuncer et al. (2015)
have introduced a projected Finite Elements Method for studying pattern formation
by RD systems on surfaces that can be approximated analytically and later mapped
with Lipschitz continuity onto a sphere. They note that studying RD systems on arbi-
trary surfaces is rather a “young and emerging research area”— (Tuncer et al. 2015)
and that surface geometry is crucial for such studies. Our framework extends studies
of RD systems with or without cross-diffusion to arbitrary surface domains without
any geometric constraints by directly (numerically) computing emergent patterns on
them. Also, it supports several common boundary conditions that arise in biological
problems such as homogeneous Dirichlet, Neumann and Robin boundary conditions.
As noted earlier, (arbitrary) surface geometry plays an important role in pattern forma-
tion. Thus our framework serves as an important tool for studying emergent patterns
on ‘real’ geometries.

2.2 Marginal Stability Analysis

Marginal stability analysis is often used to study the interaction andmutual-exclusivity
of two or more emergent wavemodes. It is also used to demarcate and characterise the
parameter space of an RD system. Kealy andWollkind (2012) use analytically defined
marginal stability curves to demarcate regions in the parameter spacewith subjectively
different vegetation patterns on arid flat lands (represented as 2D rectangles). Nagata
et al. (2013) define marginal stability curves for emergent wavemodes in terms of
their corresponding eigenvalues and investigate the influence of the spherical cap
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surface geometry on the pattern of cotyledons development. In particular, they note
that changes in the curvature or size of a plant tip may cause a change in the number
of cotyledons that develop despite that the concentrations of chemical precursors are
fixed.Our framework generalises suchmarginal stability analysis to arbitrary domains.
It numerically computes the eigenvalues for the wavemodes that constitute emergent
patterns. These eigenvalues can then be used to plot corresponding marginal stability
curves. In general, our framework supports case studies with arbitrarily shaped surface
domains at different scales for marginal stability analyses, as demonstrated later.

2.3 Bifurcations and Branch Tracing

Analytical solutions for branch tracing are only possible for simple surface domains.
Ma and Hu (2014) express branches and patterns for a two-component Brusselator
model acting on a 1D straight line domain in analytical forms. They prove that, except
for the first branch along the continuation parameter dimension, all other branches
are unstable. Méndez and Campos (2008) derive analytical expressions for tracing
a branch with a single component RD system to predict the survival of an isolated
1D patch of a population in its surrounding 1D hostile environment. Using stability
predictions along the branch, they establish that the survival of a population at a
very low or negative growth rate depends on its initial density. Instead, we support
branch tracing with numerical methods in our framework. Winters et al. (1990) and
Maini et al. (1991) perform branch tracing numerically for their two-component RD
systemwith cross-diffusion acting on simple 2D rectangular domains. They simulate a
diverse range of complex patterns with significant amplitudes for studying snakeskin
pigmentations. Yochelis et al. (2008) perform numerical branch tracing for a two-
componentGierer–Meinhardt RD system on a simplified periodic 1D domain to study
cardiovascular calcification patterns. They use the insights gained from branch tracing
to characterise the parameter space for further experiments with 2D domains. Chien
and Liao (2001) investigate multiple modes bifurcating at a given bifurcation point
for a two-component Brusselator system subject to Robin boundary conditions. They
demonstrate numerical continuation of multiple branches due to mode interactions
for a 2D square domain. Paulau (2014) performs numerical branch tracing for a two-
component FitzHugh–Nagumo (FHN) RD system on a 2D planar domain to study the
properties of its localised solutions, i.e. solitons. With this, he establishes the existence
and stability of certain first higher order radially symmetric solitons with non-zero
azimuthal quantum number2 which require the third and fifth order nonlinear reaction
terms to produce them. Our framework generalises such studies with two-component
RD systems to arbitrary surfaces.

2.4 Other Cases

In general, studies with emergent patterns, marginal stability or bifurcation analy-
sis may deal with more than two-components (Qian and Murray 2001), coupled
layers (Yang et al. 2002; Vasquez 2013), quasi equilibrium (Rozada et al. 2014),

2 i.e, Characterising the zero crossings of a circumferential profile of a radially symmetric soliton.
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advection (Vasquez 2013; Satnoianu et al. 2001; Madzvamuse and Zenas George
2013), a very large number (Zamora-Sillero et al. 2011) or range (Lo et al. 2012) of
control parameters, shear-induced instability (Vasquez 2013), growth-induced insta-
bility (Madzvamuse 2008), nonlinear diffusion (Gambino et al. 2013), fractional
RD (Gafiychuk et al. 2009) or even non-steady state (oscillatory) or travelling wave
solutions (Draelants et al. 2013; Banerjee and Banerjee 2012; Wyller et al. 2007; Qiao
et al. 2006; Gambino et al. 2012). While our framework may be used directly or with
simple modifications for only a few of these general cases, they serve as directions for
future work on our framework.

3 Analysis–Synthesis of Bifurcation Patterns Using Laplacian Eigenbasis

In this section, we formulate our analysis–synthesis approach to compute bifurcation
patterns using eigenfunctions of the Laplace–Beltrami operator. We derive a general
form for an emergent pattern near homogeneity for a generic two-component RD
system acting on arbitrary surfaces, with or without cross-diffusion. This specifies
how a bifurcation pattern can be composed from eigenvectors of the Laplace–Beltrami
operator. As a key feature, given a bifurcation pattern in terms of its eigenvectors and
eigenvalues, our approach allows us to directly compute the constraints to be satisfied
by the bifurcation parameter.

We first perform a simplification of the generic RD system equations near homo-
geneity into a linear form, to be satisfied by an emergent pattern (Sect. 3.1). Next,
we present a spectral decomposition of potential patterns and the boundary condi-
tions that allow expressing these patterns with orthogonal basis functions (Sect. 3.2).
Then, we substitute a spectrally decomposed potential pattern into the linearised sys-
tem equations to obtain an explicit general form for an emergent pattern along with
expressions and conditions for its spectral coefficients (Sect. 3.3). This allows us to
define the bifurcation point in terms of spectral eigenvalues and system parameters.
Next, we discuss three cases of simple, multiple and mixed-mode bifurcations and
the constraints that they impose on our general derivations (Sect. 3.4), and finally, we
describe our analysis–synthesis approach to directly compose bifurcation patterns for
these cases (Sect. 3.5).

3.1 Linearising Generic Two-Component RD Systems

Let us consider a two-component general RD systemwith cross diffusion, defined over
an arbitrary surface. Irrespective of its dimensional or non-dimensional characteristic,
such a system can be expressed mathematically, in a general form, as

∂a

∂t
= ∇2 [(a Da + a Dαa + a Dβb

)
a
] + f (a, b) ,

∂b

∂t
= ∇2

[(
b Db + b Dαa + b Dβb

)
b
]

+ g(a, b) . (1)
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Here, a : � �→ R and b : � �→ R
3 are the concentrations of two components over

the surface domain4 �, diffusion is represented with the Laplace–Beltrami operator5

∇2, and functions f and g represent nonlinear reaction terms. The scalar coefficients
a Da and b Db are positive diffusion rates, a Dα and b Dβ are non-negative self-diffusion
factors, and a Dβ and b Dα are non-negative cross-diffusion factors for the system (Lou
and Ni 1996). We discuss the boundary conditions for the system of PDEs in Eq.1
in Sect. 3.2. Throughout this paper, we consider only steady-state solutions of RD
systems. For Eq.1, this implies that we are interested in solutions with ∂a/∂t =
∂b/∂t = 0.

To linearise the RD system defined in Eq.1, we first define its homogeneous
steady state (a0, b0) as a solution to the simultaneous equations f (a0, b0) = 0 and
g(a0, b0) = 0. Note that depending on the complexity of f and g (say polynomial
order), theremay bemultiple choices for the homogeneous steady state (a0, b0). Given
a steady state (a0, b0), we now perform a Taylor series expansion for the nonlinear
reaction terms f and g for infinitesimal deviations u = �a|a0 and v = �b|b0 ,

f (a0 + u, b0 + v) = f (a0, b0) + u
∂ f

∂a

∣
∣∣∣
(a0,b0)

+ v
∂ f

∂b

∣
∣∣∣
(a0,b0)

+ n f (u, v),

g(a0 + u, b0 + v) = g(a0, b0) + u
∂g

∂a

∣
∣∣∣
(a0,b0)

+ v
∂g

∂b

∣
∣∣∣
(a0,b0)

+ ng(u, v), (2)

where n f and ng are polynomial functions containing the second and higher order
terms in u and v for their respective Taylor series expansions. In other words, n f and
ng represent the nonlinear part of the reaction terms for the system defined by Eq.1
near the homogeneous steady state (a0, b0). Now substituting a = a0+u, b = a0+v,
f (a0+u, b0+v), and g(a0+u, b0+v) fromEq.2 into Eq.1 and ignoring the nonlinear
terms yields

∂u

∂t
= u Du∇2u + u Dv∇2v + fl(u, v) ,

∂v

∂t
= v Dv∇2v + v Du∇2u + gl(u, v) , (3)

with

fl(u, v) = u Ku u + u Kv v ,

gl(u, v) = v Ku u + v Kv v , (4)

3 Strictly speaking, a and b are functions of time as well and one must express a : � × t �→ R and
b : � × t �→ R. However, we are concerned only with steady-state solutions and they do not change with
time. To avoid the confusion which may arise with equations from spectral decomposition during linear
stability analysis, we do not express the time dimension explicitly.
4 We refer to a two-dimensional, connected manifold with or without boundaries as a ‘surface’. We discuss
relevant boundary conditions in Sect. 3.2. Throughout this paper, we use terms ‘surface’ and ‘domain’
interchangeably.
5 Often, the Laplace–Beltrami operator for surface functions is denoted as ∇2

S . We omit the subscript ‘S’
for the simplicity of expressions.
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foru : � �→ R andv : � �→ R.Here, newdiffusion coefficients {u Du, u Dv,
v Du, vDv}

and reaction coefficients {u Ku, u Kv,
v Ku, v Kv} are defined in terms of old coefficients

in Eq.1, a0, b0, and partial derivatives ∂ f/∂a, ∂ f/∂b, ∂g/∂a and ∂g/∂b evaluated at
(a0, b0). See the supplemental material (SM01.D1) for the definition of these new
coefficients along with necessary derivations. We emphasise that for the above lineari-
sation, all nonlinear terms with factors u, v, ∇u, ∇v, ∇2u and ∇2v become negligible
and can be ignored. To understand this, reconsider that u and v are infinitesimal devia-
tions. We may restate this fact as u = εu∗, v = εv∗ and ε → 0. Here u∗, v∗ represent
the deviations on a relative scale and ε represents the absolute scale for deviations.
Thus, while the ε term gets factored out from linear terms on both sides of PDEs, all
second and higher order terms tend to zero as ε → 0.

3.2 Spectral Decomposition and Boundary Conditions

Our frameworkperformsbifurcation analysis near homogeneity using spectral analysis
of the Laplace–Beltrami operator ∇2. If a second-order linear operator such as ∇2

is Hermitian, then its eigenmodes form a set of orthonormal basis functions that
can express any surface function such as u and v. Using an orthonormal spectral
decomposition, we derive the conditions for an emergent pattern directly in terms of
the eigenmodes and eigenvalues for the Laplace–Beltrami operator.

To ensure the orthonormality of the basis functions, we need to consider the
boundary conditions for u and v on the surface domain �. Most biological prob-
lems expressed as RD systems are subject to either periodic boundary conditions or
zero Dirichlet, Neumann, or Robin boundary conditions near homogeneity, or they
deal with closed surfaces without boundaries. We show in the supplemental material
(SM01.D2) that all these cases satisfy the Hermitian property of the Laplace–Beltrami
operator, thus implying that the following derivations are valid for all such cases.

3.2.1 Spectral Decomposition

To generate a set {φk} of orthonormal basis functions φk : � �→ R using the Laplace–
Beltrami operator ∇2, we must solve the corresponding eigenvalue problem

∇2φk = −λkφk , ∀k . (5)

Note that each basis function φk is subject to the same boundary conditions as those
for the RD system under investigation. We discuss a few working examples of how
to compute φk with different boundary conditions in Sect. 6. Here, all the eigenvalues
λk are real and non-negative since ∇2 is Hermitian. We thus assume that the basis
functions form an ordered set, where the ordering index k satisfies λk ≤ λk+1. Using
the basis functions {φk} we can express a smooth surface function f : � �→ R as

f =
∑

k

fk φk , where fk = 〈 f,φk〉 ∀k , (6)
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and fk are called spectral coefficients. Next, we leverage the spectral decomposition in
Eq.6 to express a pattern emergent near homogeneity for a generic RD system defined
in Eq.1.

3.3 Bifurcation Patterns Near Homogeneity

While the spectral decomposition suggests that potential patterns could in general
contain any superposition of eigenmodes, the conditions near homogeneity impose
additional constraints on actual emergent patterns. We now derive an as–general–as–
possible form for emergent steady-state patterns, expressed in the spectral basis, that
respects these constraints.

Consider a steady-state bifurcation pattern (ub, vb), where the superscript b denotes
that this emergent pattern is a bifurcation from the trivial homogeneous solution.
Substituting its spectral decomposition from Eq.6 into Eq.3, and setting the temporal
derivatives to zero to obtain a steady-state solution, gives us

∂ub

∂t
= u Du∇2

∑

k

ukφk + u Dv∇2
∑

k

vkφk + u Ku

∑

k

ukφk

+ u Kv

∑

k

vkφk = 0 ,

∂vb

∂t
= v Dv∇2

∑

k

vkφk + v Du∇2
∑

k

ukφk + v Ku

∑

k

ukφk

+ v Kv

∑

k

vkφk = 0 . (7)

For simplicity, we dropped the superscript b from the spectral coefficients uk and vk .
Simplifying Eq.7 using substitutions ∇2φk = −λkφk , ∀k, and imposing linear inde-
pendence of orthonormal basis functions φk yields the following relations between
the spectral coefficients uk , vk , and eigenvalues λk , ∀k (see supplemental material
(SM01.D3) for a detailed derivation),

(u Ku − u Duλk) uk + (u Kv − u Dvλk) vk = 0 ,

(v Kv − v Dvλk) vk + (v Ku − v Duλk) uk = 0 . (8)

For each non-zero pair of uk and vk , we derive the following constraint on the corre-
sponding eigenvalue λk from the above equation,

(u Du
v Dv − u Dv

v Du)λ2k −
(u Du

v Kv + v Dv
u Ku − u Dv

v Ku − v Du
u Kv)λk

+ u Ku
v Kv − u Kv

v Ku = 0 . (9)

Eq.9 is quadratic in λk and it admits at most two real valued roots for λk , say 	m and
	n .
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This implies,

ub =
∑

{i}
uiφi +

∑

{ j}
u jφ j , vb =

∑

{i}
viφi +

∑

{ j}
v jφ j ,

with {i} = {k | λk = 	m} and { j} = {k | λk = 	n} . (10)

This means that at most two sets of eigenfunctions with two distinct eigenvalues 	m

and 	n , i.e. {φi } = {φk | λk = 	m} and {φ j } = {φk | λk = 	n} may be combined
linearly to form an emergent pattern. Thus, Eq.10 expresses the most general form
for a bifurcation pattern (ub, vb), emergent near homogeneity for an RD system as in
Eq.3.

3.4 Classifying Diffusion-Driven Instabilities

An important requirement for patterns given by Eq.10 to emerge due to diffusion-
driven instabilities is that the RD systems must be linearly stable in absence of
diffusion.Murray expresses this requirement in terms of the differentials of the reaction
terms in an RD system equation Murray (see 2003, Equation 2.19). For RD systems
given by Eq.1, near homogeneity, the stability constraints are expressed in terms of
system parameters as (refer to Eq.4):

∂ fl

∂u
+ ∂gl

∂v
= u Ku + v Kv < 0 , and

∂ fl

∂u

∂gl

∂v
− ∂ fl

∂v

∂gl

∂u
= u Ku

v Kv − u Kv
v Ku > 0 . (11)

In absence of diffusion, a bifurcation pattern emerges when one of the system
parameters called the bifurcation parameter6 α, undergoes a change to invalidate the
above inequalities. A bifurcation parameter may be any function of the parameters
u Ku, u Kv,

v Ku, and v Kv in Eq.11. In contrast, a diffusion-driven bifurcation occurs
whenever Eq.9 is brought to satisfaction for some λk with a change in the bifurcation
parameter α without violating Eq.11.

To facilitate direct composition of emergent patterns, we classify them based on two
criteria. First, we classify patterns as (i) exclusive mode selections or (ii) non-exclusive
mode selections based on certain conditions for the diffusion induced instability.
Diffusion-driven instabilities may activate multiple eigenmodes φk to grow or emerge
simultaneously under a fixed set of system parameters. This is captured by the disper-
sion relation (Murray 2003, page 86), which indicates the range of eigenvalues that are
unstable for the fixed system parameters. The dispersion relation provides a temporal
growth rate7 ξk for each potential eigenvalue λk . The growth rate ξk indicates the rate
at which the amplitude of the corresponding eigenmode φk would increase with time,

6 Note that, in our framework, the bifurcation parameter is also the continuation parameter.
7 Note that the growth rates for the amplitudes of the eigenmodes, as discussed here, do not refer to the
scale or growth of the domain � itself.
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+ ξ

-
0

+ ξ

-
0

+ ξ

-
0

Λn Λn

Λn Λm

Exclusive mode Mixed modeNon-exclusive mode

λ λ λ

α=12.02 α=13.73 α=17.57

Fig. 1 Dispersion relation curves for the first three bifurcations forMurray’s chemotactic RD system (Win-
ters et al. 1990) with α as a bifurcation parameter. Potential eigenvalues are represented along the λ-axis
and the rates at which the amplitude of the corresponding eigenfunctions may grow with time are repre-
sented along the ξ -axis. For a two-component RD system, the dispersion relation is an implicit equation
with second-order polynomial terms in ξ and λ. Actual eigenvalues of the LB operator are shown as cir-
cles. As we move along the trivial branch by increasing the value of the bifurcation parameter α, different
eigenmodes (represented by bigger brown circles) become unstable to branch out new bifurcations. For
mathematical details refer to Eq.22 in Sect. 6.2. RD system parameters other than α are set to default values
as specified in that section (Color figure online)

under a given set of system parameters. Only eigenmodes with non-negative growth
rates are unstable and may participate in pattern formation.

Figure1 plots dispersion relations as curves of growth rates ξ over potential eigen-
values λ for an example. The shapes of the curves are determined by the given system
parameters, and varying a free continuation parameter α leads to a family of curves.
We show three such curves for three different values of α, increasing from left to
right. Circles along the λ-axis indicate actual eigenvalues λk from the spectral anal-
ysis (Sect. 3.2). In exclusive mode selection (left image), eigenmodes corresponding
to exactly one eigenvalue, say 	n , become unstable (they have a non-negative growth
rate) at the bifurcation point. In non-exclusive mode selection (middle image), the sys-
tem becomes unstable to a new set of eigenmodes with eigenvalue	n , while it remains
unstable to other eigenmodes with positive growth rates (red dot on the λ-axis).

Further, similar to Chien and Liao (2001),8 we classify bifurcations as: (a) simple
if only a single wavemode constitutes the emergent pattern, (b) multiple if more than
one wavemode constitutes the emergent pattern but all such wavemodes have the same
eigenvalue, and (c) mixed-mode for the bifurcations with constituent wavemodes of
more than one eigenfrequency, say 	n and 	m . Figure1 on the right illustrates the
dispersion relation for a mixed-mode pattern at its bifurcation point. Next, we derive
different formulae to compose bifurcation patterns directly for these cases.

3.5 Composing Bifurcation Patterns for Continuation

Building on the derivations from Sects. 3.1, 3.2 and 3.3, we now derive equations
to directly compose bifurcation patterns using an analysis–synthesis approach. We
discuss simple, multiple, and mixed-mode bifurcations for the RD system in Eq.1
(near homogeneity), both under exclusive and non-exclusive mode selection. At this

8 While Chien and Liao (2001) label all bifurcations made of two or more eigenmodes as mixed-mode, we
reserve this term only for the bifurcations that involve eigenmodes with different eigenvalues.
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point, we assume that the eigenvalues λk and eigenmodes φk for the Laplace–Beltrami
operator (the “analysis”) are given and discuss their numerical computation later in
Sect. 4. Our composition algorithm (the “synthesis”) allows: (a) selecting one of the
system (reaction) parameters as the bifurcation parameter α, (b) setting values for
all other system parameters arbitrarily without violating preconditions like those in
Eq.11, and (c) setting scale factors uk,∀k in Eq.10 for a desired linear combination of
eigenmodes φk in ub, i.e. a desired emergent pattern in one system component. It then
outputs: (a) the value of the (free) bifurcation parameter at the bifurcation point for the
emergent pattern with desired ub, and (b) the complete (discretised) emergent pattern
(ub, vb) with appropriately scaled vk,∀k for eigenmodes φk in vb, i.e. the second
system component concentration. We present the method details in the following.

3.5.1 Simple Bifurcations

Simple bifurcation patterns are composed of a single wave φi such that the algebraic
multiplicity of its corresponding eigenvalue λi = 	 is 1. Let for some i , (ub =
uiφi , vb = viφi )be the steady-state bifurcationpattern of interest.Wenow investigate
the conditions that the bifurcation parameter must satisfy to branch out a steady-state
pattern (ub, vb).

Exclusive Mode Selection For simple bifurcations in exclusive mode selection prob-
lems, the system is driven into instability by one single eigenmode, while it remains
linearly stable against all other eigenmodes. Thus, the quadratic Eq.9 must admit only
one real root for λk = 	 corresponding to the eigenmode under investigation, at the
bifurcation point. In this case, chosen 	 satisfies

2	(u Du
v Dv − u Dv

v Du) = u Du
v Kv + v Dv

u Ku − u Dv
v Ku − v Du

u Kv.

(12)

For RD systems without cross-diffusion, u Dv = v Du = 0 and the above relation
becomes 2	 u Du

v Dv = u Du
v Kv + v Dv

u Ku . Thus for studying exclusive mode
selection for RD systems without cross-diffusion, the bifurcation parameter must be
associated with u Ku or v Kv if the bifurcation is attributed to reaction kinetics.

An interesting class of problems deals with domains of a fixed shape and their size
or scale as themode selection criterion (Murray 2003, page 117 and Figure 3.6 on page
151) and thus the bifurcation parameter in these cases. These problems correspond
to the simple cases of isotropic growth with the rates for changes in the component
concentrations owing to growth being far too slow as compared to the rates at which
these concentrations change due to reaction or diffusion effects, refer to Crampin
et al. (1999) for quasi-steady-state problems. Our framework does not address the
dynamics of domain growth, however, even for these simplest of the cases of isotropic
growth, as formalised by Madzvamuse et al. (2010). For such cases, let us introduce
a common scale factor γ > 0 for all the parameters to represent isotropic growth,
i.e. u Ku = γ uGu , u Kv = γ uGv , v Ku = γ vGu and v Kv = γ vGv . Substituting
these terms in Eq.12 gives us γ at the bifurcation point directly in terms of the system
parameters as
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γ = 2	(u Du
v Dv − u Dv

v Du) /
(u Du

vGv + v Dv
uGu − u Dv

vGu − v Du
uGv

)
.

(13)

Non-Exclusive Mode Selection For simple bifurcations that emerge non-exclusively,
the λi = 	 for a given wavemode φi may not be a unique root for Eq.9. Neverthe-
less, for detecting bifurcations near homogeneity with all but one unknown system
parameter, we can use Eq.9 with λi = 	 to directly compute the free (bifurcation)
parameter.

Thus, for all simple bifurcations along the trivial branch, we can directly compute
a bifurcation parameter to locate the bifurcation point for a given wavemode φi by
substituting	 = λi in eitherEq. 12 (exclusivemode selection), Eq. 13 (exclusivemode
selection under domain growth) or Eq. 9 (non-exclusive mode selection). Finally, with
all system parameters known, we can obtain the spectral coefficients ui and vi by
solving the simultaneous Eqs. 8. This yields the desired bifurcation pattern (ub, vb),
and we can switch to the new branch for tracing (see Sect. 4.6).9

3.5.2 Multiple Bifurcations

For an eigenvalue λi = 	with algebraic multiplicity> 1, we have multiple candidate
wavemodes φi that satisfy the conditions and equations that we derived for simple
bifurcations. Thus, for such cases, every linear combination of these wavemodes is
a bifurcation pattern emergent at the same bifurcation point located using the results
from Sect. 3.5.1. We discuss branch switching and continuation for such multiple
bifurcations in more detail in Sect. 4.

3.5.3 Mixed-Mode Bifurcations

Let us now consider an as–general–as–possible emergent steady-state bifurcation pat-
tern as given in Eq. 10. This means there are eigenmodes of two different eigenvalues
	m and 	n , and we assume that 	m < 	n . Let us define si = vi/ui and s j = v j/u j ,
where ui, j and vi, j are the spectral coefficients as given in Eq.10. Since λi = 	m ,
∀i , Eq. 8 implies that all si are equal, say si = sm , ∀i . Similarly, s j = sn (say), ∀ j .
Substituting these scale factors with their respective eigenvalues in Eq.8 yields10

u Ku = [ u Du(sn	m − sm	n) + u Dvsmsn(	m − 	n)
]
/ (sn − sm) ,

u Kv = [ u Du(	n − 	m) + u Dv(sn	n − sm	m)
]
/ (sn − sm) ,

v Ku = [
v Dvsmsn(	m − 	n) + v Du(sn	m − sm	n)

]
/ (sn − sm) ,

v Kv = [
v Dv(sn	n − sm	m) + v Du(	n − 	m)

]
/ (sn − sm) . (14)

9 Note that Eq. 8 is homogeneous and the terms ui and vi can only be solved up to a common scale factor,
say si = vi /ui .
10 See our supplemental material (SM01.D4) for detailed derivation for these coefficients and Eq.15.
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Now, one of the linear stability requirements in absence of diffusion is that u Ku
v Kv >

u Kv
v Ku (Eq. 11). Expanding this inequality with substitutions from Eq.14 gives us

a constraint on the diffusion parameters,

u Du
v Dv > u Dv

v Du , (15)

which needs to be satisfied, as a pre-condition, to obtain a mixed mode bifurcation.
Next, using the fact that 	n and 	m are solutions for λk in Eq.9, we can solve for the
bifurcation parameter which is the only unknown in the following equation,

(u Du
v Dv − u Dv

v Du)2(	n − 	m)2

+ 4 (u Du
v Dv − u Dv

v Du) (u Ku
v Kv − u Kv

v Ku)

− (u Du
v Kv + v Dv

u Ku − u Dv
v Ku − v Du

u Kv)
2 = 0 . (16)

Finally, with all system parameters determined, we can compute sm and sn as

sm = (u Du	m − u Ku)/(u Kv − u Dv	m) ,

sn = (v Du	n − v Ku)/(v Kv − v Dv	n) . (17)

In summary, to study a mixed-mode bifurcation, we start composing a desired
emergent pattern by selecting two eigenvalues, 	m and 	n , and the corresponding
sets of eigenmodes {φi | λi = 	m} and {φ j | λ j = 	n}. In addition, we freely choose
desired spectral coefficients ui and u j .

We choose any one of the (reaction) system parameter as the unknown/free bifur-
cation parameter and arbitrarily fix all other system parameters as suitable for the case
under investigation, while satisfying Eq.15. Then, we compute the unknown bifur-
cation parameter by solving the (quadratic) Eq. 16. In order to continue with branch
tracing, the solved bifurcation parameter must be real valued and satisfy preconditions
in Eq.11. Else, our framework reports an error. Finally, we compute sm and sn using
Eq.17, and the spectral coefficients vi and v j using ui , u j , sm and sn . Now, all terms
are determined to compose the bifurcation pattern (ub, vb) using Eq.10.

4 Numerical Method

In this section, we describe the numerical implementation of our framework in more
detail. We explain the basics of the FEM discretisation in Sect. 4.1, which supports
the following operations for bifurcation analysis and branch tracing: approximating
eigenfunctions of the Laplace–Beltrami operator (Sect. 4.2), resolving bifurcations
(Sect. 4.3), and branch tracing (Sect. 4.6). In addition, we will describe a strategy
for resolving patterns at higher resolutions in Sect. 5. Our framework also includes
a generic, indirect reference method for branch detection using a test function (see
Seydel 2010, Sect. 5.3). We use it for various comparisons during the evaluation of
our framework.
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4.1 FEM Discretisation

Our framework builds on the surface finite elementmethod (SFEM) as supported in the
Deal.II software library (Bangerth et al. 2007). With SFEM in Deal.II, � represents
a piecewise linear surface that approximates the original continuous surface11 with
quadrilateral finite elements (Q-FEs). The Laplace–Beltrami operator on � is defined
as the divergence of the tangential gradients, i.e. ∇2 f = ∇ · ∇ f for f : � �→ R

and ∇ f = ∇R3 f − (∇R3 f · n̂)̂n. Here, ∇R3 is the standard Laplacian operator in the
embedding 3D-Euclidean spaceR3 with the assumption that the function f is extended
in the immediate surface neighbourhood along the surface normal n̂ at each surface
point. Dziuk (1988) was the first to formulate this definition for piecewise linear FE
basis functions on a piecewise linear surface approximation, and it was extended to
piecewise polynomial FE basis functions of arbitrary degree on piecewise polynomial
(arbitrary degree) surface approximations byDemlow (2009).Our framework supports
configuring the order of the FEs (i.e. the degree of the piecewise polynomial basis
functions) up to three. We numerically compute the Laplace–Beltrami operator and
surface gradients of surface functions using Gauss quadrature rules for integration
over FEs. Details of these computations can be found in the tutorials for Deal.II, for
example (Bonito et al. 2013, Step-38). For a more comprehensive understanding of
SFEMs, we refer the reader to Dziuk and Elliott (2013, Sect. 4.4).

4.2 Approximating Laplacian Eigenfunctions

We saw in Sect. 3.3 that the eigenfunctionsφk of the Laplace–Beltrami operator are the
building blocks for composing bifurcation patterns. Interestingly, the eigenfunctions
depend only on the shape of the surface domain � and the boundary conditions. They
are independent, however, of the RD system formulation and its parameters. We use
an FEM discretisation of the domain � and apply a Galerkin method to discretise the
eigenvalue problem in Eq.5 as

Lbk = −λkMbk . (18)

Here, bk is a discrete vector representation of the eigenfunction φk . We obtain the
stiffness matrix L and the mass matrix M by applying a weak formulation integration
to the Laplace–Beltrami operator∇2 and the eigenfunctionφk , respectively. As before,
λk is the eigenvalue corresponding to the eigenfunctionφk . Equation18 is a generalised
eigenvalue problem, and in our case we obtain a large-scale system of sparse matrices.
We use the Anasazi eigensolver package from the Trilinos library (Heroux et al. 2005)
for finding the eigenvectors bk . For large-scale general eigenvalue problems, a shift-
invert approach is commonly used to solve for a band of eigenvectors as recommended
by Lévy and Zhang (2010). However, for RD systems with zero Neumann boundary
conditions, L is singular and the shift-invert method cannot be used to compute the
lowest frequency band of eigenvectors. To keep things simple, we apply M−1 as a

11 We refrain from introducing an additional notation such as �d for the discrete surface.
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preconditioner to both sides and solve the resulting standard eigenvalue problem. We
avoid explicit computation of the possibly non-sparse, large matrixM−1 with the use
of the AztecOO package from the Trilinos library. AztecOO provides an inner loop
implementation for each application of matrixM−1 to a vector (say) y for computing
k = M−1y by solving the linear system Mk = y instead of matrix inversion.

4.3 Resolving Bifurcations

Given the eigenvectors {bk} and their respective eigenvalues {λk}, we can now com-
pose bifurcation patterns and locate their point of emergence on the trivial branch.
Section3.5 explains how a bifurcation pattern may be categorised as a simple, multi-
ple or mixed-mode bifurcation. For simple bifurcations, each basis vector bk defines
a bifurcation pattern, which we denote as xb. We first locate the bifurcation point
corresponding to xb as follows. Let p = {u Du, u Dv,

v Dv,
v Du, u Ku, u Kv,

v Ku, v Kv}
be the set of system parameters.12 We choose any one α ∈ p as the ‘unknown’ bifur-
cation parameter for an investigation and set the rest, i.e. p \ α as fixed. Depending
on the problem, we use one of the Eqs. 9, 12 or 13 to compute α by substituting val-
ues from p \ α and λk (or 	 = λk) in it. Then, without loss of generality, we set
uk = 1 and solve for vk using Eq.8 to compute xb = (ukbk, vkbk). For multiple
bifurcations, to compose a bifurcation pattern xb, we first select a set of eigenvectors
{bi } = {bk | λk = 	m}. We then use 	m as λk in the case of simple bifurcations
to compute α for the corresponding bifurcation point. Next we select an arbitrary
set of spectral coefficients ui to define a desired linear combination of bi as an
emergent pattern and compute the vi , ∀i using Eq.8. Thus we compute the mul-
tiple bifurcation pattern xb = (

∑
i uibi ,

∑
i vibi ). For a mixed mode bifurcation,

we pick two sets {bi } = {bk | λk = 	m} and {b j } = {bk | λk = 	n} and com-
pose an arbitrary linear combination of eigenvectors bk ∈ {bi } ∪ {b j } to define a
desired emergent pattern. We then solve for the bifurcation point α by substituting
all parameters from p \ α, and 	m and 	n in Eq.16. With the known bifurcation
point and 	m and 	n , we compute sm and sn using Eq.17. Next, with the previously
defined arbitrary values of ui and u j for the desired emergent pattern, we compute
vi = smui and v j = snu j ∀i, j . Finally, we compose the mixed mode bifurcation
pattern xb = (

∑
i uixi + ∑

j u jb j ,
∑

i vibi + ∑
j v jb j ).

4.4 Reference Method

For evaluation purposes, we also implemented a standard approach for detecting bifur-
cation points (Seydel 2010, Chapter 5). We call this the reference method since it uses
common techniques for different tasks in detecting bifurcation points and computing
bifurcation patterns. To detect a bifurcation point, we use a test function τ which is
evaluated at (x,α) as, τ = eT

k J v, where vector v satisfies equation Jk v = ek , with

12 In practice, when the parameters u Du , u Dv, v Dv, v Du , u Ku , u Kv, v Ku and v Kv are themselves
expressed in terms of a set of some other (real) system parameters, then p is the set of these real parameters
and α is one of them.
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Jk = (I − ekeT
k )J + ekeT

k . Here, ek is a unit vector with all but the kth element set
to zero and J is the Jacobian matrix for function f as discussed for branch tracing in
Sect. 4.6. A bifurcation is detected each time τ changes its sign from − to + in an
interval, say (αl , αu). Next we perform a mid-point search to locate the 0-crossing for
τ by iteratively evaluating it at αmid = (αl + αu)/2 and then setting αl = αmid if τ < 0
at αmid or otherwise setting αu = αmid. Upon convergence |τ | ≈ 0. This implies that
vector v lies in the null space of the Jacobian matrix J at αmid and it is a good approxi-
mation to the bifurcation pattern xs . We thus output xs = v and α0 = αmid as the next
detected bifurcation pattern which may be used for branch tracing in a manner similar
to the previous methods. Note that this method is not capable of resolving multiple
bifurcations.

4.5 Advantages and Limitations of the Proposed Approach

The main advantage of our proposed approach is that finding bifurcation points and
patterns is not dependent on the goodness of the tracing test function described in
Sect. 4.4. Using a test function poses two issues: first, the potential presence of more
than one bifurcation in an interval, and second, the lack of a guarantee for any test
function to detect the presence of each bifurcation. While there are several strategies
to address these two issues, often incompletely, our proposed direct approach com-
pletely avoids them. Furthermore, we do not need to perform repeated evaluations of
the test function along the trivial branch. As a further advantage, depending on the
complexity of the test function and the interval size, our approach reduces compu-
tational overheads. We tabulate performance gains due to our approach in Sect. 6. A
third, important advantage of our approach is that it allows the direct composition of
infinite multiple and mixed-mode bifurcation patterns. This adds considerable pos-
sibilities to bifurcation analysis by supporting the exploration of multiple co-located
branches.

At present, the main limitation of our proposed approach is that it can only be used
to analyse primary branches emerging from the trivial branch.

4.6 Branch Tracing for Nonlinear Analysis

Our framework also supports nonlinear analysis with branch tracing in the far-off
nonlinear region for the PDEs. The first task in branch tracing is to switch over to
the new branch of patterns characterised by a given bifurcation pattern xb = (ub, vb).
While the linear stability analysis gives us xb, we are interested in a non-trivial solution
xs that fully satisfies the actual nonlinear PDE given in Eq.1, near the bifurcation point
p (with α = α0) on the trivial branch.With xh ≡ (a0, b0) as the homogeneous solution
at the bifurcation point p, estimating a good starting point xs = xh +�x with α ≈ α0
on the new branch is a non-trivial task. The nonlinear solution xs must be qualitatively
similar to the bifurcation pattern xb; yet far-enough away from the trivial branch to
allowcontinuationwithout falling back. To achieve this,wepropose two improvements
over a standard method of parallel computation approach for branch switching (see
Seydel 2010, Sect. 5.6.3).
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For the first improvement, we suggest using a bordering algorithm (Salinger et al.
2002) to iteratively compute the jump �x until a successful switch is made. Our key
idea is to select a pattern dependent pivot (a discrete FEM node) for fixing the jump
size and the direction of parallel computation. As a second improvement which helps
multiple and mixed mode bifurcations, we propose to apply a strong guidance to the
jump�x at each intermediate step of our iterative switching algorithm. The bifurcation
pattern xb serves as a good guidance for the jump �x. The details for our proposed
improvements are presented in the supplemental material (SM02.A1).

Once we switch over to a new branch by jumping from the trivial solution xh to
the nonlinear solution xs , we follow it by means of continuation. Our framework
uses the LOCA and NOX packages from the Trilinos library to perform pseudo arc-
length continuation. We use an adaptive approach that updates the step size after each
continuation step and impose a tangent scale factor to manoeuvre the direction of
the continuation curve as supported by the Trilinos library. In particular, we propose
to establish an initial tangent direction which is strongly orthogonal to the trivial
branch by attempting a jump from the nonlinear solution xs to its antithetic solution
x̂s = xh −�x, instead of jumping from the trivial solution xh to the nonlinear solution
xs . Again, we present the details of our proposed improvement for branch tracing
with other implementation details in the supplemental material (SM02.A1). Also, we
provide further details about the configurability of our framework in the supplemental
material (SM02.A2).

5 Multiresolution Adaptation

Unlike simple spot and stripe patterns, most interesting biological surface pat-
terns exhibit high shape contour irregularities. The complexity of these patterns
is attributed to the surface geometry and the (mid or high) frequency of the con-
stituent eigenmodes (of the LB operator ∇2). For accurate computation of such
complex patterns, the surface geometry must be represented with a high-resolution
FEM discretisation. We thus propose a simple multilevel approach in which branch
tracing is performed at the base-level of discretisation and the resultant patterns
are upsampled and resolved at higher levels progressively. With this, we decou-
ple the computations at different levels to gain in performance, scalability and
parallelisability.

Our framework uses a simplified geometric multigrid approach where the sur-
face domain � is organised in multiple levels Ll , with l = 0, . . . , N , where L0 is
the lowest resolution representation and L N = �. We begin with the highest level
mesh L N = � and generate each lower level mesh Ll−1 from mesh Ll by applying
a quadric-based edge collapse decimation algorithm (Garland and Heckbert 1997;
Cignoni et al. 2008). We perform branch tracing at the lowest resolution L0 and pro-
gressively upsample resulting patterns up to the highest resolution L N . Unlike most
of the multigrid approaches where all the mesh levels are used simultaneously in a V-
cycle or a W-cycle (for the full multigrid approach), we perform complete upsampling
of a solution using only two levels at a time. We thus call our approach a progressive
geometric multigrid approach.
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We propose a two-step approach for upsampling the results between two levels
l − 1 and l. For the first step, we increase the mesh resolution for Ll−1 without
changing its geometry. We perform an in-plane subdivision of each existing (quad)
finite element into four to give a new mesh, say Rl−1. In the second step, we map
the geometry of the mesh Rl−1 to Ll . For each solution vector xl−1

b defined over
Ll−1 with continuation parameter α = αb, we first interpolate it linearly to the higher
resolution mesh Rl−1 and then solve the nonlinear system f(rl−1

b , αb) = 0 over Rl−1.
In general, we use a Newton method with backtracking to solve for rl−1

b . We compute
the direction vector for the Newton method using a biconjugate gradient method with
stabilisation as implemented in the AztecOO package. For difficult cases, we use a
trust region method for solving the above nonlinear system with a GMRES approach
for establishing the search direction. Next we perform a similar interpolation from
Rl−1 to Ll and then solve for xl

b with f(xl
b, αb) = 0.

For linear interpolation of a solution across two meshes (say, from Ll−1 to Rl−1 or
from Rl−1 to Ll ), we use a projection-based mapping scheme between meshes. We
project each node from a target mesh (say Rl−1) onto the nearest face of the source
mesh (Ll−1) and use the barycentric coordinates of the projected node to compute
linear interpolation weights. A naive implementation of this mapping scheme has a
computational complexity O(M N ) with M and N as the number of nodes for the
source and target meshes respectively. Computational complexity can be reduced to
O(M log N )with the use of a kd-tree for the nearest face search. Note that we compute
the multilevel meshes and the mappings for linear interpolation of solutions only once
as a preprocessing step for a given surface domain �.

Our two-step approach separates the complexity of resolution improvements from
the complexity of geometry improvements for an upsampling task. The results for our
progressive geometric multigrid approach are presented in Sect. 6.

6 Experiments and Results

In this section, we describe our experimental setup, discuss case studies and present
results. We use a 64-bit Ubuntu 14.04 LTS platform running on an Intel Xeon E5-2630
CPUwith 6Cores@2.3Ghzwith 16GBRAMfor all performance evaluations andmost
other experiments. We demonstrate our framework with two RD system case studies,
a Brusselator system for the cotyledon patterning of conifer embryos (Sect. 6.1) and
Murray’s chemotactic model for snakeskin pattern formation (Sect. 6.2).
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6.1 Case Study I: A Brusselator Model

Nagata et al. (2013) present a study of emergent cotyledon patterns on a plant tip.
They model observed patterns as bifurcations for a two-component Brusselator RD
system. They represent the plant tip with a simple geometric shape, a spherical cap.
This spherical cap domain� is parametrised by its size factor R and a curvature factor
ζ as shown in Fig. 2. Nagata et al. (2013) perform marginal stability analysis to study
the relation between the number of emergent cotyledons and the size factor R or the
curvature factor ζ for a cap. With a : � �→ R and b : � �→ R as time-dependent
concentrations of two Turing morphogens, their model is defined mathematically in a
dimensional form as,

∂a

∂t
= D1∇2a + A − (D + B)a + Ca2b ,

∂b

∂t
= D2∇2b + Ba − Ca2b ,

with b.c. a() = A

D
, b() = B D

AC
, at  ∈ ∂� . (19)

Here, A, B, C and D are positive rate constants, D1 and D2 are positive diffusion rates
and is a surface point on the domain boundary ∂�. These boundary conditions imply
that the concentrations are fixed at levels corresponding to a non-zero, homogeneous
steady state. Nagata et al. linearise Eq.19 near homogeneity with (a0 = A/D, b0 =
B D/AC) by substituting a = a0+u and b = b0+v to derive an analytical expression
for their continuation parameter (represented by A here) at a simple bifurcation point.
This also results in zero Dirichlet boundary conditions for the linearised problem in u
and v, i.e. u() = v() = 0 at  ∈ �. The continuation parameter A is determined
by the other system parameters and the eigenvalue	 = λi of a spherical cap harmonic
φi , which constitutes the emergent pattern. Note that λi , in turn, depends on the shape
ζ and size R of the cap, and it can be computed by evaluating an associated Legendre
function. This makes it possible to study the marginal stability of emergent patterns
with respect to A, R and ζ.
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In our framework, the spherical cap harmonics are just a special case of eigenfunc-
tions {φi } satisfying Eq.5 for a specific, simple domain. The benefit of our approach,
however, is that we can easily generalise the analysis to arbitrarily shaped domains.
This could facilitate the discovery of shape-induced anomalies in emergent patterns,
as we discuss in an example later. Further, we simplify the analysis by incorporating
the size factor R directly into the RD model. To do this, we introduce a factor γ that
represents the relative scale of an arbitrary domain with respect to its canonic unit
size. We then relate γ to the R and numerically compute the emergent patterns and
corresponding 	 values, as explained next.

We first modify Eq.19 to include the scale factor γ in all the reaction terms, that is,
in all coefficients except the diffusion rates D1 and D2. Scaling the reaction relative
to the diffusion coefficients has a similar effect as scaling the domain (Murray 2003,
page 78). We use the notation A = γ A∗, where ∗ indicates corresponding rates at unit
scale, and similarly for the other coefficients. This yields new linearisation parameters

u Ku = γ (B∗ − D∗), u Kv = γ
A2∗C∗
D2∗

, v Ku = −γ B∗, v Kv = −γ
A2∗C∗
D2∗

.

(20)

Substituting these parameters along with u Du = D1, u Dv = 0, v Dv = D2, v Du = 0
and λi = 	 in Eq.9 gives us the new continuation parameter A∗ as

A∗ = D∗
(

D2(B∗ − D∗)	∗ − D1D2	
2∗

C∗ (D1	∗ + D∗)

)1/2

, with 	∗ = 	

γ
. (21)

Here 	 denotes the eigenvalue for a pattern φi at unit scale of the domain �. It can be
shown that under uniform scaling of a surface domain � by a factor R, the eigenvalue
for a given eigenfunction is inversely proportional to R2. For spherical cap harmonics,
for example, eigenvalues are analytically defined as λi = �(φi , ζ)/R2, where � is
defined in terms of an associated Legendre function dependent on the wavemode φi
and the curvature factor ζ (see Nagata et al. 2013, Eq.11). Thus substituting γ = R2 in
our modified Brusselator model allows us to incorporate the size factor R for studying
marginal stability with arbitrary domains. We compute each eigenmode φi and its
respective eigenvalue 	 numerically only for a representative arbitrary shape � at a
unit scale. Our modified Brusselator model then enables us to plot marginal stability
curves for different bifurcation patterns on this arbitrarily shaped plant tip against the
size factor R, similar to the plots for spherical caps as presented byNagata et al. (2013)
in Fig. 3 of their paper.

6.1.1 Experiments

First we validate our framework against analytically derived results from Nagata et al.
(2013). We use the same parameter values as given by Nagata et al. for their Fig. 3

123



Bifurcation Analysis of Reaction Diffusion Systems on... 809

(5, 1) (0, 3) (2, 2) (3, 2) (6, 1) (1, 3) (4, 1)

Fig. 3 Spherical cap harmonics in order of their emergence along the trivial branch with (a0 =
A∗/D∗, b0 = B∗ D∗/A∗C∗) for a spherical cap (Color figure online)

Table 1 Errors in locating bifurcation points A∗ for the Brusselator model acting on a spherical cap domain

Mode Bifurcation point location (A∗) Relative error

�i : (m, n) Analytical Reference Proposed RE0 RE1
A0 A A1 (A−A0) / A0 (A1−A0) / A0

(5, 1) 0.76520 0.76528 0.76528 1.07 × 10−4 1.07 × 10−4

(0, 3) 0.76382 0.76403 0.76403 2.77 × 10−4 2.76 × 10−4

(2, 2) 0.76171 0.76200 0.76199 3.84 × 10−4 3.74 × 10−4

(3, 2) 0.76049 0.75997 0.75997 −6.88 × 10−4 −6.91 × 10−4

(6, 1) 0.75552 0.75475 0.75475 −1.02 × 10−3 −1.02 × 10−3

(1, 3) 0.75406 0.75343 0.75343 −8.41 × 10−4 −8.37 × 10−4

(4, 1) 0.74744 0.74792 0.74793 6.41 × 10−4 6.49 × 10−4

We compare the proposed and reference methods vis-a-vis analytically defined results with lookup tables
from Bauer (1986), for several emergent modes

(i.e. D1 = 0.005, D2 = 0.1, B∗ = 1.5, C∗ = 1.8, D∗ = 0.375)13 and a spherical cap
with radius R = 1 and curvature factor ζ = 0.5. For all quantitative evaluations in this
section, we compute seven different emergent patterns as shown in Fig. 3 and their
corresponding bifurcation points A∗ using both ourproposed method, and the reference
method, as explained in Sect. 4.We begin by examining errors in computing A∗ with an
FEM mesh of order one, i.e. piecewise linear basis functions, with about 4300 nodes.
Table1 provides a numerical comparison of relative errors for both methods against
the analytically derived values. For all emergent patterns, our proposed method has a
low relative error on the order of 10−3 when compared with the expected analytical
results, and the errors are quantitatively similar to those for the reference method. This
implies that our direct approach works well and most of the errors can be explained
as approximation errors due to FEM discretisation.

Figure4 shows relative errors for locating all seven bifurcation points at five mesh
resolutions ranging from1–20K vertices. The bifurcation points are ordered according
to increasing eigenvalues along the horizontal axis. We found the relative error to fall
quickly as a power-law function of the mesh resolution for each pattern. Mode (5, 1) is
closest to the exclusive mode selection criterion in Eq.12 and it has the lowest relative
error. We observe that the errors increase with the distance from this reference mode
(5, 1) in the eigenspectrum and expect larger relative errors in locating bifurcation
points for higher frequency patterns. Thus for applications requiring high accuracy

13 The units for the parameters and the domain size are same as those assumed by Nagata et al. (2013).
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Fig. 5 Relative mean error in computing the wavemode pattern φi . a Different resolutions, b Different
FEM order with 5K mesh (Color figure online)

for studying emergent patterns with arbitrary domains, our multiresolution approach
presented in Sect. 5 is beneficial.

Next, we examine numerical errors in computing bifurcation patterns for our pro-
posed method in comparison with analytically defined spherical cap harmonics (i.e.
the ground truths). We denote differences in numerically computed values for eigen-
functions at FEM nodes and the respective ground truth values as errors. Figure5a
shows relative root-mean-square (RMS) errors in emergent patterns with different
mesh resolutions. For comparison we normalise all spherical cap harmonics to have
unit amplitude. Again we see that the accuracy improves with the discretisation res-
olution with some power-law function. We also include the errors for the reference
method for a mesh with 4300 nodes in Fig. 5a, which indicates that our proposed
method is quantitatively consistent with the reference method.

We also studied the impact of the FEM order, i.e. the degree of the piecewise
polynomial basis functions, on RMS errors with about 5000 nodes in each case, see
Fig. 5b. We denote surface geometries that are approximated with finite elements of
order 1, 2 and 3, each with about 5000 nodes, by G1, G2, and G3. Since FEM
of increasing order has an increasing number of nodes per planar finite element,
the spherical surface geometry is approximated with a decreasing number of planar
elements for higher orders. Comparing the solutions of order 1 FEM on G1, order 2
on G2, and order 3 on G3, we see that FEM order 1 outperforms higher orders for all
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Fig. 6 Effects of shape distortion on emergent patterns. Images show numerically computed eigenmodes
for Eq.18 with different geometries for two rows. These eigenmodes emerge as simple bifurcation patterns
for bifurcation parameter A∗, at values as indicated (A = 100A∗ above). The normal cap was modelled
with about 20K FEM nodes while the distorted cap was modelled with about 12K FEM nodes (Color figure
online)

emergent patterns. At the given resolution of 5K FEM nodes, the increase in error due
to the geometric approximation inG2 andG3 apparently outweighs the error reduction
due to higher order polynomials. In addition, we also report the error of order 1 FEM
on the lower resolution geometries G2 and G3. As expected this increases the error
due to the use of lower order polynomials, but only marginally.

Next, we illustrate the key advantage of our approach, that is, the ability to study the
effects of arbitrary shape distortions on emergent patterns. Figure6 shows one such
distorted shape in its second row, which we generate by deforming the circular bound-
ary of the cap and propagating the distortions smoothly over the entire surface. We
visualise the effects of these shape distortions on three emergent patterns using a non-
linear colour mapping, as illustrated in the figure. Clearly, new patterns show marked
deviations from the respective spherical cap harmonics shown at the top row. Devi-
ations from normal emergent patterns often lead to developmental anomalies, which
are studied extensively in mathematical biology, refer to Harrison and Aderkas (2004)
for an example. While our illustration here does not explain any specific anomaly,
our framework can certainly be used to study the role of domain shape deviations on
actual observed cases.

Finally, we present marginal stability curves for mode (5, 1) in Fig. 7. Here we
consider three cases: (a) a spherical cap with different domain sizes (greenish colour),
(b) a distorted cap with different domain sizes (brownish colour), and (c) a cap with
different shapes and sizes. Its shape is fixed as a spherical cap for its size R ≤ 1.
Thereafter, its shape is progressively changed to that for the cap in case (b) until
R ≤ 1.2. (blue-grey colour). We first computed eigenvalues 	 for the spherical cap
with R = 1, corresponding to a boundary perimeter P = 2πR, and ζ = 0.5, and for the
distorted cap with boundary perimeter P = 2π. Using these eigenvalues we plot solid
curves in Fig. 7 for A∗–vs.–R (or P) with γ = P2/4π2 for Eq.21. Our numerically
computed marginal stability curve for the spherical cap domain conforms well with
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Fig. 7 Marginal stability for mode (5, 1) in A∗ -vs- P (cap boundary perimeter in 2π units) parameter
slice. Analytically derived values as in Fig. 3 by Nagata et al. (2013) for an isotropically growing spherical
cap are indicated with circular markers. Solid lines indicate results for our proposed method (Color figure
online)

expected theoretical values shown using greenish circles (Nagata et al. 2013). The
brown solid curve in Fig. 7 shows that our framework can perform a similar study for
an arbitrary shape domain. Last but not least, we demonstrate our capability to study
marginal stability with a cap with different shapes and sizes. We progressively morph
the spherical cap into a distorted cap as in case (b) with a shape-blending factor α that
varies from 0 to 1 for P = 1 × 2π to P = 1.2 × 2π. The blue-grey solid curve in
Fig. 7 shows the respective stability curve.

6.2 Case Study II: Murray’s Model

Winters et al. (1990) present bifurcation analysis of a two-component RD system with
nonlinear reaction terms to model snakeskin pigmentation. They consider the role of
chemotaxis, which is expressed in terms of surface gradients of the components. The
non-dimensional form of their system is given as

∂a

∂t
= D∇2a − α∇ · (a∇b) + S C a(N − a) ,

∂b

∂t
= ∇2b + S

(
a

1 + a
− b

)
,

with b.c. n̂ · ∇b() = n̂ · ∇a() = 0 ,  ∈ ∂� . (22)

Here, at any given time, a : � �→ R represents the melanophore cell density and
b : � �→ R the concentration of a chemoattractant that attracts the melanophores, D
is the cell diffusion rate within the cell matrix over the surface, α is the strength of
chemoattraction,C represents the cell mitotic rate, S is a positive scale factor, and N is
the maximum cell concentration capacity for the growth model. All these parameters
are positive and uniform over the entire snakeskin. Finally,  is a surface point on
the domain boundary ∂�, n̂ is the outward surface normal at the same point, ∇a is
the surface gradient of a (same applies to ∇b), and the model uses zero Neumann
boundary conditions.
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Winters et al. (1990) perform bifurcation detection and branch tracing to discover
the steady-state solutions of the system in Eq.22 for 2D rectangular domains. They
employ a second-order FEM approximation to represent the system state with a vector
x = (a, b), where a and b discretise a and b, respectively, at FEM nodes. With a
standard Galerkin weak formulation for FEM discretisation of the problem in Eq.22,
Winter et al. formulate a vector f(x,p, α) = −M(∂x/∂t) with M as the mass matrix
arising in the eigenproblem in Eq.18. Here, p = {C, D, N , S} is the set of fixed
parameters and α, the chemoattraction strength, is the free continuation parameter.
Loosely speaking, vector f represents the temporal derivatives, and it is obtained via
standard Galerkin FEM discretisation.

Winters et al. (1990) determine the next bifurcation point and its corresponding
bifurcation pattern as follows. They first initialise the system with the only none-zero
homogeneous steady-state solution x0 ≡ (a0 = N , b0 = N/1 + N ) and α = α0 as
a guess for the next bifurcation point. Next, using a Newton method, they solve an
extended system of equations f(x,p, α) = 0, and J�x = 0 with x = x0 + �x and
α = α0 +�α as the unknowns, and J as the Jacobian of f at (x0,p, α0). The equation
extension solves for a non-trivial �x that lies in the nullspace of the Jacobian matrix
and thus represents a pattern that may grow without affecting the system steadiness.
From a solution of this extended system, (ub, vb) = �x represents the emergent
bifurcation pattern and αb = α0 + �α defines the corresponding bifurcation point
along the trivial branch. Then, they use a pseudo-arclength continuation approach to
follow the new branch and to determine the family of steady-state solutions along it.

Our framework avoids the repetitive complexity of solving an extended system by
directly locating each bifurcation point. Also, more importantly, our approach works
on arbitrary surfaces and not just on rectangles. Consider linearising Eq.22 near the
homogeneous solution a0 = N , b0 = N/(1 + N ). We find the terms in the generic
linearised PDE from Eq.3 as

u Du = D, u Dv = −αN , v Du = 0, v Dv = 1,
u Ku = −C N S, u Kv = 0, v Ku = S/(1 + N )2 and v Kv = −S . (23)

We substitute these parameters in Eq.9 for a given mode φi with eigenvalue λi = 	

to express the continuation parameter α at the bifurcation point as

αb = (1 + N )2
[

C

(
1 + S

	

)
+ D

N

(
1 + 	

S

) ]
. (24)

Making similar substitutions in Eq.8 gives us the scale factor s	 = vi/ui as

s	 = D	 + C N S

αb N	
. (25)

In our framework, we directly compute an eigenvector bk of the discrete Laplacian
using Eq.18, corresponding to a continuous eigenfunctionφk , and its respective eigen-
value 	. Then, using Eqs. 24 and 25, we immediately locate the bifurcation point
α = αb and compute the bifurcation pattern xb = (ub = bk, vb = s	bk) by setting
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uk = 1, without loss of generality. For all experiments with Murray’s model, we set
D = 0.25, C = 1.522, N = 1, and S = 1.

6.2.1 Emergent Patterns

Again, we first validate our framework with analytically known emergent patterns
on a simple geometry. We provide a general description of our experiments here and
provide detailed numerical results in the supplemental material (SM02.A3).

For the rectangular domain � that we use in this case study, eigenvalues of the
LB operator may have geometric multiplicity (independent eigenmodes) greater than
one. In such cases, the uniqueness of numerically computed eigenvectors is not guar-
anteed. Thus, to analyse the accuracy of a numerically computed emergent pattern
xb = (ub, vb), we need to first determine an analytically defined vector ûb which is
nearest to ub. We do this with an approach similar to that of Reuter et al. (2009), i.e. by
projecting the normalised vector ub onto a space with analytically defined basis vec-
tors {bi }, which represent the ground truth patterns. This yields the closest analytically
defined pattern ûb. We then use the root-mean-square error εRMS = ||ub − ûb||/√n,
with n FEM nodes, as our error measure for the numerically determined bifurcation
pattern. We obtain each basis vector bi by discretising its corresponding continu-
ous eigenfunction φi at the FEM node positions. The analytical eigenfunctions on a
rectangular domain are

φi = cos (pπx/W ) cos (qπy/H) , and λi =
( pπ

W

)2 +
(qπ

H

)2
,

for � = {(x, y, 0) | 0 ≤ x ≤ W = 1, 0 ≤ y ≤ H = 4} , (26)

where W and H are the width and height of the rectangle, respectively. The index i
denotes a wavemode with p sinusoidal extrema (crust/trough) along the x-axis and q
extrema along the y-axis.

In the supplemental material, we evaluate RMS errors εRMS for 100 emergent
patternswith our proposedmethod and the referencemethod.We assign each emergent
pattern an index based on its nearest analytically determined eigenvector bi . We solve
for the eigenvectors with a convergence limit on the order of 10−12, and this results
in low RMS errors in general (on the order of 10−4–10−6). In general, the emergent
patterns ui foundwith ourmethod and their projections ûi onto the analytical solutions
are visually indistinguishable. In addition, while the reference method misses out on
some emergent patterns due to multiple bifurcations or failures of the chosen test
function, we discover all emergent patterns. We also analyse the relative error in
locating a bifurcation pointαb corresponding to xb by comparing itwith an analytically
defined αref . We compute αref from Eq.24 using analytically defined λi corresponding
to basis vector bi closest to ub.

We further investigated the impact of the FEM order on the accuracy of the dis-
covered patterns, and we obtained similar conclusions as for the Brusselator model.
Notably we observe that for FEM of order one, the error in locating a bifurcation point
grows with the magnitude of the eigenvalue for the respective pattern. However, using
higher order FEMs improves results considerably, albeit at the cost of some increase
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Table 2 Performance measures for Murray’s model on a rectangular domain. We used first-order FEM
with about 4400 nodes. Graphs on the left show statistics for test function evaluations for the reference
method
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Total 20.045 s 0.750 s

in relative errors for the emergent patterns. See supplemental material (SM02.A2)
for details. It also includes an evaluation of the impact of mesh triangulation on the
accuracy of our proposed method.

Table2 shows a performance comparison between our proposed method and the
reference method. We measured average time for different tasks while computing
emergent patterns for Murray’s model acting on a rectangular domain. We used about
4400 (first order) FEM nodes for this evaluation with convergence limit set to 10−11

in each case. The graph on the left indicates that the required number of test function
evaluations and thus the computational cost for the reference method decreases with
the wavemode frequency. This happens because the distance between the wavemodes
decreases with the eigenfrequency. However, it also implies that after some point the
step size for evaluating the test function along the trivial branch would not be small
enough to detect all emergent modes. Also note that the complexity of evaluating a
test function increases with the wavemode frequency. This complexity is somehow
artificially limited to 1000 iterations sincewe limit theBiCG Stab solver for computing
the test function to 1000 iterations. Overall, Table2 indicates that our proposedmethod
is about 25× faster than the reference method in this case.

Next, we evaluate the impact of different domain shapes on emergent patterns found
with our framework. Figure8a shows three different developable deformations of a
1×4 rectangular domain�. This includes a cylindrical surfacewith constant curvature,
a half-bent surface composed of two parts with constant curvatures and curvature
discontinuity between them, and a spiral surfacewith a continuously varying curvature
profile. For comparison, we also used the original 1 × 4 rectangular domain �. We
used a regular grid of about 4400 vertices in each case.With developable deformations,
we do not expect that the non-planarity of the domains has an influence on emergent
patterns. Figure8b shows error statistics for all three deformed surfaces along with
the rectangular surface as a reference. The differences in errors for different curvature
profiles appear to be well within general variations in error statistics. We found a
similar trend in relative errors for computing the bifurcation points and conclude that,
as expected, the influence of developable deformations is negligible.

To study the influence of local non-developable surface deformations on emergent
patterns, we use surfaces with bump deformations at different locations or size to the
reference rectangular domain �, see Fig. 9. These bumps are akin to the emergence

123



816 D. S. J. Dhillon et al.

Errors in emergent patterns
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Fig. 8 RMS projection error in computing the wave mode pattern φi using our method on developable
surfaces with different curvature profiles for Murray’s model. a Different developable deformations of the
1×4 rectangular domain� of equal size (Illustrations are not on the same scale), bError plots on a semi-log
scale (Color figure online)

of animal limbs or appendices. We observed that even small local non-developable
deformations bring outwell-defined global deviations in emergent patterns as shown in
the figure. To obtain an intuition about these new emergent patterns, wemap them back
onto the flat rectangular domain and project the mapped patterns onto the eigenvectors
of the flat domain, as illustrated in Fig. 9b. Amain observation is that we can accurately
represent many of the new patterns emerging on the deformed shape with only a few
eigenvectors of the flat domain, where wemeasure accuracy as the correlation between
a new pattern and its representation using a few eigenvectors. We indicate the few
dominant wavemodes of the flat domain along with the correlation factor r below the
emergent patterns in Fig. 9b. This leads to the intuition that surface deformation leads
to changes of the eigenfunctions and the eigenspectrum, such that many new, complex
patterns emerging on deformed surfaces can be understood as linear combinations of
simpler patterns on an original, undeformed domain.

We also examined the influence of global non-developable deformations on emer-
gent patterns. Figure10 shows one such distortion comprised of a sliced paraboloid
with a perimeter equal to that of the reference rectangular domain. Such a surface is
representative of the region on a snake body which is undergoing morphogenesis for
skin pattern formation. Again, we see interesting changes in emergent patterns which
appear as deformations and mixing of eigenfunctions for the reference domain. Thus,
we conclude that non-developability in surface geometry plays an important role on
pattern formation and must be taken into consideration while studying such emergent
patterns.

Finally, we applied Murray’s model to a 3D reconstruction of a real gecko lizard
body. In this hypothetical case, the eyes, the paws and the ventral side of the body
are pruned since these regions do not participate in pattern formation. We used first-
order FEM with about 4600 nodes. Figure11 illustrates a subjective comparison of
several patterns observed on juvenile geckos and our simulations. For visualisation,
we perform a nonlinear soft-thresholding on the emergent patterns. Our simulation
results give a good impression of the variety of patterns observed in nature and make
a good case for using actual surface geometry in studying pattern formation.
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Fig. 9 Changes in emergent patterns for Murray’s model due to a surface bump. a Bump at the centre:
Simple bifurcation patterns emerge for different values of the parameter α, b Bump at the edge: Simple
bifurcation patterns emerge for different values of the parameter α. r is a measure of correlation between
emergent patterns on the distorted rectangle domain in comparison with the best linear combination of
eigenmodes for the regular rectangle domain, under projection (Color figure online)

6.2.2 Branch Tracing

We present results for branch tracing as explained in Sect. 4.6 with Murray’s chemo-
tactic model. We use first-order FEM in all experiments with α as the continuation
parameter and other parameters fixed as before. In general, for computing the eigenvec-
tors we use a convergence limit ε ∈ [10−8, 10−11] on the root-mean-square residual
error for solving Eq.18. Also, we set the tolerance limit to 10−12 for the AztecOO
inner loop GMRES solver. We perform branch switching with the parallel program-
ming distance ε0 ∈ [10−3, 0.07] for Equation 3 in the supplemental material (SM02).
Also, the divergence limit αε discussed in the supplemental material (SM02.A1) is
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Fig. 10 Emergent patterns on a paraboloid surface (Color figure online)
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Fig. 11 Emergent patterns on a Gecko lizard body surface. Images in (a) are from (Rooster 2009), (Psyon
2009), (Raven 2009), (Locke 2007) and (Gary and Julia 2013). a Patterns on real lizards, b Simulated
patterns (Color figure online)

set in the range [10−4, 10−2] × α0. For an arclength continuation step, we set the
convergence limit in the range [10−8, 10−11] for the RMS residual error.

Figure12 shows the branches traced for a rectangular domain� using our proposed
direct approach. We first compute the eigenvectors for the domain with about 4400
FEM nodes. We then directly compose bifurcation patterns, compute the respective
bifurcation points and perform branch tracing as explained in Sect. 4. Our results for
branches and segments A–K in Fig. 12 are qualitatively similar to those presented
by Winters et al. (1990). Unlike Murray and Myerscough (1991) who change the
underlying geometry for the rectangular domain to separate out multiple branches
H–I and F–G, we trace these branches using our cosine factor method for branch
switching (Refer the second approach in Sect. 4.6) without changing �. Next, we
repeat the branch tracing experiment for developable surfaceswith different curvatures
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Fig. 12 Branch tracing results for rectangular domain � of size 4 × 1 sq. units (Color figure online)

Fig. 13 Branch J–K for various developable deformed domains and corresponding patterns in sections J
and K for the branches (Color figure online)

to obtain qualitatively similar results. For comparison, we present branch J–K for all
four domains and resolved patterns in sections J and K of the branch, in Fig. 13.

After validating our framework with known results for simple geometries, we trace
branches for an arbitrary surface geometry representing the Gecko lizard surface with
about 900 FEM nodes. We trace branches for the first seventy eigenvectors of this
shape. Figure14 shows some of the interesting branches across the explored spectra.
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Fig. 14 Tracing branches on an arbitrary surface representing aGecko lizard. Each rowpresents progressive
changes in the emergent pattern as we move along its respective branch (Color figure online)

The leftmost column in Fig. 14 plots the branches and each row shows the evolution
of a pattern along its respective branch. We perform a nonlinear soft-thresholding
again to visualise each pattern. For qualitative comparison, we use the same nonlinear
colour mapping for all the solutions along a branch after normalising the pattern
range to [0, 1] (as shown in the rightmost column of the figure). The first row in the
figure shows one of the low frequency branches (branch 7). We notice clear qualitative
changes that occur progressively as we move along the branch. The same is true for
other branches such as two mid-frequency branches (branch 32 and 50) and one high-
frequency branch (branch 69) shown here.14 Many interesting patterns such as C ,
G, H , L and P , which are qualitatively quite different from the emergent patterns,
are discovered with branch tracing. Thus, we can say that branch tracing contributes
significantly to the exploration of the solution space of a nonlinear system of PDEs
and it is an important tool to study such biological systems.

6.2.3 Results for Multiresolution Adaptation

Our progressive geometric multigrid approach (Sect. 5) allows us to perform branch
tracing at high resolutions of up to one million FEM nodes. We proceed in two steps,
namely (a) resolution improvements and (b) geometric improvements throughmultiple
levels. We first demonstrate the upsampling of patterns on a branch for the rectangular
domain in Fig. 15. Since this domain is planar, we only need to perform step (a) for our
multiresolution approach in this case. Figure15a shows the upsampling of a branch
originating at α = 13.736 (branch D–E in Fig. 12) from level L0 ≈ 4400 FEM nodes
to level L4 ≈ 1.1M FEM nodes. From one lower level to the next, we divide each

14 We label the branches as low, mid or high frequency branches based on the range of the eigenspectrum
which is explored.
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Fig. 15 An upsampled branch for the rectangular domain � and plots for performance analysis of this
upsampling. a Branch, b Performance plot on a log-log scale (Color figure online)

quad finite element into four quad elements. For first-order FEM this increases the
number of FEM nodes by about 4×. Thus, with four levels of higher resolution, we
go from about 4400 to 1.1 million FEM nodes.

The flexibility of upsampling only a selective subset of solutions can help to reduce
computational load of such studies, and it allows the user to prioritise the upsampling
of selected solutions. In Fig. 15a we upsampled only about one third of the solution
patterns from each level to the next. The figure shows that the solution patterns at each
level lie close to the original branch at the lowest level. We found that the upsam-
pled patterns resolved well in a few iterations and appeared subjectively very similar
across all levels (not shown here for brevity). We also profiled the performance of our
framework for this example. Table3 shows the average number of iterations required
to achieve convergence at each level along with the time taken. Figure15b shows a
log-log plot of average time taken for each iteration and total time for convergence
of a pattern over the number of FEM nodes. Both plots are near linear in nature as
illustrated by the line fit. Both fitted lines have a slope of 1.281, indicating the compu-
tational complexity of upsampling a given solution asO(N 1.281) with N FEM nodes.
In contrast to our method, we found that a multilevel algebraic grid based precondi-
tioner from the Trilinos library to directly trace a branch for the rectangular domain
with about 100K FEM nodes failed to converge.

Speaking of parallelisability, for the above case, we estimate that the overhead of
the repeated task of readingmesh files and populating the internal data structures is less
than 13% of the time taken to resolve a pattern at the highest level (L4). Thus the the-
oretical limit on the utility of a parallel processor is set high at 1/1.13×100 = 88.5%.

We next demonstrate upsampling of a branch on the Gecko surface. In this case, we
need to performboth (a) resolution improvement aswell as (b) geometric improvement
in our multiresolution approach. Figure16 illustrates these two steps for upsampling
patterns up by one level. We trace a branch at the lowest level L0 (green-coloured
branch in the figure) and show qualitatively different patterns along the branch as
A1–D1.15 We first upsample the patterns to level R0, which has a higher resolution

15 In this example as well, we apply nonlinear soft-thresholding to aid visualisation of the patterns. We use
the same nonlinear mapping for each pattern which is first scaled and off-setted to the range [0, 1].
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Table 3 Performance profile for upsampling patterns on a branch for Murray’s model acting on the rect-
angular domain �

Quantity Level

L1 L2 L3 L4

FEM nodes 17359 68869 274345 1095121

Iterations per pattern for
convergence (average)

5.806 6.457 5.857 6.000

Average time for
convergence (in sec)

17.600 116.582 626.523 3668.539

Average time per iteration
(in sec)

3.031 18.055 106.967 611.423
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Fig. 16 Upsampling a branch with low-frequency patterns on an arbitrary surface, �. We see results for
both, resolution improvement from L0 to R0 and geometry improvement R0 to L1 in this example (Color
figure online)

but the same geometry as L0. We plot the branch at level R0 (orange branch in the
figure) and notice that it drifts slightly from the original branch. However, we find
patterns A2–D2 to be qualitatively similar to the corresponding patterns on the branch
for level L0. Finally, we upsample the patterns to the improved geometry at level L1.
Here again, we find considerable changes in the plot for the branch, while the patterns
do not change much qualitatively, except forC3 (see patterns A3–D3.). The qualitative
changes are limited across the levels mostly because of the low-frequency nature of the
patterns. At the same time, changes in the branch contours indicate that the resolution
and geometry of the surface domain can influence the results. Particularly, C3 changes
considerably because there is a branch-jump from C1 to D1 at the lowest level which
gets corrected with our upsampling. We discuss branch-jumping and other issues in
detail in Sect. 6.3.

Next, we present an example of upsampling a pattern on a mid frequency branch
(branch 50 in Fig. 14), up by two levels. Figure17 shows the results for levels L0–L2.
For qualitative comparisons across different geometries, we map the values of each
pattern into the range [0, 1]. Level L0 has about 900 FEM nodes, and the pattern looks
unresolved even with a low RMS error of 1.61 × 10−14 units. We first improve its
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~900 FEM nodes

~3400 FEM nodes

~4400 FEM nodes

~18200 FEM nodes

~18900 FEM nodes

~13500 FEM nodes

RMSE:
1.61e-14

RMSE:
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RMSE:
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1.96e-6

RMSE:
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Fig. 17 Upsampling a pattern on amid-frequency branch for theGecko surface in a far-off nonlinear region
for the solution space of the underlying PDEs. We upsample results over two levels until patterns are fixed
qualitatively. Note the pattern in the bottom-right corner with no geometric improvements is qualitatively
different from the pattern in the top right with geometric improvements while upsampling (Color figure
online)

Fig. 18 Upsampling an emergent pattern on a Gecko surface for a resolution up to 1M FEM nodes. We
begin with a relatively good surface geometry of about 4600 FEM nodes, which we do not refine during
upsampling in this example (Color figure online)

resolution to level R0 with about 3400 nodes. Adding more nodes changes the pattern
qualitatively in several regions like the tail and the right forelimb. Next, we improve
the geometry and resolve the pattern at level L1 with about 4400 nodes. Again we
observe qualitative differences from level R0 in several regions like the right limbs.
We further upsample the pattern to levels R1 and finally L2 and find that the pattern at
level L2 with about 18900 FEM nodes is qualitatively very similar to that at level L1.
We thus conclude that the pattern is well resolved, we do not need to further upsample
it and the geometry at level L1 sufficed to resolve the pattern.

For comparison, we also continue to sub-divide the quad elements from level R0
for one more step, while keeping the geometry from L0, to resolve the pattern with
about 13500 nodes. We show the result in the bottom-right corner and observe that
the resolved pattern is qualitatively different from those for the improved geometries
L1 and L2. This illustrates the effect that small changes in geometry can have on the
resulting patterns.

Finally, Fig. 18 shows our upsampling results for a very high frequency emergent
pattern (eigenvector 250). Starting from a geometrywith about 4600 nodes, we upsam-
ple by only increasing the mesh resolution, but without changing the geometry. We
show the results after two and four steps of upsampling in the middle and on the right,
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respectively. All the patterns were resolved with an RMS residual errorO(10−8). We
observe that as the resolution increases, the pattern contours between the red and blue
colour regions become more discernible.

6.3 Challenges, Limitations, and Future Work

Our framework is capable of determining all bifurcations along the trivial branch and
works well to study emergent patterns and trace branches in general. However, there
are certain aspects with room for improvement. Another limitation for our framework
is related to the sampling theorem and FEM discretisation. While, in theory, we can
solve for N eigenvectors for a domain � with N FEM nodes, not all of them are
usable. For a simple case of a square planar domain, the sampling theorem dictates
that there must be at least twice as many nodes along a dimension as the number of
cycles for a wavemode along that dimension to model the continuous wave accurately.
Zr et al. (2010) discuss this specific limitation in detail in context of their problem
relating to inertia moment analysis. Thus, while our framework is able to solve for
a larger number of eigenvectors, only a fraction of it can be used for branch tracing.
The simplest way out is to solve the eigenproblem by increasing the resolution at the
lowest level �0. However, this increase cannot be arbitrarily high since we can trace
branches at the lowest level �0 only with domain-sizeO(104) or lower. Another lim-
itation of our framework is that while tracing a branch at a higher resolution with the
use of our progressive geometric multigrid approach, we only solve for a solution at a
higher resolution for the continuation parameter value given by the respective solution
at the lowest resolution. Thus for cases where the branch contour may change with
upsampling, the parts of a (higher resolution) branch that lie beyond the continuation
parameter range given by the lowest level branch become untraceable. This problem
could possibly be addressed by either increasing the order of finite elements to reduce
the change in the branch contour with upsampling or by allowing/forcing the contin-
uation parameter to drift while upsampling the solutions at the twists and turns of a
branch (Bolstad and Keller 1986).

7 Conclusions

We have presented a framework to perform bifurcation analysis for reaction diffu-
sion systems on arbitrary surfaces. Our framework uses a compositional approach
instead of traditional detection approach to discover new emergent patterns along the
trivial branch with a homogeneous pattern. We derive formulae to directly compose
bifurcation patterns for two-component RD systems and to compute their respective
bifurcation points. Our derivations substitute a spectral decomposition of the solution
into a generalised system of PDEs linearised near homogeneity. Our framework first
computes (FEM) discretised eigenvectors for the Laplace–Beltrami operator acting on
a given surface. It then composes bifurcation patterns and computes their respective
bifurcation points using our derivations. In addition, our framework supports a mul-
tiresolution branch tracing algorithm. We propose a progressive geometric multigrid
based approach with multiple levels for branch tracing.
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We demonstrate the working of our framework for two different RD systems (a
Brusselator and a chemotactic model) with two different boundary conditions (zero
Dirichlet and zero Neumann boundary conditions respectively). We validated our
framework for these systems against known results in the literature and experimented
with the geometry of the underlying domains to obtain new results. In particular for
Murray’s chemotactic model, we perform experiments with developable and non-
developable distortions of the reference rectangular domain. Our experiments show
interesting variations in the emergent patterns due to non-developable distortions. We
also apply Murray’s model to study emergent patterns and branches for an arbitrary
surface representing a gecko lizard. We upsample results to several higher levels with
resolution up to one million FEM nodes, depending on the complexity of the pattern.
We conclude that our framework can be used effectively to study emergent patterns and
pattern branches for RD systems with or without cross-diffusion, acting on arbitrary
surfaces, with up to a few million FEM nodes. Our framework is flexible, highly
parallelisable and can be configured to use higher-order FEMs as well.
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