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Abstract In this article, we discuss the structural and practical identifiability of
a nested immuno-epidemiological model of arbovirus diseases, where host–vector
transmission rate, host recovery, and disease-induced death rates are governed by
the within-host immune system. We incorporate the newest ideas and the most up-
to-date features of numerical methods to fit multi-scale models to multi-scale data.
For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series
data obtained from livestock under laboratory experiments, and for an epidemiolog-
ical model we incorporate a human compartment to the nested model and use the
number of human RVFV cases reported by the CDC during the 2006–2007 Kenya
outbreak. We show that the immunological model is not structurally identifiable for
the measurements of time-series viremia concentrations in the host. Thus, we study
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the non-dimensionalized and scaled versions of the immunological model and prove
that both are structurally globally identifiable. After fixing estimated parameter values
for the immunological model derived from the scaled model, we develop a numer-
ical method to fit observable RVFV epidemiological data to the nested model for
the remaining parameter values of the multi-scale system. For the given (CDC) data
set, Monte Carlo simulations indicate that only three parameters of the epidemiolog-
ical model are practically identifiable when the immune model parameters are fixed.
Alternatively, we fit the multi-scale data to the multi-scale model simultaneously.
Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the
immunological model and the parameters of the immuno-epidemiological model are
practically identifiable.We suggest that analytic approaches for studying the structural
identifiability of nested models are a necessity, so that identifiable parameter combi-
nations can be derived to reparameterize the nested model to obtain an identifiable
one. This is a crucial step in developing multi-scale models which explain multi-scale
data.

Keywords Immuno-epidemiological modeling · Rift Valley fever · Structural and
practical identifiability analysis · Parameter estimation · Arbovirus diseases · Immune
dynamics

Mathematics Subject Classification 92D30 · 92D40

1 Introduction

Differential equations are powerful tools formodeling biological systemswith broader
applications to the fields of biomedical research and infectious disease modeling. In
particular, ODEs have been a useful tool for determining the unknown parameters of
theoretical models confronting experimental data. Identifiability analysis is a common
methodology to determine unknown parameters in ODE models (Miao et al. 2011;
Chris et al. 2011; Capaldi et al. 2012; Perasso et al. 2011). Even though identifiability
analysis has been used for over the last two decades for ODE models, including
structural, practical, and sensitivity-based identifiability analysis, the identifiability
analyses of age-structured PDE models have not been studied (but see Perasso et al.
2011; Perasso and Razafison 2016). Here, we study structural identifiability issues for
an immuno-epidemiological nested vector–host model with application to Rift Valley
fever disease.

Rift Valley fever virus (Family, Bunyaviridae; genus, Phlebovirus) was originally
characterized in 1931 in Kenya and has since been isolated throughout the African
continent and in the Arabian Peninsula (Bird et al. 2009). The pathogen is transmitted
mainly through mosquitoes and may infect several different mammal species, causing
illness and death in livestock species and humans and resulting inmillions of dollars of
economic loss. RVFV persists between epidemic periods, with the leading hypotheses
claiming that the virus either remains dormant through the transovarial transmission of
the virus within the vector population or through continual amplification events within
wildlife host populations (Bird et al. 2009; Manore and Beechler 2013). After being
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1798 N. Tuncer et al.

first identified in Kenya in 1931, RVFV has largely spread throughout the African
continent and has a high risk of spreading to new regions, including European Union
(EU) and United States (US), through either an accidental introduction or through the
use of RVFV as a biological weapon (Rolin et al. 2013).

Previous researchers have used a range ofmethods tomodel RVFV, from individual-
based models to compartmental ordinary differential equations at the population level,
to investigate the impact of the intervention strategies and mechanisms that lead to
the persistence of RVFV outbreaks. Gaff et al. (2007, 2011) modeled RVFV disease
in an ODE model with vector–host compartments to assess effectiveness of RVFV
interventions. Niu et al. (2012) introduced space effects with patch-to-patch move-
ment of species to introduce a methodology for studying the likelihood of pathogen
establishment after RVFV introduction to an infection-free area. Fischer et al. (2013)
investigated the effects of a temperate climate, such as the Netherlands, where both
hosts and potential vectors are present. Mpeshe et al. (2011) formulated an ODE
deterministic model of RVFV with a human compartment, in addition to vector–host
compartments, and studied epidemiological threshold properties of reproduction num-
ber, R0, and also explored a sensitivity analysis of the model parameters. Xiao et al.
(2015) recently studied the effect of both seasonality and socioeconomic status in a
multi-patch model. André et al. (2003) discussed the impact of within-host pathogen
and immune dynamics on the pathogen dispersal between hosts. We model RVFV
within-host immune dynamics and couple it with an age-since-infection structured
vector–host disease model by linking vector–host disease transmission, host recovery
rate, and disease-induced death rates to the host immune dynamics (Gulbudak et al.
2016). In this paper, we are interested in the structural and practical identifiability
analysis of the nested model with application to RVFV.

The nested model pertains particularly well to Rift Valley fever. The immuno-
epidemiological model captures the heterogeneity that exists in the ‘macroscale’
among infected individuals in aRVFVepidemicby incorporatingwithin-host pathogen
and immune response dynamics. The immunological model captures qualitative
within-host immune dynamics in the ‘microscale’by modeling IgM and IgG immune
response antibodies, which are commonlymeasured in the laboratory (Bird et al. 2009;
Jansen van Vuren and Paweska 2009). Although immuno-epidemiological models
have garnered attention from scientists and mathematicians hoping to solve problems
regarding host-pathogen coevolution, early diagnostics, and transmission-virulence
trade-offs (Gilchrist and Sasaki 2002; Mohtashemi and Levins 2001; Alizon and
Baalen 2005), the structural and practical identifiability analysis of multi-scale nested
models has not been studied. We use RVFV immunological data obtained under lab-
oratory experiments and epidemiological human data from the 2006–2007 outbreak
in Kenya (CDC 2007; Munyua et al. 2010) to estimate the unknown parameter values
of the nested system.

Many researchers have focused on developing methods for solving the ill-posed
inverse problems generated by age-structured population models, but there has been
less study on the structural and practical identifiability analysis of the age-structured
models. Perasso et al. (2011) performed identifiability analysis of a nonlinear trans-
port reaction system for a SI model, representing the spread of scrapie in a sheep
flock, with realistic assumptions regarding the disease characteristics such as long

123



Structural and Practical Identifiability Issues of… 1799

and variable incubation period and asymptomatic infection. They establish an input–
output(IO) relation for the model, which is based on the implicit solution of the PDE
model. In another study, Perasso and Razafison (2016) investigated the identifiability
of the age-dependent mortality rate of the McKendrick–VonFoerster model, where
the observation is derived from a given age group of the population. They show how
the non-local loopback boundary condition affects the uniqueness of the model para-
meters. In this study, we are interested in developing a numerical approach for a
structural and practical identifiability analysis of a nested immuno-epidemiological
model, which couples an ODE immunological model to an age-since-infection struc-
tured epidemiological PDE model. To our best knowledge, the identifiability analysis
of a nested model, such as the model presented here, has never been studied (but for
hierarchical statistical models see Lele et al. 2010), although there is a need for reli-
able methods for parameter estimation of immuno-epidemiological models to have
comparison with experimental data and to provide accurate predictions.

This paper is organized as follows. In the next section, we present an immuno-
epidemiological model, with an immunological model for IgM and IgG immune
response antibodies and an epidemiological model of RVFV with an age-since-
infection structure. In Sect. 3, we study the structural identifiability analysis of the
immunological model by using the data from Jansen van Vuren and Paweska (2009).
In Sect. 4, we develop a finite difference scheme to approximate the solutions of the
immuno-epidemiological model. Then, we estimate the epidemiological parameters
from the observable RVFV epidemiological data, by first fixing the immunological
parameters. Next, we fit themulti-scaleRVFVdata to themulti-scalemodel introduced
in this paper. In the last section, we summarize our results and give the conclusion.

2 Immuno-Epidemiological Model

In this section, we first describe a within-host pathogen and immune model, with a
logistic pathogen growth rate. Then, we introduce an epidemiological model along
with linking parameters. The immuno-epidemiological model links the within-host
model to the epidemiological model by using the nested model framework described
in Gilchrist and Sasaki (2002). The between-host model is structured with time-since-
infection parameter τ . Thus, the dynamics of pathogen and host immune response
determines the transmission, recovery and disease-induced mortality properties of the
epidemiological model.

2.1 The Immunological Model

The immunological model describes the interaction between pathogen and IgM, IgG
immune response antibodies. M(τ ) and G(τ ) denote the within-host IgM and IgG
antibody concentrations at time-since-infection τ , respectively. We assume that the
pathogen, P(τ ), exhibits logistic growth with carrying capacity K and growth rate r .
IgMand IgG immune response antibodies contribute to the elimination of the pathogen
at rates ε and δ, respectively. The IgM immune response antibodies proliferate at a
rate proportional to the viremia level in the host, represented by the activation rate
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1800 N. Tuncer et al.

a, and decays at rate c. The IgM immune response antibodies are mainly responsible
for rapid destruction of invading pathogen. B cells switch production of IgM immune
response antibodies to production of a longer lasting class, IgG, at rate q. IgG immune
response antibodies activate at a per-capita rate b.

Within-host model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP

dτ
=

(

r

(

1 − P(τ )

K

)

− εM(τ ) − δG(τ )

)

P(τ ),

dM

dτ
= aP(τ )M(τ ) − (q + c)M(τ ),

dG

dτ
= qM(τ ) + bG(τ )P(τ ).

(1)

At the initial time of infection (when τ = 0), there are not yet any IgG immune
response antibodies, and very little first response antibodies, IgM, capable of detecting
the newly presented pathogen. Over the course of the immune response, B cells will
undergo immunoglobulin class switching and switch from producing IgM to IgG
antibodies. Hence, the model is equipped with initial conditions: P(0) = 1, M(0) =
0.0001, G(0) = 0. The definitions of the parameters and the variables of the model
are given in Tables 1 and 2.

Dynamics of the novel immunological model (1) exhibits the schematically illus-
trated dynamics described in Bird et al. (2009). Thus either the host dies due to a
drastic increase in pathogen concentration, or the pathogen is controlled by the host
immune response. If P(0) �= K and M(τ ) > 0 or G(τ ) > 0 for τ > 0, the immune
response clears the virus, the IgM antibodies die out and the IgG antibodies reach a
nonzero steady-state i.e.,

Table 1 Definition of the variables in the within-host model

Variable Meaning

P(τ ) Pathogen concentration τ time-since-infection

M(τ ) IgM concentration τ time-since-infection

G(τ ) IgG concentration τ time-since-infection

Table 2 Definition of the parameters in the within-host model

Parameter Meaning

r Pathogen growth rate

K Carrying capacity of the pathogen

ε Efficiency of the IgM response resulting in pathogen death

δ Efficiency of the IgG response resulting in pathogen death

a IgM activation rate

q IgM → IgG

c IgM decay rate

b IgG activation rate
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lim
τ→∞ P(τ ) = 0; lim

τ→∞ M(τ ) = 0 and lim
τ→∞G(τ ) = G∗ where G∗ �= 0

We present a detailed analysis of immunological model (1) in Gulbudak et al. (2016).

2.2 An Epidemiological Model of the Rift Valley Fever

Rift Valley Fever is a vector-borne, zoonotic disease. It can cause a significant eco-
nomic loss due to deaths and abortions among livestock. It is mostly spread among
domestic animals and humans by the bite of an infected mosquito. The sporadic out-
breaks of RVFV have followed heavy rainfall and flooding in Kenya and other parts of
Africa since the 1930s. Up to date, no human-to-human transmission has been seen.1

The mosquito population is divided into two nonintersecting classes; Sv(t) suscep-
tible vectors at time t and Iv(t) infected vectors at time t . The birth and death rates
of the vector population are denoted by �v and μv, respectively. Susceptible vectors
become infected after a blood meal on an infected host. The density of the infected
host population iH(τ, t) is structured with both time t and time-since-infection τ . The
new incidences in the vector population are modeled by the term

Sv

∫ ∞

0
βH(τ )iH(τ, t)dτ .

Infectious hosts have different infectivity at different times-since-infection. Transmis-
sion rate from an infected host to a susceptible vector, βH(τ ), is governed by the
pathogen level in the infected host at τ time-since-infection. Thus, the transmission
rate is linked to the infected hosts immune response dynamics, via Martcheva (2015)

βH(τ ) = cHPν(τ )

BH + Pν(τ )
,

where cH, BH and ν are constants. The model in the vector population takes the form:

Vector Model:

⎧
⎪⎨

⎪⎩

dSv
dt

= �v − Sv

∫ ∞

0
βH(τ )iH(τ, t)dτ − μvSv,

dIv
dt

= Sv

∫ ∞

0
βH(τ )iH(τ, t)dτ − μv Iv.

(2)

The epidemiology of theRVFVbetween-host population is described by anSIRmodel.
At any time, the host population (livestock population) is further divided into suscep-
tible hosts, SH(t) and recovered hosts, RH(t) classes. The between host model is given
by:

1 CDC Rift Valley fever transmission, www.cdc.gov/vhf/rvf/transmission/index.html.
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Table 3 Definition of the variables in the between-host model

Variable Meaning Variable Meaning

SH(t) Susceptible hosts Sv(t) Susceptible vectors

iH(τ, t) Infected hosts Iv(t) Infected vectors

RH(t) Recovered hosts

Between-Host Model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dSH
dt

= � − βvSH Iv − μHSH,

∂iH
∂t

+ ∂iH
∂τ

= − (α(τ) + γ (τ) + μH) iH(τ, t),

iH(0, t) = βvSH Iv,
dRH

dt
=

∫ ∞

0
γ (τ)iH(τ, t)dτ − μHRH,

(3)

where � is the constant recruitment into the host population, μH is the natural death
rate, and βv is the transmission rate from vector to host. We suppose that the disease-
induced death rate, α(τ), depends not only on the viral load but also on the first
immune response antibodies (IgM) in the host. We assume that antibody levels are
proportional to the intensity of an immune response, which is costly to the host,
similar to the assumptions of previous immuno-epidemiological modelers (Gilchrist
and Sasaki 2002). Thus, the disease-induced death rate, α(τ), has the following linear
dependence on P(τ ) and M(τ )

α(τ) = σ P(τ ) + ξM(τ ),

where σ and ξ are the constants. The IgG antibodies have no effect on α(τ). On the
other hand, the recovery rate is proportional to the IgG levels in the host and indirectly
proportional to the pathogen level. Hence,

γ (τ) = κG(τ )

P(τ ) + ε0
,

where κ and ε0 are constants. Definitions of epidemiological variables, parameters,
and their linking relations to the host immune response are summarized in Tables 3 and
4. A schematic illustration of the “nested model” framework for vector-borne diseases
is shown in Fig. 1.

We study the dynamics of the epidemiological model (2)–(3) in another paper (Gul-
budak et al. 2016). Here, we summarize those results. The immuno-epidemiological
reproduction number of models (2)–(3) is,

R0 = βv�

μvμH

∫ ∞

0

�v

μv
βH(τ )e

−
∫ τ

0
(α(s) + γ (s) + μH) ds

dτ (4)
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Table 4 Definition of the parameters in the between-host model and their linking relation to immune
response dynamics

Parameter Meaning Linking relation

�v/� Recruitment rate into vector/host population

μv/μH Natural death rate of vector/host

βv Transmission rate from vector to host

βH(τ ) Transmission rate from host to vector βH(τ ) = cHPν(τ )

BH + Pν(τ )

α(τ) Disease-induced death rate of an infected
host

α(τ) = σ P(τ ) + ξM(τ )

γ (τ ) Recovery rate of an infected host γ (τ) = κG(τ )

P(τ ) + ε0

Vector Population
Sv(t) Iv(t)

Host Population

SH(t) iH(τ, t) RH(t)

Pathogen level in host (P (τ))

IgM level in host (M(τ))

IgG level in host (G(τ))

Within Host
Dynamics

Transmission

Deaths

Births

Deaths

Deaths

Births
Deaths

Deaths
Transmission

Recovery

Fig. 1 Schematic illustration of the “nested model” framework for vector-borne diseases

The disease free equilibrium ε0 = (
S0V, I 0V, S0H, i0H(τ ), R0

H

) =
(

�v

μv
, 0,

�

μH
, 0, 0

)

is locally asymptotically stable when R0 < 1 and unstable when R0 > 1. When
R0 > 1, there exists a unique locally asymptotically stable endemic equilibrium
ε∗ = (

S∗
V, I ∗

V, S∗
H, i∗H(τ ), R∗

H

)
where

S∗
H = 1

βv
S∗
V

μv

∫ ∞
0 βH(τ )π(τ)dτ

, i∗H(τ )= i∗H(0)π(τ), R∗
H= i∗H(0)

μH

∫ ∞

0
γ (τ)π(τ)dτ ,

S∗
V = �v

i∗H(0)
∫ ∞
0 βH(τ )π(τ)dτ + μv

, I ∗
V = S∗

V

μv

∫ ∞

0
βH(τ )i∗H(τ )dτ ,
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Table 5 Data extracted from Figure 7 in Jansen van Vuren and Paweska (2009)

Day 0 1 2 3 4 5 6 7 8 9 10

Viral load 0 0.0179 4.788 7.754 7.024 5.776 5.51 4.53 2.515 0.0347 0

Data are given as the log10 of the viremia level. Viremia load is given in units (TCID50)

andπ(τ) is the probability of still being infectious τ time units after becoming infected,
which is given by

π(τ) = e
−

∫ τ

0
(α(s) + γ (s) + μH) ds

. (5)

3 Parameter Estimation of the Immunological Model

We fit the immunological model to the data in Jansen van Vuren and Paweska (2009),
which gives times-series RVFV viremia, IgM, and IgG immune response antibody
concentrations in sheep inoculated subcutaneously with RVFV (Jansen van Vuren and
Paweska 2009, Fig 7). Virus concentrations were reported as median tissue culture
infectious dose (TCID50), or the viral dilution concentration necessary to elicit cyto-
pathic effects in 50%of cell cultures.Antibody concentrationswere reported asELISA
PP values, which are the relative percentage optical density measurements of test spec-
imen in comparison with a mean high-positive control antigens. We extracted the data
points (log10 of viremia levels) from the plot using MATLAB code grabit.m,2 and
present the data in Table 5.

Let x=[P, M,G]be the vector of state variables, and let p = [r, K , ε, δ, a, q, c, b]
be the vector of model parameters, then the within-host model (1) is equivalent to

x′ = f (x(τ ), p),

x(0) = x0 .
(6)

The parameters p of the model are estimated based on the n observation {yi }ni=1 made
at times τ1, τ2, . . . , τn . The data points in Table 5 are the log10 of the viremia levels
in blood at time τi i = 1, . . . , n (n = 11, see Table 5). For the parameter estimation
problem, we use the following statistical model as introduced in Banks et al. (2014)

yi = g(x(τi ), p̂) + εi (7)

where g(x(τi ), p̂) = P(τi , p̂) are the viremia levels, and p̂ are the “true” parame-
ters we are looking for. The random variables εi represents the measurement errors
which cause the observations g(x(τi ), p̂) to drift away from the smooth exact path
g(x(τ ), p̂). In this study, we assume that there is no modeling error, hence the mean
of the measurement errors is zero, E(εi ) = 0. In a more general setting, the errors
satisfy the following form, which allows fairly wide range of error models,

2 http://extractdata.blogspot.com.
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εi = g(x(τi ), p̂) f εi (8)

where f ≥ 0. The εi are assumed to be independent, identically distributed ran-
dom variables with mean zero and finite variance σ 2

0 . The mean and the variance of
the random variables yi satisfy, E(yi ) = g(x(τi ), p̂), Var(yi ) = g(x(τi ), p̂)2 f σ 2

0 ,

respectively. If f = 0, then (8) becomes εi = εi , that is the error in the measurements
are independent from the observations g(x(τi ), p̂), which is called absolute error. In
counting populations, it is reasonable to assume that the measurement errors depends
on the population size, hence in that case we set f = 1 in (8), which is called rel-
ative error. In some cases, depending on the problem, it might be appropriate to set
f = 1/2 in (8) (Banks et al. 2014). When f = 1/2, the error model (8) was referred
to as Poisson noise in Capaldi et al. (2012).

3.1 Structural Identifiability

Afirst step in estimating the parameters of amodel is to determinewhether the problem
is well posed for a given model and data. A well-posed parameter estimation problem
means that the parameters of the model can be recovered uniquely from the given
data set. Even in an ideal situation where the data are noise-free and there is no
modeling error, the quality of parameter estimation results depends on the predictive
capability of the mathematical model. If the mathematical problem is not structurally
identifiable, then the parameters estimated by a numerical optimization problemmight
not be unique and thus be unreliable. On the other hand, a mathematical model which
is structurally identifiablemay not be practically identifiable (Chris et al. 2011; Cobelli
and DiStefano 1980). That is, when noisy data are considered, the parameters may
not be uniquely recovered. Moreover, the data might be precise, but if collected at
a time interval where dynamics of the model are not captured, then the parameters
might still be unidentified. Eisenberg et al. showed that a SIWR (Susceptible-Infected-
Water-Recovered) model of Cholera is structurally identifiable, but it is practically
unidentifiable when the environmental transmission of the cholera through the water
component is very fast (Eisenberg et al. 2013).

Structural identifiability is concerned with the possibility of estimating the model
parameters assuming perfect experimental data. The definition of the structural iden-
tifiability in Miao et al. (2011) is given as

Definition 3.1 A parameter set p is called structurally (or uniquely) identifiable if
for every q in the parameter space, the equation

g(x(τ ), p) = g(x(τ ), q) �⇒ p = q .

That is, any unequal parameter set yields different observations and hence the corre-
sponding noise-free data are distinct.

It is crucial to check the structural identifiably of the model, and several methods
have been proposed to perform this task. This can be done by suitable mathematical
methods directly on the model without the need of any experimental data. These
include Taylor series methods (Miao et al. 2011; Pohjanpalo 1978), differential
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algebra-based methods (Bellu et al. 2007; Eisenberg et al. 2013; Ljung and Glad
1994; Miao et al. 2011), and other methods such as the generating series approach,
the direct test, and a method based on the implicit function theorem that have been
reviewed in Chris et al. (2011) and Miao et al. (2011).

We will use the differential algebra approach (Bellu et al. 2007; Miao et al. 2011) to
test the model (1). The differential algebra approach assumes that f and g are rational
polynomial functions. One of the strengths of this approach is that if the model is
unidentifiable, the identifiable parameter combinations can be obtained, which then
can be used to reparametrize themodel to get a structurally identifiablemodel (Meshkat
et al. 2009). The differential algebra approach builds upon deriving the input–output
equation, which contains all the structural identifiability information of themodel. The
input-output equations are determined from the characteristic sets which are derived
by Ritt’s algorithm and depend on the ranking of the state variables and the output. We
refer the reader to Meshkat et al. (2009) and Miao et al. (2011) for the details on the
differential algebra approach. We briefly summarize the method with the following
model (9), since our structural identifiability analysis is extensively based on this
approach.

Suppose, we want to estimate the parameters of a simple immunological model,
adapted from Gilchrist and Sasaki (2002) using the viremia levels in the blood as the
data.

dP

dτ
= (r − εM(τ )) P(τ ),

dM

dτ
= aP(τ )M(τ ).

(9)

The question of structural identifiability is to determine whether the model is struc-
tured to estimate the parameters uniquely given noise-free data. Within the differential
algebra approach, we adapt the ranking P < M of the state variables, then the model
(9) yields the following input–output equation derived from the characteristic set,

εP ′′P − ε(P ′)2 + εar P3 − εaP ′P2 = 0 . (10)

The characteristic set in general is not unique, but the coefficients of the normal-
ized input–output equation contain all the identifiability information of the dynamical
model (Eisenberg et al. 2013). The input–output Eq. (10) can be normalized to make
it a monic differential polynomial by dividing by ε:

P ′′P − (P ′)2 + ar P3 − aP ′P2 = 0. (11)

The structural identifiability can be determined from the injectivity of the coefficients
c( p) of the normalized input–output equation (Eisenberg et al. 2013).

Thus, within the differential algebra approach, the definition of the structural iden-
tifiability becomes,

Definition 3.2 Let c( p) be the coefficients of the normalized input–output equation,
then the dynamical model is structurally identifiable if and only if

c( p) = c(q) �⇒ p = q
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Suppose to the contrary that another set of the parameters [q1, q2, q3] gives the
same output. Then, we would have:

q1q3 = ar and q3 = a.

From which we would get the parameters a and r uniquely, but ε can not be identified.
So, the model (9) is unidentifiable. Thus, we have proved the following result.

Proposition 3.1 The model (9) is structurally unidentifiable from the observations of
viremia levels in host.

The immunological model (1) is a generalization of the model (9). Following a
similar analysis, we prove the following result for the model (1).

Proposition 3.2 The immunological model (1) is not structured to identify the para-
meters p = [r, K , ε, δ, a, b, c, q] from the pathogen level observations in the host.
Only the parameters r , K , a , b , and the combinations of the parameters q + c , and
qδ

ε
can be identified.

Proof Toderive an input–output equation for themodel (1) ismore complicated.Using
the Differential Algebra for Identifiability of Systems (DAISY) software, introduced
in Bellu et al. (2007), we obtain the following normalized input–output equation of
the model (1).

P ′′′P3 + P ′′′P2 K (−εq − εc + δq)

εK (a − b)
+ 4P ′′P ′P2 εK (−a + b)

εK (a − b)
+ 3P ′′P ′P K (εq + εc − δq)

εK (a − b)

+ P ′′P4 ε(ra − rb − a2K + b2K )

εK (a − b)
+ P ′′P3 (−rεq − rεc + rδq + 2εaqK + 2εacK − δaqK − δqbK )

εK (a − b)

+ P ′′P2 K (−εq2 − 2εqc − εc2 + δq2 + δqc)

εK (a − b)
+ 3P ′3P + 2P ′3 K (−εq − εc + δq)

εK (a − b)

+ P ′2P3 ε(−ra + rb + a2K − b2K )

εK (a − b)
+ P ′2P2 K (−2εaq − 2εac + εqb + εcb + δaq)

εK (a − b)

+P ′2P K (εq2+2εqc+εc2−δq2−δqc)

εK (a−b)
+P ′P5 ε(−ra2+rb2+a2bK−ab2K )

εK (a−b)

+ P ′P4 (2rεaq + 2rεac+rεqb+rεcb−rδaq−2rδqb − 2εaqbK − 2εacbK + εqb2K+ εcb2K+δaqbK )

εK (a − b)

+ P ′P3

(−rεq2−2rεqc−rεqbK−rεc2−rεcbK+rδq2+rδqc+rδqbK+εq2bK+2εqcbK
+εc2bK−δq2bK−δqcbK )

εK (a−b)

+ P7 rεab(a − b)

εK (a − b)
+ P6 rb(−εa2K − 2εaq − 2εac + εabK + εqb + εcb + δaq)

εK (a − b)

+ P5 rb(2εaqK + 2εacK + εq2 + 2εqc − εqbK + εc2 − εcbK − δaqK − δq2 − δqc)

εK (a − b)

+ P4 rbK (−εq2 − 2εqc − εc2 + δq2 + δqc)

εK (a − b)
= 0

(12)

Suppose another set of parameters, q = [q1 , q2 , q3 , q4 , q5 , q6 , q7 , q8] produced the
same output P . Since the viremia levels are equal, we compare the coefficients of the
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input–output equation and obtain a nonlinear system of 11 equations and derive the
Groebner basis using Mathematica.

Solving the Groebner basis, we arrive at the following results,

r = q1, K = q2, a = q5, b = q6, q + c = q8 + q7
qδ

ε
= q8q4

q3
.

Thus, the model (1) is unidentifiable. Only the parameters r , K , a , b , and the para-

meter combinations q + c and
qδ

ε
can be identified. 
�

The Proposition 3.2 states that the parameters of the model (1) cannot be identified
from the observations of viremia levels only. We would like to point out that if all
the state variables were observable, in addition to viremia levels, and we were to
observe IgM and IgG levels, then all parameters of the model (1) would be identified.
The data given for IgM and IgG concentrations in Jansen van Vuren and Paweska
(2009) are relative percentage optical density measurements from the test specimen
in comparison with a mean high-positive control antigens. That is, it is not possible to
use the data provided for IgM and IgG in the parameter estimations.

We perform a numerical experiment to show the theoretical results we obtained in
Proposition 3.2. The viremia data in Jansen van Vuren and Paweska (2009) are given
for log10 of the pathogen levels. But, for the numerical experimentwewould like to test
the structural identifiability results obtained by differential algebra approach, which
requires g to be a rational function. That is, we would like to estimate the parameters
of the immunological model (1) from the observations g(x(τi ), p̂) = P(τi , p̂) . (Note
that for the practical identifiability, we take g(x(τi ), p̂) = log10(P(τi , p̂)) in the next
section). The parameters of the model (1) are estimated using the maximum likelihood
approach from 100 synthetic data generated by adding Poisson noise to the model
output g(x(τi ), p̂) = P(τi , p̂) , at the data timepoints τi , i = 1, 2, . . . , n as inTable 5.
That is, we generate M = 100 synthetic data whose mean is E(yi ) = g(x(τi ), p̂) and
Var(yi ) = g(x(τi ), p̂). The true parameter values, p̂, are shown as red stars in Fig. 2.
We estimate the parameters by solving the following minimization problem for each
data set

p j = min
p̂

(
n∑

i=1

g(x(τi ), p̂) −
n∑

i=1

yi ln(g(x(τi ), p̂))

)

, j = 1, 2, . . . , 100. (13)

The Nelder–Mead iterative algorithm is used to approximate the minimum of the cost
function (13). The initial parameter values for the iterative solver are chosen ran-
domly from a normal distribution whose mean is the true parameter values and the
standard deviation is 10% of the mean. The structural identifiability conclusion of
Proposition 3.2 is consistent with the numerical experiment we performed for esti-
mating the parameters of the model (1) (see Fig. 2). The scatter plots support the
theoretical results in Proposition 3.2; only the parameters, r , K , a can be identified
and parameters q, c, ε and δ can not be identified. The scatter plots are inconclusive
for the parameter b. The correlations between the unidentifiable parameters cannot be
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Fig. 2 The parameter estimates of the model (1) for 100 synthetic data generated by Poisson noise.
True parameters are indicated by red stars. True parameters are r = 5.33, K = 9.75 × 106,
ε = 0.0163, δ = 0.0079, a = 6.28×10−7, q = 0.1812, c = 0.1155, b = 5.83×10−7.Note that only the
parameters r, K , a and b are identified. The parametersq, c, ε and δ cannot be identified (Color figure online)

deduced from the scatter plots, but Proposition 3.2 gives the correlations among the
unidentified parameters.

Model (1) is not structured to identify its parameters from viremia observations.
In attempt to get an identifiable model, we first non-dimensionalize (1) by setting

u1 = P

K
, u2 = ε

r
M , u3 = δ

r
G, and t = τ

r
.

123
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du1
dt

= ((1 − u1) − u2 − u3) u1,

du2
dt

= αu1u2 − γ u2

du3
dt

= βu2 + ωu3u1

(14)

where α = aK

r
, γ = q + c

r
, β = qδ

εr
, ω = bK

r
.

Proposition 3.3 The non-dimensionalized model (14) is structurally identifiable from
viremia observations.

Proof Using DAISY, we get the following input–output equation of the model (14).

P ′′′P4+ (β − γ )

(α − ω)
P ′′′P3 − 4P ′′P ′P3+3

(γ − β)

(α − ω)
P ′′P ′P2

+ (−α2+α+ω2 − ω)

(α − ω)
P ′′P5+ (2αγ − αβ − γ − βω+β)

(α − ω)
P ′′P4

+ γ (−γ +β)

(α − ω)
P ′′P3+3P ′3P2+2

(−γ +β)

(α − ω)
P ′3P+ (α2 − α − ω2+ω)

(α − ω)
P ′2P4

+ (−2αγ +αβ+γω)

(α − ω)
P ′2P3+ γ (γ − β)

(α − ω)
P ′2P2+ (α2ω − α2 − αω2+ω2)

(α − ω)
P ′P6

+ (−2αγω+2αγ +αβω − αβ+γω2+γω − 2βω)

(α − ω)
P ′P5

+ (γ 2ω − γ 2 − γβω+γβ − γω+βω)

(α − ω)
P ′P4

+ αω(α − ω)

(α − ω)
P8+ ω(−α2 − 2αγ +αβ+αω+γω)

(α − ω)
P7

+ ω(2αγ − αβ+γ 2 − γβ − γω)

(α − ω)
P6+ γω(−γ +β)

(α − ω)
P5 = 0

(15)
Solving c( p) = c(q) for p = [α, γ, β, ω] and q = [q1, q2, q3, q4 ] using the Groeb-
ner basis in Mathematica we obtain,

α = q1, γ = q2, β = q3, ω = q4.

Thus, the model (14) is structurally identifiable. 
�
We note that even though model (14) is structurally identifiable, in practice it is not
useful. It is not clear how to normalize the data since the carrying capacity, K , of the
viremia is not known. Furthermore, the parameters r, ε, δ, a, q, c, and b cannot be
derived from estimated values of α, γ, β, and ω. We search for another model which
is structurally identifiable.
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We scale the model (1) by setting u2 = εM , u3 = δG and obtain;

Scaled Model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP

dτ
=

(

r

(

1 − P(τ )

K

)

− u2(τ ) − u3(τ )

)

P(τ ),

du2
dτ

= aP(τ )u2(τ ) − (q + c)u2(τ ) ,

du3
dτ

= wu2(τ ) + bu3(τ )P(τ ) ,

(16)

where w = qδ

ε
. By Proposition 3.2, we see that the combination q + c is identifiable,

but not the parameters q and c. The parameter c denotes the exponential decay rate of
the IgM immune response antibody concentration. It is suggested that the biological
half life of the IgM immune response antibodies in lambs is 6days (Watson 1992).

Hence, we fix c = ln 2

6
.

Proposition 3.4 When c is fixed, the scaled model (16) is structurally identifiable
from the viremia observations.

Proof Using DAISY, we get the following input–output equation of the model (16).

P ′′′P4 + P ′′′P3 K (−q + w − c)

K (a − b)
− 4P ′′P ′P3 + 3P ′′P ′P2 K (q − w + c)

K (a − b)

+ P ′′P5 (ra − rb − a2K + b2K )

K (a − b)
+ P ′′P4 (−rq + rw − rc + 2aqK − awK + 2aKc − wbK )

K (a − b)

+ P ′′P3 K (−q2 + qw − 2qc + wc − c2)

K (a − b)
+ 3P ′3P2 + 2P ′3P K (−q + w − c)

K (a − b)

+ P ′2P4 (−ra + rb + a2K − b2K )

K (a − b)
+ P ′2P3 K (−2aq + aw − 2ac + qb + bc)

K (a − b)

+ P ′2P2 K (q2 − qw + 2qc − wc + c2)

K (a − b)
+ P ′P6 (−ra2 + rb2 + a2bK − ab2K )

K (a − b)

+ P ′P5 (2raq − raw + 2rac + rqb − 2rwb + rbc − 2aqbK + awbK − 2abKc + qb2K + b2Kc)

K (a − b)

+ P ′P4 (−rq2+rqw−rqbK−2rqc+rwbK+rwc−rbKc−rc2+q2bK−qwbK+2qbKc−wbKc+bKc2)

K (a−b)

+ P8 rab(a − b)

K (a − b)
+ P7 rb(−a2K − 2aq + aw + abK − 2ac + qb + bc)

K (a − b)

+ P6 rb(2aqK − awK + 2aKc + q2 − qw − qbK + 2qc − wc − bKc + c2)

K (a − b)

+ P5 rbK (−q2 + qw − 2qc + wc − c2)

K (a − b)
= 0

(17)
Solving c( p)=c(q) for p = [r, K , a, b, q, c, w] and q=[q1, q2, q3, q4, q5, q6, q7]
where p > 0 and q > 0 we obtain,

r = q1, K = q2, a = q3, b = q4, q + c = q5 + q6, w = q7.

Since c is fixed the scaled model (16) is globally identifiable. 
�
Each parameter value of the immunological model (1) can be uniquely reconstructed
from the unique parameter estimates of the scaled model (16) except the killing effi-
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Table 6 Parameter estimates of model (16) fitted to log10 of viremia levels given in Table 5

Parameter Estimate Units CV

r 6.57701933 (TCID50 × days)−1 6.7 × 10−7

K 6.46580327 × 107 TCID50 33.31

a 2.5 × 10−7 (ELISA PP × days)−1 1.5 × 10−4

q 0.423269696 days−1 2.38 × 10−4

w 0.126327973 days−1 1.64 × 10−4

b 9 × 10−8 (ELISA PP × days)−1 3.81 × 10−5

The estimated values are precise numbers given by MATLAB, including the values for a and b

cacy parameters ε and δ. Regarding these two parameters, the parameter estimate of
the scaled model only provides their fraction. However, the parameters ε and δ are less
of a concern to us, since biologically these parameters represent the average effects of
multiple complex interactions occurring between antibody-pathogen recognition and
the response of immune cells and cannot be easily interpreted as a single parameter.

We estimate the parameters p = [r, K , a, b, q, w] of model (16) from the viremia
levels given in Table 5 using Nelder–Mead algorithm implemented in MATLAB.
We estimate the parameters p = [r, K , a, b, q, w] of model (16) by minimizing the
following cost functional

J ( p) =
n∑

i=1

ωi (yi − log10(P(τi , p))2 . (18)

where ωi are the weights. Initial values are fixed at P(0) = y1 , M(0) = 0.0001 and
G(0) = 0. We present the parameter estimates which were obtained by weighted least
squares in Table 6 together with the uncertainties in the estimates. Uncertainties in
parameter estimates are represented in terms of the coefficient of variation (CV) which
is calculated by constructing a Fisher Information Matrix using sensitivity functions.

For this analysis, we first compute the sensitivity matrix S(τi , p) = ∂g

∂ p
(x(τi ), p) ,

which is the Jacobian of the outputwith respect to themodel parameters. Clearly, we do
not have an explicit representation of the pathogen levels P(τi , p), so we compute the
sensitivitymatrix S by coupling the system (6) with the following system of sensitivity
functions (Capaldi et al. 2012; Cintrn-Arias et al. 2009);

d

dt

∂x
∂ p

= ∂ f
∂x

∂x
∂ p

+ ∂ f
∂ p

,

∂x
∂ p

(0) = 0.
(19)

Here,
∂ f
∂x

is the Jacobian matrix of the system (6). Solving the initial value problem

(19) simultaneously with (6), we obtain P(τi , p) and
∂P

∂ p
(τi , p) and then compute
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Fig. 3 Fitting results. We plot the solutions of the model (16) for fitted parameters in Table 6. The left plot
in Fig. 3 is showing the log10 of the pathogen levels for the time-since-infection period τ ∈ [0, 10] together
with the data presented in Table 5. The right plot in Fig. 3 is presenting the dynamics of the model with
fitted parameters for τ ∈ [0, 30] and the data (red dots) (Color figure online)

the sensitivity matrix S. If the noise in the data has independent and identical normal
distribution with zero mean and unity variance, then

ST S = F( p)

is the Fisher InformationMatrix. The inverse of the Fisher InformationMatrix provides
a lower bound on the variance of the parameter estimates, which is known as Cramer-
Rao lower bound (Petersen et al. 2001; van der Vaart 1998). Namely,

F−1( p) ≤ Cov( p).

The standard deviations of the parameter estimation can be obtained by taking the
square roots of the diagonal elements of the F−1( p) matrix. We will use the standard
deviations to quantify uncertainty in the parameter estimation using F−1( p) in the
following way. Let p ∈ p be the i th parameter, and σ(p) be the standard deviation of
the estimated parameter p, then

σ(p) =
√

F−1( p)i,i ,

where F−1( p)i, j denotes (i, j) component of the matrix F−1( p). The coefficient
variation CV(p) of the parameter can be computed by;

CV(p) = σ(p)/p.

3.2 Practical Identifiability

Structural identifiability is a property of the dynamical model and is independent from
the accuracy of the experimental data. A parameter which is structurally identifiable
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may still be non-identifiable in practice. For a practically non-identifiable parameter, it
might be very difficult or impossible to detect the reasons behind the non-identifiability.
On the other hand, knowing that the parameter is structurally identifiable assures that
the cause of the practical non-identifiability is either lack of information captured
from the experimental data (too few or too noisy data) or the inability of the numerical
optimization algorithm to locate the minimum of J ( p).

The parameters of the scaled model (16) are structurally identifiable, and next we
test whether the parameters are identifiable in practice. For practical identifiability, we
carry out Monte Carlo Simulations. Monte Carlo simulations have been widely used
for practical identifiability of ODE models (Miao et al. 2011). We perform Monte
Carlo simulations first by taking the estimated parameters presented in Table 6 as
the true parameter set p̂. Then, we generate M = 1000 synthetic data by evaluating
the viremia observations at the true parameter set p̂ and adding noise at increas-
ing levels. The Monte Carlo simulations we performed are outlined in the following
steps.

1. Solve the scaled immunological model (16) numerically with the true parameters
p̂ and obtain the output vector g(x(τi ), p̂) = P(τi , p̂) at the discrete data time
points {τi }ni=1 .

2. Generate M = 1000 simulated data from the statistical model (7)–(8) with a given
measurement error structure. Data sets are drawn from a normal distributionwhose
mean is the output vector obtained in step (1.) and standard deviation is the σ0%
of the mean. That is, in the statistical model (7)–(8), we set f = 1 and obtain the
synthetic data points by

yi = log10
(
g(x(τi ), p̂) + g(x(τi ), p̂)εi

)
,

where Var(εi ) = σ 2
0 .

3. Fit the scaled immunological model (16) to each of the M simulated data sets to
estimate the parameter set p j for j = 1, 2, . . . , M . That is

p j = min
p

n∑

i=1

ωi
(
yi − log10(g(x(τi ), p))

)2
, j = 1, 2, . . . , M .

4. Calculate the average relative estimation error (ARE) for each parameter in the set
p as introduced in Miao et al. (2011),

ARE(p(k)) = 100%
1

M

M∑

j=1

| p̂(k) − p(k)
j |

p̂(k)

where p(k) is the kth parameter in the set p, p̂(k) is the kth parameter in the true
parameter set p̂, and p(k)

j is the kth parameter in the estimated parameter set p j .
5. Repeat steps 1 through 4with increasing level of noise, that is takeσ0 = 0, 1, 5, 10,

20%.
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Table 7 Practical identifiability analysis of parameters of the scaled immunological model (16) by Monte
Carlo simulations for measurement error levels σ0 = 0, 1, 5, 10 and 20%

Parameter ARE ARE ARE ARE ARE
σ0 = 0% σ0 = 1% σ0 = 5% σ0 = 10% σ0 = 20%

r 0.00% 0.08% 0.32% 0.64% 1.56%

K 0.00% 0.77% 4.28% 8.57% 17.30%

a 0.00% 0.94% 5.86% 12.51% 26.18%

q 0.00% 1.26% 7.06% 14.19% 29.73%

w 0.00% 1.88% 12.37% 22.53% 33.89%

b 0.00% 0.77% 4.34% 8.87% 16.93%

The computed AREs give an insight about the identifiability of the parameters of
the immunological model. Since the scaled immunological model (16) is structurally
identifiable, when σ0 = 0, the AREs are 0 (see Table 7). That is, Monte Carlo simula-
tions agree with the structural identifiability analysis via differential algebra approach
when there is no noise in the data. As expected, increasing the noise level in the
data raises the AREs. We see from Table 7 that the AREs of the parameters q and
w are relatively high, showing that these two parameters are sensitive to the noise
in the data. A parameter is not practically identifiable, if the ARE of that parameter
is significantly high even for a reasonable level of measurement error. We say that a
parameter is practically identifiable if the ARE of that parameter is less than the mea-
surement error level. The AREs of the parameters r, K , and b are consistently below
the measurement errors, so we claim that these parameters are practically identifiable.
Based on the Monte Carlo simulation results presented in Table 7, we conclude that
the parameters q, w, and a are not practically identifiable.

Practical identifiability of the parameters of an ODE model might be improved
by increasing the data points. Next, we perform the Monte Carlo simulations with
increased data time points by inserting additional time points at the midpoint between
the two original time points. That is, we take the new increased data time points to
be τi = {0, 0.5, 1, 1.5, 2.2.5, . . . , 10.5, 11}. The computed AREs are presented in
Table 8. We observe that increasing the data points did not improve the practical
identifiability of the parameters. As was shown in Lele et al. (2010), if the parameters
are non-identifiable, the accuracy does not increasewith the number of data points. The
parameters a, q, and w are not practically identifiable. On the other hand, increasing
the data points lowered the computed AREs of the identifiable parameters K and r .

4 Parameter Estimation of Immuno-Epidemiological Model

We develop a numerical method to fit multi-scale models to multi-scale data. For
epidemiological data, we use the number of human RVFV cases reported by the CDC
during the 2006–2007 outbreak in Kenya (CDC 2007) (given in Table 9). RVF is
transmitted to humans mainly through direct and indirect contacts with body fluids
and aerosols of infected animals during slaughtering, butchering, or assisting animal
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Table 8 Monte Carlo simulations of the scaled immunological model with increased data points (16)

Parameter ARE ARE ARE ARE ARE
σ0 = 0% σ0 = 1% σ0 = 5% σ0 = 10% σ0 = 20%

r 0.00% 0.04% 0.23% 0.50% 1.3%

K 0.00% 0.84% 3.9% 7.8% 11.40%

a 0.00% 2.03% 6.72% 10.07% 15.36%

q 0.00% 2.55% 8.37% 12.38% 20.55%

w 0.00% 5.18% 15.52% 21.15% 27.82%

b 0.00% 1.01% 4.32% 7.14% 12.27%

The AREs are computed for measurement error levels σ0 = 0, 1, 5, 10 and 20%

births and necropsy or laboratory procedures (Bird et al. 2009). Another route of
transmission for humans is bites of infected vectors. No human-to-human cases have
been seen so far. Since the majority of human infections results from handling infected
animals, we model only transmission from infected host to human and augment the
following human outbreak model to the system (2)–(3)

RVFV Human Model:

⎧
⎪⎨

⎪⎩

dS

dt
= −S

∫ ∞

0
β(τ)iH(τ, t)dτ

dI

dt
= S

∫ ∞

0
β(τ)iH(τ, t)dτ,

(20)

where S(t) denotes the susceptible humans, and I (t) denotes the infected humans at
time t . The transmission rate from an infected host to human varies according to the
infectivity of the host via,

β(τ) = cB Pυ(τ )

B + Pυ(τ )
,

where cB, B, and υ are constants. Because data are the number of new cases, we fit
the new human incidences ĝ(t, p̂) at time t to the given data where

ĝ(t, p̂) = S(t)
∫ ∞

0
β(τ)iH(τ, t)dτ,

and p̂ is the vector of epidemiological parameters to be fitted. We develop a finite
difference scheme and combine it with aMATLABODE solver for the immunological
model to approximate the solutions of the age-structured PDE model.

4.1 Finite Difference Scheme for the Immuno-Epidemiological Model

We develop a finite difference method that discretizes both the time-since-infection
variable τ and the time variable t . Let T be the final time of interest and A be the final
time-since-infection. Hence, D = {(τ, t) : 0 ≤ τ ≤ A, 0 ≤ t ≤ T } is the domain of
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Table 9 Number of human RVF cases as reported by CDC during the 2006–2007 Kenya outbreak (CDC
2007)

Day 0 1 4 6 7 8 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Human cases 1 1 3 1 5 1 5 2 4 2 10 3 9 5 8 16 23 16 13 24 20

Day 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Human cases 19 17 12 14 5 5 10 6 16 8 8 9 3 6 4 1 2 5 2 1

the system (2)–(3). First, we discretize the domain D. Let N and M be nonnegative
integers such that

�t = T

N
and �τ = A

M
and �t = �τ.

We generate a square mesh and the discrete point (τk, tn) of the rectangular domain
D is given by τk = k�t and tn = n�t , k = 1 . . . , M, n = 1, . . . , N . The
approximate values at any point (τk, tn) of the discretized domain are denoted by
S(tn) ≈ Sn, iH(τk, tn) ≈ i k,nH , βH(τk) ≈ βk

H . We approximate the time derivatives
by backward Euler difference quotient and obtain the following implicit method for
the system (2)–(3).

Finite Difference Algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1
v = Snv + �t�v

1 + �t
∑M

k=1
βk
Hi

k,n
H �t + μv�t

,

I n+1
v =

I nv + �t Sn+1
v

∑M

k=1
βk
Hi

k,n
H �t

1 + μv�t

Sn+1
H = SnH + �t�

1 + βv I nv �t + μH�t

i k+1,n+1
H = i k,nH

1 + (
αk + γ k + μH

)
�t

i0,n+1
H = βvS

n+1
H I n+1

v ,

Rn+1
H =

Rn
H + �t

∑M

k=1
γ ki k,nH �t

1 + μH�t
,

(21)
To evaluate the linked parameters βH(τk), α(τk), γ (τk), the immunological model
(16) is solved using theMATLABODE solverode45. Not allMATLABODE solvers
can be set to preserve the positivity of solutions. Since it is crucial that the numerical
method also preserves the positivity of the solutions, we set the function ode45 to
preserve the positivity of the approximate solutions for all the numerical experiments in

this paper. Integrals
∫ ∞

0
βH(τ )iH(τ, t)dτ and

∫ ∞

0
γ (τ)iH(τ, t)dτ are approximated

using the right-end point rule. The nonlinear terms are linearized using a single Picard
Iteration at each time level. For instance, the nonlinear term, βvS

n+1
H I n+1

v , is linearized
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Table 10 Fixed parameter values of model (2)–(3)

Parameter Fixed value Source Unit Parameter Fixed value Source Unit

�v 1/40 Text
Vector

Time
Iv(0) 0.000005 Text Vector

μv 1/40
McMeniman
et al. (2009)

1

Time
SH(0) 0.9999 Text Host

� 1/(365 × 10) Text
Host

Time
iH(τ, 0) 0.0000001 Text

Host

Time

μH 1/(365 × 10) Gaff et al. (2011)
1

Time
RH(0) 0 Text Host

βv 0.2 Text
1

Host × Time
S(0) 2300000 Text Human

Sv(0) 0.999995 Text Vector I (0) 1 Text Human

by βvS
l+1
H I lv where l denotes the Picard Iteration counter at time t = tn+1. The

approximate solutions obtained by the implicit method (21) converge to the solutions
of the system (2)–(3) with single Picard Iteration, that is with l = 1 (results are not
shown). The order of convergence is O(�t). The numerical method (21) preserves
the positivity of the solutions. More details about finite difference schemes for age-
structured models can be found in Martcheva (2015).

Structural identifiability of age-structured PDE models has not been studied as
extensively as dynamical ODE systems with few exceptions in Perasso et al. (2011)
and Perasso and Razafison (2016). In recent years, researchers have focused on devel-
oping methods for solving the ill-posed inverse problems generated by age-structured
population models (Ackleh et al. 2005; Ackleh 1999). However, these studies did
not consider the structural identifiability of the age-structured models. Analyzing the
structural identifiability of the nested immuno-epidemiological models such as (2)–
(3) is the topic of our current research. In this paper, we take a numerical approach
and use Monte Carlo simulations for studying identifiability issues of the parameter
estimation problem in a nested immuno-epidemiological model.

The parameters of importance to determine from the epidemiological data are the
ones related to transmission, recovery and disease-induced death rates of the RVFV.
Other epidemiological parameters such as �v, �, μv, μH and βv are fixed to the
values obtained from the literature and presented in Table 10. Studies find the median
adult longevity of Aedes aegypti, a mosquito known to transmit RVFV, in the lab to
be approximately 61days (McMeniman et al. 2009). We took the average life span

of the vector population to be μv = 1

40
days−1, intermediate between laboratory

measured life span and the life span previously used to model wild populations of
mosquitoes (Gaff et al. 2007, 2011). The total vector and host populations are nor-
malized to unity, and hence the recruitment rate of the vector population is set to

�v = 1

40
vector × days−1. Average life span of livestock is 10 years (Gaff et al.

2011). Hence μH = 1

365 × 10
days−1 and � = 1

365 × 10
host× days−1. We suppose
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Table 11 Parameter estimates of the epidemiological model (2)–(3) fitted to human incidences as reported
by CDC

Parameter Estimate Unit Parameter Estimate Unit

σ 4.9 × 10−9 1

Pathogen × Time
κ 0.0694

Pathogen

Antibody × Time

ξ 2.9281 × 10−5 1

Antibody × Time
ε0 9.3011 × 10−5 Pathogen

cH 0.6123
1

Host × Time
cB 1.1873 × 10−5 1

Host × Time
BH 5.9504 × 103 Pathogen B 2.7443 × 10−8 Pathogen

The immune parameters are fixed at the estimated values given in Table 6. The immuno-epidemiological
model is approximated by the finite difference scheme (21) with �t = 0.01

that initially 0.005% of the vector population is infected and initial distribution of
the infected host is 0.00001% of the population. 85% of the reported cases for the
2006–2007 Kenya outbreak came from only 4 districts (out of 69) in Kenya (Munyua
et al. 2010); Garissa (623060), Ijara (62571), Baringo (555561), Kilifi (41109735).
Initial susceptible human population is estimated to S(0) = 2300000 (an approximate
total population of above 4 districts in Kenya). We take ν = 1 and υ = 2.

4.2 Fitting Epidemiological Data When the Immune Model Parameters are
Fixed

To estimate the parameters of the immuno-epidemiological model, we first fix the
parameters of the immunological model at the fitted values given in Table 6. The
remaining parameters are fitted using a MATLAB code combining an ODE solver
for the immunological model, finite difference scheme (21) for the PDE model and
an optimization routine to minimize the least squares error. Hence, we estimate the
parameters p̂ = [σ, ξ, κ, ε0, cH, BH, cB, B] of the epidemiological model (2)–(3),
(20) by solving the following optimization problem using the Nelder–Mead algorithm

min
p̂

Ĵ ( p̂) = min
p̂

n̂∑

j=1

(
ĝ(t j , p̂) − ŷ j

)2
, (22)

where n̂ = 47, ŷ j are the number of new RVFV human cases at time t j as reported
by CDC (2007). The fitted parameter values are presented in Table 11. In Fig. 4, the
new incidences computed with the fitted values are plotted with the epidemiological
data (blue bars) provided by CDC.

Currently, there are no analytical approaches for studying structural identifiability of
nestedmodels such as the epidemiologicalmodelwe study in this paper (2)–(3).We are
working on developing analytical tools to study the structural identifiability of nested
models. But, within this paper we analyze the identifiability of the parameters of the
nested immuno-epidemiological model (2)–(3) usingMonte Carlo simulations.Monte
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Fig. 4 Fitting results. The blue bars are the new incidences reported by CDC (2007) as given in Table 9.
The red curve is the computed new incidences with the fitted parameters presented in Table 11. The immune
parameters are fixed at the estimated values given in Table 6 (Color figure online)

Table 12 Practical identifiability analysis of the epidemiological model (2)–(3) by Monte Carlo
simulations

Error levels (%) σ ξ cH BH cB B κ ε0

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 3.48 2.55 0.05 0.54 0.20 3.11 1.20 1.94

5 3.83 2.54 0.2 1.68 1.17 4.37 1.35 2.37

10 3.91 2.50 0.45 2.76 2.27 4.71 1.42 2.67

30 3.78 2.24 1.51 4.46 7.15 5.62 1.68 2.40

The immune parameters are fixed at the estimated values given in Table 6. The immuno-epidemiological
model is approximated by the finite difference scheme (21) with �t = 0.1. AREs of the parameters are
presented for each error level. M = 1000

Carlo simulations have been widely used for practical identifiability of ODE models
(Miao et al. 2011). We perform Monte Carlo simulations first by taking the estimated
parameters presented in Table 11 as the true parameter set p̂ and then performed the
steps (1) through (4) as explained in details in Sect. 3 with the followingmodifications.
In step (1), g(x(τi ), p̂) is replaced with ĝ(ti , p̂), in step (2) we set M = 1000, and

y j = ĝ(t j , p̂) + ĝ(t j , p̂)ε j j = 1, 2, . . . , n̂

in step (3) we evaluated (22). The immuno-epidemiological model is approximated
by the finite difference scheme (21) with �t = 0.1 (see Table 12) and �t = 0.01 (see
Table 13). Monte Carlo simulations for the immuno-epidemiological PDE model are
computationally expensive compared to the immunological ODEmodel. Computation
time increases as the time step (�t) in the finite difference scheme is refined. We
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Table 13 Practical identifiability analysis of the epidemiological model (2)–(3) by Monte Carlo
simulations

Error Level σ ξ cH BH cB B κ ε0

0% 0.02 0.02 0.00 0.00 0.00 0.00 0.02 0.02

1% 3.52 2.47 0.04 0.63 0.21 3.54 1.07 2.16

5% 3.87 2.36 0.19 1.57 1.09 4.19 1.40 2.13

10% 3.97 2.44 0.36 2.27 2.24 4.75 1.54 2.69

30% 3.66 2.21 1.36 4.48 6.56 5.62 1.31 2.09

The immune parameters are fixed at the estimated values given in Table 6. The immuno-epidemiological
model is approximated by the finite difference scheme (21) with �t = 0.01. AREs of the parameters are
presented for each error level. M = 100

performed the Monte Carlo simulations for M = 1000 synthetic data sets for the time
step �t = 0.1 (Table 12) and for M = 100 data sets for the time step �t = 0.01
(Table 13). The parameters of the scaled immunological model (16) are fixed at the
estimated values presented in Table 6. The computed AREs are presented in Tables 12
and 13 for measurement errors σ0 = 0, 1, 5, 10, 30%. The AREs of the parameters
cH, BH, and cB increase gradually as themeasurement error level increases, but remain
below the measurement error level. Hence, we claim that the parameters cH, BH, and
cB are practically identifiable. We also observe that refining the time step, �t , in the
finite difference scheme (21) did not affect the ARE values.

On the other hand, the ARE values of the parameters σ, ξ, κ , and ε0 reveal an
unusual relation to the measurement error levels; the AREs do not increase as the
measurement error levels increase (see Tables 12, 13). The parameters σ, ξ, κ , and
ε0 appear in the formulation of π(τ) as given in (5) which is the probability of still
being infectious τ time units after becoming infected. Note that the infected host
population, iH(τ, t) satisfies the following relation which is derived by the method of
characteristics,

iH (τ, t) =
⎧
⎨

⎩

βvSH(t − τ)Iv(t − τ)π(τ), τ < t,

iH(τ − t, 0)
π(τ)

π(τ − t)
, τ > t.

(23)

Then new incidences are given as

ĝ(t, p̂) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

βvS(t)
∫ ∞
0

β(τ)SH(t − τ)Iv(t − τ)e
−

∫ τ

0
(α(s) + γ (s) + μH) ds

dτ τ < t,

S(t)
∫ ∞
0

β(τ)iH(τ − t, 0)
e
−

∫ τ

0
(α(s) + γ (s) + μH) ds

e
−

∫ τ−t

0
(α(s) + γ (s) + μH) ds

dτ τ > t,

(24)

We hypothesize that the strange behavior of the AREs of the parameters σ, ξ, κ , and
ε0 is due to the fact that themeasurement level error does not affect the disease-induced
death rate, α(s), and the recovery rate, γ (s), as much as it affects the transmission rate
from an infected host to human, β(τ), and the transmission rate from an infected host
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Table 14 Monte Carlo simulations for the output function h(t, p̂) given in (25)

Error levels (%) σ ξ κ ε0

0 0.00 0.00 0.00 0.00

1 0.25 3.19 2.21 4.01

5 1.51 3.46 4.64 5.45

10 3.42 3.60 4.38 6.89

30 9.09 4.25 4.71 8.82

The immune parameters are fixed at the estimated values given in Table 6. AREs of the parameters σ, ξ, κ ,
and ε0 are presented for each error level. M = 1000

to a vector, βH(τ ), since they are related though the integral of a negative exponential
term. We test our hypothesis with the following simplified version of (24). Assume
that data are given by the following output function,

h(t, p̂) = S(0)e
−

(∫ ∞

0
β(τ)π(τ)dτ

)

t ∫ ∞

0
β(τ)π(τ)dτ (25)

The immunological parameters are fixed at the estimated values given in Table 6, and
the parameters of the transmission rate β(τ), cH, and BH are fixed at the estimated
values given in Table 11. We perform Monte Carlo simulations to compute the AREs
of the parameters σ, ξ, κ , and ε0 and set the true parameters as the fitted values given
in Table 11.We present the results in Table 14.We observe that the AREs of σ increase
gradually as the measurement error level increases, but the AREs of the parameters
ξ , κ , and ε0 preserve the unusual behavior. Clearly, fixing the parameters cH and BH
improved the identifiability of σ . We conclude that only parameters cH, BH, and cB
are practically identifiable when fitting the immuno-epidemiological model (2)–(3)
with the immunological parameters are fixed.

4.3 Fitting Mutli-scale Data to Multi-scale Model

Our initial approach in fitting multi-scale data to a multi-scale model was to fit the
immunological model first (18) and then use those fitted parameters in estimating the
parameters of the epidemiological model (22). Next, we fit the multi-scale data to
the multi-scale model simultaneously. Thus, the vector of parameters to be fitted is
p∗ = [ p, p̂] = [r, K , a, b, q, w, σ, ξ, κ, ε0, cH, BH, cB, B], then we estimate p∗ by
solving the following minimization problem,

min
p∗ J ∗( p∗) = min

p, p̂

(
J ( p) + Ĵ ( p̂)

)

= min
p, p̂

⎛

⎝
n∑

i=1

ωi
(
log10(g(x(τi ), p)) − yi

)2 +
n̂∑

j=1

(
ĝ(t j , p̂) − ŷ j

)2

⎞

⎠

(26)
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Table 15 Parameter estimates of the nested immuno-epidemiological model (2)–(3) fitted to human
incidences as reported by CDC and the immunological model (16) fitted to the viremia levels given in
Table 5

Parameter Estimate Parameter Estimate Parameter Estimate

σ 6.21 × 10−8 B 4 × 10−11 q 7.6944

ξ 8.51 × 10−5 κ 0.7212 w 1.2914

cH 0.5365 ε0 7.43 × 10−4 b 9.58 × 10−8

BH 3.03 × 103 r 6.3033 K 7.57 × 107

cB 7.63 × 10−6 a 3.93 × 10−7

The immuno-epidemiologicalmodel is approximated by the finite difference scheme (21)with�t = 0.1 and
the immunological model (16) is approximated with MATLAB built in function ode45. The optimization
problem (26) is solved by Nelder–Mead algorithm

Fig. 5 Fitting results of the parameter estimate problem (26). In the left figure, the blue bars are the new
incidences reported byCDC (2007). The red curve is the computed new incidenceswith the fitted parameters
presented in Table 15. In the right figure, the blue dots are the data given in Table 5 and the red curve is the
log10 of the viremia levels computed with the estimated values presented in Table 15 (Color figure online)

where yi represents the immunological data, and ŷi represents the epidemiological
data. To solve the optimization problem (26), we use the Nelder–Mead algorithm
implemented in MATLAB which is one of the most widely used derivative-free
algorithms for unconstrained optimization problems such as (26). The estimated val-
ues are presented in Table 15. The model output at the estimated values together
with the data is plotted in the Fig. 5. Next, we perform Monte Carlo simula-
tions to test the practical identifiability of the nested models (16) and (2)–(3)
when both immunological and epidemiological data are available for the parame-
ter estimation. The computed AREs of the parameters are presented in Table 16.
We observe that the practical identifiability of all the parameters has improved.
All the parameters of the immuno-epidemiological model are practically identifi-
able for multi-scale data. It is very well known that in dynamical ODE models,
the identifiability of the model parameters improves as the more state variables are
observed. We conclude that same phenomena hold true for the nested models (16) and
(2)–(3).
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Table 16 Practical identifiability analysis of nested immuno-epidemiological model by Monte Carlo sim-
ulations for measurement error levels σ0 = 0, 1, 5, 10 and 30%

Parameter ARE ARE ARE ARE ARE
σ0 = 0% σ0 = 1% σ0 = 5% σ0 = 10% σ0 = 30%

σ 1.00 1.80 3.73 6.78 13.49

ξ 1.00 1.50 3.14 5.46 15.92

cH 4 × 10−9 0.07 0.34 0.82 2.57

BH 1 × 10−7 0.49 2.95 6.83 11.70

cB 4 × 10−8 0.21 1.08 2.29 6.27

B 2.63 × 10−6 3.03 5.05 6.50 19.90

κ 1.00 1.66 4.57 7.71 16.91

ε0 1.00 1.80 4.27 6.86 16.41

r 1.86 × 10−8 0.11 0.61 1.26 3.44

a 1.22 × 10−8 0.06 0.35 0.87 3.21

q 2.46 × 10−8 0.10 0.56 1.15 3.59

w 1.25 × 10−8 0.07 0.51 1.06 3.22

b 8.26 × 10−9 0.02 0.16 0.35 1.76

K 1.80 × 10−8 0.06 0.45 0.73 3.44

5 Discussion

Models must be properly parameterized if conclusions drawn from their predictions
are to be trusted. Structural identifiability issues for parameter estimation have been
studied for many biological systems. From a modeling and biological perspective,
it is clear that within-host dynamics have an effect on the between-host disease
transmission. Hence, nested models have been developed to study host-pathogen
coevolution, early diagnostics, and transmission-virulence trade-offs (Gilchrist and
Sasaki 2002;Mohtashemi and Levins 2001;Alizon andBaalen 2005). In this paper, we
are interested in the structural and practical identifiability analysis of nested immuno-
epidemiological models, where between-host disease transmission, host recovery and
disease-induced death rates are governed by within-host immune dynamics. Although
there are well established theories for identifiability of dynamical systems described
by ODE models, identifiability issues for structured PDE models have been a recent
topic of interest. We extend the structural and practical identifiability analysis of PDE
models to a multi-scale coupled model.

Regarding constructing an immunological model for arbovirus diseases, although
within-host immune dynamics have the same qualitative behavior, the immune
response has not been modeled with IgM and IgG antibodies which are commonly
measured in the laboratory (Bird et al. 2009; Jansen van Vuren and Paweska 2009).
Here, we used a novel immunological model that represents the within-host immune
dynamics resulting from infection from an arbovirus disease, to estimate the unknown
parameters by using RVFV time-series data obtained under experimental conditions.
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For the ‘macroscale’ perspective, we used 2006–2007 Kenya outbreak data (CDC
2007; Munyua et al. 2010) for RVFV human cases to determine the unknown para-
meter values for the immuno-epidemiological model.

We develop a finite difference scheme and combine it with a MATLAB ODE
solver for the immunological model to approximate the solutions of the age-structured
PDE model. In recent years, although many researchers have focused on developing
methods for solving the ill-posed inverse problems generated by the age-structured
population models, there have been few studies on the structural and practical identifi-
ability of the age-structuredmodels. In this study, we take a numerical approach for the
structural and practical identifiability analysis of a nested immuno-epidemiological
model, which couples an ODE immunological model to an age-since-infection struc-
tured epidemiological PDE model.

For dynamical systems described by ordinary differential equations, the state iso-
morphism method, the Taylor series expansion method, and the algebra-differential
elimination method are mainly used for identifiability analysis. We use the differential
algebra method to study the structural identifiability of the immunological model. One
of the advantages of this approach is that if the model is not structurally identifiable,
the method provides the identifiable parameter combinations. The parameter combi-
nations are then used to reparametrize the system to obtain a structurally identifiable
model (Meshkat et al. 2009). We show that the immunological model is not struc-
turally identifiable for the measurements of time-series viremia concentrations in the
host. Thus, we study the non-dimensionalized and scaled versions of the immuno-
logical model and prove that both are structurally globally identifiable. Although
the non-dimensionalized system is structurally identifiable, we cannot use the non-
dimensionalized system to reconstruct the parameter values for the immune model
(1) from the uniquely estimated parameter values of non-dimensionalized system. We
estimate the unique value of all key parameters in the immunological model (1) via
the scaled model by fixing the biologically estimated parameter c (half life of IgM
immune response antibodies). However, in practice, structural identifiability may not
imply practical identifiability. Here, we also study the practical identifiability of the
scaledmodel byMonte Carlo simulations and show that the parameters K , r , and b are
practically identifiable, but the parameters q, a and w are not practically identifiable.

After fixing parameters to the fitted values for the immunologicalmodel,we develop
numerical methods to fit the observable epidemiological RVFV human data to the
multi-scale model to estimate the rest of the immuno-epidemiological model para-
meter values. For this fitting, we use MATLAB by combining an ODE solver for the
immunological model, finite difference scheme for the PDEmodel, and an optimizing
tool to minimize the least square errors. Monte Carlo simulations suggest that only
three parameters of the epidemiological model are identifiable when the immunolog-
ical parameters are fixed at fitted values. Alternatively, we fit the multi-scale data to
the multi-scale model simultaneously. To solve the obtained optimization problem,
we use a modified Nelder–Mead algorithm mfminsearch implemented in MAT-
LAB. Monte Carlo simulations for simultaneous fitting suggest that the parameters of
immunological model and the parameters of the immuno-epidemiological model are
practically identifiable.
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We suggest developing analytical methods to study structural identifiability of
nested models, and this is our current topic of research. Developing such analyti-
cal methods is a necessity especially in deriving multi-scale models that adequately
explain multi-scale data. Structural identifiability analysis of unidentifiable nested
model can reveal the parameter relationships, and this can further be used to
reparameterize the nested (PDE) model to obtain an identifiable model. A tech-
nique that has been widely used for ODE models should be developed for nested
models.

From a methodological perspective, accurate estimation of the nested model para-
meter values has more caveats and multi-scale nested models add one more layer
complexity to these analyses in comparison with ODE models. We take a numer-
ical approach for practical identifiability analysis of nested models. Estimation for
accurate values of model parameters allows a biological system to have a satisfactory
mathematical representation, which is necessary for theoretical studies confronting
experiments. Structural identifiability analysis allows for clear model predictions to
model parameter values.

Acknowledgments The authors N. Tuncer and M. Martcheva acknowledge support from the National
Science Foundation (NSF) under Grants DMS-1515661/DMS-1515442. Authors H. Gulbudak and V.
Cannataro would also like to acknowledge partial support from IGERT Grant NSF DGE-0801544 in the
Quantitative Spatial Ecology, Evolution and Environment Program at the University of Florida. We would
like to thank the reviewers for their constructive comments which lead to the improvement of the paper.

References

Ackleh A (1999) Parameter identification in size-structured population models with nonlinear individual
rates. Math Comput Model 30:81–92

Ackleh A, Banks HT, Deng K, Hu S (2005) Parameter estimation in a coupled system of nonlinear size-
structured populations. Math Biosci Eng 2(2):289–315

Alizon S, Van Baalen M (2005) Emergence of a convex trade-off between transmission and virulence. Am
Nat 165:E155–167

André JB, Ferdy JB, Godelle B (2003) Within-host parasite dynamics, emerging trade-off, and evolution
of virulence with immune system. Evolution 57:1489–1497

Banks HT, Hu S, Thompson WC (2014) Modeling and inverse problems in the presence of uncertainty.
CRC Press, Boca Raton

Bellu G, Saccomani MP, Audoly S, D’Angio L (2007) DAISY: a new software tool to test global identifia-
bility of biological and physiological systems. Comput Methods Progr Biomed 88(1):52–61

Bird BH, Ksiazek TG, Nichol ST, Maclachlan J (2009) Rift Valley fever virus. JAVMA 234(7):883–893
Capaldi A, Behrend S, Smith J, Berman B,Wright J, Lloyd AL (2012) Parameter estimation and uncertainty

quantification for an epidemic model. Math Biosci 9(3):553–576
CDC (2007) Rift Valley Fever Outbreak, Kenya, November 2006-January 2007. Morb Mortal Wkly Rep

56(4):73–76
Chris OT, Banga JR, Balsa-Canto E (2011) Structural identifiability of systems biology models: a critical

comparison of methods. PloS One 6(11):e27755
Cintrn-Arias A, Banks HT, Capaldi A, Lloyd AL (2009) A sensitivity matrix based methodology for inverse

problem formulation. J Inverse Ill Posed Prob 17(6):545–564
Cobelli C, DiStefano JJ (1980) Parameter and structural identifiability concepts and ambiguities: a critical

review and analysis. Am J Physiol 239(1):R7–24
Eisenberg M, Robertson S, Tien J (2013) Identifiability and estimation of multiple transmission pathways

in cholera and waterborne disease. JTB 324:84–102

123



Structural and Practical Identifiability Issues of… 1827

Fischer EAJ, Boender GJ, Nodelijk G, de Koeijer AA, Van Roermund HJ (2013) The transmission potential
of Rift Valley fever virus among livestock in the Netherlands: a modelling study. Vet Res 44(1):58

Gaff H, Hartley D, Leahy N (2007) A mathematical model of Rift Valley Fever. Electron J Differ Equ
(EJDE) 2007(115):1–12

Gaff H, Burgess C, Jackson J, Niu T, Papelis Y, Hartley D (2011) Mathematical model to assess the relative
effectiveness of Rift Valley Fever countermeasures. Int J Artif Life Res (IJALR) 2(2):1–18

GilchristMA, Sasaki A (2002)Modeling host-parasite coevolution: a nested approach based onmechanistic
models. J Theor Biol 218(3):289–308

Gulbudak H, Cannataro V, Tuncer N, Martcheva M (2016) From ecology to evolution of Host and Vector-
Borne pathogen in a structured immune-epidemiological model (in revision)

Jansen van Vuren P, Paweska JT (2009) Laboratory safe detection of nucleocapsid protein of Rift Valley
fever virus in human and animal specimens by a sandwich ELISA. J Virol Methods 157:15–24

Lele SR, Nadeem K, Schmuland B (2010) Estimability and likelihood inference for generalized linear
mixed models using data cloning. J Am Stat Assoc 105:16171625. doi:10.1198/jasa.2010.tm09757

Ljung L, Glad T (1994) On the global identifiability of arbitrary model parametrizations. Automotica
30:265–276

Manore C, Beechler BR (2013) Inter-epidemic and between-season persistence of Rift Valley Fever: vertical
transmission or cryptic cycling? Transbound Emerg Dis 62:1–11

Martcheva M (2015) An introduction to mathematical epidemiology. Springer, New York
McMenimanCJ, LaneRV,Cass BN, FongAW, SidhuM,WangYF,O’Neill SL (2009) Stable introduction of

a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144. doi:10.
1126/science.1165326

Meshkat N, Eisenberg M, DiStefano J III (2009) An algorithm for finding globally identifiable parameter
combinations of nonlinear ODE models using Grbner Bases. Math Biosci 222:61–72

Miao H, Xia X, Perelson AS, Wu H (2011) On identifiability of nonlinear ODE models and applications in
viral dynamics. SIAM Rev 53(1):3–39

Mohtashemi M, Levins R (2001) Transient dynamics and early diagnostics in infectious disease. J Math
Biol 470:446470

Mpeshe SC, Haario H, Tchuenche JM (2011) A mathematical model of Rift Valley fever with human host.
Acta Biotheor 59(3–4):231–250

Munyua P, Murithi RM, Wainwright S, Githinji J, Hightower A, Mutonga D, Macharia J, Ithondeka PM,
Musaa J, Breiman RF, Bloland P, Njenga MK (2010) Rift Valley fever outbreak in livestock in Kenya
2006–2007. Am J Trop Med Hyg. doi:10.4269/ajtmh.2010.09-0292

Niu T, Gaff HD, Papelis YE, Hartley DM (2012) An epidemiological model of Rift Valley fever with spatial
dynamics. Comput Math Methods Med 2012:138757. doi:10.1155/2012/138757

Perasso A, Laroche B, Chitour Y, Touzeau S (2011) Identifiability analysis of an epidemiological model in
a structured population. J Math Anal Appl 374(1):154–165

Perasso A, Razafison U (2016) Identifiability problem for recovering the mortality rate in an age-structured
population dynamics model. Inverse Probl Sci En 20(4):711–728

Petersen B, Gernaey K, Vanrolleghem PA (2001) Practical identifiability of model parameters by combined
respirometric–titrimetric measurements. Water Sci Technol 43(7):347–355

Pohjanpalo H (1978) System identifiability based on power-series expansion of solution. Math Biosci
41:21–33

Rolin AI, Berrang-Ford L, Kulkarni MA (2013) The risk of Rift Valley fever virus introduction and estab-
lishment in the United States and European Union. Emerg Microbes Infect 2(12):e81

van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge
Watson D (1992) Biological half-life of ovine antibody in neonatal lambs and adult sheep following passive

immunization. Vet Immunol Immunopathol 30:221–232
Xiao Y, Beier JC, Cantrell RS, Cosner C, DeAngelis DL, Ruan S (2015)Modelling the effects of seasonality

and socioeconomic impact on the transmission of Rift Valley Fever Virus. PLoS Negl Trop Dis
9(1):e3388

123

http://dx.doi.org/10.1198/jasa.2010.tm09757
http://dx.doi.org/10.1126/science.1165326
http://dx.doi.org/10.1126/science.1165326
http://dx.doi.org/10.4269/ajtmh.2010.09-0292
http://dx.doi.org/10.1155/2012/138757

	Structural and Practical Identifiability Issues  of Immuno-Epidemiological Vector--Host Models  with Application to Rift Valley Fever
	Abstract
	1 Introduction
	2 Immuno-Epidemiological Model
	2.1 The Immunological Model
	2.2 An Epidemiological Model of the Rift Valley Fever

	3 Parameter Estimation of the Immunological Model
	3.1 Structural Identifiability
	3.2 Practical Identifiability

	4 Parameter Estimation of Immuno-Epidemiological Model
	4.1 Finite Difference Scheme for the Immuno-Epidemiological Model
	4.2 Fitting Epidemiological Data When the Immune Model Parameters are Fixed
	4.3 Fitting Mutli-scale Data to Multi-scale Model

	5 Discussion
	Acknowledgments
	References




