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Abstract We address the problem of fully automated region discovery and robust
image segmentation by devising a newdeformablemodel based on the level setmethod
(LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the
use of NMF to calculate the number of distinct regions in the image and to derive the
local distribution of the regions, which is incorporated into the energy functional of
the LSM. The results demonstrate that our NMF–LSM method is superior to other
approaches when applied to synthetic binary and gray-scale images and to clinical
magnetic resonance images (MRI) of the human brain with and without a malignant
brain tumor, glioblastoma multiforme. In particular, the NMF–LSM method is fully
automated, highly accurate, less sensitive to the initial selection of the contour(s) or
initial conditions, more robust to noise and model parameters, and able to detect as
small distinct regions as desired. These advantages stem from the fact that the pro-
posed method relies on histogram information instead of intensity values and does not
introduce nuisancemodel parameters. These properties provide a general approach for
automated robust region discovery and segmentation in heterogeneous images. Com-
paredwith the retrospective radiological diagnoses of two patientswith non-enhancing
grade 2 and 3 oligodendroglioma, the NMF–LSM detects earlier progression times
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and appears suitable for monitoring tumor response. The NMF–LSM method fills an
important need of automated segmentation of clinical MRI.

Keywords Image segmentation · NMF · LSM · MRI · Intensity inhomogeneity

1 Introduction

Automated image segmentation is one of the most important and most challenging
problems inmedical imaging.Many applications, such as surgical planning and image-
guided interventions, rely on accurate (pixel-level) delineation of the anatomical
structures. However, there are many challenges that make medical image segmen-
tation a difficult task, including the complexity of the topology of the anatomical
structures, the relatively small size of regions of interest, and intensity inhomogeneity,
also known as bias field, which manifests as a smooth intensity variation across the
image. Intensity inhomogeneity results from imperfections in the imaging acquisition
process and other artifacts, such as spatial variation in signal intensity and illumina-
tion. This bias field makes the segmentation task particularly difficult because it tends
to merge the intensities of different (anatomical) regions.

The level set method (LSM) is one of the most advanced methods to extract object
boundaries in computer vision. The level set approach represents the contour as the
zero level of a higher-dimensional function, referred to as the level set function. The
segmentation is achieved by minimizing a functional that tends to attract the contour
toward the objects’ boundaries. The advantages of the level set method are that (i)
the segmentation problem is formulated and solved as a mathematical optimization
problem using well-established theories, such as calculus of variation, (ii) numerical
computations are performed on the image grid in contrast to parametric representations
of curves (Caselles et al. 1997; Cohen and Cohen 1993; Kass et al. 1987), and (iii)
the contour representation is capable of representing any complex shape or surface
and lends itself to a pixel-level accuracy, a highly desirable property in medical image
segmentation.

Traditionally, image segmentation algorithms, including those that use the level
set method, rely on modeling the intensity values across the image. In the level set
approach, the functional, to be optimized, represents some error or distance between
the image and its intensity model (Tsai et al. 2001; Chan and Vese 2001; Li et al.
2008, 2011; Wang et al. 2009; Chen et al. 2011). However, relying on the intensity
values themselves leads to a segmentation scheme that is very sensitive to intensity
artifacts, such as intensity inhomogeneity or additional noise corrupting the image.
Recent applications of the level set segmentation have attempted to take into account
the intensity inhomogeneity by performing a local (rather than region-wide) modeling
of the image that incorporated the bias field term (Li et al. 2011; Chen et al. 2011).
However, this local representation remains sensitive to noise and intensity artifacts as
it relies on the intensity values in the image.

In this paper, we present a novel fully automated robust and accurate method for
image segmentation; the method: (i) is robust to noise, initial condition, and intensity
inhomogeneity because it includes the distribution of the pixels rather than relying
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solely on the intensity values, (ii) uses the probabilistic nonnegative matrix factor-
ization (NMF) (Bayar et al. 2014) to discover and identify the image regions (their
homogeneous intensities as well as their spatial distribution), (iii) introduces a novel
spatial functional term that is incorporated into the equation of the LSM, and (iv) is
scalable, i.e., able to detect a distinct region as small as desired. Furthermore, unlike
other level set methods that handle intensity inhomogeneity, the proposed LSM-NMF
approach does not introduce spurious or nuisance model parameters that have to be
simultaneously estimated with the level set function and the bias field; this property
increases the accuracy of the estimation of the contours.

There is an unmet urgent need of a fully automated, accurate, robust, and efficient
image segmentation. Currentmethods for segmentation of clinicalmagnetic resonance
images (MRI) have significant limitations (Valverde et al. 2015; Garcia-Lorenzo et al.
2013; Jain et al. 2015; Pagnozzi et al. 2015). A comparison of the software packages
FSL, SPM5, and FreeSurfer to gold-standard reference brain template demonstrated
that discrepancies between results reached the same order of magnitude as volume
changes observed in disease (Klauschen et al. 2009). These effects limit the usability
of these segmentation methods for following volume changes in individual patients
over time. We compare the NMF–LSM method to the FSL and SPM12 software
packages and demonstrate higher accuracy and robustness to noise.

This paper is organized as follows: Sect. 2 reviews the state-of-the-art level set
approaches, describing their mathematical formulation and model parameters. Sec-
tion 3 introduces the proposed NMF–LSM approach. We describe how the factors of
the NMF discover and cluster the image domain into distinct regions. We introduce
two external energy terms that will drive the contour to the regions boundaries. We
also take into account the bias field and carry out the segmentation by minimizing
the total energy functional with respect to the level set functions. In Sect. 4, we use
synthetic binary and gray-scale images to compare the NMF–LSM method to two
other state-of-the-art level set methods, the localized-LSM in Li et al. (2011) and
the improved local Gaussian distribution fitting-LSM (LGDF–LSM) in Chen et al.
(2011). In Sect. 5, we compare the NMF–LSM method to the SPM12 and FSL soft-
ware packages using clinical MRI of the brain, with and without tumor; the results
demonstrate the superiority of NMF–LSM in delineating the complex anatomy of the
brain: gray matter, white matter, cerebrospinal fluid (CSF), edema (swelling), tumor,
and necrosis (dead brain cells), especially in the presence of noise. A summary of the
main contributions of this paper and future work directions are provided in Sect. 7.

2 Related Work

2.1 Mumford–Shah Model (Tsai et al. 2001)

Let � be the image domain and I : � → R be a gray-value image. The goal of the
segmentation is to find a contour C , which separates the image domain � into disjoint
regions �1, . . . , �k , and a piecewise smooth function u that approximates the image
I and is smooth inside each region �i . This is formulated as the minimization of the
following Mumford–Shah functional:
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FMS(u,C) =
∫

�

(I − u)2dx + μ

∫
�\C

|∇u|2dx + ν|C |, (1)

where |C | is the length of the contour C . In the right-hand side, the first term is the
external energy term, which drives u to be close to the image I , and the second term is
the internal energy, which imposes smoothness on u within the regions separated by
the contour C . The third term regularizes the contour. The MS model is very general
and does not assume a specific form for the approximating function u. It also assumes
that the objects to be segmented are homogeneous.

2.2 Chan and Vese Model (Chan and Vese 2001)

Chan and Vese simplified the Mumford–Shah model by assuming that the approxi-
mating function u is a piecewise constant:

FCV(φ, c1, c2) =
∫

�

|I (x) − c1|2H(φ)dx

+
∫

�

|I (x) − c2|2(1 − H(φ))dx + ν

∫
�

|∇H(φ)|dx, (2)

where H is the Heaviside function and φ is a level set function, whose zero-level
contour C partitions the image domain � into two disjoint regions �1 = {x : φ(x) >

0} and�2 = {x : φ(x) < 0}. Equation (2) is a piecewise constant model, as it assumes
that the image I can be approximated by constants ci in region�i . In the case of more
than two regions, two or more level set functions can be used to represent the regions
�1, . . . �k .

2.3 Localized-LSM Model (Li et al. 2011)

Li et al. (2011) proposed a variational level set method that deals with intensity inho-
mogeneity by considering the image model I = b ∗ J + n for the observed image I ,
where b is the bias field, J is the true image, and n is an additive noise. This approach
has two assumptions: (a) The bias field is assumed to be slowly varying and (b) the
true image J is approximated by a constant inside each region: J (x) ≈ ci for x ∈ �i .
Consider the neighborhood around pixel y, Oy = {x : ‖x−y‖ ≤ ρ}, then b(y) ≈ b(x)
inside the neighborhood Oy . The energy function is then formulated as follows (Li
et al. 2011):

F(φ, b, c) =
∫ (

N∑
i=1

∫
K (y − x)(I (x) − b(y)ci )

2Mi (φ)dx

)
d y, (3)

where K (y − x) is a nonnegative weighting function that defines the neighborhood
Oy and Mi (φ(x)) is the membership function that represents each region using the
Heaviside function (for two regions M1(φ) = H(φ) and M2(φ) = 1 − H(φ)). In
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the localized-LSMmodel, the intensity means c1, . . . , ck of each region are estimated
iteratively along with the level set function φ and the bias field b using the variational
principle of the level set framework.

2.4 Improved LGDF–LSM Model (Chen et al. 2011)

In the improved LGDF–LSM model (Chen et al. 2011), Chen et al. characterize the
local distribution of the intensities in the neighborhood Ox using a local Gaussian
distribution. The segmentation is then achieved by maximizing the a posteriori
probability. They used the log transform of the same image model in Li’s method
Ĩ = log(I ) = log(J ) + log(b) so that the bias becomes an additive factor rather than
a multiplicative factor.

Let p(x ∈ �i ∩ Ox | Ĩ (x)) be the a posteriori probability of the subregions
�i ∩ Ox given the log transform of the observed image. Using Bayes’ rule, we
have p(x ∈ �i ∩ Ox | Ĩ (x)) ∝ p( Ĩ (x)|x ∈ �i ∩ Ox ) p(x ∈ �i ∩ Ox ). Assum-
ing that the prior probabilities of all partitions are equal, and the pixels within each
region are independent, the MAP estimate can be achieved by finding the maximum
of

∏N
i=1

∏
x∈�i∩Ox

pi,y( Ĩ (x)). It can be shown that the MAP formulation can be con-
verted to theminimization of the following energy functional in the level set framework
(Chen et al. 2011):

F(φ, b, c, σ 2) =
∫ N∑

i=1

∫
−K (y − x) log pi,y( J̃ (x) − b̃(y))Mi (φ)dxd y, (4)

where pi,y( J̃ (x) − b̃(y)) is modeled by a Gaussian distribution. In the improved
LGDF model, the intensity means {ci }ki=1 and variances {σ 2

i }ki=1 of the regions are
simultaneously and iteratively estimated with the level set function φ and the bias field
b.

Observe that these approaches involved simultaneous and iterative estimation of a
number of spuriousmodel parameters ({ci }ki=1 and {σ 2

i }ki=1) in addition to the bias field
and the level set function, the latter being the main parameter of interest for the seg-
mentation task. Given the high dimensionality and non-convexity of the variational
optimization problem, all additional model parameters are estimated in an iterative
procedure that does not guarantee convergence or optimality of the results. Hence,
though they try to remedy the intensity inhomogeneity problem, they do so by intro-
ducing a large number of spurious model parameters (as a result of the local modeling)
that have to be simultaneously estimated, which decreases the estimation accuracy of
the main segmentation parameters, namely the level set functions. Moreover, the level
set functionals rely only on a model of the intensity values and do not incorporate any
other information, such as spatial distribution of the pixels, which may improve the
segmentation and reduce the sensitivity to noise and other intensity artifacts.
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3 The NMF–LSM Method

The basic schemes of the NMF–LSM method are summarized in Fig. 1. Specifically,
the data are histograms instead of intensities and the NMF generates matrices that
include key information on the number and histograms of the regions in the image and
on their local distribution. The later is used to include a novel spatial term in the level
set equation.

3.1 Region Discovery and Clustering Using NMF

Wefirst consider the local information by partitioning the image intom (equally sized)
blocks and computing the histogram of each block. The histograms of the blocks are
then stacked to form the columns of the data matrix V . The data matrix V = {υi j } is
an n × m matrix, where n is the number of intensity bins or ranges in the histograms
standardized for all image blocks. Specifically, the (i, j) entry, υi j , is the number of
pixels in block j with intensity range in bin i . The rows of V describe the ranges of
intensities in bin i in all the blocks.

We use theNMF algorithm inBayar et al. (2014), which takes into account the noise
in the data matrix, to perform a maximum a posteriori factorization of the histogram
data matrix V into two matrices with positive entries V ≈ WH , where W is n × k
and H is k × m (see Fig. 1).

Data from the factorization of V , constructed from synthetic binary and gray-scale
images, demonstrate that the nonnegative matrices W and H contain key statistical
and spatial information about the regions in the image. First, consider the synthetic
binary image in Fig. 2. The NMF of the data matrix of this image with a specified
k = 2 results in the W and H matrices shown in Fig. 2. Plotting the entries of each
column of W in Fig. 2a, we obtain two sharp peaks: one peak at the (0–1) range of
intensity value, corresponding to the black region, and a second peak at the (254–255)
range, corresponding to the white region. Hence, the matrix W seems to provide the
histograms of the regions, which we call “basic histograms.” The normalized entries
of the columns of H provide the spatial distribution of the regions within the local
blocks. For instance, when the image block is entirely included in one region, we
obtain the value of 1 in the entry that corresponds to that region and zero elsewhere.
On the other hand, if two regions are included in a block, we obtain the fraction of
each of the regions included in each block.

The same interpretation of the factor matrices in terms of “basic histograms” forW
and spatial distribution for H applies to gray-scale images, such as the one shown in
Fig. 3; Figs. 4 and 5 show the results of the factorization by NMF of the matrix V of
the image in Fig. 3 using blocks of size 16×16 and 8×8 pixels, respectively. The data
reveal that the blocks must be chosen to be small enough to fit entirely in the smallest
region to be detected. From the plot of the columns of the matrix W in Fig. 4a, we
observe that the NMF captured the four largest regions in the image, while the two
smallest regions in the image with intensity values (102) and (26) were not detected.
Both W and H matrices were unable to capture these two small regions with a block
size of (16 × 16 pixels). Even when we increase the number of regions k, we get
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Fig. 1 Cartoon depicting the
basic schemes of the NMF–LSM
method. The data matrix V is
built from the histograms of the
blocks of the image. NMF of V
generates W and H ; the former,
including the histograms of the
regions in the image, is applied
to automatically compute the
number of regions. H , which
includes information on the local
distribution of the regions in
each of the blocks, is used to
modify the level set equation

additional zero columns inW and additional zero rows in H ; thus they are still unable
to capture these two small regions. However, by decreasing the size of the blocks to
(8× 8 pixels), so that the block size fits into these small regions, we found that the W
and H matrices of the NMF factorization specified all six regions, as shown in Fig. 5.
Hence, the “resolution” of the NMF factorization, in terms of region discovery and
classification, depends on the size of the blocks used to partition the image. The block
size should be chosen to be as small as the smallest region that we wish to detect or
segment. In particular, the resolution of the NMF approach is scalable and can be set
as desired.

The analysis of the gray-scale image yields the same conclusion on the spatial
information encoded in the matrix H . Note that each column of H corresponds to a
block in the image. Furthermore, H includes the fraction of each of the regions, whose
basic histograms are identified by the columns of the matrix W , in each of the blocks
of the image (see Figs. 4b, 5b).

In summary, applying NMF on the histogram data matrix V yields two nonnegative
matrices,W and H , that provide the statistical and spatial characteristics of the distinct
regions in the image. The matrix W yields the histogram of each region in the image,
while thematrixH provides the local spatial characteristics of each region:The fraction
of each region that is included in every block. The size of the blocks should be chosen
to be smaller than the smallest region of interest (see Fig. 5). Based on these statistical
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Fig. 2 Interpretation of theW and H matrices of a binary image. The binary image is synthetic with 16×16
pixels blocks, and the entries of H are normalized for each column.W includes the basic histograms of the
binary image (black andwhite). H includes the fraction of thewhite and black regions in each of the colored
tiles. Here, the number of regions k is specified. a “W” matrix interpretation. b “H” matrix interpretation

and spatial characteristics of the image regions, we propose to build a robust external
energy or a data term that will be integrated in the level set approach. We first discuss
how the NMF factors can be used to estimate the number of regions in the image.

3.2 Automatic Estimation of the Number of Distinct Regions in the Image

We showhow to use the factormatricesW and H to automatically estimate the number
of distinct clusters or regions k. To illustrate the idea, we start by changing the value of
k for the synthetic gray-scale image in Fig. 3 and observing the corresponding changes
in the matrices W and H . We notice that when we increase k to be more than the true
number of regions in the image (k = 6 in this case), we obtain additional zero rows
in H and additional zero columns in W . We, therefore, propose to use the sum of the
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Fig. 3 A synthetic gray-scale image. This image includes six intensity levels (0, 255, 51, 77, 26, 102)
shown in the yellow rectangles

Frobenius norms ofW and H . The Frobenius norm of the matrix A = {ai j } is defined
as

‖A‖F =
√∑

i, j

|ai j |2. (5)

We start by choosing an initial guess for the number of regions k0 and apply the
NMF on the histogram data matrix V with k = k0. We obtain Vn×m ≈ Wn×k0Hk0×m .
We compute the sum of the Frobenius norms of Wn×k0 and Hk0×m , ‖W‖F + ‖H‖F .
Then, we increase k and repeat the same steps. The sum of the Frobenius norms is
a non-decreasing function of k. This function platforms when k ≥ k∗. The optimal
number of regions is then given by k∗, which automates the estimation of the number
of distinct regions in the image.

Figure 6 shows how the sum of the Frobenius norms increases with k for the
synthetic gray-scale image in Fig. 3, until it stabilizes at k = 6, which corresponds to
the true number of distinct regions in the image.

The idea behind using the Frobenius norm is quite intuitive: Appending a matrix
by a column of zeros and forming the matrix Wa = [W, 0] will not change the
Frobenius norm. Similarly, appending the matrix H by a row of zeros and forming the
matrix Ha = [ H

0t
]
will not change its Frobenius norm. In practice, due to the image

inhomogeneity, wemay not have exact zeros in the additional columns and rows of the
appended matrices Wa and Ha , respectively, but we have very small values that are
close to zero. If the column vector zw and the row vector zth have small entries, then
the norm increase in the appended matrices is also small. In particular, the Frobenius
norm will change only slightly when we append a column or a row of small values as
shown in Fig. 6.
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Fig. 4 Interpretation of the W and H matrices for the synthetic gray-scale image of Fig. 3 using blocks of
size 16 × 16 pixels. a First 4 columns of W include the basic histograms of only 4 of the 6 gray regions in
the image. The last two columns of W contain zeros. b Columns of H include the fractions of each block
occupied by the regions; each block, represented by a column, is identified by a different color. The entries
of H are normalized for each column, and the number of regions k is specified as equal to 6

3.3 Proposed Variational Framework

We consider the image model I (x) = J (x)∗b(x)+n(x), where I (x) is the observed
intensity at pixel x, J (x) is the “true” (noiseless/unbiased) intensity at pixel x, b(x)

is the bias field associated with x, and n(x) is the observation and model noise at
pixel x. We use the two matrices W and H to build the proposed energy functional.
This functional codes the external energy and contains two terms: a statistical term
and a spatial term. The statistical term uses the matrix W and characterizes the mean
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Fig. 5 Small size blocks detect
all six gray regions in the image
of Fig. 3. a The blocks of this
analysis are of size 8 × 8 pixels;
in this case, the columns of W
include the basic histograms of
the six gray regions. b Columns
of H include the fractions of
each block occupied by the
regions; each block, represented
by a column, is identified by a
different color. The entries of H
are normalized for each column,
and the number of regions k is
specified as equal to 6

Fig. 6 The Frobenius norm saturates at the optimal number of regions. ‖W‖F + ‖H‖F as a function of k
from 1 to 20 for the synthetic gray-scale image in Fig. 3, which has six regions
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and standard deviation of each region. The spatial term relies on the matrix H and
characterizes the spatial distribution of the regions inside the blocks.

In order to compute the statistical energy term, we consider the factor matrixW and
model the pixel intensities within each region as a Gaussian distribution with mean
and standard deviation computed from the basic histograms of W . Specifically, we
consider the posterior probability p({�1,�2, . . . , �k}|I ) = p({�}|I ) for the image
I . Using Bayes’ rule, we have p({�}|I ) ∝ p(I |{�}) p(�). Assuming that the prior
probabilities of all partitions p({�i }) are equal, and the pixels within each region
are independent, the maximum a posterior (MAP) estimate of the regions reduces
to finding the maximum of

∏k
i=1

∏
x∈�i

pi (I (x)), where pi (I (x)) = p(I (x)|�i ),
i = 1, 2, . . . , k.

By taking the logarithm, the maximization can be converted to the minimization of
the following energy function:

EStatistical =
k∑

i=1

∫
�i

− log pi (I (x))dx, (6)

where pi (I (x)) is given by the Gaussian distribution.

pi (I (x)) = 1√
2πσi

exp

(
− (I (x) − μi b(x))2

2(σi )2

)
, (7)

where μi and σi are pre-computed form the matrix W .
To derive the spatial energy term, we consider the matrix H , which induces a local

spatial clustering of the regions�i , i = 1, . . . , k in each block. By dividing the entries,
hi j , of H by the sum of each column, hi j provides the fraction of the block j that is
occupied by region i . For example, if the block j is included entirely in the region i ,
then hi j = 1, and hl j = 0 for l �= i . We propose to represent the local area of each
region i inside block j as a weighted linear combination of the block areas where
the weights are given by the normalized entries of the j th column of the matrix H .
Specifically, we propose the following spatial data term:

ESpatial =
k∑

i=1

m∑
j=1

(∫
�i

IS j (x)dx − hi j a∑k
i=1 hi j

)2

, (8)

where a is the area of a block (all blocks are assumed to have equal areas) and IS j (x)

is the characteristic function of block S j , and is defined as follows:

IS j (x) =
{
1, if x ∈ S j

0, otherwise.
(9)
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Observe in Eq. (8) that the integral term simply represents the area of region �i that
is included in block j . The total data term is then given by the sum of the statistical
energy and the spatial energy terms.

E = EStatistical + ESpatial, (10)

E =
k∑

i=1

[∫
�i

(log(
√
2πσi ) + (I (x) − μi b(x))2

2σ 2
i

)dx

]

+
k∑

i=1

m∑
j=1

(∫
�i

IS j (x)dx − hi j a∑k
i=1 hi j

)2

. (11)

The energy functional E is subsequently converted to a level set formulation by
generating the level set functions φ(x) and representing the disjoint regions with a
number of membership functions Mi (φ(x)). The membership functions satisfy two
constraints: (i) They are valued in [0, 1] and (ii) the summation of allmembership func-
tions is equal to 1, i.e.,

∑k
i=1 Mi (φ(x)) = 1. This can be achieved by representing the

membership function as a smoothed version of the Heaviside function. For example, in
the two-phase formulation, the regions�1 and�2 can be represented with their mem-
bership functions defined by M1(φ) = H(φ) and M2(φ) = 1 − H(φ), respectively,
where H is the Heaviside function. For a multi-phase formulation, the combination
of the Heaviside functions is different. For example, in the four-phase formulation,
we have two level set functions φ1 and φ2. The membership functions are given as
follows: M1 = H(φ1)H(φ2), M2 = H(φ1)(1 − H(φ2)), M3 = (1 − H(φ1))H(φ2)

and M4 = (1− H(φ1))(1− H(φ2)). The total energy in Eq. (11) can be equivalently
expressed as the following level set energy functional:

E(φ, b) =
k∑

i=1

[∫
�

(
log(

√
2πσi ) + (I (x) − μi b(x))2

2σ 2
i

)
Mi (φ(x))dx

]

+
k∑

i=1

m∑
j=1

(∫
�

IS j (x)Mi (φ(x))dx − hi j a∑k
i=1 hi j

)2

. (12)

Equation (12) can be succinctly written as:

E(φ, b) =
k∑

i=1

[∫
�

ei (x, b)Mi (φ(x))dx
]

+
k∑

i=1

m∑
j=1

(∫
�

IS j (x)Mi (φ)dx − hi j a∑k
i=1 hi j

)2

, (13)

where ei (x, b) = log(
√
2πσi ) + (I (x)−μi b(x))2

2σ 2
i

. The energy term E(φ, b) represents

the external energy or the data term in the total energy of the proposed variational
level set formulation. The total external and internal energy is given by
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F(φ, b) = αE(φ, b) + βR(φ) + γ Lg(φ) + νAg(φ), (14)

where R(φ), Lg(φ), and Ag(φ) are the regularization terms and α, β, γ , and ν are
weighting parameters. The energy term R(φ), defined by R(φ)= 1

2

∫
�

(|∇φ| − 1)2dx,
is a distance regularization term (Li et al. 2010) that is minimized when |∇φ| =
1, a property of the signed distance function. The second energy term, Lg(φ) =∫
�
g |∇H(φ(x)|dx, computes the arc length of the zero-level set contour, (

∫
�

|∇H
(φ(x)|dx), and therefore serves to smooth the contour by penalizing its arc length
during propagation. The contour length is weighted by the edge indication function
g = 1

1+|∇(Gσ ∗I )|2 , where Gσ ∗ I is the convolution of the image I with the smoothing
Gaussian kernel Gσ . The function g works to stop the level set evolution near the
optimal solution, since it is near zero in the variational edges and positive otherwise.
Therefore, the regularization term Lg serves to minimize the length of the level set
curve at the image edges. The third regularization term, Ag(φ) = ∫

�
g H(φ)dx, is

the area obtained by the level set curve weighted by the edge indication function.
Finally, the total energy functional to be minimized for the purpose of segmentation

is expressed as:

F(φ, b) = α

k∑
i=1

[∫
�

ei (x, b)Mi (φ)dx

]

+ α

k∑
i=1

m∑
j=1

(∫
�

IS j (x)Mi (φ)dx − hi j a∑k
i=1 hi j

)2

+ β

2

∫
�

(|∇φ| − 1)2dx + γ

∫
�

g|∇H(φ)|dx + ν

∫
�

gH(φ)dx, (15)

3.4 Level Set Formulation and Energy Minimization

The minimization of the energy functional F in Eq. (15) can be achieved iteratively
by minimizing F w.r.t. each of the two variables, φ and b, assuming that the other
variable is constant. We first fix the variable b, and then the minimization of the energy
functional F(φ, b) w.r.t φ can be achieved by solving the gradient flow equation:

∂φ

∂t
= −∂F

∂φ
. (16)

We compute the derivative ∂F
∂φl

, l = 1, . . . , r (the number of level set functions) and
re-express Eq. (16) as follows:

∂φl

∂t
= −α

k∑
i=1

(
∂Mi (φ)

∂φl
ei

+ 2α
k∑

i=1

m∑
j=1

(
IS j

∂Mi (φ)

∂φl

(
IS j Mi (φ) − hi j a∑k

i=1 hi j

))
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+ β

(
∇2φl − div

( ∇φl

|∇φl |
))

+ γ δ (φl) div

(
g

∇φl

|∇φl |
)

+ νgδ (φl) , (17)

where δ(φl) is the dirac delta function obtained as the derivative of the Heaviside
function. Then, for fixed φl , the optimal bias field b that minimizes the energy F is
given by:

b(x) =
∑k

i=1

∫
�

I (x)μi

σ 2
i

Mi (φl)d(x)

∑k
i=1

∫
�

μ2
i

σ 2
i
Mi (φl)d(x)

. (18)

4 Simulation Results and Discussion

In the implementation of the proposed NMF-based level set method, we choose α, β,
and γ to be equal to 1 in Eq. (17). The smoothed version of the Heaviside function is
approximated by Hε(x) = 0.5 sin(arctan( x

ε
)) + 0.5, as in Chena et al. (2009), while

the dirac delta function, δ(x), is approximated by δ(x) = 0.5 cos(arctan( x
ε
)) ε

ε2+x2
. In

our simulations, we set ε = 1. We automate the initialization of the level set function
by using the fuzzy c-means (FCM) algorithm and initiate the level set function as
φo = −4ε(0.5− Bk), where Bk is a binary image obtained from the FCM result. The
detailed explanation of FCM used for the initialization is provided in Chuang et al.
(2006). The weighting parameter ν is defined as ν = 2 ∗ (1 − η ∗ (2 ∗ Bk + 1)), for
some constants η. We choose the block size to be (8 × 8 pixels) as it is small enough
to capture the fine details that we are interested in.

To evaluate the performance of the proposed NMF–LSMmethod, we compare it to
two state-of-the-art level set models, namely the localized level set model (localized-
LSM) (Li et al. 2011) and the improved LGDF–LSM model (Chen et al. 2011). We
use ten synthetic images whose boundaries are known and used as the ground truth
with different levels of noise and intensity inhomogeneities. We assay for: (i) seg-
mentation accuracy using three different similarity measures, Jaccard similarity (J S)
(Vovk et al. 2007), Dice coefficient (DC) (Babalola et al. 2008), and root mean square
error (RMSE), (ii) robustness to the initial conditions, and (iii) the influence of the
weighting parameters α, β, and γ in Eq. (14), by choosing different values for each
parameter within the range [0.1, 20].

The Jaccard similarity (J S) is defined as the ratio between the intersection and the
union of two regions S1 and S2, representing, respectively, the segmented region and
the ground truth.

J (S1, S2) = |S1 ∩ S2|
|S1 ∪ S2| , (19)

where |S| represents the area of region S. The closer the J S to 1 the better the segmen-
tation result. The Dice coefficient (DC) is another metric that measures the spatial
overlap between two images or two regions, defined as:
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D(S1, S2) = 2|S1 ∩ S2|
|S1 ∩ S2| + |S1 ∪ S2| . (20)

Although Jaccard and Dice coefficients are very similar, the Jaccard similarity is more
sensitive when the regions are more similar, while the Dice coefficient gives more
weighting to instances where the two images agree (Vovk et al. 2007). Both of the J S
and DC provide values ranging between 0 (no overlap) and 1 (perfect agreement).
The root mean square error RMSE is a distance measure that gives the difference
between two image regions or image intensities, denoted by R1 and R2 as follows,
where N is the total number of pixels in the region �

RMSE =
√

1

N

∑
x∈�

(R1(x) − R2(x))2. (21)

The NMF–LSM approach can also be applied using a block size of one pixel (i.e.,
1 × 1), as shown in Fig. 13. The only disadvantage of choosing a small block size is
the computational cost.

4.1 Accurate Segmentation by NMF–LSM

Figure 7 shows three synthetic images (first column) and the segmentation results of
NMF–LSM (second column), localized-LSM (third column), and improved LGDF–
LSM (fourth column).We can see that theNMF–LSMmodel delineates the boundaries
of the objects more accurately than the other two methods, although each image is
corruptedwith the same level of noise and intensity inhomogeneities. The performance
of the proposed NMF–LSM is more stable as it yields higher J S and DC values than
the localized-LSM and the improved LGDF–LSM models (Fig. 8). Furthermore, the
mean error rate of NMF–LSM is lower than the other two models.

4.2 Robustness to Contour Initialization

With the aforementioned similarity metrics, we can quantitatively compare the per-
formance of the three methods to variations in the initial conditions. The methods
are used to segment the synthetic image in Fig. 9a with 10 different initializations
of the contour; three of the 10 initial contours (red contours) and the corresponding
segmentation results (green contours) are shown in Fig. 9b–d. In these three different
initializations, the initial contour encloses the objects of interest, crosses the objects,
and is totally inside one of the objects as displayed in Fig. 9. Starting from these initial
contours, the corresponding segmentation results are almost the same, all accurately
capturing the objects’ boundaries (green lines, Fig. 9). The segmentation accuracy is
quantitatively assessed in terms of the J S, DC , and RMSE . The J S, DC of these
results are all between 0.78 and 0.97pixel, while the RMSE is between 0.03 and 0.1
as shown in Fig. 10. These experiments demonstrate the robustness of the NMF–LSM
model to contour initialization.
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Fig. 7 Performance evaluation of the proposed NMF–LSM, the localized-LSM and the improved LGDF–
LSM. The first column represents three synthetic images corrupted with different level of noise and intensity
inhomogeneities. The second column shows the segmentation of the NMF–LSM algorithm. The third and
fourth columns show the segmentation results of the localized-LSM and the improved LGDF–LSMmodels,
respectively

4.3 Stable Performance for Weighting Parameters

We compare the performance of the NMF–LSM model with the localized-LSM and
the improved LGDF–LSM models for different weighting parameters α, β, and γ in
Eqs. (14) and (17); the results demonstrate that NMF–LSM has better and more stable
performance in terms of segmentation accuracy and robustness. Specifically, the box
plots of the NMF–LSM are relatively shorter with higher J S, DC values and lower
error rate for different values of α, β, and γ Fig. 11.

4.4 NMF–LSM is Computationally-Efficient

The NMF–LSM model converges remarkably faster than the localized-LSM and the
improved LGDF–LSM models for different values of α, β, and γ (see Fig. 12). This
property can be explained by the fact that the NMF–LSM estimates less parameters
than the localized-LSM and the LGDF–LSM. In fact, only the level set functions
and the bias field are estimated by NMF–LSM, whereas the localized-LSM estimates
additionally the region intensity values and the LGDF–LSM estimates the regions
mean intensities and variances along with the level set functions and the bias field.

4.5 Effects of Block Size on Segmentation Accuracy

Figures 4 and 5 demonstrate that block size plays an important role in discovering
the regions of image; in the case of the image of Fig. 3, block size 8 × 8 pixels led
to the discovery of all the regions. A titration of the block size down to the limit of
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Fig. 8 NMF–LSM yields high segmentation accuracy in synthetic images. The three methods, NMF–
LSM, localized-LSMandLGDF–LSM, are applied to 10 synthetic imageswith different degrees of intensity
inhomogeneities and variable levels of noise; segmentation accuracy is assayed by the J S, DC , and RMSE .
a Comparison based on Jaccard similarity. b Comparison based on Dice coefficient. c Comparison based
on root mean square error

(1 × 1) pixels in the image of Fig. 3 demonstrates that the segmentation accuracy of
NMF–LSM improves between block size 16×16 and 8×8 pixels and then it saturates
(Fig. 13). This experiment demonstrates that decreasing the block size to be very small
(less than (8 × 8) pixels in this case) will not affect the segmentation accuracy of the
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Fig. 9 Robustness of the proposed NMF-LSM segmentation to contour initializations. The NMF-LSM is
applied to segment the synthetic image in (a). Different initial contours are represented by the red contours
and the corresponding segmentation results are represented by the green contours (b–d)

Fig. 10 High segmentation accuracy of the NMF–LSMmethod for different initial contours. The segmen-
tation accuracy is measured by the J S, DC , and RMSE

proposed approach for this image. It also demonstrates that the NMF–LSM algorithm
carries over at the limit, when the block size is equal to one pixels. We also verified
that, at block size 1 pixels, the Frobenius norm stabilizes at k = 6, which corresponds
to the true number of regions in the image (data not shown for space considerations).

5 Application to Clinical Brain MRI Images

In this section, we apply the NMF–LSM algorithm to anonymized gadolinium-
enhanced T1-Weighted MRI images of human brain with and without malignant
glioblastoma multiforme, a malignant brain tumor. The results demonstrate that the
NMF–LSMmethod accurately delineates the different structures of the brain, i.e., gray
matter, white matter, cerebrospinal fluid (CSF), as well as the regions associated with
the tumor, i.e., edema, tumor, and necrosis (Fig. 14). It is noteworthy that although the
intensities of the gray matter, the white matter, and the edema are very close to each
other and their histograms overlap (Fig. 14m), the NMF–LSMmethod separates them
as distinct regions using an 8 × 8 pixels block size, which is small enough to capture
the fine details in this image.
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Fig. 11 Comparison of the performance of NMF–LSM (NMF), localized-LSM and improved LGDF–LSM
(LGDF) for different values of the parameters. Shown are box plots of the J S, DC and RMSE values for
the star object in the synthetic image for parameters α (a), β (b) and γ (c)

5.1 Comparison with State-of-the-Art Software Packages for MRI
Segmentation

We compare the segmentation performance of the NMF–LSM algorithm with the
widely used software packages for brain MRI segmentation, SPM12 (Friston et al.
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Fig. 12 Fast convergence of NMF–LSM. The box plots of convergence times of the three models, NMF–
LSM (NMF), the localized-LSM, and the improved LGDF–LSM (LGDF), for different value of the
parameters α, β, and γ . The CPU times were recorded for MATLAB programs on a Asus K53E lap-
top with Intel(R) Core(TM)i5-2450M CPU, 2.50GHz, 8GB RAM, with MATLAB R2013a on Windows
7. Convergence time is in seconds

Fig. 13 NMF–LSM segmentation accuracy saturates with small block sizes. The segmentation accuracy
is assayed by the J S, DC , and RMSE ; block sizes are in pixels

1995) and FSL (Smith et al. 2004). Both software are targeted toward brain MRI
segmentation and include a set of skull stripping, intensity non-uniformity (bias) cor-
rection, and segmentation routines. To assess the performance in the presence of noise,
we corrupt the MRI images with blurring and salt-and-pepper noise (28%). The seg-
mentation results demonstrate that the segmentation by NMF–LSMof the graymatter,
white matter, and CSF is far superior than the other two methods (Fig. 15); it is also
noteworthy that both FSL and SPM-12 do not discover the region that corresponds
to necrosis and invasive tumor/edema, segmented by NMF–LSM (Fig. 15Ib, Ig). Fur-
thermore, the gray natter, white matter, and CSF have not been accurately delineated
by SPM12 and FSL (see Fig. 15II, III).

6 Potential in Early Diagnosis and Monitoring of Gliomas

Here, we illustrate the potential of the NMF–LSMmethod in addressing an important
biological problem, the early diagnosis of progression of non-enhancing grade 2 and
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Fig. 14 Accurate segmentation of a gadolinium-enhancedT1-WeightedMRI scan of a patientwith glioblas-
toma multiforme by the NMF–LSM algorithm. The green contour in b indicates the growing tumor, the
pink contour in c indicates the region of the brain that corresponds to necrosis and invasive tumor/edema,
the red contour in d indicates the gray matter, the blue contour in e indicates the white matter, and the
yellow contour in f indicates the CSFwith the background. NMF–LSM retrieves the histogram of each brain
structure shown in m obtained from the factor matrixW . The bias field in the MRI image is shown in g. The
red and blue arrows in its binary representation (i) point to the area of necrosis and edema, respectively. The
latter corresponds to high signal intensity in Fluid-Attenuated Inversion Recovery (FLAIR) sequences (not
shown). h–l The binary representations of the growing tumor, the gray matter, the white matter and the CSF
with the background, respectively. The image is preprocessed by histogram equalization and morphological
operations. Histogram equalization improves the contrast of the image by spreading out the most frequent
intensity values. Non-brain structures are removed using morphological operations. Specifically, thresh-
olding removes the background,erosion shrinks the brain and skull, opening removes the small non-brain
structures, labeling isolates the brain from the skull and non-brain structures, and dilation recovers the exact
boundaries of the brain

3 gliomas. What follows is a presentation of two case reports and a comparison of
the retrospective diagnoses rendered by the neuroradiologists who have examined the
longitudinalMRIs and the conclusions fromvolumetricmeasurements byNMF–LSM.
We also detail the implications of an earlier diagnosis.

Case 1 (Grade 3 oligodendroglioma → grade 3 oligodendroglioma (Fig. 16a))
In 2008, a 41-year-old male underwent gross total resection of a right frontal grade

3 oligodendroglioma, 1p/19q co-deleted. He subsequently received 12 cycles of temo-
zolomide (Temodar), which ended on 10/12/2009 and was followed by serial MRIs.
The MRIs performed on 12/30/2008 and 03/05/2009 revealed “evolving postsurgical
changes.” TheMRIs performed between 05/07/2009 and 01/26/2012 were interpreted
as stable. The patient missed follow-up appointments. The clinical/radiological diag-
nosis of progression was made on 10/04/2012 (Fig. 16a, red circle); he was re-treated
by Temodar on 10/29/2012 and 11/29/2012. MRI done on 01/03/2013 was interpreted
as “slight interval increase in the size of the FLAIR signal in the right frontal lobe
with stable pattern of enhancement” (Fig. 16a, red circle). A surgical resection on
02/06/2013 revealed a recurrent anaplastic oligodendroglioma, WHO grade 3, with
deletions of 1p and 19q and positive staining for IDH1(R132H) mutant protein. He
was treated by radiation therapy.
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Fig. 15 Superior segmentation by NMF–LSM in the presence of noise. Segmentation of the MRI scan
of Fig. 14 corrupted with blurring and salt-and-pepper noise (28%) by NMF–LSM (Ia–Ii), SPM-12 (IIa–
IIh), and FSL (IIIa–IIIh). The green, red, blue, and yellow regions indicate the growing tumor, gray
matter, white matter, the CSF with the background, respectively. The pink region in (Ib) indicates the
region, segmented by NMF–LSM, that corresponds to necrosis and invasive tumor/edema. If–Ij Binary
representations corresponding to (Ia–Ie). IIe–IIh Binary representations corresponding to (IIa–IId). IIIe–
IIIh Binary representations corresponding to (IIIa–IIId)
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Fig. 16 The NMF–LSM method prevents delays in detecting progression of non-enhancing gliomas.
a FLAIR volumes of the serial MRIs of a patient with grade 3 non-enhancing oligodendroglioma that
progressed.bFLAIRvolumes of the serialMRISof a patientwith grade 2oligodendroglioma that progressed
to GBM. The red circles and green arrows indicate the volumes at the dates of radiological diagnosis of
progression. Stars indicate statistically significant change in tumor volumes (two-sample t test p < 0.05).
Double arrows indicate the periods of treatment by Temodar. c, d show selected FLAIR images of cases 1
and 2, respectively; pink lines show the segmentation of the FLAIR signal. The dates are chosen to include
the ones that demonstrate statistically significant increase in tumor volumes (see a, b, stars) and the MRIs
immediately preceding them

TheNMF–LSMsegmentationmethodwas applied tomeasure the tumor volumes in
the MRIs done between 05/07/2009 and 01/03/2013. Figure 16a plots the volumes of
the FLAIR signal vs. time. Starting from 12/10/2010, each tumor volume is compared
to the sample including the volumes of the three preceding MRIs and a p value is
computed (two-sample t test). The results show a statistically significant change in
the volume of the tumor on 12/23/2010 and 1/26/2012 (p < 0.05, Fig. 16a stars).
In this patient, the NMF–LSM method detects a statistically significant change in
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tumor volume earlier than the clinical diagnosis of recurrence on two separate dates.
An earlier diagnosis could have prevented a 2-year delay in treatment with radiation
therapy,which could have prolonged the overall survival time and improved the quality
of life. It is noteworthy that the volume of the brain to be irradiated is derived from the
volume of FLAR signal; hence, earlier detection of progression will limit the volume
of irradiated brain.

Case 2 (Grade 2 oligodendroglioma → GBM (Fig. 16b))
Following a biopsy on 01/2/2007, which revealed grade 2 oligodendroglioma, the

38-year-old patient was treated by radiation therapy (01/02/2007 to 02/20/2007). Ser-
ial MRIs were interpreted as stable until 12/19/2011, when the radiological diagnosis
of progression was made (Fig. 16b, red circle). The patient was treated by Temodar
between 01/02/2012 and 12/02/2012. The MRI on 03/25/2013 was interpreted as sta-
ble. The MRI on 05/16/2013 showed radiological progression with new enhancement
(Fig. 16b, red circle); a resection in 06/2013 revealed a GBM.

The NMF–LSM segmentation method is applied to measure the tumor volumes in
all the MRIs done between 11/30/2006 and 05/16/2013. Figure 16b plots the volumes
of the FLAIR signal vs. time. Starting from 11/05/2007, each tumor volume is com-
pared to the sample including the volumes of the three preceding MRIs and a p value
is computed (two-sample t test). The results show a statistically significant change in
the volume of the tumor on 12/15/2008 and 3/25/2013 (p < 0.05, Fig. 16a stars). In
this case, the NMF–LSM method can (Fig. 16b):

1) monitor the tumor response to radiation therapy by following the decrease in tumor
volume,

2) facilitate a diagnosis of progression on 12/15/2008 instead of 12/19/2011,
3) monitor the tumor response to temozolomide, and
4) facilitate a diagnosis of progression on 03/25/2013 instead of 05/16/2013.

Like Case 1, early treatment of Case 2 could have prolonged the overall survival
time and improved the quality of life.

7 Conclusion

Medical image segmentation is one of the most important and challenging tasks in
medical image analysis. In particular, brain MRI segmentation is a difficult task, due
to the complexity of the brain anatomical structures and the intensity inhomogeneity
that corrupts the quality of MRI images. Great efforts have been made in this field
in order to achieve automatic accurate segmentation results. In this paper, we pro-
posed a new deformable model for image segmentation based on variational level set
formulation and probabilistic nonnegative matrix factorization, termed NMF–LSM.
The main advantages of NMF–LSM approach over the state-of-the-art, as well as the
contributions of this work, are: (i) relying on the histogram data rather than the pixel
intensity values, thus making the algorithm robust to additional noise and outliers; (ii)
automating region discovery by estimating the number of regions/clusters in the image
based on the Frobenius norm of the NMF factors; (iii) providing useful interpretation
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of the NMF as an image clustering and decomposition tool; (iv) introducing a novel
spatial term in the level set equation; (vi) limiting the number of simultaneously esti-
mated model parameters to the bias field and the level set functions, thus improving
the segmentation accuracy.

In this paper, 3D versions of our approach are simply obtained by superposing 2D
segmented slices and computing volumes based on 2D areas and thickness between
slices (see Fig. 16). The NMF–LSMmethod contributes solutions to several problems
in mathematical biology: (1) modeling and clustering of segments in images and (2)
automated, accurate, and robust segmentation ofmedical images. Specific applications
entertained in this paper include: (1) automated early and timely diagnosis of the
recurrence of non-enhancing gliomas, (2) automated monitoring tumor response of
non-enhancing gliomas, and (3) automated image segmentation in patients with GBM.
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