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Abstract With the aim of applying numerical methods, we develop a formalism
for physiologically structured population models in a new generality that includes
consumer–resource, cannibalism and trophic models. The dynamics at the population
level are formulated as a system of Volterra functional equations coupled to ODE.
For this general class, we develop numerical methods to continue equilibria with
respect to a parameter, detect transcritical and saddle-node bifurcations and compute
curves in parameter planes alongwhich these bifurcations occur. Themethods combine
curve continuation, ODE solvers and test functions. Finally, we apply the methods to
the above models using existing data for Daphnia magna consuming Algae and for
Perca fluviatilis feeding on Daphnia magna. In particular, we validate the methods by
deriving expressions for equilibria and bifurcations with respect to which we compute
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errors, and by comparing the obtained curves with curves that were computed earlier
with other methods. We also present new curves to show how the methods can easily
be applied to derive new biological insight. Schemes of algorithms are included.

Keywords Numerical bifurcation analysis · Equilibria · Curve continuation ·
Structured populations · Consumer–resource · Cannibalism · Trophic

Mathematics Subject Classification 39A28 · 65P30 · 92D25

1 Introduction

The objective of this paper is to propose new numerical methods for the bifurcation
analysis of a large number of physiologically structured population models (PSPM)
formulated with delay equations. The methods allow the computation of equilibrium
branches and the detection of bifurcation points under one-parameter variation and
the continuation of bifurcation curves in two-parameter planes.

In deRoos et al. (2010), numericalmethods are developed for a size-structured (con-
sumer) population competing for an unstructured (resource) population. The methods
are used by Zhang et al. (2012) to analyse the size-dependent mechanism of energy
allocation. The consumer–resourcemodel is a generalization of awell-established bio-
logical model of Daphnia consuming algae (see e.g. McCauley et al. 1999; Chapter 9
of de Roos and Persson 2013).

In variousmodels, the structured population interactswith several dynamic unstruc-
tured populations: in de Roos and Persson (2002), a top predator is incorporated
additionally to the resource; in Getto et al. (2005), two resource populations, one for
juveniles one for adults, are considered. In the formulation of the well-established fish
cannibalism model in Claessen et al. (2004), the natural density dependence of vital
rates can be cut by introducing so-called environmental interaction variables describ-
ing ingestion and predation pressure, see Diekmann et al. (2001) and Getto et al.
(2005), see also Alarcón et al. (2014) for environmental interaction variables in a cell
population model. We here define the environment via two components: the unstruc-
tured populations and the environmental interaction variables. Then, on the basis of
the discussed points, we generalize the environment corresponding to de Roos et al.
(2010) in two ways:

– transition from one to several unstructured populations,
– additional incorporation of environmental interaction variables.

The model under study in de Roos et al. (2010) was formulated as a Volterra func-
tional equation (VFE) for the structured population, coupled to a delay differential
equation (DDE) with distributed delay for the dynamics of the resource (the intrinsic
resource dynamics given by an ordinary differential equation (ODE) minus a con-
sumption term that gives rise to the delay) in Diekmann et al. (2010). Well-posedness
and the principle of linearized stability for VFE/DDE is shown in Diekmann et al.
(2007) and Diekmann and Gyllenberg (2012). For the analysis of sufficient condi-
tions for consumer resource models, we refer to the works done by Diekmann et al.
(2010) and by Diekmann and Korvasova (2016). By defining an interaction variable
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corresponding to the consumption term, we reformulate the model in de Roos et al.
(2010) as a coupled system of two VFE and one ODE. We show that this formulation
is suitable for both, the application of the numerical method that we elaborate and the
discussed generalization. Moreover, we explain how also the generalized VFE/ODE
fits into the discussed analytical framework.

After the formulation of the time-dependent system for the remainder of the paper,
we focus on equilibria and time-independent systems. Hence, the time-independent
system serves to derive the time-independent system and provides a formulation for
future aims like linearization, stability and Hopf bifurcation analysis.

Our formulation of equilibrium conditions builds up on two older ideas:

– the introduction of the basic reproduction number facilitates the biological inter-
pretation of steady state conditions, see Diekmann et al. (2003),

– the formulation as VFE/DDE (and also as VFE/ODE) allows the exploitation of
linearities (in the population birth rate) that are consequences of mass action laws,
see Boldin (2006) and Diekmann et al. (2010).

We here carry the second idea a step further by incorporating linearities in the unstruc-
tured populations defining similar decompositions as in Boldin (2006).

Formodels formulatedwith autonomousODE, the numerical equilibriumandbifur-
cation analysis can easily be carried out using packages such as MATCONT (see e.g.
Dhooge et al. 2006), COCO or AUTO. These packages use continuation methods
(see e.g. Allgower and Georg 2003) to compute points that approximate an implic-
itly defined curve. Assuming that an initial point of the curve is known, the methods
predict the next point of the curve by computing its tangent and then correct the
predicted point by applying a modified Newton method (see e.g. Chapter 7 in Kel-
ley 1995). The above-mentioned continuation packages permit the approximation of
equilibrium curves, the continuation of limit cycles, the detection and computation of
bifurcation points, and their continuation in parameter planes. For delay equation, the
above-discussed software cannot be used. For DDE, the numerical equilibrium and
bifurcation analysis can be done with the established package DDE-BIFTOOL (see
Engelborghs et al. 2001), in particular continuation of equilibria and periodic orbits,
computation of saddle-node and Hopf bifurcations and stability analysis. These rou-
tines are typically applied to equations with discrete delays but cannot be used if
distributed delays appear. For linear autonomous DDE with discrete or distributed
delays, stability analysis can be done with the package TRACE-DDE (see Breda et al.
2009).

The dynamics of the class of models presented in this paper is formulated at the
population level with a nonlinear system of VFE/ODE. In the right-hand side of the
VFE, the delay is distributed and the limits of integration are state dependent. More-
over, the kernels of the integrals are implicitly given by the solution of a nonlinear
system of ODE. Due to these complexities, the existing software cannot be used to
analyse equilibria and linearized stability of the class of models presented in this
work.

In Kirkilionis et al. (2001), a numerical method for the computation of equilibrium
branches is proposed for models formulated with VFE. The technique combines curve
continuation with ODE solvers. The latter are used to compute the individual state
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given by the solution of nonlinear ODE and to approximate in parallel the integrals
that appear in the map that defines the curve and that depend on the individual state. At
the end of the paper, the authors suggest the detection and computation of transcritical,
saddle-node and Hopf bifurcations as open problems. In de Roos et al. (2010), the
method is extended to a bifurcation analysis of VFE/DDE systems that allows the
division of parameter planes into regions of stability and, e.g. oscillation induced,
instability of equilibria.

Wehere first extend the technique inKirkilionis et al. (2001) to compute equilibrium
branches of the presented class of models. Then, we adapt the established notions
of test functions for finding bifurcation points to the context of PSPM. Next, we
use these points as initial values for the continuation of bifurcations in parameter
planes that, in contrast to one-parameter variation, can provide increased biological
insight. In summary,we presentmethods for the computation of equilibria, transcritical
and saddle-node bifurcations. Moreover, for the detection of transcritical bifurcations
we propose new test functions that use discussed linear structures of the model to
save computational cost, while for saddle-node we adapt those established for ODE
systems.

We have tested and validated the developed methods with models of size-structured
consumer–resource (Calsina and Saldaña 1995; Diekmann et al. 2010), trophicmodels
describing invasion dynamics (de Roos and Persson 2002) and cannibalistic fish popu-
lations (Getto et al. 2005). For the validation, we have considered several examples for
which ODE and integrals can be solved analytically. With the resulting functions, we
have obtained expressions that implicitly define equilibria and bifurcations, in which
there are neither integrals nor implicitly defined functions anymore. In this way, we
defined standard Newton problems, the solutions of which served to compute errors
which we found to lie below the tolerances of the method. By reproducing various
curves from the literature, we show consistency of the obtained results with the data.
We have also computed new curves and explain how some of these may serve to sup-
port analytically derived results, such as existence conditions for equilibria in Calsina
and Saldaña (1995). Others of the new curves provide new biological insight by pre-
senting a more complete picture of interesting phenomena as the life boat mechanism
of cannibalism (van den Bosch et al. 1988) and regions of equilibria in parameter
planes in three trophic models.

The remainder of the paper is structured as follows: We develop the formulation
of PSPM as VFE/ODE in Sect. 2 and in Sect. 3 define various types of equilibria. In
Sect. 4, we define equilibrium branches and bifurcation points for one-parameter vari-
ation analysis and bifurcation curves for two-parameter variation analysis. In Sect. 5,
we present numerical methods for the computation of equilibrium and bifurcation
curves under one- and two-parameter variation, respectively. First we introduce the
numerical continuation method and discuss ODE solvers. Then, we derive the systems
of equations that implicitly define the equilibrium curves and present test functions
for the detection of transcritical and saddle-node bifurcations. Finally, we develop the
methods for computing bifurcation curves in parameter planes. Section 6 is devoted
to the validation of our methods with models from the literature. In Sect. 7, we present
the conclusions of our research. Finally, in Appendix we present our algorithms in an
established pseudo-code language to facilitate their implementation.
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2 Formulation of a Class of Structured Population Models

In this section, we construct the general PSPM. For the modelling at the individual
(i-) level and the step from the i-level to the population (p-) level, we use an analogous
formalism and reasoning as for the consumer resource models in Diekmann et al.
(2010) and de Roos et al. (2010).

2.1 Individual Development and Environment

We use E := (I, E) ∈ R
s+n to denote the environment of a structured population

and E(t) its value at time t , where I (t) ∈ R
s is a time-dependent vector of s inter-

action variables and E(t) ∈ R
n a vector of n unstructured populations with intrinsic

dynamics.
We denote by m the number of variables that are used to describe the i-state in

view of its p-dynamically relevant behaviour. Commonly used i-state variables are the
age or body size of the individual or related quantities. We assume a unique state at
birth denoted by x0 ∈ R

m . Next we call a history a real-valued function defined on
an interval [−a, 0], a > 0, where we have in mind in particular the history of the
environment and of the (to be defined) p-birth rate.

Let x̄(τ ) := x̄(τ ;α,ψ) ∈ R
m , with 0 < τ ≤ α, be the i-state at age τ assuming

that at age α the individual is alive and has experienced a history ψ . Then, x̄(τ ) is
defined as the solution of the ODE

dx̄(τ )

dτ
= g(x̄(τ ), ψ(−α + τ)), 0 < τ ≤ α,

x̄(0) = x0,
(1)

where we introduce g(x, y) ∈ R
m as the i-development rate for an individual that has

state x and environment y. In the commonly used examples, g is the growth rate if
the i-state is size, or the function that is constant one if the i-state is age. In a similar
way, we denote by F̄(τ ) := F̄(τ ;α,ψ), with 0 < τ ≤ α the survival probability
determined as the solution of

dF̄(τ )

dτ
= −μ(x̄(τ ), ψ(−α + τ))F̄(τ ), 0 < τ ≤ α,

F̄(0) = 1,
(2)

where μ(x, y) denotes the scalar and positive i-mortality rate for state x and envi-
ronment y. Then, we denote with x(α, ψ) ∈ R

m the i-state of an individual that
at age α has experienced history ψ and similarly by F(α, ψ) its survival probabil-
ity. The latter introduced quantities x and F can be computed via the definitions
x(α, ψ) := x̄(α;α,ψ) and F(α, ψ) := F̄(α;α,ψ). Let us recall now the notation
for translations

yt (θ) = y(t + θ), θ ≤ 0, (3)
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of functions y of time commonly used in functional differential equations (see, for
instance, Hale and Verduyn Lunel 1993). By yt a history is defined, the history of y
at time t . Then, x(α, Et ) and F(α, Et ) are, respectively, the i-state and the survival
probability of an individual that at time t has age α. Next we denote by β(x, y) the
i-reproduction rate, which is scalar and nonnegative, and by γ (x, y) ∈ R

s the i-rate
of impact at state x and environment y. The impact rate, e.g. consumption rate of
resource, will a bit further down be used to specify the interaction variables. Then, the
respective rates of an individual that at time t has age α are given as β(x(α, Et ), E(t))
and γ (x(α, Et ), E(t)).

During its life, an individual can experience periods, for instance juvenile and adult
period, which are such that upon the transition the individual’s dynamically relevant
behaviour changes abruptly (see e.g. Diekmann et al. 2010) and so the modeller may
want to incorporate jump discontinuities in the rates. Hence, we here think of the
rates g, μ, β and γ as piecewise smooth functions, meaning as smooth as necessary
for numerical purposes. In this sense, we denote by k the number of different life
stages; hence, we can expect at most k − 1 switches due to discontinuities in any of
the rates. Here switch refers to the switching between different expressions to define
a rate upon a transition. The transition of an individual from one stage to another may
be triggered by changes in its i-state and/or on its environment. Thus, it is relevant
to detect and compute when a discontinuity occurs while solving numerically the
system (1–2). For this, we define switch functions in a similar way than in Kirkilionis
et al. (2001): As further modelling ingredients let d j := d j (x, y), 1 ≤ j ≤ k − 1 be
continuous functionals, such that for any fixed environment y the (m − 1)-manifolds
implicitly defined by d j (x, y) = 0 define a partition in regions where the vital rates
are smooth. Moreover, we assume that the discontinuities are crossed transversally,
i.e. assuming that an individual that has state x̄(α) is in the kth stage of its life; then
for any j = 1, . . . , k − 1, there exists a unique τ j , such that for any sufficiently
small ε

d j (x̄(τ j − ε), ψ(−α + τ j − ε)) < 0, d j (x̄(τ j + ε), ψ(−α + τ j + ε)) > 0. (4)

2.2 Dynamics at the Population Level

Let B(t) ∈ R be the p-birth rate at time t . The density of individuals that at time t have
age α can be expressed as F(α, Et )B(t − α). We denote by h the (finite) maximum
age of individuals. Then, B should satisfy the VFE or renewal equation

B(t) =
∫ h

0
β(x(α, Et ), E(t))F(α, Et )B(t − α)dα. (5)

In a similar way, we obtain

I (t) =
∫ h

0
γ (x(α, Et ), E(t))F(α, Et )B(t − α)dα (6)
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for the interaction variables I . Finally, we denote by F̄ (the motivation for the bar will
become clear a little further down) a function whose value gives the rate of change of
E(t), i.e.

dE(t)

dt
= F̄(E(t)). (7)

In summary, the dynamics at the p-level can be formulated as (5–7), with E = (I, E),
which is a closed system with state variables B, I and E .

We remark that to apply the analytical formalism (see below), one can rewrite (5–7)
as a system of the form

(u, v′)(t) = G(ut , vt ), (8)

where G acts on a product of an L1-space and a space of continuous functions cor-
responding to u- and v-component, respectively. Note that if the right-hand side of
(5–7) has I (t) dependence, it cannot be reproduced by defining such an operator and
letting it act on (Bt , It , Et ) because pointwise evaluation in L1 is not defined. A trans-
formation to a system of the form (8) is possible under a reasonable assumption that
includes that there exist components of γ that are independent of the I -variable, more
precisely that γ has a hierarchical structure in this respect as formalized in Diekmann
et al. (2001). Such a transformation step is carried out in (3.56–3.59) in Diekmann
et al. (2007). In all the models considered in this paper, γ has the hierarchical struc-
ture such that the transformation can be done. System (8) can be interpreted as a VFE
(u-component) coupled to a DDE (v-component). For such systems, well-posedness
and linear stability theory is established (see Diekmann et al. 2007; Diekmann and
Gyllenberg 2012).

To derive equilibrium conditions, however, the formulation (5–7), with E = (I, E)

is more convenient and so we will not use (8).

2.3 Linearities in the Dynamics of the Unstructured p-Variables

As we will see further down, in many models due to mass action assumptions one
encounters linearities at the p-level.Wewould like to exploit these linearities to reduce
dimensions. For this purpose, it is convenient to have a notation that isolates compo-
nents of a vector that have index in a certain set. Then, suppose that

u := (u1, . . . , ur )
T , J := { j1, . . . , jk} ⊆ {1, . . . , r}, with j1 < . . . < jk,

are given.
We introduce the notation

uJ := (u j1 , . . . , u jk )
T . (9)

Now, recalling that E ∈ R
n , i.e. n unstructured populations, we denote by l with 0 ≤

l ≤ n the number of unstructured populations on which we have a linear dependence
in F̄ . This means we assume that
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F̄(E) =
(
D(E)EI
F(E)

)
,

I := {1, . . . , l},
Di j (E) := δi j Gi (E), 1 ≤ i, j ≤ l,

(10)

where δi j denotes the Kronecker symbol such that D is diagonal, and

G(E) = (G1(E), . . . ,Gl(E))T ∈ R
l and F(E) ∈ R

n−l

are given model ingredients (and F̄ is defined in an obvious way if l = 0 or l = n).
Note that the assumption that the linearities are in the first l components of F̄ is without
loss of generality. From the notation defined in (9), we here only need that

EI = (E1, . . . , El),

but further down we will make a more in depth use of the notation.

3 Equilibrium Analysis

An equilibrium state is a time-independent vector (B, I, E) that solves (5–7), with
E = (I, E). We accept negative values for B, I and E in order to define test functions
for detecting bifurcations in Sect. 5.4, but from a biological point of view only the
nonnegative values of B, I and E make sense, so later on we will only consider these.
From now on, we use the notation (I, E) instead of E . Then, we find that (B, I, E) is
an equilibrium if and only if

B(1 − R0(I, E)) = 0, (11a)

I − BΘ(I, E) = 0, (11b)

D(I, E)EI = 0, (11c)

F(I, E) = 0, (11d)

hold, where R0(I, E) is defined by

R0(I, E) :=
∫ h

0
β(x(α, I, E), I, E)F(α, I, E)dα, (12)

and Θ(I, E) by

Θ(I, E) :=
∫ h

0
γ (x(α, I, E), I, E)F(α, I, E)dα. (13)

Note that, as usual in population dynamics, R0 denotes the i-reproduction number.
We call Θ the p-interaction variable. As it is shown later in the examples in Sect. 6,
in general it is not possible to derive explicit expressions that characterize equilibrium
states.
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The linearities in (11) motivate us to think about different types of equilibria, for
B = 0 or B �= 0 in (11a), and for Ei = 0 or Ei �= 0 for i ∈ I in (11c). In order to
define types of equilibrium states, we first define

N := {1, . . . , n}

and then say that for a set K ⊆ I, with ∅ � K � N , a vector

E is K-trivial :⇔ Ei

{
= 0, ∀i ∈ K,

�= 0, ∀i ∈ I \ K.
(14)

TheK-triviality is used in the definition of transcritical bifurcations in Sect. 4.1 and
implemented in the numericalmethods in Sect. 5,wherewe consider new test functions
and reduce the dimension of the model. In this research, we focus our attention on six
types of equilibrium states disregarding other possible types:

– trivial defined by B = 0 and E = 0,
– (B,K)-trivial where B = 0 and E is K-trivial,
– B-trivial satisfying B = 0 and Ei �= 0 for all i ∈ I,
– E-trivial defined by B �= 0 and E = 0,
– K-trivial where B �= 0 and E is K-trivial,
– nontrivial such that B �= 0 and Ei �= 0 for all i ∈ I.

The reader should note here that the motivation for the definition of equilibrium types
is computational rather than biological. It is convenient to define the triviality of
an equilibrium in terms of vanishing and nonvanishing components of the vector
(B, I, E).

4 Behaviour Under Parameter Variation

Here we present the ingredients for analysing the behaviour of equilibrium types
under one- and two-parameter variation. We denote by p a scalar parameter and by
q := (q1, q2) a vector of parameters and allow the model ingredients depend on p or
q. First of all, we recall that the change in the qualitative behaviour of the dynamics
of a model under parameter variation is a bifurcation (see e.g. Perko 2001). The
types of bifurcations considered in this work are transcritical and saddle-node, which
have codimension 1 and so define points in the p-line and curves in the (q1, q2)-
parameter plane. The detection of bifurcations in a one-parameter variation analysis
is easier than in a two-parameter variation analysis, with a considerable reduction
of the computational cost. So a natural way to deal with bifurcations is to start with
one-parameter variation and then switch to two parameters.

4.1 One-Parameter Variation: Equilibrium Branches and Bifurcation Points

An equilibrium branch is a tuple (B, I, E, p) such that for fixed p the vector (B, I, E)

satisfies the equilibrium conditions (11). Under p-variation, assuming certain regu-
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larity conditions (see e.g. Chapter 1 of Allgower and Georg 2003), an equilibrium
defines a curve in the equilibrium-parameter space. We consider particular equilib-
rium branches for the types defined in Sect. 3.

At a transcritical bifurcation point, two equilibrium branches, a trivial and a non-
trivial, intersect transversally. For biological reasons, we do not consider negative
branches (see Boldin 2006); then at the neighbourhood of a transcritical bifurcation
to one side, there is locally a unique equilibrium and to the other side two equilibrium
states. The idea now is to consider branches defined through equilibrium types, choose
one component of (B, E), and define transcritical bifurcation points with respect to
that component. We assume that the p-interaction variable is positive, then I = 0 if
and only if B = 0 and so the triviality (or nontriviality) of I is determined by B.
An additional assumption is that the qualitative behaviour, triviality or positivity with
respect to other components does not change. We consider and define two types of
transcritical bifurcation points in terms of the intersecting branches:

– B-transcritical. A point where either a trivial and an E-trivial, or a (B,K)-trivial
and a K-trivial, or a B-trivial and a nontrivial branch intersect transversally. It
corresponds to the existence boundary for the structured population,

– Ei -transcritical. Assume a set K ⊆ I such that i ∈ K, and let K′ := K \ {i}. An
Ei -transcritical bifurcation point is a point where a (B,K)-trivial and a (B,K′)-
trivial, or a K-trivial and a K′-trivial branch intersect transversally.

Now for a point u∗ := (B∗, I ∗, E∗, p∗) of an equilibrium branch, we denote by

T (u∗) := (T1(u
∗), . . . , Ts+n+2(u

∗)) (15)

the tangent vector to the branch at u∗, and through its last component we define a
function Ts+n+2 : D(Ts+n+2) ⊂ R

s+n+2 → R. A saddle-node bifurcation occurs at
u∗ if an equilibrium branch changes its orientation with respect to the parameter p at
u∗, i.e. if Ts+n+2(u) changes its sign at u = u∗ (see e.g. Chapter 10.2 of Kuznetsov
2004). Then, for a saddle-node bifurcation necessarily (11) extended to p-dependence
coupled to

Ts+n+2(B, I, E, p) = 0 (16)

hold. Considering the hyperplane R
s+n+1 ×{p∗} in the equilibrium-parameter space,

to one side there are locally two equilibrium states, at the hyperplane only one which
is the saddle-node bifurcation point, and to the other side there is no equilibrium.

4.2 Two-Parameter Variation: Bifurcation Curves

Under two-parameter variation, assuming certain regularity conditions (see again
Chapter 1 of Allgower andGeorg 2003), a codimension 1 bifurcation defines a curve in
the (q1, q2)-parameter plane that divides the plane into regions in which the qualitative
behaviour of the dynamics of the model does not change. Moreover, for a path in the
(q1, q2)-parameter plane crossing the bifurcation curve transversally, the qualitative
behaviour of the dynamics changes at the bifurcation.
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For the computation of bifurcation curves, the idea is to extend the definitions of
bifurcations to two-parameter variation, obtain curves in the equilibrium-parameter
space, and project them to the (q1, q2)-parameter plane. With this method, we obtain
bifurcation charts that with respect to the one-parameter variation add a variety of
possibilities for biological interpretation (see e.g. de Roos et al. 2010).

5 Numerical Methods

In this section, we first present a numerical curve continuation method and an ODE
solver. Then, we show the techniques for the computation of the discussed equilibrium
branches, bifurcation points and bifurcation curves.

5.1 Numerical Continuation

Let us first consider a curve implicitly defined by

f (u) = 0, f : D( f ) ⊂ R
N+1 → R

N smooth, (17)

and a point u0 ∈ D( f ) satisfying

f (u0) = 0, rank( f ′(u0)) = N . (18)

Numerical continuation methods are techniques to compute the curve f −1(0) by
obtaining an oriented sequence of points ui for i = 1, 2, . . ., such that for a given toler-
ance tol, ‖ f (ui )‖ < tol for all i (see e.g. Allgower and Georg 2003). We here use the
pseudo-arclength continuation, which is a predictor–corrector method that computes
the approximation ui+1 to the curve from the approximation ui in two steps:

– euler tangent prediction. Prediction vi+1 of the point ui+1, considering the i th
point ui , a tangent vector t ( f ′(ui )), and a step size ε > 0,

vi+1 = ui + εt ( f ′(ui )), (19)

– correction of the predicted point.Assuming that vi+1 is close enough to the curve,
we find ui+1 applying a modified Newton method (for instance Broyden see e.g.
Chapter 7 of Kelley 1995) to the problem

f (u) = 0,
〈u − vi+1, t ( f ′(u))〉 = 0.

(20)

Here t ( f ′(u)) is the normalized tangent vector in the positive direction of the curve
induced by the Jacobian matrix of f , defined as the unique vector t ∈ R

N+1 such that

f ′(u)t = 0,

‖t‖ = 1,

det

(
f ′(u)

t T

)
> 0. (21)
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Given an initial point u0, we first approximate the curve in the positive direction, using
t ( f ′(u)) defined through (21) for the Euler prediction. Then, we proceed similarly in
the negative direction considering the tangent vector in (21)with negative determinant.
For equilibrium branches and bifurcation curves, as we will see in Sects. 5.3 and 5.5,
f (u) is derived from the equilibrium conditions (11) and usually contains the terms
R0(I, E, p) andΘ(I, E, p) (we use p-dependence notation, but for bifurcation curves
the dependence is on q instead of on p) that for a fixed p are given by (12–13). We
propose then to combine the numerical continuation method with an ODE solver to
compute R0(I, E, p) and Θ(I, E, p) at every evaluation of f (u).

5.2 ODE Solver

Considering p-dependence (for q-dependence we proceed similarly), let

R0(I, E, p) =
∫ h

0
β(x(α, I, E, p), I, E, p)F(α, I, E, p)dα, (22)

and

Θ(I, E, p) =
∫ h

0
γ (x(α, I, E, p), I, E, p)F(α, I, E, p)dα, (23)

where x(α, I, E, p) and F(α, I, E, p) are obtained by solving (1–2). The survival
probability, defined via (2), is an exponential function, which results in a stiff system
with a solution with rapid variation. Hence, its computation with explicit methods
might generate large global errors and high computational costs (see e.g. Chapter 2.7
of Ascher et al. 1995). To avoid this, instead of (2) we propose to solve

dM̄(τ )

dτ
= −μ(x̄(τ ), I, E, p), 0 < τ ≤ α,

M̄(0) = 0,
(24)

define M(α, I, E, p) := M̄(α) and obtain the survival probability by

F(α, I, E, p) = eM(α,I,E,p). (25)

We now propose to differentiate the integral equations (22–23) to obtain a system
of ODE that can be solved in parallel with (1) and (24). So, using the short notation
x(α) := x(α, I, E, p), M(α) := M(α, I, E, p), r(α) := r(α, I, E, p) and θ(α) :=
θ(α, I, E, p), we compute R0(I, E, p) and Θ(I, E, p) by solving the system

dx(α)

dα
= g(x(α), I, E, p), 0 < α ≤ h, (26a)

x(0) = x0,

dM(α)

dα
= −μ(x(α), I, E, p), 0 < α ≤ h, (26b)
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M(0) = 0,

dr(α)

dα
= β(x(α), I, E, p)eM(α), 0 < α ≤ h, (26c)

r(0) = 0,

dθ(α)

dα
= γ (x(α), I, E, p)eM(α), 0 < α ≤ h, (26d)

θ(0) = 0,

up toα = h, anddefine R0(I, E, p) := r(h) andΘ(I, E, p) := θ(h) (seeAlgorithm2
in Appendix).

While solving (26) at stage j , for j = 1, . . . , k − 1, we evaluate d j (x, I, E, p) at
every step to detect whether a switch to stage j + 1 has occurred. If so, we compute
τ j by applying a Newton method to

d j (x(τ j , I, E, p), I, E, p) = 0, (27)

for which a dense solution of (26) is desirable. Next, we continue solving (26) in the
stage j + 1 with the initial condition given by the solution at τ j . We propose then to
use an ODE solver with event location, for instance the Dopri5 method, which is an
explicit embedded Runge–Kutta with dense output given by polynomial interpolation
(see e.g. Dormand and Prince 1980; Chapter 2 of Hairer et al. 1993).

5.3 Computation of Equilibrium Branches

Here an initial u0 := (B0, I0, E0, p0) to start the continuation is assumed to be known.
Such a point can be obtained by applying for instance a Newton, a modified Newton
or a gradient method to find a solution of (11) (see e.g. Kelley 1995). By checking
which components of u0 vanish, we determine the type of equilibrium. The next step
is to elaborate equilibrium conditions taking into account parameter dependence, that
some of the equilibrium components may vanish and exploiting the linear structures
in (11). Looking at (11) and considering the equilibrium type, these conditions are
straightforward, but depend strongly on the equilibrium type. We therefore define the
map H : D(H) ⊂ R

s+n+2 → R
s+n+1 that induces the conditions for an equilibrium

y = (B, I, E) under dependence of a parameter p via

H(y, p) = 0, (28)

in form of a table, see Table 1. As is clear from this first column, the possible vanishing
of equilibrium components leads to parameter independence of these components on
the one hand but violations of maximum rank conditions that the curve continuation
problem should satisfy on the other hand. A simple reduction of the dimension by
disregarding these components leads to a well-defined curve continuation problem.
Necessarily, this curve continuation problem, which we denote by

Ĥ(ŷ, p) = 0 (29)
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Table 1 Dimension reduction in one-parameter continuation

Type H(y, p) ŷ Ĥ(ŷ, p)

Trivial

⎛
⎜⎜⎝

B
I
EI
F(I, E, p)

⎞
⎟⎟⎠ EN \I F(EN \I , p)

(B,K)-trivial

⎛
⎜⎜⎜⎝

B
I
EK
GI\K(I, E, p)
F(I, E, p)

⎞
⎟⎟⎟⎠ EN \K

(
GI\K(EN \K, p)
F(EN \K, p)

)

B-trivial

⎛
⎜⎜⎝

B
I
G(I, E, p)
F(I, E, p)

⎞
⎟⎟⎠ E

(
G(E, p)
F(E, p)

)

E-trivial

⎛
⎜⎜⎝
1 − R0(I, E, p)
I − BΘ(I, E, p)
EI
F(I, E, p)

⎞
⎟⎟⎠ (B, I, EN \I )

⎛
⎝ 1 − R0(I, EN \I , p)

I − BΘ(I, EN \I , p)
F(I, EN \I , p)

⎞
⎠

K-trivial

⎛
⎜⎜⎜⎝

1 − R0(I, E, p)
I − BΘ(I, E, p)
EK
GI\K(I, E, p)
F(I, E, p)

⎞
⎟⎟⎟⎠ (B, I, EN \K)

⎛
⎜⎜⎝
1 − R0(I, EN \K, p)
I − BΘ(I, EN \K, p)
GI\K(I, EN \K, p)
F(I, EN \K, p)

⎞
⎟⎟⎠

Nontrivial

⎛
⎜⎜⎝
1 − R0(I, E, p)
I − BΘ(I, E, p)
G(I, E, p)
F(I, E, p)

⎞
⎟⎟⎠ y H(y, p)

Expressions for H(y, p), ŷ and Ĥ(ŷ, p) for each equilibrium type, where H(y, p) = 0 define the equilib-
rium conditions, ŷ the reductions of y and Ĥ(ŷ, p) = 0 determine curve continuation problems

for Ĥ : D(Ĥ) ⊂ R
r+1 → R

r , is also equilibrium type specific and we refer again to
Table 1 for a precise definition. Note that with considerable but very convenient abuse
of notation for several functions, we do not denote dependence on components that
are zero. Considering the two sets of conditions (28) and (29) along with Table 1, we
can summarize our method as follows:

– given u0, determine H from the equilibrium type by simplifying (11),
– reduce the dimension to obtain û0 and Ĥ satisfying rank(Ĥ ′(û0)) = r ,
– apply numerical continuation to find an approximate solution to Ĥ(û) = 0,
– extend the approximate solution to obtain pointsui for i = 1, . . . , that approximate
the curve H(u) = 0.

In Appendix in Algorithm 1, the equilibrium type is determined from u0 and the
dimension reduction to compute û0 is performed. Algorithm 6 corresponds to the
numerical continuation method, where Ĥ is evaluated at every ûi with Algorithm 3
and the tangent prediction v̂i+1 is computed with Algorithm 4.
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5.4 Detection and Computation of Bifurcation Points

A test function φ : D(φ) ⊂ R
r+1 → R (see e.g. Chapter 10.2 of Kuznetsov 2004)

here is a smooth scalar function that has regular zeros at bifurcation points. During the
continuation of an equilibrium given by (29), we thus first check at each step whether
φ(ûi )φ(ûi+1) < 0 to detect a bifurcation. If this is the case, we apply a modified
Newton method to (29) coupled to

φ(ŷ, p) = 0 (30)

to compute it. Then,we start again the continuation from the bifurcation. The regularity
condition of the zeros imposed in the definition is to avoid problems while applying
the modified Newton method; in particular, we want to avoid a Jacobian which has not
maximum rank and so cannot be invertible. The selection of test functions is problem
dependent (for each equilibrium branch in Table 1 and each type of bifurcation), and
it is possible in most of the cases to choose one that only has regular zeros. We here
propose new test functions for detecting transcritical bifurcation points and methods
for their computation. On the other hand,we extend to systems ofVFE/ODE a classical
test function for the detection of saddle-node points in ODE and a classical method
for their computation (see e.g. Chapter 10.2 of Kuznetsov 2004). The test functions
presented here are assumed to have only regular zeros.

5.4.1 Transcritical Bifurcations

In Chapter 10.2 of Kuznetsov (2004), a classical technique including a test function to
detect and compute transcritical bifurcation points is proposed. This method applied
to our model has two main disadvantages which increase the computational cost:

– the test function contains derivatives and tangent vectors so the implementation of
numerical differentiation is needed,

– for f (u) = 0 given by (11) a transcritical bifurcation u∗ is not a regular point of
the curve, as rank( f ′(u∗)) < N . Due to this, once u∗ is detected and computed
it is necessary to calculate high-order derivatives to predict the next point of the
curve.

We first explain how to derive alternative test functions from themaps H introduced
in Table 1. In Sect. 4, types of transcritical bifurcations were defined in terms of types
of intersecting branches. The idea is that we continue a branch of a certain type and
consider the type of branch with which it may intersect. For both branches, maps H
are defined in Table 1. In these two maps, we delete the components 2 to s + 1, i.e.
the components that are derived from (11b), as well as those components that are
identical in both maps. The unique remaining component in the intersecting branch,
i.e. not the one that we continue, defines the test function. Finally, for the detection
of the bifurcation we evaluate the test function at the points of the branch that we
continue. In this way, the resulting test functions are:

– detection of B-transcritical bifurcations. If the branch thatwe continue is E-trivial,
K-trivial or nontrivial

φ(ŷ, p) = B, (31)
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if the branch is trivial, (B,K)-trivial or B-trivial

φ(ŷ, p) = 1 − R0(EN \J , p), (32)

where J is I for trivial, K for (B,K)-trivial and ∅ for B-trivial,
– detection of Ei -transcritical bifurcations. If we continue a K-trivial branch

φ(ŷ, p) = Gi (I, EN \K, p), (33)

if it is a (B,K)-trivial
φ(ŷ, p) = Gi (EN \K, p), (34)

and if we continue a K′-trivial or a (B,K′)-trivial branch

φ(ŷ, p) = Ei . (35)

The two disadvantages mentioned above do not affect the new approach: it is not
necessary to compute derivatives and tangent vectors, and the bifurcation point is
regular in the equilibrium branch. See Algorithm 5 in Appendix, where the evaluation
of the test functions is implemented.

5.4.2 Saddle-Node Bifurcations

A commonly used test function for detecting saddle-node bifurcation points in ODE
systems is given by

φ(ŷ, p) = det

(
∂ Ĥ(ŷ, p)

∂ ŷ

)
, (36)

see e.g. Kuznetsov (2004). The tangent vector to the curve (29) at (ŷ, p) is given by
T̂ (ŷ, p) := t (Ĥ ′(ŷ, p)) (note here that we obtain (15) by extending the dimension of
T̂ (ŷ, p) to the original dimension). At a saddle-node point, Ĥ(ŷ, p) has maximum
rank, and φ given by (36) vanishes; as a consequence, the last component of T̂ , let us
say T̂r+1, vanishes as well. Moreover, from the definition of saddle-node bifurcation
we know that T̂r+1 = Ts+n+2 not only vanishes, but also changes its sign at the
bifurcation. We propose then in the case of systems of VFE/ODE to use T̂r+1 for the
detection, as at every prediction of the curve continuation it is necessary to compute the
tangent vector anyway. Then, once the bifurcation is detected we compute it applying
a modified Newton method to (29) coupled to (36). See Algorithm 6 in Appendix for
the details in numerical implementation.

5.5 Computation of Bifurcation Curves

Here we adapt the ideas presented in Sect. 5.3 to compute bifurcation curves. First
we assume that a bifurcation point (y∗, p∗) was computed during the equilibrium
continuation and that we know its type. Adding a second parameter, we obtain the
starting point u0 = (y∗, q∗). In Sect. 4, we defined types of bifurcations in terms
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of the behaviour of equilibrium states; then by considering equilibrium types, it is
reasonable to think about maps L : D(L) ⊂ R

s+n+3 → R
s+n+2, that induce the

conditions for bifurcations under dependence of q via

L(y, q) = 0, (37)

and that are derived from the expressions H in Table 1. Again a reduction of dimension
helps to avoid the violation of maximum rank conditions and saves costs. Then, we
consider curve continuation problems

L̂(ŷ, q) = 0, (38)

for L̂ : D(L̂) ⊂ R
r+2 → R

r+1 with maximum rank. The idea of the method is to
obtain a starting value for the continuation û0 by reducing the dimension of u0, apply
curve continuation to solve (38) and extend the dimension of the resulting sequence
of points to approximate the solution of (37).

Transcritical bifurcations are defined in terms of intersecting branches. Then, we
consider two equilibrium branches that under p-variation are defined through systems
of the type (28). By extending the left side of both systems to q-dependence and couple
them, we obtain (37). Next we obtain (38) by reducing (37). Expressions for L(y, q)

and L̂(y, q) are given in Table 2 for each type of transcritical bifurcation.
For saddle-node bifurcations, we consider an equilibrium branch given by (28),

which associated reduced dimensional system for continuation is (29). Since for
saddle-node bifurcations, other than for transcritical bifurcations, it is only one branch
that matters, we can use the dimension reduction in Table 1. Hence we can extend (29)
to q-dependence and define

L̂(ŷ, q) :=
(
Ĥ(ŷ, q)

ψ(ŷ, q)

)
(39)

for each equilibrium type in Table 1, and for ψ as defined below. We have that Ĥ :
D(Ĥ) ⊂ R

r+2 → R
r , and for (ŷ, q) ∈ D(Ĥ) satisfying Ĥ(ŷ, q) = 0 the Jacobian of

Ĥ has maximum rank. Then, ψ has to be a scalar function ψ : D(ψ) ⊂ R
r+2 → R

such that DL̂(ŷ, q) has maximum rank for all (ŷ, q) ∈ D(L̂) satisfying (38). We then
defineψ with the bordering technique proposed in Chapter 10.3 of Kuznetsov (2004).
We consider the normalized vectors v1 and v2 in R

r satisfying

‖v1‖ = ‖v2‖ = 1, v1 ∈ Null

(
∂ Ĥ(ŷ, q)

∂ ŷ

T)
, v2 ∈ Null

(
∂ Ĥ(ŷ, q)

∂ ŷ

)
, (40)

where Null refers to the null space. Note that under one-parameter variation a saddle-
node bifurcation point (ŷ∗, p∗) satisfies

rank(DĤ(ŷ∗, p∗)) = r, det

(
∂ Ĥ(ŷ∗, p∗)

∂ ŷ

)
= 0,
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Table 2 Dimension reduction in two-parameter continuation: B-transcritical bifurcations (first three) and
Ei -transcritical (last two)

Branches that intersect L(y, q) ŷ L̂(ŷ, q)

Trivial
E-trivial

⎛
⎜⎜⎜⎝

B
1 − R0(I, E, q)

I
EI
F(I, E, q)

⎞
⎟⎟⎟⎠ EN \I

(
1 − R0(EN \I , q)

F(EN \I , q)

)

(B,K)-trivial
K-trivial

⎛
⎜⎜⎜⎜⎜⎝

B
1 − R0(I, E, q)

I
EK
GI\K(I, E, q)

F(I, E, q)

⎞
⎟⎟⎟⎟⎟⎠

EN \K

⎛
⎝ 1 − R0(EN \K, q)

GN \K(EN \K, q)

F(EN \K, q)

⎞
⎠

B-trivial
Nontrivial

⎛
⎜⎜⎜⎝

B
1 − R0(I, E, q)

I
G(I, E, q)

F(I, E, q)

⎞
⎟⎟⎟⎠ E

⎛
⎝ 1 − R0(E, q)

G(E, q)

F(E, q)

⎞
⎠

(B,K)-trivial
(B,K′)-trivial

⎛
⎜⎜⎜⎜⎝

B
I
EK
GI\K′ (I, E, q)

F(I, E, q)

⎞
⎟⎟⎟⎟⎠ EN \K

(
GI\K′ (EN \K, q)

F(EN \K, q)

)

K-trivial
K′-trivial

⎛
⎜⎜⎜⎜⎝

1 − R0(I, E, q)

I − BΘ(I, E, q)

EK
GI\K′ (I, E, q)

F(I, E, q)

⎞
⎟⎟⎟⎟⎠ (B, I, EN \K)

⎛
⎜⎜⎝
1 − R0(I, EN \K, q)

I − BΘ(I, EN \K, q)

GI\K′ (I, EN \K, q)

F(I, EN \K, q)

⎞
⎟⎟⎠

Expressions for L(y, q), ŷ and L̂(ŷ, q), where L(y, q) = 0 define the bifurcations, ŷ the reductions of y,
and L̂(ŷ, p) = 0 determine curve continuation problems

which implies that the null spaces in (40) are one-dimensional, and v1 and v2 are
uniquely determined (see Chapter 10.2.2 of Kuznetsov 2004). Next we defineψ(ŷ, q)

as the last component of the vector w ∈ R
r+1 given as the solution of

(
∂ Ĥ(ŷ,q)

∂ ŷ v1

v2
T 0

)
w =

(
0
1

)
. (41)

In Appendix, the curve continuation corresponds to Algorithm 9, where L̂(ŷ, q)

is obtained with Algorithm 7 for transcritical bifurcations, and with Algorithm 8 for
saddle-nodes.

6 Validation and Applications

Wehave implemented themethods in the development of Python routines. Considering
as a basis the C-code developed byAndreM. deRoos for computing bifurcation curves
in parameter planes (see Section 5 of de Roos et al. 2010), we have used standard
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modules of SciPy and NumPy, and for the solution of the ODE systems with event
location the Sundials cvode method with absolute and relative tolerances 10−12 and
10−6, respectively. We have tested the routines and validated the methods with several
examples for which the solution of the ODE system (26) can be obtained analytically.

For E-trivial,K-trivial and nontrivial equilibria, it is in general not possible to give
explicit expressions for the equilibrium states; for these cases, then the validation is
carried out as follows:

– we solve analytically (26) and obtain expressions for R0(I, E, p) and Θ(I, E, p)
in which there are no integrals,

– we introduce the expressions for R0(I, E, p) and Θ(I, E, p) into the equilib-
rium conditions and derive an expression H̄(y, p) = 0 that implicitly defines an
equilibrium curve, and in which there are no terms implicitly defined by external
equations,

– for each point ui = (yi , pi ) computed with the method proposed in Sect. 5.3, we
fix p = pi and apply a modified Newton method with a tolerance of 10−14 to
solve H̄(y, p) = 0 taking ui as initial value,

– we compute the error ‖yi − y‖, y being the solution of H̄(y, p) = 0.

With this process, we compute the error obtained in the solution of the ODE (26),
which also contains the error of computation of the switches defined by (27). The
error obtained in the modified Newton method remains as the unique error source in
the case of equilibrium states for which explicit expressions cannot be provided.

For validating the method in Sect. 5.4 for the computation of bifurcation points,
again we solve analytically the ODE system (26) and derive expressions H̄(y, p) = 0,
φ̄(y, p) = 0 that implicitly define the bifurcations and that do not contain terms
implicitly defined by external equations. Next, we compute them applying a Newton
method with a tolerance of 10−14. Finally, we compute the error by comparing both
solutions.

For the method presented in Sect. 5.5 for continuing bifurcations, the process is
similar to the one described for equilibria:

– we solve analytically (26) and obtain expressions for R0(I, E, q) and Θ(I, E, q)

in which there are no integrals,
– we introduce R0(I, E, q) andΘ(I, E, q) into the bifurcation conditions and derive
an expression L̄(y, p) = 0 that implicitly defines a bifurcation curve, and in which
there are no terms implicitly defined by external equations,

– for each point ui = (yi , qi ) computed with the method proposed in Sect. 5.5, we
fix one component of q and apply a modified Newton method with a tolerance of
10−14 to solve L̄(y, q) = 0,

– we compute the error ‖yi − y‖.

We have validated the methods with two consumer–resource (Calsina and Saldaña
1995; Diekmann et al. 2010) and a trophic model describing invasion dynamics (de
Roos and Persson 2002). Additionally, we have applied the methods to a fish canni-
balistic model (Getto et al. 2005). Here we present the obtained results.
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Table 3 Model ingredients for trees competing for light

Dimensions m = 2, s = 1, n = 0

Parameters h = 100, L = 1.0, β0 = 1.0, V0 = 0.8, K = 0.3,
μ = 0.2

State at birth x0 = (0, 0)T

Dynamics at i-level g(x, I, E) =
(
1, V0Ke−I

(
L−x2
L

))T
,

μ(x, I, E) = μ(1.0 + I ), β(x, I, E)

= β0(1.0 − K )e−I ( x2
L

)
, γ (x, I, E) = 1.0

I is the total population and x := (x1, x2)
T with x1 age and x2 size. The parameters are: h maximum age,

L maximum size, K fraction of assimilated light for growth and maintenance, and β0 reproduction, V0
growth and μ mortality proportionality constants

6.1 Trees Competing for Light in a Forest

Our first example is a size-structured consumer population of trees in a forest that
compete for light (see Calsina and Saldaña 1995). We have left all model ingredients
as in the reference but have additionally incorporated age structure into the population’s
dynamical bookkeeping inorder to test the algorithmswith a two-dimensional, i.e. age–
size, i-state spacewith aunique life stage. In themodel, the behaviour of each individual
depends on the total population I (size of the forest). In this model, the dynamics of the
resource (light) are not taken into account, so there are no E-environmental variables.
Finally, we do not consider external inflow of newborns (no seeds carried by the wind).
The ingredients of the model are presented in Table 3. We vary the parameter K , that
is the fraction of assimilated light that goes to growth andmaintenance, whereas 1−K
is the according fraction for reproduction. Under K -parameter variation, the model
has a trivial branch (B, I, K ) in which B = 0 and I = 0, and a nontrivial branch with
B, I > 0 satisfying

1 − β0(1 − K )e−I

⎛
⎜⎜⎝1 − e−μ(1+I )h

μ(1 + I )
+ e

−
(

V0Ke−I

L +μ(1+I )

)
h − 1

V0Ke−I

L + μ(1 + I )

⎞
⎟⎟⎠ = 0, (42a)

I + B

μ(1 + I )

(
e−μ(1+I )h − 1

)
= 0. (42b)

The expression for B-transcritical bifurcations is given by B = 0, I = 0 and (42a).
Figure 1 shows the equilibrium branches computed with the method proposed in

Sect. 5.3, and the error obtained for the nontrivial branch. We have detected and
computed two B-transcritical bifurcations at K = 6.8338 × 10−2 and K = 0.7317
with the method proposed in Sect. 5.4, with an error of the order of 10−7. Assuming
h = ∞ and L = 1, Calsina and Saldaña (1995) concluded that for this model a unique
nontrivial equilibrium exists if and only if
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Fig. 1 Equilibria and bifurcations under K -parameter variation for the model of trees competing for light
(first two panels) trivial (dotted) equilibrium branch, positive (continuous) equilibrium branch, and two
B-transcritical bifurcation points ∗. Error of the positive equilibrium branch (last panel) for a maximum
step size of 0.02 in the tangent prediction and a tolerance of 10−8 for the modified Newton method

Fig. 2 (K , V0)-parameter plane
(upper panel) B-transcritical
bifurcation curve for the model
of trees competing for light in a
forest, the points ∗ are the
bifurcations in Fig. 1 for
V0 = 0.8. Error (lower panel)
for a maximum step size of 0.1
and a tolerance of 10−8 for the
modified Newton method

K
0 0.2 0.4 0.6 0.8 1

V
0

0

1

2

3

trivial
trivial and
nontrivial

K
0 0.2 0.4 0.6 0.8 1

E
rr

or

× 10 -5

0
1
2
3

μ < V0K

⎛
⎝

√
1 + 4β0

V0
(1−K )

K − 1

2

⎞
⎠ , (43)

and that for given β0 and V0, the value of K that maximizes B and I is

Km = 1

2 + √
V0/β0

. (44)

Figure 1 is consistent with (43) for K ∈ (6.8338 × 10−2, 0.7317) in the way that
the corresponding equality holds at the bifurcations with an error of the order of
10−5 which decreases while increasing the age h. Moreover, the expression derived
for transcritical bifurcations considering h = ∞ and L = 1 is the equality derived
from (43). The value Km that maximizes B and I in Figure 1 satisfies (44) with an
error of the order of 10−3 which decreases while reducing the maximum step size.
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Table 4 Model ingredients for Daphnia

Dimensions m = 1, s = 1, n = 1

Parameters h = 70.0, Xb = 0.8, Xa = 2.5, Xm = 6.0,
gm = 0.15, ξ = 7.0, νS = 1.8, a1 = 0.5, Rm = 0.1,
K = 0.4, μ = 0.1

State at birth x0 = Xb

Dynamics at i-level g(x, I, E) = gm
(
Xm

(
ξE

1+ξE

)
− x

)
,

μ(x, I, E) = μ,

β(x, I, E) =
{
0, x ≤ Xa ,

Rm
(

ξE
1+ξE

)
x2, x > Xa ,

γ (x, I, E) = νS

(
ξ

1+ξE

)
x2.

Right-hand side of DDE F̄(I, E) = G(I, E)E , G(I, E) = a1
(
1 − E

K

)
− I

E is the resource and I the p-ingestion. The parameters are: h maximum age, Xb birth size, Xa maturation
size, Xm maximum size, K carrying capacity, gm growth time constant, ξ functional response shape
parameter, νS maximum feeding, a1 flow-through rate, Rm maximum reproduction and μ mortality rate
parameter

Finally, Figure 2 shows the B-transcritical bifurcation in the (K , V0)-parameter plane
computed with the method proposed in Sect. 5.5 and the obtained error with respect
to the expression derived from (42a).

In Figs. 1 and 2, we see that the variation of the fraction K of light scheduled to
growth andmaintenance, and thus also of the fraction 1−K scheduled to reproduction,
can control the presence and size of the positive equilibrium. If there is little light for
growth, there is more for reproduction, but on the other hand the slow growth has a
negative effect on reproduction. Note also that mortality is not affected by light. There
are hence several effects on individual reproduction numbers, and by analysing these
in more detail, which is beyond the scope of this paper, one could interpret presence
and size of the positive equilibria by using reproduction numbers.

6.2 Daphnia Consuming Algae

We now consider a size-structured consumer–resource model (see e.g. de Roos et al.
1990, 2010; Diekmann et al. 2010) where the unstructured resource has logistic
dynamics in absence of consumers. The consumer population has two different
life stages corresponding to the juvenile and the adult period. The individuals are
juveniles if their size x ∈ [Xb, Xa], for Xb and Xa the sizes at birth and at matu-
ration, respectively, and adults if x ∈ (Xa, Xm], Xm being the maximum attainable
size under infinite food availability. Juvenile individuals cannot reproduce, whereas
adults give birth to new individuals. The ingredients of the model are presented in
Table 4. The model has a trivial equilibrium (B, I, E) = (0, 0, 0), a B-trivial equi-
librium (B, I, E) = (0, 0, K ) and a nontrivial equilibrium with B, I, E > 0
satisfying
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Fig. 3 Equilibria and bifurcation under K -parameter variation (first two panels) for the Daphnia model:
trivial (dotted), B-trivial (discontinuous) and nontrivial (continuous) equilibrium branches. B-transcritical
bifurcation ∗ (intersection of B-trivial and nontrivial branch). Error of the positive equilibrium branch (last
panel) for a maximum step size of 0.02 in the tangent prediction and a tolerance of 10−8 for the modified
Newton method

1 − Rm f (E)

[
− e−μh − e−μτ1

μ
X2
m f (E)2 − e−(2gm+μ)h − e−(2gm+μ)τ1

2gm + μ
(Xm f (E)

−Xb)
2 + e−(gm+μ)h − e−(gm+μ)τ1

gm + μ
2Xm f (E)(Xm f (E) − Xb)

]
= 0,

(45a)

I − Bνs f (E)

[
− e−μh − 1

μ
X2
m f (E)2 − e−(2gm+μ)h − 1

2gm + μ
(Xm f (E) − Xb)

2

+e−(gm+μ)h − 1

gm + μ
2Xm f (E) (Xm f (E) − Xb)

]
= 0,

(45b)

a1

(
1 − E

K

)
− I = 0,

(45c)

where

f (E) = ξE

1 + ξE
(46)

is the functional response and

τ1 = − 1

gm
log

(
Xa − Xm f (E)

Xb − Xm f (E)

)
(47)

the age at maturation. The B-transcritical bifurcation is defined by B = 0, I = 0 and
E and K defined by (45a) and (45c).

Figure 3 shows the equilibrium branches under K -parameter variation, K being the
carrying capacity, computed with the method proposed in Sect. 5.3 (first two panels).
At K = 0.1268, there is a B-transcritical bifurcation computed with the method
proposed in Sect. 5.4. The error obtained for the nontrivial branch with respect to the
curve defined by (45) is also shown in the figure (last panel). The error of the bifurcation
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Fig. 4 Equilibria and bifurcation under μ-parameter variation (first two panels) for the Daphnia model:
trivial (dotted), B-trivial (discontinuous) and positive (continuous) equilibrium branches. B-transcritical
bifurcation ∗ (intersection of B-trivial and nontrivial branch). Error of the positive equilibrium branch (last
panel) for a maximum step size of 0.01 in the tangent prediction and a tolerance of 10−8 for the modified
Newton method

Fig. 5 (μ, K )-parameter plane
(upper panel) B-transcritical
bifurcation curve for the
Daphnia model. Error (lower
panel) for a maximum step size
of 5 × 10−3 and a tolerance of
10−8 for the modified Newton
method
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is of the order of 10−8. Similarly, Fig. 4 shows the equilibrium branches under μ-
parameter variation, with μ the mortality rate parameter, and the error obtained for
the nontrivial branch. The B-transcritical bifurcation occurs at μ = 0.2590 and was
computed with an error of the order of 10−7. Under two-parameter variation, Fig. 5
shows the B-transcritical bifurcation curve in the (μ, K )-parameter plane computed
with the method proposed in Sect. 5.5. The figure also shows the error with respect to
the expression derived from (45).

Looking at Fig. 3, we observe that if we increase the carrying capacity K , then the
population birth rate B increases and the resource concentration E remains constant.
Hence, the population consumption increases and so does the total population. In
Fig. 4, we see that, as expected, if the mortality rateμ is very high, then the population
goes extinct.When decreasingμ, we see that B increases and the resource E decreases.
The decrease in resource is due to an increasing consumption. If the mortality rate
decreases further the p-birth starts decreasing due to competition for the resource E .
The B-transcritical bifurcation curve in Fig. 5 is the existence boundary for the positive
equilibrium and coincides with the one in Figure 7 in de Roos et al. (2010). Above
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Table 5 Model ingredients for three trophic

Dimensions m = 1, s = 2, n = 2

Parameters Xb = 7.0, Xv = 27.0, Xa = 110.0, Xm = 300.0,
Im = 1.0 × 10−4, Rm = 0.003, Rh = 1.5 × 10−5,
gm = 0.006, μ = 0.01, B1 = 9.0 × 10−6, ε = 0.5,
ρ = 3×10−5, K = 0.1, a1 = 5000, Th = 0.1,δ = 0.01,
h = 2000.0

State at birth x0 = Xb

Dynamics at i-level g(x, I, E) = gm
(
Xm

(
E1

Rh+E1

)
− x

)
,

μ(x, I, E) =
{

μ + a1E2
1+a1Th I2

, x ≤ Xv,

μ, x > Xv,

β(x, I, E) =
{
0, x ≤ Xa ,

Rm
(

E1
Rh+E1

)
x2, x > Xa ,

γ (x, I, E) =

⎧⎪⎪⎨
⎪⎪⎩

(
Im x2

Rh+E1
, B1x

3
)T

, x ≤ Xv,

(
Im x2

Rh+E1
, 0

)T
, x > Xv

Right-hand side of DDE F̄(I, E) = ((ρ − E1K ) − I1E1,G(I, E)E2)
T ,

G(I, E) = εa1 I2
1+a1Th I2

− δ

E := (E1, E2)
T where E1 is the resource and E2 the predator, I := (I1, I2)

T where I1 is the total ingestion
and I2 the biomass of juveniles susceptible to predation. The parameters are: Xb birth size, Xv escaping
size, Xa maturation size, Xm maximum size, Rh half saturation, μ consumers mortality, ε conversion
efficiency, ρ productivity, K flow-through rate, Th handling time, δ predators mortality, h maximum age,
a1 attack rate, and Im , Rm , gm and B1 proportionality constants

the curve the model has a trivial, a B-trivial and a positive equilibrium, and below the
curve only a trivial and a B-trivial. For in depth biological interpretation, we refer to
the monograph de Roos and Persson (2013).

6.3 3-Trophic: Predator–Prey–Resource

This model for invasive populations is similar to the Daphnia consuming algae, but
additionally incorporates an unstructured top predator. It is analysed in detail in de
Roos and Persson (2002). The structured population has three stageswhere the individ-
uals are, respectively, juveniles susceptible to predation, juveniles not susceptible to
predation and adults. The individuals are juveniles susceptible to predation if their size
x ∈ [Xb, Xv], for Xb and Xv the sizes at birth and atwhich individuals escape frompre-
dation, respectively, juveniles not susceptible to predation if their size x ∈ (Xv, Xa],
Xa being the size at maturation, and adults if x ∈ (Xa, Xm], where Xm is the maxi-
mum attainable size under infinite food availability. The ingredients of the model are
given in Table 5. Figure 6 shows in (a) the equilibrium branches and bifurcation points
obtained by varying the productivity ρ. For K = {2}, the model has a (B,K)-trivial
equilibrium in which only the resource is positive (without consumers and predators)
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Fig. 6 Equilibria and bifurcations under ρ-parameter variation for the 3-trophic model: (B, {2})-trivial
(dotted), {2}-trivial (dashed) and positive (continuous) equilibrium branches (the difference between B-
components of the (B, {2})-trivial and the {2}-trivial equilibrium is more visible in the scale of b and c). We
see a saddle-node bifurcation at ρ = 8.8489×10−6 in a, a B-transcritical bifurcation at ρ = 8.8569×10−7

(intersection between (B, {2})-trivial and {2}-trivial branch) in a and b and an E2-transcritical bifurcation
at ρ = 2.5360 × 10−5 (intersection between {2}-trivial and positive branch) in a and c

a K-trivial equilibrium with resource and consumers but not predators (the predator
concentration E2 is zero), and two positive equilibria with resource, consumers and
predators in a unique nontrivial branch. The population birth rate B for the K-trivial
equilibrium is of the order of 10−6 and has a positive slope that cannot be well appre-
ciated in Fig. 6a; however, it can be appreciated in Fig. 6b and c, where the difference
between the (B,K)-trivial and the K-trivial equilibrium is much more visible by the
change of scale in the vertical axis. In the (B,K)-trivial equilibrium B, I1, I2, and E2
vanish while E1 = ρ/K . The nontrivial equilibria satisfy

1 − Rm f (E)e−μpτ1

[
− e−μh − e−μτ2

μ
X2
m f (E)2 − e−(2gm+μ)h − e−(2gm+μ)τ2

2gm + μ
(Xb

−Xm f (E))2 + e−(gm+μ)h − e−(gm+μ)τ2

gm + μ
2Xm f (E)(Xm f (E) − Xb)

]
= 0,

(48a)
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I1 − BIm f (E)

[
− e−(μ+μp)τ1 − 1

μ + μp
X2
m f (E)2 − e−(2gm+μ+μp)τ1 − 1

2gm + μ + μp
(Xb

−Xm f (E))2 + e−(gm+μ+μp)τ1 − 1

gm + μ + μp
2Xm f (E)(Xm f (E) − Xb)

+ e−μpτ1

(
− e−μh − e−μτ1

μ
X2
m f (E)2 − e−(2gm+μ)h − e−(2gm+μ)τ1

2gm + μ
(Xb

−Xm f (E))2 + e−(gm+μ)h − e−(gm+μ)τ2

gm + μ
2Xm f (E)(Xm f (E) − Xb)

)]
= 0,

(48b)

I2 − BB1

[
− e−(μ+μp)τ1 − 1

μ + μp
X3
m f (E)3 − e−(gm+μ+μp)τ1 − 1

gm + μ + μp
3X2

m f (E)2(Xb

−Xm f (E)) − e−(2gm+μ+μp)τ1 − 1

2gm + μ + μp
3Xm f (E)(Xm f (E) − Xb)

2

+e−(3gm+μ+μp)τ1 − 1

3gm + μ + μp
(Xm f (E) − Xb)3

]
= 0,

(48c)

ρ − E1K − I1 = 0,
(48d)

εa1 I2
1 + a1Th I2

− δ = 0,

(48e)

for B, I1, I2, E1, E2 > 0, where

μp := μp(I, E) = a1E2

1 + a1Th I2

is the mortality due to predation,

f (E) = E1

Rh + E1
(49)

the functional response and

τ1 = − 1

gm
log

(
Xv − Xm f (E)

Xb − Xm f (E)

)
, τ2 = − 1

gm
log

(
Xa − Xm f (E)

Xb − Xm f (E)

)
, (50)

the ages at which the switches occur. Finally, the expression that theK-trivial equilib-
rium (in which E2 = 0) satisfies is obtained by considering (48a–48d) with μp = 0.

The obtained errors for theK-trivial and for the nontrivial branches are of the order
of 10−13, 10−10 and 10−8, respectively (seeFig. 7). The expression for a B-transcritical
bifurcation (intersection of the (B,K)-trivial and the K trivial branches) is given by
B = 0, I1 = 0, I2 = 0, E2 = 0, (48a) and (48d) withμp = 0. At ρ = 8.8569×10−7,
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Fig. 7 Errors of theK-trivial equilibrium branch (left panel) and of the positive branches (center and right
panels) for a maximum step size of 1.5 × 10−6 and a tolerance of 10−8 for the modified Newton method

a B-transcritical bifurcation was computed with an error of the order of 10−15. The
bifurcation is shown in detail in Fig. 6b. Saddle-node bifurcations in the nontrivial
branch are given by (48) coupled to

det

(
∂ H̄(y, ρ)

∂y

)
= 0, (51)

where H̄(y, ρ) is the left-hand side of (48). At ρ = 8.8489×10−6, we have computed
a saddle-node bifurcation with an error of the order of 10−10. Finally at ρ = 2.5360×
10−5, there is a E2-transcritical bifurcation defined by (48) with E2 = 0 and μp = 0.
The bifurcation was computed with an error of the order of 10−13 and is shown
more in detail in Fig. 6c. Considering two-parameter variation, the (μ, ρ)-parameter
plane in Fig. 8 shows the B-transcritical bifurcation (dotted), the E2-transcritical
bifurcation (dashed), and the saddle-node bifurcation curve (continuous line), as well
as the obtained errors for each curve. Figure 8 also shows the existing types of equilibria
in each region of the parameter plane.

The obtained equilibria and bifurcations in the one-parameter variation analysis
(i.e. Fig. 6) are the same as those presented in Figure 2 in de Roos and Persson
(2002), which provides support for our method. In the reference, the authors provide
a biological interpretation for them; in particular, based on stability considerations,
they find that the E2-transcritical bifurcation corresponds to the invasion threshold
for the predator and the saddle-node to its persistence threshold. In the two-parameter
variation analysis presented here, Fig. 8 shows that for low μ values there is an E2-
transcritical and a saddle-node bifurcation corresponding to invasion and persistence as
in the one-parameter variation analysis. Additionally, we see that for highμ values the
saddle-node bifurcation disappears and persistence and invasion boundaries coincide.

6.4 Cannibalism in Fish Populations

Our last example is based on the formulation of a size-structured fish cannibalistic
model in Getto et al. (2005) that in turn was based on the rates and parameters in
Claessen and de Roos (2003), see Claessen et al. (2004) for a detailed review on
cannibalismmodelling. A size-structured population with two stages corresponding to
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Fig. 8 (μ, ρ)-parameter plane and regions of existence of equilibria (upper panel).K = {2}, B-transcritical
(dotted), E2-transcritical (dashed), and saddle-node (continuous) bifurcations for the three trophic model.
Errors (rest of the panels) for a maximum step size of 0.002 for the tangent prediction and a tolerance of
10−7 for the modified Newton method

juveniles and adults is considered. Individuals are juveniles if their size x ∈ [Xb, Xa),
where Xb and Xa are the lengths at birth and at maturation, respectively, and adults
if x = Xa . Juvenile individuals feed on a resource and grow, but do not reproduce,
whereas adults feed on another resource, reproduce, but do not grow. Additionally,
adults feed on juveniles, which generates in the mortality of juveniles a dependence
on the density of adults and in the reproduction rate a dependence on the density of
juveniles. The rates and parameters are presented in Table 6 in a similar formulation
than the one used in Getto et al. (2005). The ingredients that govern the dynamics at
the i-level are adapted from those in the more complex model presented in Claessen
and de Roos (2003) in which adults also grow. B1 is the cannibalistic voracity; note
that we obtain the noncannibalistic model if we set B1 = 0. The model has a B-trivial
equilibrium in which B = 0, Ii = 0 for i = 1, . . . , 5 and Ei = Ki for i = 1, 2, and
a nontrivial one. Note that (26a) cannot be solved analytically despite the growth rate
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Table 6 Model ingredients for analysing cannibalism effects

Dimensions m = 1, s = 5, n = 2.

Parameters Xb = 7.0, Xa = 115.0, X p = 160.0, ca = 0.6,μ = 0.0087, B1 = 0.5,
r1 = 0.1, r2 = 0.2, K1 = 3 × 10−3, K2 = 2 × 10−3, h = 2000.0, α =
7.0 × 10−4, ξ1 = 1.7 × 106, ξ2 = 0.133, η1 = 3.7 × 104, η2 = 2.1420 × 106,
ζ1 = ζ2 = 2.5 × 10−7

State at birth x0 = Xb

Dynamics at i-level g(x, I, E) =
⎧⎨
⎩

η1

(
A1(x)C1(x)E1

1+H1(x)C1(x)E1
− ζ1x

)
, x < Xa ,

0, x ≥ Xa ,

μ(x, I, E) =
{

μ + V (x)I5
1+H2C2E2+I3

, x < Xa ,

μ, x ≥ Xa ,

β(x, I, E) =
⎧⎨
⎩
0, x < Xa ,

η2

(
A2C2E2+I4

1+H2C2E2+I3
− ζ2Xa

)
, x ≥ Xa ,

γ (x, I, E) =

⎧⎪⎨
⎪⎩

(
C1(x)

1+H1(x)C1(x)E1
, 0, HV (x)V (x), AV (x)V (x), 0

)T
, x < Xa ,(

0, C2
1+H2C2E2+I4

, 0, 0, 1
)T

, x ≥ Xa ,

A1(x) = ca x−2, C1(x) = αx2(x − X p)
2, H1(x) = ξ1x−3,

A2 := A1(Xa), C2 := C1(Xa), H2 := H1(Xa),

AV (x) = ca
3η1

x , V (x) = B1x2T (x), HV (x) = ξ2x ,

T (x) =

⎧⎪⎨
⎪⎩

2(x−Xb)
Xa−Xb

, x <
Xa+Xb

2 ,
2(Xa−x)
Xa−Xb

,
Xa+Xb

2 ≤ x ≤ Xa ,

0, x ≥ Xa

Right-hand side of DDE Fi (I, E) = (ri (Ki − Ei ) − Ii Ei ), i = 1, 2

E = (E1, E2)
T where E1 is the resource for juveniles and E2 for adults, I = (I1, I2, I3, I4, I5)

T where
Ii is the p-ingestion of Ei for i = 1, 2, I3 and I4 the cannibalistic terms in the functional response, and
I5 the population of adults. Ai (x) for i = 1, 2 are the energy assimilation rates and Hi (x) the handling
times due to ingestion of resources and with subindex V due to cannibalism, Ci (x) the attack rates, V (x)
the victim rate, and T (x) the cannibalistic window. The parameters are: Xb length at birth, Xa maturation
length, X p maximum length, ca assimilation efficiency, μ natural mortality, B1 cannibalistic voracity, ri
flow-through and Ki carrying capacity for Ei for i = 1, 2, h maximum age, and α, ξ1, ξ2, η1, η2, ζ1, ζ2
scaling constants

being a rational function. Hence, we cannot present the error analysis as for the three
other models.

In Fig. 9, we can see the equilibrium behaviour under variation of the carrying
capacity K2 for the resource for adults. The effects of cannibalism become visible
when comparing the nontrivial branch with the one of a model free of cannibalism.
In particular, the figure shows the much studied lifeboat mechanism of cannibalism,
see e.g. van den Bosch et al. (1988), which means that for a low carrying capacity
K2 of the food source E2 of adults, the cannibalistic population can survive, whereas
the noncannibalistic population goes extinct. However, Fig. 9 also suggests that adult
individuals cannot feed only on juveniles, as for a very low value of K2 there is
no positive equilibrium. Additionally, a bistability situation, i.e. two stable equilibria
’surrounding’ an unstable equilibrium, analogous to the one discussed in Claessen and
de Roos (2003), can be suspected for K2 ∈ (1.5967 × 10−4, 1.6501 × 10−4) (note
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Fig. 9 Equilibria and bifurcations under K2-parameter variation for the cannibalistic model: B-trivial
(dotted), nontrivial for noncannibalistic (dashed) and nontrivial for cannibalistic (continuous) equilibrium
branches. At K2 = 1.5967×10−4, there is a B-transcritical bifurcation (intersection between B-trivial and
nontrivial branches). At K2 = 1.6501×10−4 and K2 = 4.4056×10−5, there are saddle-node bifurcations
for the nontrivial cannibalistic branch. In d, we show some details of c obtained by zooming in, where the
projection of the equilibrium curve in the (K , E2)-plane result in a self-intersection, which does not occur
in the equilibrium-parameter space
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that in this work stability analysis is not presented). In the lowest of the three positive
equilibria in Fig. 9a, the p-birth rate is small and the corresponding concentration
of resource for juveniles E1 in Fig. 9b is large. This suggests a small population of
juveniles, which grows fast and leads to a large population of adults. Assuming that
the middle branch is unstable we do not interpret it. Finally in the highest of the three
positive equilibria in Fig. 9a, the p-birth rate is large and the concentration of resource
E1 for juveniles in Fig. 9b low. In this case, the population of juvenile individuals is
large and grow slowly, which leads to a small population of adults.

7 Conclusions and Remarks

In this paper, we have developed a formulation for structured population models as a
systemofVFE/ODE. Such formulation describesmanymodels studied in the literature
and on the other hand can be easily transformed into a system to which analytical
theory can be applied. For this general model, we have developed a detailed numerical
method to compute equilibria, and to detect and continue transcritical and saddle-node
bifurcations. We have implemented the method in the development of routines that
we have tested with realistic models. The obtained results, which are consistent with
those in the literature, validated successfully the presented method.

In the previous section, we have argued how the curves computed with our method
reproduce biological effects analysed in detail for consumer–resource models in
Calsina and Saldaña (1995) and Diekmann et al. (2010), for trophic chains in de
Roos and Persson (2002), and for fish cannibalistic populations in Getto et al. (2005)
and Claessen and de Roos (2003). Moreover, we have seen that the representation
of the results in various types of bifurcation diagrams facilitates the biological inter-
pretation. The method that we presented could thus be rather effortlessly adapted to
reproduce biological conclusions for various types of established realistic models. We
hence believe that is also a rather ready tool for new biological models and questions.

In a similar way as for the Daphnia model in Sect. 6.2, we have computed (but not
presented) bifurcations for the model of fish stock dynamics proposed by Meng et al.
(2013) and for metapopulation models as proposed in Section 5.2 of Diekmann et al.
(2007).

We are currently developing amethod for the computation of Hopf bifurcations that
will also allow to determine stability properties of equilibria in parameter planes. The
idea is to combine pseudo-spectral techniques established by Breda et al. (2015) for
the computation of rightmost eigenvalues with curve continuation methods developed
in the present paper.

The next step will then be to develop a user-friendly software with implemented
analysis for both, the types of bifurcations considered here andHopf bifurcations. Such
a software can be a powerful tool to analyse bifurcations, as the achieved generality of
the model formulation should make it unnecessary to develop new codes for particular
case studies.

Acknowledgments For helpful discussions, we thank Odo Diekmann and Andre de Roos.
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Appendix

This appendix contains the pseudo-code schemes of the algorithms that correspond to
the numerical methods presented in Section 5. We here use the pseudo-code language
established in Allgower and Georg (2003). Before the continuation of an equilib-
rium or a bifurcation, Algorithm 1 reduces the dimension of u0 to obtain û0. Under
one-parameter variation, Algorithm 6 computes equilibrium curves, where Ĥ(ûi ) is
obtainedwithAlgorithm 3, and the predicted point v̂i+1 withAlgorithm 4. R0(I, E, p)
and Θ(I, E, p) are computed with Algorithm 2. For detecting saddle-node bifurca-
tions, we use as test function the last component of ti obtained with Algorithm 4, and
for transcritical bifurcations the output ofAlgorithm5.Under two-parameter variation,
Algorithm 9 computes bifurcation curves, where L̂(ûi ) is obtained with Algorithm 7
for transcriticals and with Algorithm 8 for saddle-nodes.

Algorithm 1 Reduction of dimension
input comment:

begin
file with model data;
initial value u0 = (B, I, E, p); (B, I, E, q) if two parameter variation
end;

compute dc vector that determines type of equilibrium
begin
for i = 1, . . . , s + 1 do

dci =
{
0 if B = 0;
1 if B > 0;

for i = s + 2, . . . , s + n + 1 do

dci =

⎧⎪⎨
⎪⎩
0 if i − (s + 1) ∈ K;
1 if i − (s + 1) ∈ I \ K;
2 if i − (s + 1) ∈ N \ I;

dcs+n+2 = 1; and dcs+n+3 = 1 if two parameter variation
end;

compute û0 initial value for continuation
begin
j = 1;
for i = 1, . . . , s + n + 2 do s + n + 3 if two parameter variation

if dci �= 0 then û0 j = u0i , j = j + 1;
end;

return û0, dc;
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Algorithm 2 Integration of ODE system (26)
input comment:

begin q instead of p dependence in two parameter variation
file with model data;
vector (I, E, p);
end;

define (m + s + 2)-dimensional vector X0 = (x0, 0, . . . , 0); initial value for ODE
α = 0, stage = 1;
define ODE system (26) and switches (27) with data of input file;
while α < h do

while stage ≤ k do
begin
integrate system of ODE until a switch from stage = i to stage = i + 1 occurs;
if switch then

begin
compute τi ;
update initial conditions α = τi , X0 = X (τi ), stage = i + 1;
end;

end;
return r0(h, I, E, p), θ(h, I, E, p);

Algorithm 3 Evaluation of Ĥ(ûi )
input comment:

begin q instead of p dependence in two parameter variation
file with model data;
ûi , dc;
end;

solve system (26); with Algorithm 2
R0 = r(h, I, E, p), Θ = θ(h, I, E, p), j = 1;
if dc1 �= 0 then if equilibrium is E-trivial, K-trivial or nontrivial

begin
Ĥ1(ûi ) = 1 − R0, j = j + 1;
for k = 2, . . . , s + 1 do Ĥ j (ûi ) = Ik−1 − BΘk−1, j = j + 1;
end;

for k = s + 2, . . . , s + n + 1 do
if dck �= 0 then if equilibrium is not (B,K)-trivial and not K-trivial

if dck = 1 then Ĥ j (ûi ) = Gk−(s+1)(I, E, p), j = j + 1;

else (dck �= 1) then Ĥ j (ûi ) = Fk−(s+1+l)(I, E, p), j = j + 1;

return Ĥ(ûi );
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Algorithm 4 Tangent prediction v̂i+1
input comment:

begin
file with model data;
ûi , εi ;
direction of continuation; positive or negative
end;

f := Ĥ if p-variation, f = L̂ if q-variation
compute Jacobian f ′(ûi );
compute ti := t ( f ′(ûi )); defined by (21)
compute predicted point v̂i+1 with (19);
return v̂i+1, ti ;

Algorithm 5 Detection of transcritical bifurcations
input comment:

begin
file with model data;
ûi , dc;
end;

solve system (26); with Algorithm 2
R0 = r(h, I, E, p), Θ = θ(h, I, E, p);
compute BP vector of test functions

begin
if dc1 = 0 then BP1 = 1.0 − R0; equilibrium is trivial, (B,K)-trivial or B-trivial
else (dc1 �= 0) then BP1 = B; equilibrium is E-trivial, K-trivial or nontrivial
for j = s + 2, . . . , s + n + 1 do

if dc j = 0 then BPj−(s+1) = G j−(s+1)(I, E, p); equilibrium is (B,K)-trivial or K-trivial
else (dc j �= 0) then

if dc j = 1 then BPj−(s+1) = E j−(s+1);
else (dc j �= 1) then BPj−(s+1) = 1; components in N \ I

end;
return BP;
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Algorithm 6 Continuation of equilibrium curves
input comment:

begin
file with model data;
interval [pl , pr ]; limits for curve continuation
initial u0, û0, and equilibrium type dc; û0 and dc with Algorithm 1
end;

i = 0, ui = u0, ûi = û0, εi = ε0;
while pi ∈ [pl , pr ] do pi := last component of ûi

begin continuation in positive direction
prediction v̂i+1 of new point; with Algorithm 4
if saddle-node bifurcation has occurred then if T̂r+1(ûi−1)T̂r+1(ûi ) < 0

begin
compute ûsn ; apply modif. Newton to (29–30), Ĥ(û j ) with Algorithm 3 and φ(û j ) by (36)
ûi = ûsn ;
compute usn and ui ; extend dimension
end;

else (saddle-node bifurcation has not occurred) then
begin
correct predicted point; apply modif. Newton to (20) with f := Ĥ , Ĥ(û j ) with Algorithm 3

and t j with Algorithm 4
compute vector BP; with Algorithm 5
n = 1, check = 0;
while n ≤ dim(BP) do

begin
if transcritical bifurcation has occurred then if (BPn)new(BPn)old ≤ 0

begin
compute ûbp ; apply modif. Newton to (29–30), Ĥ(û j ) with Algorithm 3, φ(û j ) = BPn
compute ubp ; extend dimension
select branch and direction for continuation;
adapt problem to new equilibrium type; with Algorithm 1
u0 = ubp , û0 = ûbp , check = 1;
break;
end;

n = n + 1;
end;

if check = 0 then
begin
accept corrected point ûi+1;
compute ui+1; extend dimension
end;

end;
adapt stepsize εi+1;
start variables i = i + 1, ui = ui+1, ûi = ûi+1, εi = εi+1;
end;

start variables i = 0, ui = u0, ûi = û0, εi = ε0;
while pi ∈ [pl , pr ] do continuation in negative direction; pi := last component of ûi

same than in positive direction but using unitary tangent vector in negative direction
return points ui that approximate equilibrium curve, bifurcation points ubp and usn ;
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Algorithm 7 Evaluation of L̂(ûi ) at transcritical bifurcation
input comment:

begin
file with model data;
ûi , dc, Bi f ; Bi f = 0 if B-transcritical, Bi f = i if Ei -transcritical
end;

solve system (26); with Algorithm 2
R0 = r(h, I, E, q), Θ = θ(h, I, E, q), j = 1;
if dc1 = 0 then if equilibrium is trivial, (B,K)-trivial or B-trivial

begin
if Bi f = 0 then φ(ui ) = φ(ûi ) = 1 − R0;
end;

else (dc1 �= 0) then
begin
Ĥ1(ûi ) = 1 − R0, j = j + 1;
for k = 2, . . . , s + 1 do Ĥ j (ûi ) = Ik−1 − BΘk−1, j = j + 1;
end;

for k = s + 2, . . . , s + n + 1 do
if dck = 0 then if equilibrium is K-trivial or (B,K)-trivial

begin
if Bi f = k − (s + 1) then φ(ûi ) = Gk−(s+1)(I, E, q); if bifurcation is Ek−(s+1)-transcritical
end;

else (dck �= 0) then
if dck = 1 then Ĥ j (ûi ) = Gk−(s+1)(I, E, q), j = j + 1;

else (dck �= 1) then Ĥ j (ûi ) = Fk−(s+1+l)(I, E, q), j = j + 1;

return L̂(ûi ) = (Ĥ(ûi ), φ(ûi ));

Algorithm 8 Evaluation of L̂(ûi ) at saddle-node bifurcation
input comment:

begin
file with model data;
ûi , eigenvectors v1 and v2; entries of (41)
end;

compute Ĥ(ûi ); with Algorithm 3

compute ∂ Ĥ(ŷ, q)/∂ ŷ

∣∣∣∣
(ŷ,q)=(ŷi ,qi )

in (41);

compute φ(ûi ); last component of the solution of (41)
return L̂(ûi ) = (Ĥ(ûi ), φ(ûi ));
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Algorithm 9 Continuation of bifurcation curves
input comment:

begin
file with model data;
intervals [q1l , q1r ] and [q2l , q2r ]; limits for curve continuation
initial u0, û0, and equilibrium type dc; û0 and dc with Algorithm 1 and q-dependence
Bi f ; indicates type of bifurcation
end;

i = 0, ui = u0, ûi = û0, εi = ε0;
while qi ∈ [q1l , q1r ] × [q2l , q2r ] do qi := last two components of ûi

begin continuation in positive direction
if Bi f = SN then compute eigenvectors v1, v2;
prediction v̂i+1 of a new point; with Algorithm 4
correct predicted point; apply modif. Newton to (20), f := L̂ , L̂(û j ) with Algorithm 7 if Bi f = BP

or with Algorithm 8 if Bi f = SN , t j with Algorithm 4
accept corrected point ûi+1, compute ui+1; extend dimension
adapt stepsize εi+1;
start variables i = i + 1, ui = ui+1, ûi = ûi+1, εi = εi+1;
end;

start variables i = 0, ui = u0, ûi = û0, εi = ε0;
while qi ∈ [q1l , q1r ] × [q2l , q2r ] do continuation in negative direction; qi := last two component of ûi

same than in positive direction but using unitary tangent vector in negative direction
return points ui that approximate bifurcation curve;
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