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Abstract Known as one of the hallmarks of cancer (Hanahan and Weinberg in Cell
100:57–70, 2000) cancer cell invasion of human body tissue is a complicated spatio-
temporal multiscale process which enables a localised solid tumour to transform into a
systemic,metastatic and fatal disease. This process explores and takes advantage of the
reciprocal relation that solid tumours establish with the extracellular matrix (ECM)
components and other multiple distinct cell types from the surrounding microen-
vironment. Through the secretion of various proteolytic enzymes such as matrix
metalloproteinases or the urokinase plasminogen activator (uPA), the cancer cell pop-
ulation alters the configuration of the surrounding ECM composition and overcomes
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the physical barriers to ultimately achieve local cancer spread into the surrounding tis-
sue. The active interplay between the tissue-scale tumour dynamics and the molecular
mechanics of the involved proteolytic enzymes at the cell scale underlines the bio-
logically multiscale character of invasion and raises the challenge of modelling this
process with an appropriate multiscale approach. In this paper, we present a new two-
scale moving boundary model of cancer invasion that explores the tissue-scale tumour
dynamics in conjunction with the molecular dynamics of the urokinase plasminogen
activation system. Building on the multiscale moving boundary method proposed in
Trucu et al. (Multiscale Model Simul 11(1):309–335, 2013), the modelling that we
propose here allows us to study the changes in tissue-scale tumour morphology caused
by the cell-scale uPAmicrodynamics occurring along the invasive edge of the tumour.
Our computational simulation results demonstrate a range of heterogeneous dynamics
which are qualitatively similar to the invasive growth patterns observed in a number
of different types of cancer, such as the tumour infiltrative growth patterns discussed
in Ito et al. (J Gastroenterol 47:1279–1289, 2012).

Keywords Cancer invasion · Multiscale modelling · uPA system

1 Introduction

Cancer is a complicated disease that involves many cross-related processes occurring
over several spatial scales, ranging from genes to cells to tissues. The abilities of
cancer cells to activate invasion and metastasis, to sustain proliferative signalling, to
evade growth suppressors, to enable replicative immortality, to induce angiogenesis
and to resist cell death have been initially identified as the six main hallmarks of
cancer (Hanahan and Weinberg 2000). A growing knowledge about cancer over the
last decade has shed more light on the whole picture of the disease, and another four
hallmarks were added, namely the ability of cancer to avoid immune destruction, to
deregulate cellular energetics, to develop tumour-promoting inflammations, alongside
genome instability and mutations (Hanahan and Weinberg 2011).

Highlighted as one of the hallmarks of cancer, cancer cell invasion is a landmark
event that transforms a locally growing tumour into a systemic, metastatic and fatal
disease. The past four decades have witnessed great scientific efforts focussed on
gaining a better understanding of the processes involved during cancer invasion, which
is of highly importance in designing early detection strategies and attempting effective
therapies.

A malignant tumour includes a complex heterotypic community of cells (such as
cancer cells, immuno-inflammatory cells, stromal cell, fibroblasts, endothelial cells
and macrophages) that are mixed with ECM. This community is enhanced by vastly
complex signalling pathways underpinning intense molecular processes that mediates
the crosstalk between the various cell populations composing the tumours, such as the
interaction between the cancer cells and the peritumoural stroma cells occurring during
cancer invasion (Hanahan andWeinberg 2011; E and Engquist 2003; Qian and Pollard
2010; Joyce and Pollard 2009; Kalluri and Zeisberg 2006). As one of the main factors
that affect the way the cancer cell migrate and invade, the peritumoural ECM not only
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plays the role of a scaffold for the tissues and physical barriers during cell migration
but also conveys the signalling pathway processes, enabling the cells to communicate.
These give rise to specific conditions within the tumour microenvironment that locally
regulate cell migration, proliferation and differentiation. Specifically, the secretion
of proteolytic enzymes such as urokinase plasminogen activator (uPA) and matrix
metalloproteinases (MMPs) by the tumour cells and interactions of these enzymes
with the ECM components lead to proteolytic degradation and remodelling of the
ECM and represent a key step in the cancer invasion process.

In order to decipher the mechanisms behind the complicated processes involved
in cancer invasion, clinical investigations and experimental observations carried out
over the past few decades have started being increasingly accompanied by mathe-
matical modelling (Adam 1986; Anderson et al. 2000; Byrne and Chaplain 1996;
Chaplain et al. 2006; Gatenby and Gawlinski 1996; Greenspan 1976; Perumpanani
et al. 1996, 1998; Webb et al. 1999). These initial modelling attempts used reaction-
diffusion systems to describe the interaction between malignant and normal cells and
focused on several important invasion aspects, leading to the first qualitative mathe-
matical modelling approaches and paving the way towards a better understanding of
the contribution of proteolytic enzymes in cancer invasion. This was further explored
with modelling focused the role of proteolytic activities of some specific hydrolytic
enzymes such as urokinase plasminogen activator (uPA) andmatrixmetalloproteinases
(MMPs) in tumour invasive behaviour (Andasari et al. 2011; Anderson 2005; Byrne
et al. 2001; Chaplain and Lolas 2005; Deakin and Chaplain 2013; Perumpanani et al.
1996, 1998). For instance, while Chaplain and Lolas (2005) proposed a system of
reaction–diffusion–taxis partial differential equations to explore the role of the uPA
system (including uPA, uPA-inhibitors, plasmin and host tissue) in cancer invasion,
the model introduced in Deakin and Chaplain (2013) evaluates the role of two types of
simultaneously expressed MMPs on cancer growth and spread, i.e. membrane-bound
matrix MT1-MMP and soluble MMP-2.

Alongside the chemotactic and haptotactic movement assumed in all the models
mentioned above, cell–cell and cell-matrix adhesion were also recognised as playing a
crucial role in the growth and development of carcinomas (Byrne and Chaplain 1996).
Advances in addressing the importance of cell adhesion in the cancer invasion process
were obtained via several models based on systems of non-local integro-differential
equations (Armstrong et al. 2006; Chaplain et al. 2011; Domschke et al. 2014; Gerisch
andChaplain 2008) that account for dynamic interactionswithin an appropriately small
sensing radius R between potentially mutating cancer cell populations, ECM, and the
involved matrix degradation enzymes.

Since the local tissue invasion of amalignant tumour could be regarded also as a free
moving boundary problem, several appropriate numerical techniques were considered
in the computational modelling of cancer invasion. Particularly, the level-set method
was intensely used to study solid tumour growth in homogeneous microenvironments
(Frieboes et al. 2006; Macklin and Lowengrub 2005, 2006, 2007; Zheng et al. 2005).
A new ghost cell/level- set method (based on a nonlinear nutrient equation coupled
with a pressure equation with geometry-dependent jump boundary conditions) was
developed in Macklin and Lowengrub (2008) and applied to models of tumour inva-
sive growth in complex, heterogeneous tissues. This model was later extended into an
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improved model of tumour invasion including the process of tumour-induced angio-
genesis (Macklin et al. 2009). Finally, alongside the level-set method, multiphase
models based on the theory of mixtures were also developed and used to investigate
tumour growth and spread (Byrne and Preziosi 2003; Chaplain et al. 2006; Frieboes
et al. 2010; Preziosi and Tosin 2009; Wise et al. 2008, 2011). In these approaches, the
tumour was regarded as a system consisting of different phases (e.g. cellular phase,
liquid phase) and the development of a solid tumour was modelled by exploring the
mass and momentum balances alongside the constitutive laws that distinguish the
phases in the system.

However, while recognising the multiscale nature of cancer growth and spread,
over the past two decades or so most computational and mathematical modelling has
focused mainly on one scale, either at the tissue, cell or molecular scale, with the
first attempts towards linking these scales being revised in Deisboeck et al. (2011).
Recently, following a series of important developments within the general multi-
scale framework, and based on strong insights from atomistic-to-continuum methods
(Lin 2007), homogenisation techniques (Allaire 1992; Trucu et al. 2012), and het-
erogeneous multiscale finite element methodology (Abdulle and Schwab 2005; E and
Engquist 2003; Ren and E 2005), a genuinely newmultiscale moving boundary model
for cancer invasion that links the tissue, cellular and subcellular scales was proposed
in Trucu et al. (2013). In this new framework, PDE modelling at the tissue scale for
the cell population dynamics and PDE modelling at the cell scale for the molecular
mechanics of the proteolytic enzymes population are linked together in a two-scale
model through top-down and bottom-up permanent links. The top-down link provides
the source for the microscale dynamics, which is induced in a non-local manner by the
macrodynamics. On the other hand, the bottom-up link enables the microdynamics
to provide the macrodynamics with a law for the macroscale boundary movement,
whose direction and displacement magnitude is determined at microscale. This is
fundamentally different from previous modelling perspectives such as the one-scale
modelling presented in Anderson et al. (2000), or the one proposed in Ramis-Conde
et al. (2008) where the authors considered continuous modelling at the microscale
but an individual-based model at the macroscale and where no top-down links were
assumed.

In this paper, we propose a novel multiscale mathematical model of cancer inva-
sion that explores the tissue-scale cancer progression in conjunction with the cell-scale
dynamics of the urokinase plasminogen activation system. Building on the multiscale
moving boundary method proposed in Trucu et al. (2013), the new modelling that
we propose here allows us to study the changes in tissue-scale (macro) tumour mor-
phology caused by the cell-scale uPAmicrodynamics occurring in a cell-scale (micro)
neighbourhood of the invasive edge of the tumour. Assuming the uPA model devel-
oped in Andasari et al. (2011) and Chaplain and Lolas (2005) for the tissue-scale
dynamics, we derive governing laws for the degrading enzymes cell-scale dynamics
arising in the close proximity of the tumour interface. While this results in prescribing
an appropriate form for the top-down link between the macro and microdynamics, by
exploring the spatial interaction between the uPAmicrodynamics and the surrounding
ECM from the peritumoural region we obtain a bottom-up link between the micro-
and macrodynamics. This allows us to describe the evolution of tumour invasive edge
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morphology and enables computational predictions for the changes occurring in the
macroscopic pattern of cancer during the local invasion process.

2 Biological Background: Components of the uPA System and Their
Functions

Proteolytic degradation and remodelling of the extracellular matrix are essential for
cancer cell invasion. It enables cancer cells to proliferate and migrate through sur-
rounding tissue. In this context, one of the first steps of invasion is the production
and secretion of proteolytic enzymes, i.e. urokinase plasminogen activator (uPA) and
matrix metalloproteinases (MMPs) by cancer cells. These enzymes interact with the
dynamics of the ECM macromolecules and pave the way for cancer invasion. Specif-
ically, the uPA enzymatic system mainly consists of the urokinase receptor (uPAR),
urokinase plasminogen activator (uPA), the matrix-like protein vitronectin (VN), plas-
minogen activator inhibitor type-1 (PAI-1) and the degrading enzyme plasmin. Here
we list the key activities of the main components of the uPA system and the role each
plays in cancer invasion (Andreasen et al. 2000, 1997; Dass et al. 2008; Tang and Han
2013).

2.1 Urokinase Plasminogen Activator (uPA)

uPA is an extracellular serine protease produced by cells. Two major functional
domains of the uPA molecule are the protease domain and the growth factor domain.
The protease part activates plasminogen and turns it into plasmin, which is able
to digest basement membrane and extracellular matrix proteins. The growth factor
domain has no protease activity but can bind a specific high-affinity cell-surface recep-
tor, uPAR. Finally, uPA has a zymogen form, pro-uPA, which can be activated by
plasmin and binds to uPAR.

2.2 Urokinase Plasminogen Activator Receptor (uPAR)

uPAR is a high-affinity cell-surface receptor of uPA (andof its zymogen formpro-uPA),
which via the binding process localises the uPA and pro-uPA to the cell surface. Impor-
tantly, uPAR contains another binding site for the ECM component called vitronectin
(VN), and since VN and uPA binding sites are distinct, uPAR can simultaneously
bind both ligands, allowing coordinated regulation of proteolysis, cell adhesion and
signalling.

uPAR expression during ECM remodelling is well controlled under normal condi-
tions, for example, in gestational tissues during embryo implantation and placental
development and in keratinocytes during epidermal would healing. uPAR is also
expressed in many human cancers. It indicates poor prognosis and in some cases
is predictive of invasion and metastasis. Importantly, uPAR expression in tumours
can occur in tumour cells and/or tumour-associated stromal cells, such as fibroblasts
and macrophages. Moreover, there is a certain crosstalk between these two binding
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processes, as the ligand binding of uPA to uPAR enhances the VN binding by uPAR
(Smith and Marshall 2010).

2.3 Vitronectin (VN)

VN is an abundant versatile glycoprotein found in serum and the ECM and promotes
cell adhesion and spreading. Vitronectin binds strongly to glass surfaces, as the name
indicates (vitro = glass), and it has binding sites for several ligands, including heparin,
urokinase plasminogen activator receptor (uPAR), plasminogen activator inhibitor
type-1(PAI-1) and integrins, such as αvβ3. When vitronectin binds to uPAR, it is
thought to bring PAI-1 closer to uPA, thereby promoting inhibition and clearance of
uPA from the receptor.

2.4 Urokinase Plasminogen Activator Inhibitor-1(PAI-1)

One of the inhibitors of urokinase plasminogen activator, PAI-1, belongs to the serpin
(serine protein inhibitors) family, and it is believed to be themost abundant, fast-acting
inhibitor of uPA in vivo. It can specifically bind to soluble and membrane-bound uPA
to inhibit plasminogen activation. When PAI-1 binds to the uPA/uPAR complex, it
triggers the internalisation of the uPA/uPAR/PAI-1 complex by receptor-mediated
endocytosis, meaning that the complex will be dissociated and PAI-1 and uPA will be
digested, but the receptor will be recycled to the cell surface. This process helps with
the clearance of PAI-1 from the vicinity of the cell surface. Additionally, as a major
binding protein of VN, PAI-1 competes with uPAR for binding to VN.

2.5 Plasmin

Plasmin is a widespread enzyme that cleaves many extracellular matrix proteins, such
as fibronectin, laminin, vitronectin and thrombospondin. In addition, plasmin can also
activate many matrix metalloproteinases (MMPs), enhancing even more the degrada-
tion of extracellular matrix. It can also influence the composition of the extracellular
environment by affecting the activity of cytokines and growth factors, for example,
decreasing the activation of TGF-β1 (Venkatraman et al. 2012).

3 Mathematical Modelling

In this section, we will detail the three main components of the uPA multiscale
model that we propose for cancer invasion, namely the macroscopic dynamics, the
microscopic dynamics and regulation of the tumour boundary relocation. Thus, the
descriptionwill cover themodel at both themacrolevel (tissue scale) and themicrolevel
(cell scale) and will explore the link between these two biological scales.
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3.1 The Macroscopic Dynamics

For the tumour macroscopic dynamics, we adopt here the modelling hypotheses for-
mulated inAndasari et al. (2011) andChaplain andLolas (2005)which are based on the
activities of the key molecules of the uPA system and their invasive roles (Andreasen
et al. 2000, 1997; Dass et al. 2008; Tang and Han 2013).

We denote the cancer cell density by c, the extracellularmatrix density by v (without
making the distinction between ECMand its component VN), the urokinase plasmino-
gen activator (uPA) concentration by u, the plasminogen activator inhibitor (PAI-1)
concentration by p and the plasmin concentration by m. Further, since we assume a
fixed average number of receptors uPAR located on each cancer cell surface, there is
no explicit modelling of uPAR. Therefore, the concentration of uPAR is considered
to be proportional to the cancer cell density. Another important assumption is that the
supply of plasminogen is unlimited in this model. Finally, the macroscopic model is
obtained by accounting for the biological considerations described in previous section
in conjunction with the following presumptions:

3.1.1 The Cancer Cell Dynamics

It is assumed that cancer cell migration is mainly governed by diffusion, chemotaxis
due to uPA, and PAI-1 (Degryse et al. 2001; Resnati et al. 2002; Roussos et al. 2011)
and haptotaxis due to VN and other ECM components. Additionally, a logistic growth
law is used to model cancer cell proliferation. Thus, the mathematical equation for
cancer cell density that is considered here is as follows:

∂c

∂t
= Dc�c
︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u
︸ ︷︷ ︸

uPA-chemo

+ χpc∇ p
︸ ︷︷ ︸

PAI-1-chemo

+ χvc∇v
︸ ︷︷ ︸

VN-hapo

] + μ1c(1 − c

c0
)

︸ ︷︷ ︸

profieration

, (1)

where Dc is the diffusion coefficient of cancer cells, χu and χp are the chemotaxis
coefficients relevant to uPA and PAI-1, respectively, χv is the VN-mediated haptotaxis
rate, μ1 is the cancer cell proliferation rate and c0 is the maximum carrying capacity
for cancer cells.

3.1.2 The ECM/VN Dynamics

As ECM is not assumed to move, we rule out any migration terms in the govern-
ing law. While VN (which is an important ECM component) is degraded in contact
with enzymes m, the binding of PAI-1 to uPA inhibits the activation of plasminogen,
leading to the protection of VN and other ECM molecular constituents and indirectly
contributing to their production. Simultaneously, the binding of PAI-1 to VN results
in less binding to cell-surface receptors such as uPAR, and so, through the regulation
of cell-matrix-associated signal transduction pathways, this inhibits the production
of VN. Therefore, assuming a logistic ECM remodelling, the governing equation for
ECM is given by
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∂v

∂t
= − δvm

︸︷︷︸

degradation

+ φ21up
︸ ︷︷ ︸

uPA/PAI-1

− φ22vp
︸ ︷︷ ︸

PAI-1/VN

+μ2v(1 − v

v0
)

︸ ︷︷ ︸

remodelling

. (2)

where δ is the rate of ECM degradation by plasmin, φ21 is the binding rate of PAI-1
to uPA, φ22 is the binding rate of PAI-1 to VN and μ2 is the matrix remodelling rate.

3.1.3 The uPA Dynamics

The mathematical modelling of the uPA concentration dynamics accounts for the
following aspects. While being produced by the cancer cells and removed from the
system due to its binding with PAI-1 and uPAR, per unit time the uPA exercises a local
diffusion. Therefore, this can be formalised mathematically as follows:

∂u

∂t
= Du�u
︸ ︷︷ ︸

diffusion

− φ31 pu
︸ ︷︷ ︸

uPA/PAI-1

− φ33cu
︸ ︷︷ ︸

uPA/uPAR

+ α31c
︸︷︷︸

production

, (3)

where Du is the diffusion coefficient, φ31 and φ33 are binding rates of uPA/PAI-1 and
uPA/uPAR accordingly, and α31 is the production rate of uPA by the cancer cells.

3.1.4 The PAI-1 Dynamics

Similarly, the equation for PAI-1 simply includes a diffusion termwith coefficient Dp,
removal caused by binding to uPA andVNwith binding ratesφ41 andφ42, respectively,
and production as a result of plasmin formation at a rateα41. Thus, these considerations
lead us to the following governing equation:

∂p

∂t
= Dp�p
︸ ︷︷ ︸

diffusion

− φ41 pu
︸ ︷︷ ︸

uPA/PAI-1

− φ42 pv
︸ ︷︷ ︸

PAI-1/VN

+ α41m
︸ ︷︷ ︸

production

. (4)

3.1.5 The Plasmin Dynamics

The evolution of plasmin concentration is modelled as follows. While assuming that
per unit time this exercises a local diffusion, we consider that the binding of uPA to
uPAR provides an opportunity for pericellular proteolytic activity through plasmino-
gen activation leading to plasmin formation. Moreover, the binding of PAI-1 to VN
indirectly enhances the binding of uPA to uPAR, therefore bringing additional contri-
bution to plasmin formation. Thus, these assumptions give us the following evolution
law:

∂m

∂t
= Dm�m
︸ ︷︷ ︸

diffusion

+ φ52 pv
︸ ︷︷ ︸

PAI-1/VN

+ φ53cu
︸ ︷︷ ︸

uPA/uPAR

− φ54m
︸ ︷︷ ︸

degradation

, (5)

where Dm is the diffusion coefficient, φ52 and φ53 are the binding rates of PAI-1/VN
and uPAR/uPA accordingly and φ54 is the rate of decay of plasmin.
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To summarise the macrodynamics, the dimensionless mathematical model of the
uPA system adopted here is the one that was initially proposed in Chaplain and Lolas
(2005), namely,

∂c

∂t
= Dc�c
︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u
︸ ︷︷ ︸

uPA-chemo

+ χpc∇ p
︸ ︷︷ ︸

PAI-1-chemo

+ χvc∇v
︸ ︷︷ ︸

VN-hapo

] + μ1c(1 − c)
︸ ︷︷ ︸

profieration

, (6)

∂v

∂t
= − δvm

︸︷︷︸

degradation

+ φ21up
︸ ︷︷ ︸

uPA/PAI-1

− φ22vp
︸ ︷︷ ︸

PAI-1/VN

+μ2v(1 − v)
︸ ︷︷ ︸

remodelling

, (7)

∂u

∂t
= Du�u
︸ ︷︷ ︸

diffusion

− φ31 pu
︸ ︷︷ ︸

uPA/PAI-1

− φ33cu
︸ ︷︷ ︸

uPA/uPAR

+ α31c
︸︷︷︸

production

, (8)

∂p

∂t
= Dp�p
︸ ︷︷ ︸

diffusion

− φ41 pu
︸ ︷︷ ︸

uPA/PAI-1

− φ42 pv
︸ ︷︷ ︸

PAI-1/VN

+ α41m
︸ ︷︷ ︸

production

, (9)

∂m

∂t
= Dm�m
︸ ︷︷ ︸

diffusion

+ φ52 pv
︸ ︷︷ ︸

PAI-1/VN

+ φ53cu
︸ ︷︷ ︸

uPA/uPAR

− φ54m
︸ ︷︷ ︸

degradation

. (10)

We note that the above model was investigated numerically in some depth in Chap-
lain and Lolas (2005), where wide-ranging computational simulations revealed rich
spatio-temporal dynamics. Further numerical investigations on variations of the origi-
nal model (including a reduced model involving only the three variables c, v, u) were
undertaken in Chaplain and Lolas (2006) where once again solutions displaying a
persistent “dynamic heterogeneity” were observed. An analysis (linear stability) of
the model was later carried out by Andasari et al. (2011) who demonstrated that
the dynamic heterogeneous spatio-temporal solutions were caused by a taxis-driven
instability of an underlying spatially homogeneous steady state. In particular, three key
parameters controlling the bifurcations were noted to be Dc (the cancer cell diffusion
coefficient),μ1 (the cancer cell proliferation rate) and φ53 (the rate of plasmin produc-
tion due to uPA/uPAR binding). We also note that a rigorous mathematical analysis of
the simplified three-variable system involving only cancer cells, ECM and uPA (i.e. no
PAI-1 and no plasmin), was carried out in Hillen et al. (2013) [following a preliminary
numerical study in Painter and Hillen (2011)]. This rigorous analysis has shown that
the complex dynamics of the model are driven largely by cancer cell proliferation and
cancer cell chemotaxis. Finally, we note that a study from a numerical analysis point
of view concerning mesh adaptivity has been undertaken in Kolbe et al. (2014).

3.2 The Microscopic Dynamics

Turning now our attention to the microscale setting, in the following we will derive
and propose a system of three coupled PDEs to describe the microdynamics of the
plasminogen activation system taking place within a cell-scale ε-neighbourhood Pε

of the tumour invasive edge ∂Ω(t0) (which is introduced in “Appendix 1”).
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Assuming that PAI-1 and uPAR are uniformly expressed on the cell surface of
various cell types in the tumour, this system will capture the leading edge micrody-
namics of the uPA, PAI-1 and plasmin by accounting for the following biological
considerations. On one hand, the urokinase plasminogen activator (uPA) is assumed
to bind to the cancer surface receptor uPAR to activate plasminogen, leading to degra-
dation of pericellular ECM through a series of proteolytic activities. On the other
hand, the membrane-bound MMPs (such as MT1-MMP) are secreted from within
the tumour cell population distributed on the outer proliferating rim along the entire
tumour periphery. Their region of proteolytic activities is therefore restricted around
the tumour interface (Deakin and Chaplain 2013; Sabeh et al. 2009). Thus, based
on these considerations, we propose a coupled governing law for the leading edge
microdynamics, which is detailed as follows:

3.2.1 The uPA Microdynamics

In each microregion εY , the dynamics of the uPA molecular population is governed
by a diffusion process whose source is induced from the tumour cell macrodynamics.
At each point y ∈ εY , a source of uPA arises as a collective contribution of the
tumour cells distributed within a certain neighbouring area within the tumour’s outer
proliferating rim. Therefore, this source is denoted by fεY (·, ·) × [0,�t] : εY → R+
and is defined by:

f εY
1 (y, τ ) =

⎧

⎨

⎩

1
λ(B(y,γ )∩Ω(t0))

∫

B(y,γ )∩Ω(t0)
c (x, t0 + τ) dx, y ∈ εY ∩ Ω(t0),

0, outside cancer,
(11)

where λ(·) is the standard Lebesgue measure and γ represents the maximal thick-
ness of the outer proliferating rim. Thus, per unit time, under the presence of source
(11) the uPA is locally diffusing and is binding to both PAI-1 and uPAR, and so its
microdynamics can be formally written as:

∂u

∂τ
= Du�u
︸ ︷︷ ︸

diffusion

− φ31 pu
︸ ︷︷ ︸

uPA/PAI-1

+ ( α31
︸︷︷︸

production

− φ33u
︸︷︷︸

uPA/uPAR

) f εY
1 (y, τ ) (12)

3.2.2 The PAI-1 Microdynamics

The equation for PAI-1 accounts for diffusive motion, production due to plasmin
activation, and loss due to binding with uPA andVN. Specifically, the binding between
PAI-1 and VN is as a collective effect of the ECM distribution within εY . Therefore,
proceeding similarly to the case of the source term in (11), we define

f εY
2 (y, τ ) = 1

λ(B(y, 2ε))

∫

B(y,2ε)
v (x, t0 + τ) dx, y ∈ εY, (13)

which finally enable us to write the following governing law for the PAI-1 micrody-
namics, namely,
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∂p

∂τ
= Dp�p
︸ ︷︷ ︸

diffusion

− φ41 pu
︸ ︷︷ ︸

uPA/PAI-1

−φ42 p f εY
2 (y, τ )

︸ ︷︷ ︸

PAI-1/VN

+ α41m
︸ ︷︷ ︸

production

. (14)

3.2.3 The Plasmin Microdynamics

For the spatio-temporal evolution of plasmin, it is assumed that, per unit time, this
exercises a local diffusion in the presence of the following source and decay circum-
stances. Considering that the binding of uPA to uPAR is required to provide the cell
surface with a potential proteolytic activity, the plasmin source accounts on one hand
on the contribution of the binding uPA/uPAR. On the other hand, as PAI-1 collec-
tively competes with uPAR for binding to VN, the binding of PAI-1 to VN gives more
opportunities to uPAR to bind with uPA and indirectly results in more plasmin forma-
tion. Finally, plasmin can be deactivated either by degradation or by the action of the
plasmin inhibitor α2-antiplasmin. Thus, the equation that we obtain to describe these
biological interactions is:

∂m

∂τ
= Dm�m
︸ ︷︷ ︸

diffusion

+φ52 p f εY
2 (y, τ )

︸ ︷︷ ︸

PAI-1/VN

+φ53u f εY
1 (y, τ )

︸ ︷︷ ︸

uPA/uPAR

− φ53m
︸ ︷︷ ︸

degradation

(15)

In summary, the leading edge microdynamics are therefore given by the following
system:

∂u

∂τ
= Du�u
︸ ︷︷ ︸

diffusion

− φ31 pu
︸ ︷︷ ︸

uPA/PAI-1

+ ( α31
︸︷︷︸

production

− φ33u
︸︷︷︸

uPA/uPAR

) f εY
1 (y, τ ), (16)

∂p

∂τ
= Dp�p
︸ ︷︷ ︸

diffusion

− φ41 pu
︸ ︷︷ ︸

uPA/PAI-1

−φ42 p f εY
2 (y, τ )

︸ ︷︷ ︸

PAI-1/VN

+ α41m
︸ ︷︷ ︸

production

, (17)

∂m

∂τ
= Dm�m
︸ ︷︷ ︸

diffusion

+φ52 p f εY
2 (y, τ )

︸ ︷︷ ︸

PAI-1/VN

+φ53u f εY
1 (y, τ )

︸ ︷︷ ︸

uPA/uPAR

− φ54m
︸ ︷︷ ︸

degradation

. (18)

3.3 The Macroscopic Tumour Boundary Relocation Induced by the Leading
Edge Microdynamics

Following the multiscale approach described in “Appendix 1”, the set of points {x∗
εY }

on the boundary of tumour at the current time moves towards a set of new spatial
positions {˜x∗

εY } to form the new boundary at the next multiscale stage, provided that
the local transitional probability q∗ is in agreement with the circumstances in the
surrounding peritumoural microenvironment. When the invading strength is above a
tissue threshold, the point x∗

εY will relocate to a new position˜x∗
εY following a direction

and displacement magnitude that represents the choreographic movement of all the
points from the part of the invasive edge captured by the microdomain εY .
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As described in “Themultiscalemoving boundary approach for the proposed cancer
invasion model” section of “Appendix 1”, on any microdomain εY , provided that a
sufficient amount of plasmin has been produced across the invading edge, it is the
pattern of the front of the advancing spatial distribution of plasmin that characterises
ECM degradation. Therefore, the movement direction and displacement magnitude
of the part of the invading edge of the tumour caputred by the current microdomain
εY will be determined by the spatial distribution pattern of the advancing front of
plasmin m(·, τ f ) in the peritumoural region. As detailed in “The multiscale moving
boundary approach for the proposed cancer invasion model” section of “Appendix
1”, these movement characteristics are obtained by accounting the contribution of
all peaks (baricentred at the spatial points yl ) at the front of advancing plasmin that
are above the mean value of the entire mass of plasmin produced on εY\Ω(t0) and
are located at the furthest away Euclidean distance from {x∗

εY }. Thus, under these
conditions, the moving direction ηεY and displacement magnitude ξεY derived in
“The multiscale moving boundary approach for the proposed cancer invasion model”
section of “Appendix 1” in (35)–(36) have the following expressions:

ηεY = x∗
εY + ν

∑

l∈Iδ

(∫

Dl

m(y, τ f )dy

)

(yl − x∗
εY ), ν ∈ [0,∞),

ξεY :=
∑

l∈Iδ

∫

Dl
m(y, τ f )dy

∑

l∈Iδ

∫

Dl
m(y, τ f )dy

∣

∣

−−−→
x∗
εY yl
∣

∣.

Finally, the transitional probability q∗ defined in (37) is a quantification of the amount
of plasmin in εY\Ω(t0) relative to the total amount of plasmin concentration in εY
and characterises the invading strength. Therefore, the point x∗

εY will exercise the
movement into the new spatial position˜x∗

εY if and only if q(x∗
εY ) := q∗(εY ) exceeds

a certain tissue local threshold ω(β, εY ) ∈ (0, 1) associated with the microdomain
εY under a given state of favourable conditions β.

4 Multiscale Computational Simulation Results

Themultiscalemodel of cancer invasion that we proposed herewas numerically solved
in a rectangular region Y := [0, 4 × [0, 4]. For all our simulations, we discretise the
entire cubeY uniformly, using the spatialmesh size:�x = �y = ε

2 = 0.03125. In this
context, the initial conditions for themacrodynamics are specified as follows. The can-
cer cell population on the initially considered tumour region Ω(0) := B((2, 2), 0.5)
is assumed to be given by a translated Gaussian centred at (2, 2) and mollified to 0
after a radius of 0.5, namely,

c(x, 0) =

(

exp
(− ||x−(2,2)||22√

�x�y

)− exp(−28.125)

)

(

χB((2,2),0.5−γ )
∗ ψγ

)

2
, x ∈ Y,

(19)
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where ψγ is the mollifier defined in (40)–(41) with γ 	 �x
3 . Further, the initial

macroscopic conditions for the enzymatic components entering the uPA system are
considered as follows:

u(x, 0) = 1 − 1

2
c(x, 0), x ∈ Y

p(x, 0) = 1

2
c(x, 0), x ∈ Y

m(x, 0) = 1

20
c(x, 0), x ∈ Y (20)

At the same time, in all the subsequent simulations, we consider the following homo-
geneous and heterogeneous initial condition for ECM, namely,

homogeneous case: v(x, 0) = 1 − c(x, 0), x ∈ Y,

heterogeneous case: v(x, 0) = 1+ 0.3 sin (4π ||x ||2) + sin (4π ||(4,0) − x ||2)
2 , x ∈ Y.

(21)

Figure1 shows the initial conditions (19) and (21) of ECMand cancer cell distributions
for both homogeneous and heterogeneous cases that are used in all the simulations
presented in this paper.

Finally, in the absence ofmedical data, for the tissue thresholdω(β, εY ) controlling
whether or not a point on the boundary will exercised the movement according to the
direction and displacement magnitude defined in “The multiscale moving boundary
approach for the proposed cancer invasion model” section of “Appendix 1”, we adopt
the following functional form:

ω(β, εY ):=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

sin

(

π
2

(

1− 1
β

vω(t0)(x∗
εY ,t0+�t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+�t)

))

if
vω(t0)(x∗

εY ,t0+�t)
sup

ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+�t) ≤β

sin

(

π
2(1−β)

(

vω(t0)(x∗
εY ,t0+�t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+�t) −β

))

if
vω(t0)(x∗

εY ,t0+�t)
sup

ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+�t) >β

(22)
whereβ ∈ (0, 1) is a parameter that controls a certain “optimal level” of ECMdegrada-
tion and consider this as being the indicator of the most favourable invasion conditions
at the level of tumour and tissue microenvironment. This functional form of ω rules
out any invasion if either a complete destruction or a very superficial degradation of
the surrounding ECM is performed by the MDEs. This is due to the fact that while
for invasion the cancer cells need considerable level of the ECM degradation, a total
destruction of the surrounding ECM structure prevents them to advance further into
the tissue, as they need some of the ECM components to adhere to in order to migrate.
Finally, while this functional form of the tissue threshold aimed to showcase the
proposed multiscale modelling framework, future work seeks to infer ω(·, εY ) from
medical imaging data of the peritumoural tissue.

The following figures show the simulation results of the evolving cancer cell and
ECM spatial distributions and of the invasive tumour boundary at macrotime stage
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Fig. 1 Initial conditions of the distributions of cancer cells (left column) and ECM (right column) and the
invasive boundary of the tumour (white line) for the homogeneous case (top row) and the heterogeneous
case (bottom row) (Color figure online)

20, 40, 60. The images are presented in two columns, with the left columns represent-
ing the cancer cell distribution and right columns showing the corresponding ECM
concentrations. Furthermore, all these images include the tumour boundary.

In the subsequent simulations, for the macroscopic part of the model, except oth-
erwise stated, we will generally be using the following basic set of parameter values
P :

Dn = 4.3×10−3, χu = 3.05×10−2, χp = 3.75×10−2, χv = 2.85×10−2,

μ1= 0.25, δ= 1.5, φ21= 0.75, φ22= 0.55,

μ2= 0.15, Du = 2.5 × 10−3, φ31= 0.75, φ33= 0.3,

α31= 0.215, Dp = 3.5 × 10−3, φ41= 0.75, φ42= 0.55,

α41= 0.5, Dm = 4.91 × 10−3, φ52= 0.11, φ53= 0.75,

φ54= 0.5, (23)

which are detailed in Table1 in “Table for the parameter SetP” section of “Appendix
3”. However, in order to investigate different cancer growth patterns, as described in
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the following simulation, we will perform numerical tests also for slightly changed
values for the diffusion coefficient of cancer cells Dc, the ECM proliferation rate μ2
or the ECM degradation rate δ. Also, we will explore a range of values for parameter
β, to highlight the correlation between changes in tissue microenvironment conditions
and the resulting cancer invasion patterns.

In order to analyse the effect of each variables (namely ECM initial condition, can-
cer cell diffusion coefficient, ECM proliferation and degradation rates, and threshold
coefficient), we will split the results into four groups as follows:

4.1 ECM Initial Condition

To investigate what effect do different ECM initial conditions have on the whole
dynamics of the model, we apply the same threshold function for both homogeneous
and heterogeneous ECM scenario.

The ECM heterogeneity gives rise to a tumour–tissue interaction that is naturally
more complex than in the case of homogeneous ECM. A direct consequence of this
is that the ECM heterogeneity triggers a corresponding intrinsic variability in the
tissue thresholds, which explore the peritumoural tissue conditions that the cancer
interacts with during invasion. This results in a higher degree of complexity in the
spatial structure of the regions with most favourable conditions for the tumour to
progress further in the surrounding region, within the directions and displacement
magnitudes specified by the microscale dynamics. Ultimately, this gives rise to a
higher level of fingering and infiltrative patterns in the heterogeneous case as opposed
to the homogeneous case. This is confirmed by our results presented in Fig. 3 that are
obtained for the heterogeneous ECM, which exhibit more “fingered” and infiltrative
spreading of the tumour compared with those obtained in the homogeneous ECM case
shown in Fig. 2. This type of fingering patterns is often observed in medical imaging
data, such as the one reported in the case of oesophageal and lung cancer by the authors
in Ito et al. (2012) and Masuda et al. (2012), respectively.

4.2 Cancer Cell Diffusion Coefficient Dc

As was demonstrated in Hillen et al. (2013) and Painter and Hillen (2011), the
chemotaxis terms in the cancer cell Eq. (6) are the main causes of the occurrence of
heterogeneous patterns inside the tumour domain. Therefore, if the cancer cell diffu-
sion coefficient (Dc) is increased to be one order magnitude larger than the chemotaxis
coefficients (χu and χp), which becomes the dominant mechanism of cell movement,
then no heterogeneous dynamics will occur inside the tumour as shown in Fig. 4. In
Fig. 5, the chemotaxis coefficients are one order magnitude larger than the diffusion
coefficient, and as a consequence,we obtain heterogeneous pattern formation of cancer
cells, which leads to a more dynamic tumour boundary deformation.

4.3 ECM Proliferation Rate μ2 and Degradation Rate δ

From all the simulation results presented so far, we conclude that the degradation of
ECM facilitates cancer invasion. However, as shown also in several interdisciplinary
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Fig. 2 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at various macro-micro stages: stage 20, 40, 60. Starting
from the homogeneous initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3× 10−3,
β = 0.775, μ2 = 0.01 and δ = 1.5 (Color figure online)

biological investigations (Gatenby and Gawlinski 1996; Gatenby et al. 2006; Stetler-
Stevenson et al. 1993), the invasion process will stop where ECM is degraded a lot.
This captures the biological scenario in 2D that when cell-matrix adhesion is too
low, no focal adhesions or stress fibres are formed, and the cells do not move. In
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Fig. 3 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at various macro-micro stages: stage 20, 40, 60. Starting
from the heterogeneous initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3×10−3,
β = 0.775, μ2 = 0.01 and δ = 1.5 (Color figure online)

order to investigate the effect of ECM proliferation and degradation on the invasion
process, we compare two groups of parameters: (1) μ2 = 0.01, δ = 1.5 (nonzero
proliferation rate with relatively large degradation rate, Fig. 6); (2) μ2 = 0, δ = 0.75
(no proliferation with relatively small degradation rate, Fig. 7). From these two groups
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Fig. 4 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at various macro-micro stages: stage 20, 40, 60. Starting
from the heterogeneous initial conditions shown in Fig. 1, these results were obtained for Dc = 1.4×10−2,
β = 0.775, μ2 = 0 and δ = 0.75 (Color figure online)

of images, we observe that when proliferation is present and the degradation rate is
relatively large, deformations of the boundary are not as dynamic as that when the
proliferation term is absent with a relatively small degradation rate. The reason could
be that the proliferation termwill reduce the degree of heterogeneity of the distribution
of ECM, which leads to a less fingered spreading of the cancer cell population.
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Fig. 5 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at various macro-micro stages: stage 20, 40, 60. Starting
from the heterogeneous initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3×10−3,
β = 0.775, μ2 = 0 and δ = 0.75 (Color figure online)

Figure8 shows the results of simulations at the macro-micro stage 60 where the
ECM proliferation rate parameter μ2 was increased over a range of values in the
interval [0.0005, 0.005]. The figures show that, over the range chosen, there is little
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Fig. 6 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at various macro-micro stages: stage 20, 40, 60. Starting
from the heterogeneous initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3×10−3,
β = 0.7625, μ2 = 0.005 and δ = 1.5 (Color figure online)

difference in either the overall extent of invasion or the morphology of the invading
cancer. Figure9 shows the results of simulations at the same macro-micro stage 60
where the degradation parameter δ was increased over the interval [0.5, 1]. The fig-
ures show that, over the range chosen, the extent of the invasion is similar, but the
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Fig. 7 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at various macro-micro stages: stage 20, 40, 60. Starting
from the heterogeneous initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3×10−3,
β = 0.7625, μ2 = 0 and δ = 0.75 (Color figure online)

morphology of the invading cancer changes slightly from a more fingered boundary
to a less fingered boundary. Finally, as the two parameters μ2 and δ are varied, both
Figs. 8 and 9 exhibit spatial consistency aspects in the invasion pattern.
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Fig. 8 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at macro-micro stage 60. Starting from the heterogeneous
initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3 × 10−3, β = 0.7625, δ = 1.5,
and for rows 1 to 3 of images we consider μ2 = 0.0005, μ2 = 0.001, and μ2 = 0.005, respectively (Color
figure online)
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Fig. 9 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at macro-micro stage 60. Starting from the heterogeneous
initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3 × 10−3, μ2 = 0, β = 0.7625,
and for rows 1 to images we consider δ = 0.5, δ = 0.75, and δ = 1, respectively (Color figure online)

4.4 Threshold Coefficient β

Finally, Fig. 10 shows us comparative results at macro-micro stage 60 for several
values of the threshold coefficients β in the interval [0.7625, 0.7875]. Since β controls
the “optimal level” of ECM density for cancer cells to migrate, its variation gives
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Fig. 10 Simulation results showing distributions of cancer cells (left column) and ECM (right column) and
the invasive boundary of the tumour (white line) at macro-micro stage 60. Starting from the homogeneous
initial conditions shown in Fig. 1, these results were obtained for Dc = 4.3 × 10−3, δ = 1.5, μ2 = 0.01,
and for rows 1 to 3 of images we consider β = 0.7625, β = 0.775, and β = 0.7875, respectively (Color
figure online)

us different invasion morphologies, as expected. Again, as we noticed also in the
cases of Figs. 8 and 9, a quick comparison between consecutive rows of images (from
top to bottom) in Fig. 10 seems to indicate a certain degree of consistency in the
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changes occurring in the tumour morphology and “fingered” boundary deformations
with respect to increasing β parameter. This consistency aspect is currently under
investigation and will form the topic of a separate research work.

5 Conclusion

In this paper, we presented and developed a mathematical model of cancer invasion
based on the previous work in Andasari et al. (2011), Chaplain and Lolas (2005) and
Trucu et al. (2013). We adapted and extended the two-scale technique in Trucu et al.
(2013) to cope with the different settings that enable the coupling of the finite differ-
ence uPA macrosolver and a new finite element microsolver developed for the newly
proposed leading edge microdynamics. This enabled us to simulate the multiscale
process of cancer invasion by exploring the link between the macroscopic dynamics
of the spatio-temporal distribution of cancer cells and ECM taking place on a macro-
scopic domain, and the matrix degrading enzymes microdynamics developed on the
microscopic domains that are in close proximity to tumour boundary.

We derived a new governing law for the microdynamics based exclusively on the
molecular mechanics of the uPA system occurring in close proximity to the tumour
boundary. This is based on the dynamics of the uPA system including uPA, the inhibitor
uPA-1 and plasmin and considers the source terms related tomacroscopic components,
i.e. cancer cells and ECM molecules, in a collective fashion, and we solve this new
microscopic uPA system by finite element method. While this is sourced from within
the macrodynamics via a top-down link, in our multiscale method (described in “The
multiscale moving boundary approach for the proposed cancer invasion model” sec-
tion of “Appendix 1”) the microdynamics occurring at the cell-scale neighbourhood
of the tumour is represented back at the macroscale through a bottom-up feedback
by defining the movement direction and displacement magnitude of the tissue-scale
tumour boundary. By coupling this new microscopic governing law for the leading
edge microdynamics with the macroscopic model for the uPA system and cancer
invasion proposed in Andasari et al. (2011) and Chaplain and Lolas (2005), we are
able to capture an important class of multiscale dynamic interactions between cancer
cells, ECM molecules, cancer associated matrix degrading enzymes and the peritu-
moural tissue conditions, leading to significant changes in tumour morphology during
invasion.

From the computational simulation results of our model, we can see that the
extended two-scale technique coupled with the uPA system and more specific mod-
elling of the pericellular proteolytic activities gives more adverse dynamics in the
invading cancer. Values of the ECM initial condition, the cancer cell diffusion coef-
ficient, the threshold coefficient, and the ECM proliferation and degradation rates all
have an impact on the deformations of the tumour boundary. While for simulating
the proposed non-dimensional model we considered functional formulations for the
initial conditions and tissue thresholds, future work will attempt to assimilate the
heterogeneity of ECM and as well as the peritumoural tissue conditions from imag-
ing data. Finally, concerning the transitional probability that arises naturally at the
microscale and intervenes in the bottom-up link between micro- and macroscales,
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while the simulations presented in this paper are deterministic, future work will assess
the stochastic character of the overall model.

The conclusions that can be drawn from the qualitative results presented in this
paper are: (1) a heterogeneous ECM initial condition leads to more fingered spreading
of the tumour compared with that in the homogeneous ECM; (2) in order to obtain
heterogeneous patterns of cancer cells inside the tumour region, chemotaxis must be
dominant to drive the cells migration; (3) the changes of threshold coefficient will
definitely affect the boundary deformations, and there is a tendency that the increase
in β reduces the number of ‘fingers’ of the interface; and (4) without a proliferation
term of ECM coupled with a relatively small degradation rate, deformations of the
boundary showmore fingering. However, further investigations are required to analyse
the observed fingering. For instance, the dependence of the width of the fingers on
the size of the microscale and potentially on other regulatory parameters remains an
open question and is an important objective of a future work on the propose modelling
framework.

It is useful to compare these results with other models of cancer growth and inva-
sion, particularly those that adopt an alternative modelling approach such as hybrid
continuum-discrete, cellular-Potts or cellular automaton, as well as partial differential
equations (PDE) models. Many PDE models of solid tumour growth and develop-
ment (including invasion) have modelled cell–cell adhesion at the outer boundary (or
invading edge) of the tumour as a surface-tension-like force (Byrne andChaplain 1996,
1997). A reduction in surface tension, i.e. interpreted as a loss of cell–cell adhesion,
then leads to an instability at the invading edge which manifests itself in a subsequent
growth consisting of finger-like protrusions. This effect was shown computationally
by Cristini et al. (2003) and Macklin and Lowengrub (2007) who demonstrated a
range of fingering patterns as a cell adhesion parameter was varied. Similar spectra of
invasive patterns have been observed when adopting either a cellular-Potts approach
(Popławski et al. 2009) or a hybrid continuum-discrete approach (Anderson 2005),
i.e. by varying a key cell–cell adhesion parameter of the model, invasive fingering
patterns can either be enhanced or suppressed. In the specific case of glioma inva-
sion, four different approaches—PDE, cellular-Potts, lattice-gas automaton, cellular
automaton—have each investigated the role of cell–cell adhesion and compared com-
putational simulation results with experimental data (Aubert et al. 2006; Frieboes et al.
2007; Rubenstein and Kaufman 2008; Tektonidis et al. 2011. Given these results, we
are currently extending our current model to include cell–cell adhesion.

As the main purpose of this work was to formulate a novel non-dimensional two-
scale modelling platform that simultaneously explores spatio-temporal dynamics at
both macroscale (cell population level) and microscale alongside the links in between
the two scales, the simulations presented here have a qualitative character. Future work
will explore the possibilities of dimensionalising and calibrating the proposed multi-
scale model with measured data at both macroscopic (tissue-scale) and microscopic
(cell-scale) levels to obtain quantitative simulation that we could compare with clinical
observations.

The two-scale modelling described provides a useful mathematical platform to
capture and investigate processes at different levels during cancer invasion. However,
further details remain to be explained on the dynamics and interactions of the tumour
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cell community at the macrolevel and the microlevel as well as regarding the links in
between these two scales. Various avenues could be pursued to extend our modelling
by exploring for instance other ways to determine the cancer cell population macrody-
namics (for example change the definition of the threshold function ω characterising
the interaction with the peritumoural tissue) or by accounting for more complex sig-
nalling mechanisms in the establishment of more detailed microdynamics as well as
the appropriate top-down and bottom-up links between these different levels (scales)
of the invasion process.

Appendix 1: The Two-Scale Computational Modelling Method

In the following, we will briefly present the technique introduced in Trucu et al. (2013)
and adjust this with all the details to our new situation. For completion, we introduce
here all the necessary notations and describe the defining principles that are referred
to in the paper, as well as the relevant considerations and explanations concerning our
new model.

Preliminary Considerations and Notations

It is assumed that the domain within which the cancer and extracellular matrix exist is
a maximal reference spatial cube Y ⊂ R

n(n = 2, 3)with its centre at the origin. Given
a fixed ε representing a negative power of 2 (i.e. 0 < ε < 1), the initial Y is uniformly
decomposed ε-size cubes, εY , whose union will be referred to as an ε-resolution of
Y . For any εY from the decomposition, the “half-way shifted” cubes in the direction
i ē1 + j ē2 + kē3 given by any triplet (i, j, k) ∈ {(i, j, k)|i, j, k ∈ {−1, 0, 1}} are
defined as

εY i
2 ,

j
2 , k2

= εY + ε(i ē1 + j ē2 + kē3)

2
, (24)

where,

ē1 : = e1, ē2 : = e2, and, ē3 : =
{

e3 for N = 3,
0 for N = 2,

(25)

and {e1, e2, e3} is the standard Euclidean basis ofR3. The family of all these ε−cubes
is denoted by F , i.e.

F :=
⋃

i, j,k∈{−1,0,1}

{

εY i
2 ,

j
2 , k2

∣

∣εY is in the ε-resolution of Y
}

. (26)

In Fig. 11, the notations mentioned so far are illustrated schematically.
In order to capture mathematically the microdynamics that occur in a cell-scale

neighbourhood of the tumour boundary ∂Ω(t0), out of the initial family F , we will
focus our attention of the subfamily denoted by FΩ(t0) which consists of only the
ε−cubes that cross the interface ∂Ω(t0) and have exactly one face included in the
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Fig. 11 Schematic diagram showing the cubic region Y centred at the origin ∈ R
3. The dashed blue lines

represent the Euclidean directions {e1, e2, e3}, the pink region illustrates the cancer cluster Ω(t0), and the
solid blue line represents the family of microscopic cubic domains εY placed at the boundary ∂Ω(t0) (Color
figure online)

interior of Ω(t0), namely

FΩ(t0) := {εY ∈ F |εY ∩ (Y\Ω(t0)) �= ∅,

and εY has only one face included in int(Ω(t0))}, (27)

where int(Ω(t0)) is the topological interior ofΩ(t0)with respect to the natural topology
on Rn .
In this context, for each εY ∈ FΩ(t0), we have the following face notations:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

Γ int
εY denotes the face of εY that is included in int(Ω(t0)),

Γ
j,⊥

εY , j = 1, ..., 2N−1 denote the faces of εY that are perpendicular to Γ int
εY

Γ
‖
εY denotes the face of εY that is parallel to Γ int

εY .

(28)
These are illustrated schematically in Fig. 12.

Furthermore, for each εY ∈ FΩ(t0), the topological closure of the only connected
component of Ω(t0) ∩ εY that is confined between [∂Ω(t0)]εY and Γ int

εY is denoted
by [Ω(t0)]εY . Moreover, denoting by [∂Ω(t0)]εY the connected component part of
∂Ω(t0) ∩ εY with the property that

[∂Ω(t0)]εY ∩ Γ
j,⊥

εY �= ∅ for any j = 1, 2, ..., 2n−1, (29)

we can observe that [∂Ω(t0)]εY represents the part of ∂Ω(t0)∩εY that corresponds to
[Ω(t0)]εY , and is actually the only connected component of this intersection that has
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Fig. 12 Schematic diagram illustrating the notations introduced in (28), (32). For the arbitrarymicrodomain

εY ∈ Pε , we indicate with a black arrow the features: Γ int
εY , Γ j1,⊥

εY , and Γ
j2,⊥

εY , j1, j2 ∈ {1, ..., 2N−1},
Γ

‖
εY , xc

εY ,μεY , and x∗
εY . The arbitrary cube εY ∈ P∗

ε is shown in green, while the corresponding half-way

shifted εY sign
i
2

∈ Pε that are not chosen in P∗
ε are shown in the blue dashed line (Color figure online)

property (29). Finally, using this observation, for the currently fixed ε, the subfamily
denoted by Pε consisting of all those ε−cubes that have [Ω(t0)]εY not touching Γ

‖
εY

is selected as follows:

Pε := {εY ∈ FΩ(t0)| [Ω(t0)]εY ⊂ εY and [∂Ω(t0)]εY ∩ Γ
‖
εY = ∅}. (30)

Leaving now ε to take all the negative powers of 2, the union

⋃

ε∈{2−k | k∈N}
Pε

provides an infinite covering of ∂Ω(t0). Since ∂Ω(t0) is compact, using standard
compactness arguments, a finite complete sub-covering of ∂Ω(t0) that consist only of
small cubes an equal size ε∗ is denoted by P∗

ε , i.e.

∂Ω(t0) ⊂
⋃

εY∈P∗
ε

εY. (31)

Together with this finite complete coveringP∗
ε of the tumour interface ∂Ω(t0), at each

time of the tumour evolution we obtain also the size of the microscale ε∗ (Trucu et al.
2013). For simplicity, in this paper, the size of the cell-scale ε∗ will still be denoted
by ε. Finally, for each εY ∈ P∗

ε , we distinguish the following topological details:
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⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

xcεY denotes the centre of the face Γ int
εY ,

μεY is the line that passes through xcεY and is perpendicular on Γ int
εY

x∗
εY ∈ [∂Ω(t0)]εY which will be referred to as the “midpoint” of [∂Ω(t0)]εY
represents the point from the intersection μεY ∩ [∂Ω(t0)]εY that is located
at the smallest distance with respect to xcεY .

(32)
The well-posedness of these topological features is discussed in Trucu et al. (2013),
and these are illustrated in Fig. 12.

The Multiscale Moving Boundary Approach for the Proposed Cancer Invasion
Model

In the following, we will explain how the set of midpoints {x∗
εY }εY∈P∗

ε
defined on

the boundary of tumour at the current time moves to a set of new spatial positions
{˜x∗

εY }εY∈P∗
ε
to form the new boundary at the very next time, by describing the move-

ment of one such midpoint x∗
εY ∈ [∂Ω(t0)]εY for any εY ∈ P∗

ε .
Basedonbiological observations that, on anymicrodomain εY , provided that a suffi-

cient amount of plasmin has been produced across the invading edge and it is the pattern
of the front of the advancing spatial distribution of plasmin that characterised ECM
degradation, therefore it is assumed that each boundary midpoint x∗

εY ∈ [∂Ω(t0)]εY
will be potentially relocated in a movement direction and by a certain displacement
magnitude dictated by the spatial distribution of plasmin obtained via the micropro-
cess on εY at the final microtime τ f := �t , namely m(·, τ f ). In the following, we
explain how the movement direction and displacement magnitude are defined for each
x∗
εY ∈ [∂Ω(t0)]εY .
For any given threshold δ > 0 and any fixed εY ∈ P∗

ε , the regularity property
of Lebesgue measure (Halmos 1974) is used to select the first dyadic decomposition
{Dj } j∈Jδ

of εY such that

λ

(

[εY\Ω(t0)] \
⋃

{ j∈Jδ | Dj⊂εY\Ω(t0)}
D j

)

≤ δ. (33)

which simply means that εY\Ω(t0) is approximated with accuracy δ by the union of
all the dyadic cubes that this includes. Once this dyadic decomposition is selected, we
denote by y j the barycenters of Dj , for all j ∈ Jδ . As discussed in Trucu et al. (2013)
for all εY ∈ P∗

ε , this provides a resolution at which we read the further away part of the
level set 1

λ(εY\Ω(t0))

∫

εY\Ω(t0)
m(y, ·)dy in the distribution of the advancing degrading

enzymes m(·, ·) outside Ω(t0) in radial direction with respect to the midpoint x∗
εY .

Therefore, this enables us to locate dyadic pixels Dl that support the peaks at the tip
of the plasmin front with significant contribution in degrading the ECM. Hence, at the
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final microscopic time τ f , the pixels supporting these peaks are therefore selected as

Iδ :=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

l ∈ Jδ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃r ∈ S1 such that, if the index i ∈ Jδ has the properties:
1)Di ∩ {x ∈ R

n |x = x∗
εY + αr, α ∈ R} �= ∅,

2)Di ⊂ εY\Ω(t0),
3) 1

λ(Di )

∫

Di
m(y, τ f )dy ≥ 1

λ(εY\Ω(t0))

∫

εY\Ω(t0)
m(y, τ f )dy,

then
l = argmax {d(x∗

εY , yi ) | i ∈ Jδ satisfies: 1), 2), and 3)}

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎭

, (34)

where S1 ⊂ R
n represents the unit sphere and d(·, ·) is the Euclidean distance on Rn .

Thus, cumulating the driving ECM degradation forces spanned by each front peak of
plasmin given by the dyadic pixels Dl with l ∈ Iδ in the direction of the position

vectors
−−−→
x∗
εY , yl and appropriately representing the amount of plasmin that each Dl

supports, the revolving direction of movement ηεY for the potential displacement of
x∗
εY is given by:

ηεY = x∗
εY + ν

∑

l∈Iδ

(∫

Dl

m(y, τ f )dy

)

(y − x∗
εY ), ν ∈ [0,∞). (35)

Further, the displacement magnitude of the point x∗
εY is defined as:

ξεY :=
∑

l∈Iδ

∫

Dl
m(y, τ f )dy

∑

l∈Iδ

∫

Dl
m(y, τ f )dy

∣

∣

−−−→
x∗
εY yl
∣

∣. (36)

Finally, as debated in Trucu et al. (2013), although a displacement magnitude and a
moving direction are derived for each x∗

εY , this will only exercise the movement if and
only if the ECM degradation were of a certain local strength. The strength of ECM
degradation within εY is explored by the transitional probability

q∗ :
∑

⎛

⎝

⋃

εY∈P∗
ε

εY

⎞

⎠→ R+

defined as

q∗(G) := 1
∫

G m(y, τ f )dy

∫

G\Ω(t0)
m(y, τ f )dy, for all G ∈

∑

⎛

⎝

⋃

εY∈P∗
ε

εY

⎞

⎠

(37)

where
∑

(

⋃

εY∈P∗
ε

εY

)

represents the Borel σ−algebra of
⋃

εY∈P∗
ε

εY . Locally, in each

εY , equation (37) is in fact a quantification of the amount of plasmin in εY\Ω(t0)
relative to the total amount of plasmin concentration in εY . In conjunction with the
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local tissue conditions, this characterises whether the point x∗
εY is likely to relocate to

the new spatial position˜x∗
εY or not.

Now, by assuming that the point x∗
εY is moved to the position˜x∗

εY if and only if
q∗(x∗

εY ) := q∗(εY ) exceeds a certain threshold ωεY ∈ (0, 1), we find that the new
boundary ∂Ω(t0 + �t) will be the interpolation of the following set of points:

{x∗
εY |εY ∈ P∗

εY and q(x∗
εY ) < ωεY } ∪ {˜x∗

εY |εY ∈ P∗
εY and q(x∗

εY ) ≥ ωεY } (38)

Finally before moving to the next time step of the whole macro-micro two-scale
system,we replace the initial conditions of themacroscopic dynamicswith the solution
at the final time of the previous invasion step as follows:

cΩ(t0+�t)(x, t0) := c(x, t0 + �t)(χ
Ω(t0)\ ⋃

εY∈P∗
ε

εY ∗ ψγ ),

vΩ(t0+�t)(x, t0) := v(x, t0 + �t)(χY\ ⋃

εY∈P∗
ε

εY ∗ ψγ ),

uΩ(t0+�t)(x, t0) := u(x, t0 + �t)(χ
Ω(t0)\ ⋃

εY∈P∗
ε

εY ∗ ψγ ),

pΩ(t0+�t)(x, t0) := p(x, t0 + �t)(χ
Ω(t0)\ ⋃

εY∈P∗
ε

εY ∗ ψγ ),

mΩ(t0+�t)(x, t0) := m(x, t0 + �t)(χ
Ω(t0)\ ⋃

εY∈P∗
ε

εY ∗ ψγ ). (39)

Here χ
Ω(t0)\ ⋃

εY∈P∗
ε

εY ∗ ψγ and χY\ ⋃

εY∈P∗
ε

εY ∗ ψγ are the characteristic functions cor-

responding to the sets Ω(t0)\ ⋃
εY∈P∗

ε

εY and Y\ ⋃
εY∈P∗

ε

εY , and choosing γ 	 ε
3 ,

ψγ : Rn → R+ is constructed as a smooth compact support function with sup(ψγ ) =
{z ∈ R

n|||z||2 ≤ γ }. This is defined by the standard mollifier ψ : Rn → R+, namely,

ψγ (x) := 1

γ n
ψ(

x

γ
), (40)

and,

ψ(x) :=

⎧

⎪
⎨

⎪
⎩

exp( 1
||x ||22−1

)

∫

{z∈Rn |||z||2≤γ }
exp( 1

||z||22−1
)dz

if ||x ||2 < 1,

0 if ||x ||2 ≥ 1,

(41)

Then, the invasion process will continue on the new expanded domain Ω(t0) with the
macroscopic system and the new initial conditions in (39) at macrolevel followed by
proteolytic microprocesses around its boundary, which again governs the movement
of the boundary of the next time multiscale stage.
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Appendix 2: Description of the Multiscale Numerical Approach

We compute and solve the multiscale model in a two-dimensional setting by using
computational approach based on a finite difference scheme for macrodynamics and
finite element approximation for themicrodynamics occurring on each of the boundary
εY microdomains. In the following subsections, we detail the computational approach
and present the steps of the overall multiscale algorithm.

The Macroscopic Stage of the Numerical Scheme

Since the macroscopic dynamics are taking place in the cube Y , we discretise the
entire Y by considering a uniform spatial mesh of size h := ε

2 , i.e. �x = �y = h.
And, the time interval [t0, t0 +�t] is discretised in k uniformly distributed time steps,
i.e. using the uniform time step δτ := �t

k . The temporal discretisation of the reaction-
diffusion system (6)–(10) that we used here is a second-order trapezoidal scheme,
while the diffusion term and haptotactic terms are approximated with a second-order
midpoint rule. For instance, for the diffusion and haptotactic terms involved in (6), we
approximate ∇ · (∇c)ni, j and ∇ · (c∇v)ni, j as follows:

∇·(∇c)ni, j = div(∇c)ni, j

�
(cx )ni+ 1

2 , j
− (cx )ni− 1

2 , j

�x
+

(cy)ni, j+ 1
2

− (cy)ni, j− 1
2

�y
,

and

∇·(c∇v)ni, j =div(c∇v)ni, j

�
cn
i+ 1

2 , j
(vx )

n
i+ 1

2 , j
−cn

i− 1
2 , j

(vx )
n
i− 1

2 , j

�x
+
cn
i, j+ 1

2
(vy)

n
i, j+ 1

2
−cn

i, j− 1
2
(vy)

n
i, j− 1

2

�y
,

where

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cn
i, j+ 1

2
:= cni, j+cni, j+1

2 ,

cn
i, j− 1

2
:= cni, j+cni, j−1

2 ,

cn
i+ 1

2 , j
:= cni, j+cni+1, j

2 ,

cn
i− 1

2 , j
:= cni, j+cni−1, j

2 ,

are the midpoint approximations for c and
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⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(cy)ni, j+ 1
2

:= cni, j+1−cni, j
�y ,

(cy)ni, j− 1
2

:= cni, j−cni, j−1
�y ,

(cx )ni+ 1
2 , j

:= cni+1, j−cni, j
�x ,

(cx )ni− 1
2 , j

:= cni, j−cni−1, j
�x ,

, and

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(vy)
n
i, j+ 1

2
:= vni, j+1−vni, j

�y ,

(vy)
n
i, j− 1

2
:= vni, j−vni, j−1

�y ,

(vx )
n
i+ 1

2 , j
:= vni+1, j−vni, j

�x ,

(vx )
n
i− 1

2 , j
:= vni, j−vni−1, j

�x ,

represent the central differences for spatial derivatives of c and v. Note that n =
0, 1, ..., k are index of time step and (i, j) are spatial nodes where i = 1, ...q are
the indices for the x-direction and j = 1, ...q are the indices for the y-direction. The
diffusion terms in Eqs. (8)–(10) are approximated in the same way as it is in Eqs. (6)
and (7).

The Computational Microscopic Scheme and Its Relation to the Macroscopic
Level

In this section, we describe our computational scheme for the micro scale dynamics
occurring on each microdomains εY ∈ P∗

ε , which are cubes of size ε located at the
boundary ∂Ω(t0). We have each microdomain εY centred at a boundary point form
the macroscopic mesh, with the neighbouring ε-cubes staring from the centre of the
current one (i.e. they are appropriately “half-way shifted” copies of εY ∈ P∗

ε ), due to
the purposely chosen macroscopic mesh size h = ε

2 and the properties of the family
P∗

εY . Moreover, the centre point of the microdomains is coincidentally the midpoint
induced by εY on [∂Ω(t0)]εY , i.e. x∗

εY .
In order to compute the integrals in the source terms (i.e. f εY

1 and f εY
2 ) in the

microscopic system (12)–(15), a midpoint rule is proposed and the constitutive details
are given below. Assuming that K denotes a generic element domain in a finite element
subdivision with either triangular or square elements of a given region A ⊂ R

2, this
“midpoint rule” consists of approximating the integral of a function f over K as the
product between the value of f at the centre of mass of K , Kcentre, and the Lebesgue
measure of K , namely,

∫

K

f = f (Kcentre)λ(K ). (42)

For an arbitrarily chosen εY ∈ P∗
ε , we consider a finite element approach involv-

ing triangular elements on a uniform micromesh, which is maintained with identical
structure for all the microdomains. Further, we consider a time-constant approxima-
tion f̃ εY

1 of f εY
1 on the time interval [0,�t]. In this context, using the computed

final-time values of c(·, t0 + �t) at the macromesh points that are included on the
current microdomain, x1, x2, ..., xPεY ∈ εY ∩ Ω(t0), we take:

f̃ εY
1 (xs) = 1

λ(B(xs, 2ε) ∩ Ω(t0))

∫

B(xs ,2ε)∩Ω(t0)

c (xs, t0 + �t) dx, (43)
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where s = 1, ..., PεY , and the integrals are computed via the midpoint rule. For the
rest of the points y on themicromesh, the value of f̃ εY

1 is obtained in terms of the set of
finite element basis functions considered at the contact points, i.e. {φxs |s = 1, ..., PεY }.
Finally, we observe that for any micromesh point y ∈ εY we have two possibilities:

Case 1 If there exists three overlapping points xi1 , xi2 , xi3 ∈ {x1, x2, ..., xPεY } which
belongs to the same connected component of εY ∩Ω(t0) and y belongs to the convex
closure of the set, i.e. y ∈ Conv{xi1 , xi2 , xi3}, then we have:

f̃ εY
1 (y) = f̃ εY

1 (xi1)φxi1
(y) + f̃ εY

1 (xi2)φxi2
(y) + f̃ εY

1 (xi3)φxi3
(y). (44)

Case 2 If y does not satisfy the conditions in Case 1, then we have

f̃ εY
1 (y) = 0. (45)

For the source term f εY
2 , we use the same approximation method as above, except

that there is only one case taken into consideration which is similar in Eq. (44) accord-
ing to the definition of f εY

2 . Now we could obtain the source terms f̃ εY
1 and f̃ εY

2 on
each microdomain εY with zero initial condition and Neumann boundary conditions
and furthermore use the finite elementmethod to solve the reaction-diffusion equations
(12)–(15) on εY over the time interval [0, t0 + �t]. Then, we use bilinear elements
on a square mesh, the numerical scheme for the microprocesses occurring on each εY
is finally obtained by involving a trapezoidal predictor-corrector method for the time
integration.

Then, for each microdomain we use the midpoint rule to compute the transitional
probability described in (37). For simplicity, now the numerical implementation of
the multiscale model for cancer invasion proposed above is slightly simplified in
the following way: provided that the transitional probability exceeds an associated
threshold ωεY ∈ (0, 1), the boundary mesh-point x∗

εY will move in direction ηεY to
the macromesh point from ∂εY\[Ω(t0)]εY that is closest (in Euclidean distance) to
x∗
εY . If the threshold is not satisfied, then x∗

εY remains at the same spatial location.
Therefore, the new boundary ∂Ω(t0 +�t) is now obtained by the interpolation of the
set of points given in (38) , and the computational process is continued on the new
domain Ω(t0 +�t) by using as a discretised version of (39) as a new initial condition
at the macroscopic stage, i.e.

c(xi, j , t0 + �t) =

⎧

⎪
⎨

⎪
⎩

cki, j , xi, j ∈ Ω(t0),
1
4 (c

k
i−1, j +cki+1, j +cki, j−1+cki, j+1), xi, j ∈ B(Ω(t0), h)\Ω(t0),

0, xi, j /∈ B(Ω(t0), h),

(46)
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and,

v(xi, j , t0 + �t) = vki, j , u(xi, j , t0 + �t) = uki, j ,

p(xi, j , t0 + �t) = pki, j , m(xi, j , t0 + �t) = mk
i, j . (47)

where {xi, j i, j = 1, ..., q} is the macroscopic mesh in Y, Ω(t0) is the topological

closure of Ω(t0), and B(Ω(t0), h) represents the topological closure of the h-bundle

of Ω(t0)., i.e. B(Ω(t0), h) := {x ∈ Y |∃zx ∈ Ω(t0) such that ||x − zx ||2 ≤ h}.

Overall Algorithm Steps

To sum up, the overall algorithm package of the macromicroscopic method consists
of the following steps:

Step 1 At the very begining time t0, first of all, we discretise themacrodomain [a, b]×
[c, d] by

a = x0, . . . , xi = a + i�x, . . . , xm = a + m�x = b,

c = y0, . . . , y j = c + j�y, . . . , yn = c + n�y = d.

where �x = �y = h, h := ε
2 and let a = c = 0, c = d = 4. Also, we number each

point on the macrodomain and record their coordinates all sorts of data of the domain
that might be used later.

Step 2 Define initial conditions for cancer and ECM distribution on macrodomain:

c(x, t0) =: c0(x), x ∈ Ω(t0)

v(x, t0) =: v0(x), x ∈ Ω(t0)

u(x, t0) =: u0(x), x ∈ Ω(t0)

p(x, t0) =: p0(x), x ∈ Ω(t0)

m(x, t0) =: m0(x), x ∈ Ω(t0)

where c(x, t0) is set as zero at the mesh points located outside the closure of the
macroscopic domain Ω(t0).

Step 3 Start the main time loop (from time stage 1 to certain time stage N ), and at the
current time stage,

a) Run the macrosolver, which applies the finite difference schemementioned above,
to obtain the distribution of components in the system cn+1

i, j vn+1
i, j , un+1

i, j , pn+1
i, j , and

mn+1
i, j , where i, j = 1, ..., q.
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Fig. 13 Plot shows the relocation of one point on the boundary moves to a new spatial position in the
microdomain εY

b) Run the microsolver, in which we loop over each points that was on the boundary
of tumour at previous time, and at an arbitrary boundary points,
i. Define themicrodomain εY centring at the current point on the boundary,which

consists of nine points on macrodomain. For simplicity, we first construct the
domain on [0, ε]×[0, ε], and on this domain, compute the source terms f εY

1 and
f εY
2 , and by interpolation, we uniformly decompose the domain into sixty-four

square elements which consists of eighty-one points in total, with the source
term values and concentration values for uPA, PAI-1 and plasmin on a finer
mesh (see Fig. 13).

ii. On the microdomain εY , apply the finite element method to solve the micro-
scopic dynamics system (12)–(15), to obtain the spatial distribution of plasmin
at the final microtimem(·, τ f ) (involving a proposedmidpoint rule formula for
the integral source terms f εY

1 and f εY
2 , and for time integration a trapezoidal

predictor-corrector), which will be used in the regulation functions of cancer
cells’ movement.

iii. Translated the coordinates on this microdomain back to where themicrospatial
position was before.

iv. Using the transitional probability q∗ defined in (37), compute the invasion
strength as q∗(x∗

εY ) := q∗(εY ).
v. If and only if themicroenvironment induced probability q∗(x∗

εY ) is greater than
some tissue threshold value ωεY ∈ (0, 1), we further compute the direction
ηεY and magnitude ξεY of the movement as described by (35) and (36).

c) Once finishing both macrosolver and microsolver at the current time stage, we
obtained new macroscopic distribution for each components in the system cn+1

i, j ,

vn+1
i, j , un+1

i, j , pn+1
i, j and mn+1

i, j ; also for each midpoint x∗
εY on the tumour boundary,

we have the possibility q∗(x∗
εY ), direction ηεY and magnitude ξεY of their move-

ment; therefore, we could use all these information to determine the new position
˜x∗
εY and the points remain where they were on the cancer interface ∂Ω(t0 + �t).
This is schematically shown in Fig. 13
where the red dots represent the discrete macromesh location for the where
microscale source induced by the macroscale was calculated via the integral for-
mula (43).

d) Finally, by using approximations shown in (46) and (47), replace the initial values
of cancer and ECM distribution in macroscopic dynamics with the solution at the
final time of the previous macrostep.
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Step 4 Using the new initial conditions for macroscopic dynamics, continue the inva-
sion process by coupling the next-step macroprocess given by the systems (6) and (10)
on the expand domain Ω(t0 + �t) with the corresponding microprocesses (12)–(15)
occurring on its boundary, which means repeating the Step 3 above with new initial
conditions for macroscopic dynamics and new boundary of cancer.

Appendix 3: Table for the Parameter Set P

In Table1, we present a description of the parameters included in P .

Table 1 The parameters in P

Parameter Value Description

Dc 4.3 × 10−3 Diffusion of cancer cells

χu 3.05 × 10−2 Chemotaxis to uPA

χp 3.75 × 10−2 Chemotaxis to PAI-1

χv 2.85 × 10−2 Haptotaxis to ECM(vitronectin)

μ1 0.25 Proliferation of cancer cells

δ 1.5 Degradation of ECM

φ21 0.75 Binding of uPA and PAI-1

φ22 0.55 Binding of PAI-1 and VN

μ2 0.01 Proliferation of ECM

Du 2.5 × 10−3 Diffusion of uPA

φ31 0.75 Binding of uPA of PAI-1

φ33 0.3 Binding of uPA and uPAR

α31 0.215 Production of uPA

Dp 3.5 × 10−3 Diffusion of PAI-1

φ41 0.75 Binding of uPA and PAI-1

φ42 0.55 Binding of PAI-1 and VN

α41 0.5 Production of PAI-1

Dm 4.91 × 10−3 Diffusion of plasmin

φ52 0.11 Increase rate due to binding of PAI-1 and VN

φ53 0.75 Increase rate due to binding of uPA and uPAR

φ54 0.5 Degradation of plasmin
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