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Abstract Phylogenetic networks are increasingly used in evolutionary biology to
represent the history of species that have undergone reticulate events such as horizontal
gene transfer, hybrid speciation and recombination. One of the most fundamental
questions that arise in this context is whether the evolution of a gene with one copy
in all species can be explained by a given network. In mathematical terms, this is
often translated in the following way: is a given phylogenetic tree contained in a
given phylogenetic network? Recently this tree containment problem has been widely
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1774 P. Gambette et al.

investigated from a computational perspective, but most studies have only focused
on the topology of the phylogenies, ignoring a piece of information that, in the case
of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths.
These measure the amount of change (e.g., nucleotide substitutions) that has occurred
along each branch of the phylogeny. Here, we study a number of versions of the
tree containment problem that explicitly account for branch lengths. We show that,
although length information has the potential to locate more precisely a tree within a
network, the problem is computationally hard in its most general form. On a positive
note, for a number of special cases of biological relevance, we provide algorithms that
solve this problem efficiently. This includes the case of networks of limited complexity,
for which it is possible to recover, among the trees contained by the network with the
same topology as the input tree, the closest one in terms of branch lengths.

Keywords Phylogenetic network · Tree containment · Branch lengths · Displayed
trees · Computational complexity

1 Introduction

The last few years have witnessed a growing appreciation of reticulate evolution—
that is, cases where the history of a set of taxa (e.g., species, populations or genomes)
cannot be accurately represented as a phylogenetic tree (Doolittle 1999; Bapteste et al.
2013), because of events causing inheritance from more than one ancestor. Classic
examples of such reticulate events are hybrid speciation (Mallet 2007; Nolte and
Tautz 2010; Abbott et al. 2013), horizontal gene transfer (Boto 2010; Hotopp 2011;
Zhaxybayeva and Doolittle 2011) and recombination (Posada et al. 2002; Vuilleumier
and Bonhoeffer 2015). Inferring the occurrence of these events in the past is a crucial
step toward tackling major biological issues, for example, to understand recombinant
aspects of viruses such as HIV (Rambaut et al. 2004), or characterizing the mosaic
structure of plant genomes.

Reticulate evolution is naturally representedbyphylogenetic networks—mathemati-
cally, simple generalizations of phylogenetic trees, where some nodes are allowed to
have multiple direct ancestors (Huson et al. 2010; Morrison 2011). Currently, much
of the mathematical and computational literature on this subject focuses solely on the
topology of phylogenetic networks (Huson and Scornavacca 2011), namely not tak-
ing into account branch length information. This information—a measure of elapsed
time, or of change that a species or gene has undergone along a branch—is usually
estimated when inferring phylogenetic trees, and it may have a big impact on the study
of reticulate evolution as well.

For example, in the literature investigating hybridization in the presence of incom-
plete lineage sorting, the branch lengths of a phylogenetic network are the key
parameters to calculate the probability of observing a gene tree, and thus to determine
the likelihood of the network (Meng and Kubatko 2009; Yu et al. 2012). Moreover,
accurate estimates of branch lengths in the gene trees are known to improve the accu-
racy of the inferred network (Kubatko 2009; Yu et al. 2014). Similarly, for another
large class of methods for network reconstruction, otherwise indistinguishable net-
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Do Branch Lengths Help to Locate a Tree in a Phylogenetic… 1775

work scenarios can become distinguishable, if branch lengths are taken into account
(Pardi and Scornavacca 2015). The precise meaning of branch lengths is often context-
dependent, ranging from expected number of substitutions per site, generally adopted
in molecular phylogenetics, to a measure of the probability of coalescence, often
adopted for smaller timescales where incomplete lineage sorting is common, to the
amount of time elapsed. In the last case, we may expect the phylogeny (network or
tree) to be ultrametric, that is to have all its leaves at the same distance from the root
(Chan et al. 2006; Bordewich and Tokac 2016).

In this paper, we explore the impact of branch lengths on a fundamental question
about phylogenetic networks: the tree containment problem. Informally (formal defi-
nitions will be given in the next section), this problem involves determining whether a
given phylogenetic tree is contained, or displayed, by a given phylogenetic network,
and in the positive case, locating this tree within the network. Biologically, this means
understanding whether a gene—whose phylogenetic history is well-known—is con-
sistent with a given phylogenetic network, and understanding from which ancestor
the gene was inherited at each reticulate event. From a computational perspective, the
tree containment problem lies at the foundation of the reconstruction of phylogenetic
networks. In its classic version, where only topologies are considered, the problem is
NP-hard (Kanj et al. 2008), but for some specific classes of networks it can be solved
in polynomial time (van Iersel et al. 2010).

Intuitively, an advantage of considering branch lengths is that it should allow one to
locate more precisely a gene history within a network, and, more generally, it should
give more specific answers to the tree containment problem. For example, whereas a
tree topology may be contained in multiple different locations inside a network (Cor-
due et al. 2014), this will happen much more rarely when branch lengths are taken
into account (see, e.g., T1 in Fig. 1). Similarly, some genes may only be detected to be
inconsistent with a network when the branch lengths of their phylogenetic trees are
considered (see, e.g., T2 in Fig. 1). In practice, some uncertainty in the branch length
estimates is to be expected, which implies that deciding whether a tree is contained in

Fig. 1 Toy example on the impact of branch lengths on locating a tree within a network. If lengths are not
taken into account, both T1 and T2 are displayed by N . Moreover, locating uniquely T1 within N is not
possible: there are 4 switchings (formally defined in the Preliminaries) of N for T1, and 3 different ways
to locate (images of) T1 within N . If instead lengths are taken into account, the only image of T1 within N
is the one highlighted in bold, and T2 is not displayed by N (in fact, the tree displayed by N isomorphic to
T2 has significantly different branch lengths). Note: branches with no label are assumed to have length 1
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1776 P. Gambette et al.

a network will depend on the confidence in these estimates (e.g., T2 in Fig. 1 is only
displayed by N if we allow its branch lengths to deviate by 2 or more units from their
specified values).

While the possibility of having more meaningful answers to a computational prob-
lem is certainly an important advantage, another factor to consider is the complexity of
calculating its solutions. It is known that adding constraints on branch lengths can lead
to polynomial tractability of other problems in phylogenetics that would otherwise be
NP-complete (Doyon et al. 2011). In this paper, we will show a number of results on
the effect of taking into account branch lengths on the computational complexity of
the tree containment problem. We first introduce the necessary mathematical prelim-
inaries (Sec. 2), including a formal definition of the main problem that we consider
Tree Containment with Branch Lengths (TCBL), and of some variations of
this problem accounting for the fact that branch lengths are usually only imprecise
estimates of their true values (relaxed-TCBL and closest-TCBL). We then show a
number of hardness (negative) results for the most general versions of these problems
(Sec. 3), followed by a number of positive results (Sec. 4). Specifically, a suite of poly-
nomial time, pseudo-polynomial time and fixed-parameter tractable algorithms that
solve the problems above for networks of limited complexity (measured by their level
Choy et al. 2005; Jansson and Sung 2006; definition below) and containing no unnec-
essary complexity (no redundant blobs Iersel and Moulton 2014; also defined below).

2 Preliminaries

We define a phylogenetic network on X as a rooted directed acyclic graph with exactly
one vertex of indegree 0 (the root), with no vertices with indegree and outdegree 1, and
whose outdegree 0 vertices (the leaves) are bijectively labeled by the elements of X
(the taxa). A phylogenetic tree is a phylogenetic network whose underlying undirected
graph has no cycles. We consider phylogenetic networks (and thus trees) where each
arc has an associated length. Formally, given an arc (u, v) of a phylogenetic network
N , its length λN (u, v) is a positive integer, i.e., strictly greater than zero. In this paper
we will use the terms “arc lengths” and “branch lengths” interchangeably.

Aphylogenetic tree or network isbinary if all vertices have indegree 1 and outdegree
2 (bifurcations), indegree 2 and outdegree 1 (reticulations), indegree 0 and outdegree
1 (root) or indegree 1 and outdegree 0 (leaves). For example, all networks and trees in
Fig. 1 are binary.

A biconnected component is amaximal connected subgraph that remains connected
after removal of any one vertex. A blob of a phylogenetic network N is a biconnected
component in which the undirected graph underpinning the biconnected component
contains at least one cycle. Note that if a biconnected component of N is not a blob,
then it is simply a cut arc (i.e., an arc whose removal disconnects N ). The level of a
binary phylogenetic network N is the maximum number of reticulations in any blob
of N . An outgoing arc of a blob B is an arc (u, v) such that u is in B but v is not.
An incoming arc (u, v) of B is such that v is in B but u is not. Note that a blob has
at most one incoming arc. A blob is redundant if it has fewer than two outgoing arcs
(i.e., one outgoing arc if the network is binary). As an example of these notions, the
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network N in Fig. 1 contains only one blob, which has 4 outgoing arcs and is thus
non-redundant. Because this blob has 3 reticulations, N is level-3.

We say that two phylogenetic trees T1 and T2 are isomorphic, or that they have the
same topology, if there is a bijection between the nodes that is both edge-preserving
and leaf label-preserving. (Note that arc lengths do not play a role here.)

Given a phylogenetic tree T and a phylogenetic network N whose leaves are labeled
bijectively by the same set X , we say that T is displayed by N taking into account
lengths, if T can be obtained from N in the following way:

• for each reticulation, remove all incoming arcs except one; the tree obtained after
this process is called a switching of N ;

• repeat as long as possible the following dummy leaf deletions: for each leaf not
labeled by an element of X , delete it;

• repeat as long as possible the following vertex smoothings: for each vertex v with
exactly one parent p and one child c, replace it with an arc from p to c, with
λN (p, c) = λN (p, v) + λN (v, c).

In the following, we sometimes only say that T is displayed by N (with no mention
of lengths) to mean that arc lengths are disregarded, and only topological information
is taken into account.

Note that N displays T taking into account lengths if and only if there exists a
subtree T ′ of N with the same root as N such that T can be obtained by repeatedly
applying vertex smoothings to T ′. In this case, T ′ is said to be the image of T . There
is a natural injection from the vertices of T to the vertices of T ′, so the definition of
image extends naturally to any subgraph of T . In particular, the image of any arc in T
is a path in N . Note that T can potentially have many images in N , but for a switching
S of N , the image of T within S, if it exists, is unique. As an example of these notions,
consider again Fig. 1, where N displays both T1 and T2, but only T1 if lengths are
taken into account. The part of N in bold is both a switching and an image of T1 (as
no dummy leaf deletions are necessary in this case).

Finally, is worth noting that, in this paper, if N displays T taking into account
lengths, then the image of the root of T will always coincide with the root of N
(no removal of vertices with indegree 0 and outdegree 1 is applied to obtain T ). The
biological justification for this is that trees and networks are normally rooted using an
outgroup, which is sometimes omitted from the phylogeny; if arc lengths are taken
into account, then the length of the path to the root of N in a tree displayed by N
conveys the information regarding the distance from the outgroup. (See also Pardi and
Scornavacca 2015 for a full discussion about this point.)

In this paper, we consider the following problem:

Problem 1 Tree Containment with Branch Lengths (TCBL)

Input: A phylogenetic network N and a phylogenetic tree T on the same set X ,
and both with positive integer arc lengths.

Output: YES if T is displayed by N taking into account lengths, NO otherwise.
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We also consider two variations of TCBL seeking trees displayed by N that are
allowed to somehow deviate from the query tree, to account for uncertainty in the
branch lengths of the input tree. The first of these two problems aims to determine
the existence of a tree displayed by N , whose branch lengths fall within a specified
(confidence) interval.

Problem 2 relaxed-TCBL

Input: A phylogenetic network N with positive integer arc lengths, and a phy-
logenetic tree T , whose arcs are labeled by two positive integers mT (a) and
MT (a), representing, respectively, theminimumand themaximumarc length.
Both N and T are on the same set X .

Output: YES if and only if there exists a tree ˜T displayed by N , isomorphic to
T , and such that, for each arc a of T :

λ
˜T (ã) ∈ [mT (a), MT (a)] ,

where ã denotes the arc in ˜T that corresponds to a in T .

The second variation of TCBL we consider here, seeks—among all trees displayed
by the network, and that are isomorphic to the input tree T—one that is closest to
T , in terms of the maximum difference between branch lengths. There are several
other alternative choices for defining the “closest” tree to T , for example if distance is
measured in terms of the average difference between branch lengths. Later on, we will
see that our results on this problem also apply tomany of these alternative formulations
(see Theorem 7).

Problem 3 closest-TCBL

Input: A phylogenetic network N and a phylogenetic tree T on the same set X ,
and both with positive integer arc lengths.

Output: A tree ˜T displayed by N , isomorphic to T , that minimizes

max
∣

∣λT (a) − λ
˜T (ã)

∣

∣ ,

where the max is over any choice of an arc a in T , and ã denotes the arc in ˜T
that corresponds to a in T . If no tree isomorphic to T is displayed by N , then
report FAIL.

Note that all problems in this paper involving positive integer arc lengths are equiva-
lent to problems where arc lengths are positive rational numbers: it suffices to multiply
those rational numbers by the least common denominator of the fractions correspond-
ing to these numbers in order to obtain integers.
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We conclude with some definitions concerning computational complexity. An NP-
complete decision problem that includes numbers in the input may or may not permit
a pseudo-polynomial time algorithm. This is an algorithm which runs in polynomial
time if the numbers in the input are encoded in unary, rather than binary. Formally
speaking such algorithms are not polynomial time, since unary encodings artificially
inflate the size of the input. Nevertheless, a pseudo-polynomial time algorithm has
the potential to run quickly if the numbers in the input are not too large. An NP-
complete problem with numbers in the input is said to be strongly NP-complete if
it remains NP-complete even under unary encodings of the numbers. Informally,
such problems remain intractable even if the numbers in the input are small. An
NP-complete problem is weakly NP-complete if it is NP-complete when the numbers
are encoded in binary. Summarizing, if one shows that a weakly NP-complete problem
also permits a pseudo-polynomial time algorithm, then (under standard complexity
assumptions) this excludes strong NP-completeness. Similarly, demonstrating strong
NP-completeness excludes (under standard complexity assumptions) the existence of
a pseudo-polynomial time algorithm.We refer to Garey and Johnson (1979) for formal
definitions.

On a slightly different note, an algorithm is said to be fixed parameter tractable
(FPT) if it runs in time O( f (k) · poly(n)) where n is the size of the input, k is
some parameter of the input (in this article: the level of the network) and f is some
computable function that depends only on k. An FPT algorithm for an NP-complete
problem has the potential to run quickly even when n is large, as long as the parameter
k is small, for example when f is a function of the form ck , where c is a small constant
greater than 1. We refer to Downey and Fellows (2013), Gramm et al. (2008) for more
background on FPT algorithms.

3 Negative Results

3.1 Strong NP-Completeness

Theorem 1 TCBL is strongly NP-complete, even when the phylogenetic tree T and
the phylogenetic network N are binary.

Proof We reduce to TCBL the following 3- Partition problem, which is strongly
NP-complete (Garey and Johnson 1975):

Input: an integer Σ and a multiset S of 3m positive integers ni in ]Σ/4,Σ/2[ such
that mΣ = ∑

i∈[1...3m]
ni .

Output: YES if S can be partitioned into m subsets of elements S1, S2, . . . , Sm each
of size 3, such that the sums of the numbers in each subset are all equal; NO
otherwise.

Let us consider a multiset S containing 3m positive integers ni which have sum
mΣ .

We build a phylogenetic tree T in the following way. We first build a directed path
containing m + 2 vertices, whose arcs all have length 1. We call its initial vertex ρ,
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Fig. 2 The tree T and the network N used in the proof of Theorem 1. All arcs are directed downwards. The
dotted arcs represent parts of the network which are not shown in details but which ensure connectivity. All
arcs incident to leaves bi of T , for i ∈ [1 . . .m] have length L = Σ + 6m2 − 3m + 1; and remaining arcs
of T have length 1. All arcs of N have length 1, except in the 3m boxes Bk (see Fig. 3a for more details on
the content of those 3m boxes Bk )

its final vertex b0, and the ancestors of b0, from the parent of b0 to the child of ρ are
called v1 to vm . Then, to each of the m vertices vi for i ∈ [1 . . .m] on this directed
path, from bottom to top, we add an arc of length L = Σ + 6m2 − 3m + 1 to a child,
called bi .

We now build a phylogenetic network N in the following way. We start by creating
a copy of T but for each i ∈ [1 . . .m] we remove the arc (vi , bi ) and replace it by an
arc of length 1 from vi to a new vertex r i1 (see Fig. 2). Then we create 3m subnetworks
called Bk , for k ∈ [1 . . . 3m], as described in Fig. 3. For ease of notation, we consider
that vertex p2k is also labeled p1k and c

2
k is also labeled c

1
k for any k ∈ [1 . . . 3m]. Finally,

we add arcs (bik, r
i
k+1) of length 1 for each k ∈ [1 . . . 3m − 1] and i ∈ [1 . . .m] (to

connect each Bk with Bk+1) and arcs of length 1 from bi3m to bi for each i ∈ [1 . . .m]
to obtain N .

Suppose that S can be partitioned into m subsets of elements S1, S2, . . . , Sm each
of size 3, such that the sums of the numbers in each subset are all equal to Σ . We now
prove that this implies that T and N constructed above constitute a positive instance
of TCBL.

For each nk , if it belongs to Si then we remove from N all arcs (c jk , b
j
k ) for j ∈

[1 . . .m]−{i}, as well as all arcs (r j
k , p j

k ) for j ∈ [1 . . .m]−{i}−{1 if i �= 2}, the arc
(r ik, b

i
k), and finally the arc (pi−1

k , pik) if i /∈ {1, 2}. This way, we obtain a switching
T ′ of N for T , shown in Fig. 3b.

In T ′, the only path from r ik to b
i
k goes through the arc (pmk , cmk ) of length nk , so the

total length of this path is 2m − 2 + nk . For all other S j , j ∈ [1 . . . k] − {i}, the only
directed path from r ik to b

i
k is an arc of length 2m−2. Thanks to the arcs (b j

k , r
j
k+1), for
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(a) (b)
Fig. 3 The content of the box Bk (a) and a corresponding switching (b) of the network of Fig. 2. All arcs
are directed downwards. The dotted arcs represent parts of the network which are not shown in details but
which ensure connectivity. All arcs have length 1 except arcs (r ik , b

i
k ) for i ∈ [1 . . .m] which have length

2m − 2, arcs (r ik , p
i
k ) and (cik , b

i
k ), for i > 1, which have length i − 1, and the arc (pmk , cmk ) with length nk

j ∈ [1,m] a unique path can be found in T ′ from v j to b j .We can check that the lengths
of the arcs of T leading to bi with i ∈ [1 . . .m] are consistent with the lengths of these
paths: the latter have all length 3m((2m−2)+1)+(

∑

nk∈Si
nk)+1 = Σ+6m2−3m+1.

Furthermore, all other arcs of T (on the path from ρ to b0) are also present in T ′ with
the same configuration and length, meaning that, as wewished to prove, T is displayed
by N taking into account lengths.

We now focus on the converse, supposing that the tree T is displayed by N tak-
ing into account lengths. We first note that any switching T ′ of N for T contains
the vertices b0, vi for i ∈ [1 . . .m], ρ and the arcs between these vertices. Fur-
thermore, T ′ also contains a path Pi (T ′) from vi to bi , for each i ∈ [1 . . .m], of
length L .

Claim 1: For any switching T ′ of N for T , for any i ∈ [1 . . .m] and k ∈ [1 . . . 3m],
r ik ∈ Pi (T ′) and bik ∈ Pi (T ′).

We prove it by induction on k. For k = 1, for all i ∈ [1 . . .m], vertex r i1 has
indegree 1 and its unique parent is contained in Pi (T ′) so it is also contained in
Pi (T ′). As arc (pm1 , cm1 ) belongs to all paths between pi1 and c

j
1 for i, j ∈ [1 . . .m], at

most one of the paths Pi (T ′) contains (pm1 , cm1 ). If no such path exists then all paths
Pi (T ′) contain arc (r i1, b

i
1), so b

i
1 ∈ Pi (T ′). Otherwise, we denote by Pi0(T

′) the path
containing (pm1 , cm1 ). All other paths Pi (T ′) for i ∈ [1 . . .m]− i0 contain arc (r i1, b

i
1),
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so bi1 ∈ Pi (T ′). Because none of those paths contain bi01 , we must have bi01 ∈ Pi0(T
′).

Therefore, for all i ∈ [1 . . .m], bi1 ∈ Pi (T ′).
Supposing vertices r ik−1 and bik−1 belong to Pi (T ′) for all i ∈ [1 . . .m], we can

reproduce the proof above by replacing “1” by “k” each time we refer to bi1, c
i
1, p

i
1

and r i1 for any i ∈ [1 . . .m], in order to deduce that r ik and bik belong to Pi (T ′).

Claim 2: For any switching T ′ of N for T , for any k ∈ [1 . . . 3m], one of the paths
Pi (T ′) contains arc (pmk , cmk ).

First, using Claim 1, we can consider each portion of the path Pi (T ′) from r ik to
bik in T ′, and note that this portion has length 2m − 2 + nk if Pi (T ′) contains arc
(pmk , cmk ), or length 2m − 2 otherwise.

Therefore, supposing by contradiction that there exists at least one k0 ∈ [1 . . . 3m]
such that none of the paths Pi (T ′) contain arc (pmk0 , c

m
k0

), then the cumulative length

Lk0 of the portions of all paths Pi (T ′) between r ik0 and bik0 , for i ∈ [1 . . .m], is
m(2m − 2). Therefore, summing the lengths of all these portions and the ones of arcs
(bik, r

i
k+1) between them as well as the ones of the arcs (vi , r i1) and (bi3m, bi ) for any

i ∈ [1 . . .m], the sum L ′ of the lengths of all paths Pi (T ′) for i ∈ [1 . . .m] is at most
m+3m(Lk0 +m)+(

∑

k∈[1...3m] nk)−nk0 = m(6m2−3m+1+Σ)−nk0 = mL−nk0 .
However, the sum LT of the lengths of all arcs (vi , bi ) of T is equal tomL so L ′ < LT ,
meaning that T is not displayed by N taking into account lengths: contradiction.

Claim 3: for any switching T ′ of N for T , for any i ∈ [1 . . .m], there are exactly 3
arcs of the form (pmk , cmk ) contained in Pi (T ′).

We suppose by contradiction that there exists i ∈ [1 . . .m], and k1, k2, k3 and
k4 ∈ [1 . . . 3m] such that (pmk1, cmk1), (pmk2 , cmk2), (pmk3, cmk3) and (pmk4 , c

m
k4

) are contained in
Pi (T ′). Then, this path has length at least nk1+nk2+nk3+nk4+3m(2m−2)+3m+1 >

Σ + 3m(2m − 1) + 1 because ni > Σ/4 for all i ∈ [1 . . . 3m]. So T ′ contains a path
from vi to bi which is strictly longer than the arc from vi to bi in T , so T is not
displayed by T ′, nor in N : contradiction.

Now, we suppose by contradiction that there exists i ∈ [1 . . .m] such that Pi
contains at most 2 arcs of the form (pmk , cmk ). Then, according to Claim 2, each of
the the remaining 3m − 2 arcs of the form (pmk , cmk ) must be contained by one of
the remaining m − 1 paths Pj for j ∈ [1 . . .m] − {i}. So at least one of those paths
must contain strictly more than 3 such arcs, which contradicts the previous paragraph:
contradiction.

Finally, for any switching T ′ of N for T , the fact that T is displayed by N taking into
account lengths, implies that the length of each arc (vi , bi ) of T , Σ + 6m2 − 3m + 1,
equals the length of each path Pi (T ′). Claim 2 and 3 imply that the arcs of the form
(pmk , cmk ) are partitioned into the paths Pi (T ′), with each Pi (T ′) containing exactly
3 such arcs. Denoting by nki , nk′

i
and nk′′

i
the length of such arcs, we obtain that the

length of Pi (T ′) equals nki +nk′
i
+nk′′

i
+6m2−3m+1, therefore nki +nk′

i
+nk′′

i
= Σ ,

which implies that S can be partitioned intom subsets of elements Si = {nki , nk′
i
, nk′′

i
},

such that the sums of the numbers in each subset Si are all equal to Σ .
Finally, it is easy to see that the problem is in NP: a switching T ′ of the input

network N is a polynomial size certificate of the fact that the input tree T is contained

123



Do Branch Lengths Help to Locate a Tree in a Phylogenetic… 1783

Fig. 4 How our slightly modified HangLeaves(v) modifies N and T . Vertices ρ and ρT are the roots of
N and T , respectively. All arcs have length 1, except (r ′, r) of N∗ which has the same length as (ρ, r) of
N , (r ′

T , rT ) of T ∗ which has the same length as (ρT , rT ) of T and (pT , x) which has length 2

in N . We can check in polynomial time that T can be obtained from T ′ by applying
dummy leaf deletions and vertex smoothings until possible, and checking that the
obtained tree is isomorphic with T . ��

We note that Theorem 1 can be extended to binary tree-sibling (Cardona et al. 2008)
time-consistent (Baroni et al. 2006) networks, by multiplying by 2 all arc lengths of
the network constructed in the proof (in order to keep integer arc lengths even if those
arcs are subdivided, which happens at most once), and using a gadget shown in Fig. 4,
adapted from Fig. 4 of van Iersel et al. (2010) with arcs of length 1, and the operations
described in the proof of Theorem 3 of the same article.

Corollary 1 relaxed-TCBL is stronglyNP-complete, and closest-TCBL is strongly
NP-hard.

Proof TCBL can be easily reduced to both problems. Indeed, any instance of TCBL
corresponds to an instance of relaxed-TCBL with mT (a) = MT (a) := λT (a) for
each arc of T . Additionally, TCBL can be reduced to closest-TCBL by checking
whether there exists a solution ˜T with max |λT (a) − λ

˜T (ã)| = 0. ��

3.2 Weak NP-Completeness for Level-2 Networks

The strong NP-completeness result above does not imply anything about the hardness
of TCBL on networks of bounded level. Unfortunately, TCBL is hard even for low-
level networks, as we now show.

Theorem 2 TCBL is weakly NP-complete for level-2 binary networks.

Proof First, recall that TCBL is in NP (Theorem 1). To prove the theorem, we will
reduce from the subset sum problem: given a multiset of positive integers I =
{n1, . . . , nk} and a positive integer s, is there a non-empty subset of I whose sum is
s? The subset sum problem is known to be weakly NP-complete.

Now, we show how to construct an instance of the TCBL problemwith the required
characteristics, for each instance of the subset sum problem. This can be done by

123



1784 P. Gambette et al.

Fig. 5 The network used in the proof of Theorem 2

defining the tree T and the network N as follows. The tree T is defined as the rooted
tree on two leaves labeled a and b, parent ρ′ and root ρ, and arcs (ρ, ρ′), (ρ′, a) and
(ρ′, b), respectively, of length 1, 1 and s + 3k + 1. The network N is the network on
the two leaves labeled a and b shown in Fig. 5, where L > s + 3k + 1. Then, it is
easy to see that a positive instance of the TCBL problem gives a positive instance of
the subset sum problem through the previous transformation, and vice versa. This
is true because no switching S of N giving rise to T will ever contain the arcs with
length L . Thus, the paths in S going through the blob containing the arc with length
ni can have either length 2 or 2 + ni . Now, any path from ρ′

N to the leaf labeled b
has to go through all blobs, and through all arcs connecting these blobs. The sum of
the lengths of the arcs on this path but outside the blobs is k + 1. Thus, there exists a
path from ρ′

N to b with length s + 3k + 1 if and only if there is a non-empty subset of
I = {n1, . . . , nk} whose sum is s.
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As to the weakness of this NP-completeness result, we refer to Sect. 4.2, where
we give a pseudo-polynomial algorithm for TCBL on any binary network of bounded
level. ��

4 Positive Results

4.1 TCBL is FPT in the Level of the Network When No Blob is Redundant

Note that in the weak NP-completeness result from Sect. 3.2 the blobs have only
one outgoing arc each—that is, they are redundant. If we require that every blob
has at least two outgoing arcs, then dynamic programming becomes possible, and
the problem becomes much easier. The high-level reason for this as follows. Because
blobs in the network N have at least two outgoing arcs, the image of any tree displayed
by N will branch at least once inside each blob. This means that for each arc (u′, v′)
of T , if the image of u′ lies inside a blob B, then the image of v′ either lies (i) also
inside B or (ii) in one of the biconnected components Ci immediately underneath B.
This last observation holds with or without arc lengths, but when taking lengths into
account it has an extra significance. Indeed, suppose N displays T taking lengths into
account, and S is a switching of N that induces the image of T inside N . Let (u′, v′)
be an arc of T . If, within S, the image of u′ lies inside a blob B and the image of v′ lies
inside a biconnected component Ci immediately underneath B, then the image of the
arc (u′, v′)—a path—is naturally partitioned into 3 parts. Namely, a subpath inside B
(starting at the image of u′), followed by an outgoing arc of B, followed by a subpath
inside Ci (terminating at the image of v′). See Fig. 6 for an illustration. Within S, the

Fig. 6 Illustration of the idea at the basis of Algorithm 1. If a network N displays a tree T and the image u
of u′ (for an arc (u′, v′) of T ) lies inside a blob B of N , then—assuming every blob of the network has at
least two outgoing arcs—the image v of v′ will either lie inside B, or inside a blob Ci that is immediately
beneath B. In the latter case the image of (u′, v′) can be naturally partitioned into three parts, as shown.
This is the foundation for the dynamic programming approach used in Theorem 3 and later in Theorems 5
and 6
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lengths of these 3 parts must sum to λT (u′, v′). The dynamic programming algorithm
described below, in which we process the blobs in a bottom-up fashion, makes heavy
use of this insight.

Theorem 3 Let N be a level-k binary network and T be a rooted binary tree, both on
X. If no blob of N is redundant, then TCBL can be solved in time O(k · 2k · n) using
O(k · 2k · n) space, where n = |X |.

Proof Firstly, note that networks can have nodes that are not inside blobs (i.e., tree-like
regions). To unify the analysis, it is helpful to also regard such a node u (including
when u is a taxon) as a blob with 0 reticulations: the definition of incoming and
outgoing arcs extends without difficulty. Specifically, in this case, they will simply be
the arcs incoming to and outgoing from u. We regard such blobs as having exactly one
switching.

Next, it is easy to see that the blobs of N can themselves be organized as a rooted
tree, known as the blobbed-tree (Gambette et al. 2009; Gusfield 2014). In other words,
the parent-child relation between blobs is well-defined, and unique. The idea is to
process the blobs in bottom-up, post-order fashion.Hence, if a blob B has blob children
C1,C2, . . . (underneath outgoing arcs a1, a2 . . .) we first process C1,C2, . . . and then
B. Our goal is to identify some switching of B which can legitimately be merged with
one switching each from C1,C2, . . .. We initialize the dynamic programming by, for
each blob B that is a taxon, recording that it has exactly one switching whose root-path
has length 0. (The definition and meaning of root-path will be given in due course).

For each blob B that is not a taxon, we will loop through the (at most) 2k ways to
switch the reticulations within B. Some of these candidate switchings can be immedi-
ately discarded on topological grounds, i.e., such a switching of B induces bifurcations
that are not present in T . Some other candidate switchings S can be discarded on the
basis of the lengths of their internal paths, that is, the paths u → v entirely contained
within S coinciding with the image of some arc (u′, v′) in T . Clearly the path u → v

must have the same length as (u′, v′).
Finally, we need to check whether the candidate switching S can be combined with

switchings fromC1,C2, . . . such that arc lengths are correctly taken into account. This
proceeds as follows. Observe that, for each outgoing arc ai of B, ai lies on the image
of an arc (u′, v′) of T . This arc of T is uniquely defined. Let u be the image of u′ in
B, and let �S(u, ai ) be the total length of the path (in S) from u to the tail of ai . The
image of v′ will lie somewhere inside Ci . For a switching S′ of Ci , let v be the image
of v′ within S′, and let �S′(ai , v) be the total length of the path (in S′) from the head
of ai to v. (See Fig. 6).

If we wish to combine S′ with S, then we have to require λT (u′, v′) = �S(u, ai ) +
λN (ai ) + �S′(ai , v). To know whether such an S′ exists, B can ask Ci the question:
“do you have a candidate switching S′ such that �S′(ai , v) = λT (u′, v′)− �S(u, ai )−
λN (ai ) ?” This will be true if and only if Ci has a candidate switching S′ such that
the root-path in S′—defined as the path from the root of Ci to the first branching
node of S′—has length exactly λT (u′, v′) − �S(u, ai ) − λN (ai ). (We consider a node
of S′ to be a branching node if it is the image of some node of T .) B queries all its
children C1,C2, . . . in this way. If all the Ci answer affirmatively, then we store S,
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together with the length of its root-path, as a candidate switching of B, otherwise we
discard S.

This process is repeated until we have finished processing the highest blob B of
N . The answer to TCBL is YES, if and only if this highest blob B has stored at least
one candidate switching. Pseudocode formalizing the description above is provided
in Algorithm 1.

We now analyze the running time and storage requirements. For step 1, observe that
the blobbed-tree can easily be constructed once all the biconnected components of the
undirected, underlying graph of N have been identified. The biconnected components
can be found in linear time (in the size of the graph) using the well-known algorithm
of Hopcroft and Tarjan (see, e.g., Cormen et al. 2001). Because every blob has at least
two outgoing arcs, N will have O(kn) vertices and arcs, (see, e.g., Lemma 4.5 in
van Iersel (2009) and discussion thereafter) so the time to construct the blobbed-tree
is at most O(kn). Moreover, N has O(n) blobs, meaning that the blobbed-tree has
O(n) nodes and that step 2 can be completed in O(n) time by checking whether T
and the blobbed-tree are compatible. (The compatibility of two trees can be tested in
linear time Warnow 1994). Each blob has at most 2k switchings, and each switch can
be encoded in k bits. If we simply keep all the switchings in memory (which can be
useful for constructing an actual switching of N , whenever the answer to TCBL is
YES) then at most O(k · 2k · n) space is required.

For time complexity, each blob B loops through at most 2k switchings, and for
each switching S it is necessary to check the topological legitimacy of S [step 3(a)],
that internal paths of the switching have the correct lengths [step 3(b)], and subse-
quently to make exactly one query to each of its child blobs Ci [step 3(c)]. We shall
return to steps 3(a) and 3(b) in due course. It is helpful to count queries from the
perspective of the blob that is queried. In the entire course of the algorithm, a blob
will be queried at most 2k times. Recalling that the number of blobs is O(n), in
total at most O(2k · n) queries will be made, so the total time devoted to queries is
O(q · 2k · n), where q is the time to answer each query. Recall that a query con-
sists of checking whether a blob has a switching whose root-path has a given length.
Each blob needs to store at most 2k switchings. By storing these switchings (ranked
by the lengths of their root-paths) in a balanced look-up structure (e.g., red-black
trees) an incoming query can be answered in logarithmic time in the number of stored
switchings, that is, in time log 2k = k. Hence, the total time spent on queries is
O(k · 2k · n).

For steps 3(a) and 3(b) we require amortized analysis. Let d+(B) denote the number
of outgoing arcs from blob B. The blob B can be viewed in isolation as a rooted
phylogenetic network with d+(B) “taxa”, so inside B there are O(k · d+(B)) vertices
and arcs (van Iersel 2009). Therefore, the time to convert a switching S from B into a
tree T ′ on d+(B) “taxa” (via dummy leaf deletions and vertex smoothings) is at most
O(k · d+(B)). The topology and internal arc lengths of T ′ can be checked against
those of the corresponding part of T in O(d+(B)) time (Warnow 1994). Hence, the
total time spent on steps 3(a) and 3(b) is

∑

B

O(2k · k · d+(B)), (1)
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where the sum ranges over all blobs. Note that
∑

B d+(B) is O(n) because there are
O(n) blobs and each outgoing arc enters exactly one blob. Hence, the expression (1)
is O(k · 2k · n), matching the time bound for the queries. Hence, the overall running
time of the algorithm is O(k · 2k · n). ��

Algorithm 1 FPT algorithm for TCBL on networks with no redundant blobs

1. Decompose N into blobs and construct the blobbed-tree TN , whose nodes are
the blobs in N and whose arcs are the arcs external to the blobs.

2. Check that TN is compatible with the input tree T (in fact check that TN can
be obtained from T via arc contractions). If this is not the case, then terminate
with a NO. Otherwise each vertex B in TN can be obtained as the contraction
of a subtree T (B) of T , and each arc a in the blobbed-tree TN originates from
an arc a′ in T . Store references to the a′ and the T (B).

3. for each blob B, in bottom-up order:
for each switching S of B:

(a) check that S is topologically compatible with T (B);
(b) check that each arc of T (B) is as long as its image in S;
(c) for each blob Ci that is a child of B, via the arc ai :

– check that Ci has stored a switching S′ whose root-path has
the appropriate length. Specifically, we require �S′(ai , v) =
λT (u′, v′) − �S(u, ai ) − λN (ai ), where (u′, v′) is the arc of T
on whose image ai lies (i.e., a′

i ), and u and v are the uniquely
defined images of u′ and v′ in S and S′, respectively.

(d) if none of the checks above failed, store S along with the length
of its root-path;

(e) if no switching is stored for B, then terminate with NO, as no
tree displayed by N satisfies the requirements.

4 If the algorithm gets this far, then it returns YES and the image in N of T
can be obtained by combining a switching S stored for the root blob, to the
switchings S′ found for its child blobs, recursively.

4.2 Pseudo-Polynomial Solution of TCBL on Any Network of Bounded Level

Redundant blobs are problematic for TCBL because when they appear “in series” (as
in Fig. 5) they give rise to an exponential explosion of paths that can be the images
of an arc a in T , and, as we saw, checking the existence of a path of the appropriate
length λT (a) is at least as hard as subset sum. Just like for subset sum, however,
a pseudo-polynomial time solution is possible, as we now show.

Theorem 4 Let N be a level-k binary network with b blobs, and let T be a rooted
binary tree on the same set of n taxa. TCBL can be solved in time O(k ·b ·L+2k ·n ·L)

using O(k · n · L) space, where L is an upper bound on arc lengths in T .
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Proof The algorithm we now describe is based on the following two observations
(we use here the same notational conventions as in Algorithm 1). First, if T is indeed
displayed by N , the image u → v of any of its arcs (u′, v′) will either be entirely
contained in one blob, or u and v will be in two different blobs, which can only be
separated by redundant blobs. Second, it only makes sense to store a switching S′
of a blob Ci , if �S′(ai , v) < λT (u′, v′), i.e., if its root-leaf path is shorter than the
corresponding arc in T , meaning that we only need to store O(L) switchings per blob.

Accordingly, we modify Algorithm 1 as follows:

Step 2a: Check that TN is compatible with the input tree T in the following way:
replace any chain of redundant blobsM1, M2, . . . , Mh in TN with a single arc from
the parent of M1 to the child of Mh , and then check that the resulting blobbed-
tree T ′

N can be obtained from T via arc contractions. If this is not the case then
terminate with a NO. Otherwise for each arc a and vertex B in T ′

N , define and
store a′ and T (B) as before.
Step 2b: For each arc a in T ′

N , calculate a set of lengths L(a) as follows. If a
originates from a chain of redundant blobsM1, M2, . . . , Mh , then L(a) is obtained
by calculating the lengths of all paths in N starting with the incoming arc of M1
and ending with the (unique) outgoing arc of Mh . Only keep the lengths that are
smaller than λT (a′). For the remaining arcs in T ′

N , simply set L(a) := {λN (a)}.
The algorithm only visits non-redundant blobs, performing a bottom-up traversal of
T ′
N , and doing the same as Algorithm 1 except for:

Step 3c: for each blob Ci that is a child of B in T ′
N :

− check the existence of an � ∈ L(ai ) and a switching S′ stored for Ci that
satisfy:

�S′(ai , v) = λT (u′, v′) − �S(u, ai ) − �. (2)

To complete the description of the algorithm resulting from these changes, we
assume that the switchings for a (non-redundant) blob B are stored in an array SB
indexed by the root-path length of the switching. If two or more switchings of a blob
have the same root-path length �, we only keep one of them in SB[�]. Because for Ci

we only store the switchings whose root-path length is less than λT (a′
i ), the SB arrays

have size O(L).
As for step 2b above, the computation of L(a) for an arc in T ′

N corresponding to a
chain of redundant blobs can be implemented in a number of ways. Here, we assume
that the vertices in M1, M2, . . . , Mh are visited following a topological ordering, and
that, for each visited vertex v, we fill a boolean array Pv of length λT (a′), where Pv[�]
is true if and only if there exists a path of length � from the tail of the arc incoming
M1 to v. Once Pvh for the head vh of the arc outgoing Mh has been filled, L(a) will
then be equal to the set of indices � for which Pvh [�] is true.

We are now ready to analyze the complexity of this algorithm. We start with the
space complexity. First note that every redundant blob of level k in a binary network
must have exactly 2k vertices (as the number of bifurcations must equal the number
of reticulations). Because each redundant blob has O(k) vertices, and each Pv array is
stored in O(L) space, step 2b requires O(kL) space to process each redundant blob.
Because every time a new redundant blob Mi+1 is processed, the Pv arrays for the
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vertices inMi can be deleted, step 2b only requires O(kL) space in total. This however
is dominated by the space required to store O(L) switchings for each non-redundant
blob. Since there are O(n) non-redundant blobs in N and each switching requires
O(k) bits to be represented, the space complexity of the algorithm is O(k · n · L).

We now analyze the time complexity. Checking the compatibility of the blobbed-
tree and T (step 2a) can be done in time O(n + b), as this is the size of T ′

N before
replacing the chains of redundant blobs. The computation of the arrays Pv (step 2b)
involves O(L) operations per arc in M1, M2, . . . , Mh . Because there are O(b) redun-
dant blobs, and because each of them contains O(k) arcs, calculating all the Pv arrays
requires time O(k · b · L).

The other runtime-demanding operations are the queries in step 3c. These involve
asking, for each � ∈ L(ai ), whether Ci has a switching whose root-path has the length
in Eq. (2). Each of these queries can be answered in constant time by checking whether
SCi [λT (u′, v′) − �S(u, ai ) − � ] is filled or not. Because every non-redundant blob Ci

will be queried at most 2k · L(ai ) times, and because there are O(n) non-redundant
blobs, the total time devoted to these queries is O(2k · n · L). The remaining steps
require the same time complexities as in Theorem 3. By adding up all these runtimes
we obtain a total time complexity of O(k · b · L + 2k · n · L). ��

4.3 CLOSEST-TCBL and RELAXED-TCBL are FPT in the Level of the
Network When No Blob is Redundant

Wenow show that Algorithm 1 can be adapted to solve the “noisy” variations of TCBL
that we have introduced in the Preliminaries section.

Theorem 5 Let N be a level-k binary network and T be a rooted binary tree, both
on the same set of n taxa. The arcs of N are labeled by positive integer lengths, and
the arcs of T are labeled by a minimum and a maximum positive integer length. If no
blob of N is redundant, then relaxed-TCBL can be solved in O(k · 2k · n) time and
space.

Proof We modify Algorithm 1 to allow some flexibility whenever a check on lengths
is made: instead of testing for equality between arc lengths in the tree and the path
lengths observed in the partial switching under consideration, we now check that
the path length belongs to the input interval. Specifically, we modify two steps in
Algorithm 1 as follows:

Step 3b: check that every arc (u′, v′) of T (B), whose image is an internal path
u → v of S, is such that �S(u, v) ∈ [mT (u′, v′), MT (u′, v′)].
Step 3c: check that, among the switchings stored for Ci , there exists at least one
switching S′ whose root-path �S′(ai , v) has a length in the appropriate interval.
Specifically, using the same notation as in Algorithm 1 check that:

�S(u, ai ) + λN (ai ) + �S′(ai , v) ∈ [mT (a′
i ), MT (a′

i )],
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that is:

mT (a′
i ) − �S(u, ai ) − λN (ai ) ≤ �S′(ai , v) ≤ MT (a′

i ) − �S(u, ai ) − λN (ai ).

(3)

We can use the same data structures used by Algorithm 1, so the space complexity
remains O(k ·2k ·n). As for time complexity, the only relevant difference is in step 3c:
instead of querying about the existence of a switching with a definite root-path length,
we now query about the existence of a switching whose root-path length falls within
an interval (see Eq. (3)). In a balanced look-up structure, this query can be answered
again in time O(log 2k) = O(k). In conclusion the time complexity remains the same
as that in Theorem 3, that is O(k · 2k · n). ��
Theorem 6 Let N be a level-k binary network and T be a rooted binary tree, both
with positive integer arc lengths and on the same set of n taxa. If no blob of N is
redundant, then closest-TCBL can be solved in time O(22k · n) using O(k · 2k · n)

space.

Proof As we shall see, we modify Algorithm 1 by removing all checks on arc lengths,
and by keeping references to those switchings that may become part of an optimal
solution in the end: any topologically viable switching S of a blob B is stored along
with a reference, for each child blob Ci , to the switching S′ that must be combined
with S. Moreover, we compute recursively μS , which we define as follows:

μS = max
∣

∣λT (a) − λ
˜T (ã)

∣

∣ ,

where ˜T is the subtree displayed by N obtained by (recursively) combining S to the
switchings stored for its child blobs, and then applying dummy leaf deletions and
vertex smoothings. The max is calculated over any arc ã in ˜T and its corresponding
arc a in T , excluding the root arc ãr of ˜T from this computation. This is because the
length of the path above S, which must be combined with ãr , is unknown when S is
defined.

In more detail, we modify Algorithm 1 as follows:

Step 3b: no check ismade on the lengths of the internal paths of S; instead initialize
μS as follows:

μS := max
∣

∣λT (u′, v′) − �S(u, v)
∣

∣ ,

where the max is over all arcs (u′, v′) in T (B), and u, v are the images of u′, v′ in
S, respectively. Trivially, if B is just a vertex in N , the max above is over an empty
set, meaning that μS can be initialized to any sufficiently small value (e.g., 0).
Step 3c: for each blob Ci that is a child of B:

− among the switchings stored for Ci , seek the switching S′ minimizing

max
{

μS′ ,
∣

∣�S(u, ai ) + λN (ai ) + �S′(ai , v) − λT (u′, v′)
∣

∣

}

(4)
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− set μS to max
{

μS, value of (4)for S′}

Step 3d: store S along withμS , with the length of its root-path, and with references
to the child switchings S′ minimizing (4)
Step 4: seek the switching S stored for the root blob that has minimum μS , and
combine it recursively to the switchings S′ found for its child blobs. In the end, a
switching ˜S for the entire network N is obtained, which can be used to construct
˜T .

The correctness of the algorithm presented above is based on the following obser-
vation, allowing our dynamic programming solution of the problem:

Observation. Let B be a blob of N , and Ci be one of its child blobs. If a switching
S of B is part of an optimal solution to closest-TCBL, then we can assume that S
must be combined with a switching S′ of Ci that minimizes Eq. (4). This means that
even if there exists an optimal solution in which S is combined with S′′, a non-minimal
switching ofCi with respect to Eq. (4), then we can replace S′′ with S′ and the solution
we obtain will still be optimal.

Once again, space complexity is O(k · 2k · n), as the only additional objects to
store are the references to the child switchings of S, and the value of μS for each the
O(2k · n) stored switchings. As for time complexity, each query within step 3c now
involves scanning the entire set of O(2k) switchings stored for Ci , thus taking time
O(2k)—whereas the previous algorithms only required O(k) time. Since there are
again O(2k · n) queries to make, the running time is now O(22k · n). ��

We conclude this section by noting that, if we reformulate closest-TCBL replac-
ing the max with a sum, and taking any positive power of the absolute value
∣

∣λT (a) − λ
˜T (ã)

∣

∣ in the objective function, then the resulting problem can still be
solved in a way analogous to that described above.

Theorem 7 Consider the class of minimization problems obtained from closest-
TCBL by replacing its objective function with

⊎

a

∣

∣λT (a) − λ
˜T (ã)

∣

∣

d
, (5)

with
⊎

representing either max or
∑

, and with d > 0.
If no blob of N is redundant, then any of these problems can be solved in time

O(22k · n) using O(k · 2k · n) space, where n is the number of taxa in N and T , and
k is the level of N .

Proof In the proof of Theorem 6, replace every occurrence of | . . . | with | . . . |d ,
and—if

⊎

represents a sum—replace every occurrence of max with
∑

. ��
It is worth pointing out that the algorithm described in the proofs above requires

storing all switchings of a blob that are topologically compatible with the input tree.
This is unlike the algorithms shown before, where a number of checks on arc lengths
(quite stringent ones in the case of the algorithm for TCBL) ensure that, on realistic
instances, the number of switchings stored for a blob with k reticulations will be much
smaller than 2k .
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Moreover, again unlike the previous algorithms, the queries at step 3c involve
considering all switchings stored for a child blob Ci , which is what causes the factor
22k in the runtime complexity. We note that, for certain objective functions, it might be
possible to make this faster (with some algorithmic effort), but in order to achieve the
generality necessary for Theorem 7, we have opted for the simple algorithm described
above.

5 Discussion

In this paper, we have considered the problem of determining whether a tree is dis-
played by a phylogenetic network, when branch lengths are available. We have shown
that, if the network is permitted to have redundant blobs (i.e., non-trivial biconnected
components with only one outgoing arc), then the problem becomes hard when at least
one of the following two conditions hold: (1) the level of the network is unbounded
(Theorem 1), (2) branch lengths are potentially long (Theorem 2). If neither condition
holds (i.e., branch lengths are short and level is bounded) then—evenwhen redundancy
is allowed—the problem becomes tractable (Theorem 4). We note that phylogenetic
networks with redundant blobs are unlikely to be encountered in practice, as their
reconstructability from real data is doubtful (Iersel and Moulton 2014; Huber et al.
2015; Pardi and Scornavacca 2015). This is relevant because, if redundant blobs are not
permitted, the problem becomes fixed-parameter tractable in the level of the network
(Theorem 3) irrespective of how long the branches are.

Building on our result on networks with no redundant blobs, we have then shown
how the proposed strategy can be extended to solve a number of variants of the problem
accounting for uncertainty in branch lengths. This includes the case where an interval
of possible lengths is provided for each branch of the input tree (Theorem 5), and
the case where we want to find—among all trees displayed by the network with the
same topology as the input tree T—one that is closest to T , according to a number of
measures of discrepancy between branch length assignments (Theorems 6 and 7).

The fixed-parameter algorithms we present here have runtimes and storage require-
ments that grow exponentially in the level of the network. However, in the case of
storage, this is a worst-case scenario: in practice, this will depend on the number of
“viable” switchings stored for each blob, that is, the switchings that pass all checks
on topology and branch lengths. In the case of the algorithm for TCBL (Theorem 3),
where strict equalities between arc lengths in T and path lengths in N must be verified,
we can expect it to be very rare that multiple switchings will be stored for one blob.
Similarly, in the case of the algorithm for relaxed-TCBL (Theorem 5), when the
input intervals are sufficiently small, we can expect the number of stored switchings
to be limited. In some particular cases, it might even be possible to find the few viable
switchings for a blob, without having to consider all O(2k) switchings, thus removing
this factor from the runtime complexity as well.

The algorithm for TCBL (Algorithm 1) provides a good example of the effect of
taking into account branch lengths in the tree containment problems: if all checks
on branch lengths are removed, what is left is an algorithm that solves the classic
(topology-only) tree containment problem, and also provides all ways to locate the
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input tree in the network (for each blob, it can produce a list of possible images of
the corresponding part of of the input tree). This algorithm may run a little faster
than Algorithm 1 (as no queries to child blobs are necessary). However, for a small
computational overhead, including branch lengths allows to locate more precisely the
displayed trees, and provides more strict answers to the tree containment problem.
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