
Bull Math Biol (2016) 78:1640–1677
DOI 10.1007/s11538-016-0178-9

ORIGINAL ARTICLE

Extending the Multi-level Method for the Simulation
of Stochastic Biological Systems

Christopher Lester1 · Ruth E. Baker1 ·
Michael B. Giles1 · Christian A. Yates2

Received: 12 July 2015 / Accepted: 18 May 2016 / Published online: 11 August 2016
© Society for Mathematical Biology 2016

Abstract The multi-level method for discrete-state systems, first introduced by
Anderson and Higham (SIAM Multiscale Model Simul 10(1):146–179, 2012), is a
highly efficient simulation technique that can be used to elucidate statistical charac-
teristics of biochemical reaction networks. A single point estimator is produced in a
cost-effective manner by combining a number of estimators of differing accuracy in a
telescoping sum, and, as such, the method has the potential to revolutionise the field of
stochastic simulation. In this paper, we present several refinements of the multi-level
method which render it easier to understand and implement, and also more efficient.
Given the substantial and complex nature of the multi-level method, the first part
of this work reviews existing literature, with the aim of providing a practical guide
to the use of the multi-level method. The second part provides the means for a deft
implementation of the technique and concludes with a discussion of a number of open
problems.

Keywords Stochastic simulation · Gene regulatory networks · Multi-level ·
Gillespie algorithm · Tau-leaping

1 Introduction

Experimental researchers such as Elowitz et al. (2002), Fedoroff and Fontana (2002),
Arkin et al. (1998) and Barrio et al. (2006) have demonstrated the stochastic nature of
a range of biological phenomena. In particular, stochastic effects often affect systems

B Christopher Lester
lesterc@maths.ox.ac.uk

1 Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

2 Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-016-0178-9&domain=pdf

Extending the Multi-level Method for the Simulation... 1641

characterized by low molecular populations (Székely et al. 2012), but systems with
large molecular populations can also be affected under certain circumstances (Erban
et al. 2009). As such, in attempting to usemathematical and computationalmodeling to
understand the dynamics of certain biological systems, itmay be necessary to explicitly
account for intrinsic noise. For example, deterministicmodelsmay providemisleading
results as they are unable to account for effects such as system bistability (Székely
et al. 2012), stochastic focusing (Paulsson et al. 2000) and stochastic resonance (Hou
and Xin 2003).

In this work, we will focus on spatially homogeneous population-level models,
which record only the numbers of each molecule type within the system. The tempo-
ral evolution of the molecular abundancies will be described by the chemical master
equation (CME), which comprises a system of ordinary differential equations (ODEs).
For each possible system state, the CME provides an ODE describing how the prob-
ability that the system is in this particular state changes over time. For very simple
systems, a closed-form, analytic solution can be obtained (Jahnke and Huisinga 2007);
however, any complication is likely to frustrate an analytic approach. Under partic-
ular circumstances, specialized numerical approaches may be feasible (Jahnke and
Huisinga 2007, 2008; Engblom 2009; Jahnke and Udrescu 2010; Jahnke 2011), but
in general the high dimensionality of the problem remains a challenge and stochastic
simulation is the only viable alternative. In order to understand the behaviour of a
particular system, we generate a large number of sample paths using our stochastic
simulation method of choice, and use them to calculate ensemble statistics.

The Gillespie direct method (DM) simulation method (Gillespie 1976) is exact, in
the sense that it is derived from the same fundamental hypotheses as the CME and
so is rigorously equivalent to it. Several variations of Gillespie’s exact DM algorithm
have since been developed (Gibson and Bruck 2000; Cao et al. 2004; McCollum
et al. 2006; Li and Petzold 2006; Anderson 2007). We will call these exact stochastic
simulation algorithms (and, for brevity, eSSAs). However, chemical reaction networks
can be highly complex (Székely et al. 2012) and these eSSAs work by simulating each
and every reaction sequentially. This means that even the most efficient formulation
will be too slow for many practical applications. In this light, the development of
efficient approximate stochastic simulation algorithms (aSSAs) that avoid the pitfalls
of having to detail every single reaction is currently of great interest, and a substantial
range of computational techniques have been developed in an attempt to tackle this
problem (Gibson and Bruck 2000; Gillespie 2001; El Samad et al. 2005; Auger et al.
2006). These include various forms of the tau-leaping aSSA (Yates and Burrage 2011;
Cao et al. 2006, 2007; Gillespie 2001; Cao et al. 2004; El Samad et al. 2005) that
function by carrying outmultiple reactions per step. A number of helpful survey papers
provide a full account of these widely known techniques (for example, the authors
recommend Gillespie 2005 or Higham 2008). Nonetheless, despite these advances,
we remain at a stage where elucidating the behaviour of many stochastic biochemical
signalling networks lies beyond our reach.

This work is aimed at readers comfortable with Monte Carlo simulation: the focus
will be on improving the discrete-statemulti-level technique first introduced byAnder-
son and Higham (2012). The multi-level method provides such huge computational
savings that it has the potential to significantly alter the field of stochastic simula-

123

1642 C. Lester et al.

tion. Given the substantial and complex nature of this approach, we first review the
multi-level method, which uses a clever combination of simulation methods of vary-
ing degrees of accuracy to estimate the system statistics of interest. The idea is to
compute many (cheap) sample paths at low accuracy and correct the statistics gener-
ated from them using fewer (expensive) sample paths at high accuracy. Thereafter, we
consider a number of refinements to the multi-level method that render it much easier
to understand and implement, and also more efficient. We also provide sample code
in MATLAB and C++ in order to facilitate rapid and straightforward implementation.

1.1 Outline

In Sect. 2, we succinctly provide background material which allows us, in Sect. 3
to introduce the multi-level method of Anderson and Higham (2012). We provide a
practical approach to implementing this efficient simulation technique and present a
number of novel refinements to it. In Sect. 4, we present an in-depth discussion of
methods for choosing the multi-level parameters, and in Sect. 5, we show results from
a second example system. Whilst the first example allows us to explore the results of
Anderson andHigham (2012) directly, this second example exhibits different dynamic
behaviour and therefore presents different simulation challenges. A third example is
presented in Sect. 6; it demonstrates the effectiveness of the multi-level technique on
relatively complicated reaction networks. Finally, we conclude, in Sect. 7, with a brief
discussion. All results shown here were generated in either MATLAB or C++ using a
desktop computer, which was equipped with a 4.2 GHzAMDFX(tm)-4350 processor,
and eight gigabytes of RAM.

2 The Chemical Master Equation Setting

We consider a biochemical network comprising N species, S1, . . ., SN , that may each
be involved in M possible interactions, R1, . . ., RM , which are referred to as reaction
channels. For the purpose of this discussion, we will ignore spatial effects. This is
a reasonable assumption if the molecules are well stirred, or, in other words, evenly
distributed throughout a given volume. The population size of Si is known as its copy
number and is denoted by Xi (t) at time t , t ≥ 0. The state vector is then defined as

X(t) :=
⎡
⎢⎣

X1(t)
...

XN (t)

⎤
⎥⎦ . (1)

With each reaction channel, R j , we associate two quantities. The first is the stoi-
chiometric or state-change vector,

ν j =
⎡
⎢⎣

ν1 j
...

νN j

⎤
⎥⎦ , (2)

123

Extending the Multi-level Method for the Simulation... 1643

Table 1 Sample reaction propensities for a stochastic system

Reaction Example Propensity

Zero-order ∅ c1−→ S1 c1

First-order S1
c2−→ S2 c2 · X1

Second-order S1 + S2
c3−→ S3 c3 · X1 · X2

Homo-dimer formation S1 + S1
c4−→ S4 c4 · X1 · (X1 − 1)

Note for the propensity of homo-dimer formation, we have adopted the common practice of absorbing the
multiplier 1/2 into c4

where νi j is the change in the copy number of Si caused by reaction R j taking place.
Thus if the system is in state X and reaction R j happens, the system jumps to state
X + ν j . The second quantity is the propensity function, a j . This represents the rate
at which a reaction takes place. Formally, for small dt , and based on a condition of
X(t) = x, we define a j (x) as follows:

– The probability that reaction R j happens exactly once during the infinitesimal
interval [t, t + dt) is a j (x)dt + o(dt);

– The probability of more than one reaction R j during this interval is o(dt).

Since we have assumed that the system is well stirred, it seems reasonable for the
propensity function a j of reaction R j to be proportional to the number of possible
combinations of reactant molecules in the system. For example, we expect that a
reaction of the type S1 → S2, where one S1 molecule becomes one S2 molecule, will
broadly occur at a rate proportional to the abundance of S1. In second-order reactions,
such as S1 + S2 → S3, the rate should be proportional to the abundance of pairs of
(S1, S2) molecules. Full details are given in Table 1.

Our approach to understanding the dynamics of the system comes from considering
how the probability that the system is in a particular state changes through time. Define

P(x, t | x0, t0) := P
[
X(t) = x, given X(t0) = x0

]
. (3)

By considering the possible changes in species numbers brought about by a single
reaction taking place, it is possible to arrive at the aforementioned CME (Gillespie
2005):

dP(x, t | x0, t0)
dt

=
M∑
j=1

[P(x−ν j , t | x0, t0)·a j (x−ν j)−P(x, t | x0, t0)·a j (x)]. (4)

2.1 The Kurtz Representation

Thus far we have used the propensity function and stoichiometric vector of each reac-
tion channel to construct a CME. For completeness, we also describe the Kurtz (1980)

123

1644 C. Lester et al.

representation: This alternativemethod uses a construction of an inhomogeneous Pois-
son process for each reaction channel to represent the system. This approach provides
a useful analytical tool which has been widely used in the literature.

In order to generalize homogeneous Poisson processes, we follow Kurtz (1980):
suppose we have a homogeneous Poisson process of fixed rate λ labeled as Yλ. Then
further suppose we have a Poisson process of unit rate, Y1. As Poisson processes
count the number of ‘arrivals’ over time, they can be compared by considering the
distribution of the number of arrivals by some time t . If Yλ(t) and Y1(t) represent
the number of arrivals by a time t in the two processes, then there is an equality in
distribution, that is Yλ(t) ∼ Y1(λt). It is therefore possible to rescale time to transform
a unit rate Poisson process to one of arbitrary (but known) rate.

We generalize the process by letting λ at time t be a function of the system history
over the time interval [0, t), as well as the system time. The number of arrivals by time
t is given by:

Y (t) = Y1

(∫ t

0
λ(t ′, {Y (s) : s < t ′})dt ′

)
, (5)

where λ(t ′, {Y (s) : s < t ′}) emphasizes that λ is a function of the particular path the
process is taking.

For the case of the stochastic reaction network, it can be shown that each reaction
channel corresponds to an inhomogeneous Poisson process of rate a j (X(t ′−)) (Ander-
son et al. 2011). The X(t ′−) term is used to indicate the population ‘just before’ time
t ′. Incidentally, this ensures the process is Markovian. For reaction channel R j , we let

Y j

(∫ t

0
a j (X(t ′−))dt ′

)

represent the number of reactions fired by time t . To represent the evolution of the
entire network dynamics, we take the appropriate sum over all reaction channels:

X(t) = X(0) +
M∑
j=1

Y j

(∫ t

0
a j (X(t ′−))dt ′

)
· ν j . (6)

2.2 Example

As an example system with which to work, we consider a model of gene transcription
and translation, as introduced by Anderson and Higham (2012):

R1 : G
25

GGGGA G + M, R2 : M
1000

GGGGGGA M + P, R3 : P + P
0.001

GGGGGGGA D, (7)

R4 : M
0.1

GGGGGA ∅, R5 : P
1

GGGA ∅.

Amolecule ofmRNA (M) is transcribed from a single gene (G). ThismRNAmolecule
is then used in the translation of a protein molecule (P). Two protein molecules may

123

Extending the Multi-level Method for the Simulation... 1645

combine to produce stable homodimers (D), whilst both the mRNA and protein decay
linearly. We assume that the system contains a single copy of the gene throughout and
that initially there are no copies ofM , P or D.Wewrite the numbers ofmRNA, protein
and dimer molecules at time t , respectively, as XT (t) = (X1(t), X2(t), X3(t))T ,
and consequently the initial condition can be expressed as XT (0) = (0, 0, 0)T . The
system consists of five reaction channels, as labeled in Eq. (7), and the corresponding
stoichiometric matrix is

ν =
⎡
⎣
1 0 0 −1 0
0 1 −2 0 −1
0 0 1 0 0

⎤
⎦ . (8)

Due to the presence of a bimolecular reaction in this system, it is not possible to write
down an analytic solution of the CME. Moreover, due to the high dimensionality of
the system state space, numerical approximation of the CME is also impossible using
currently available approaches (Higham 2008; Jahnke and Huisinga 2007). In this
light, the system must be explored using a suitable eSSA or aSSA.

2.3 An Exact Stochastic Simulation Algorithm

The simplest and perhaps most widely used eSSA for generating sample paths is
Gillespie’s (1977). Suppose a reaction system has state vector X(t0) at time t0 and
that we wish to generate a sample path until a terminal time T . The DM algorithm is
as follows:

1. set X := X(t0) and t := t0;
2. calculate the propensity function, a j , for each reaction channel, R j , j = 1, . . . , M ,

based on X(t), the population vector at time t . Calculate the total propensity
a0 := ∑M

j=1 a j ;
3. generate �, a random exponential variate with parameter a0. This can be achieved

by generating r1 uniformly on (0, 1) and then setting � := (−1/a0) log(r1). The
next reaction will take place at t + �, unless t + � > T , in which case terminate
the algorithm;

4. choose a reaction, Rk , to happen so that each reaction, R j , j = 1, . . . , M has
probabilitya j/a0 of being chosen.Do this, for example, by generating r2 uniformly
on (0, 1) and determining the minimal k such that

∑k
j=1 a j > a0 × r2;

5. set X(t+�) := X(t)+νk and t := t+� to implement reaction Rk at time t+�;
6. return to step 2.

If this algorithm is used to generate n sample paths, they can be used to estimate
the mean copy number of a species at a time T . We estimate this quantity, E[Xi (T)],
by taking

E[Xi (T)] ≈ 1

n

n∑
r=1

X (r)
i (T), (9)

where the copy number of species i at time t in path r is represented by X (r)
i (t). This is

an example of aMonte Carlo estimator, and, as such, our estimate contains a statistical

123

1646 C. Lester et al.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35
mRNA

Time

C
op

y
nu

m
be

r

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000
Protein

Time

C
op

y
nu

m
be

r

0.0 0.2 0.4 0.6 0.8 1.0
0

1000

2000

3000

4000

5000

6000
Dimer

Time

C
op

y
nu

m
be

r

Fig. 1 Evolution of XT (t) = (X1(t), X2(t), X3(t))
T up until terminal time T = 1. The solid black lines

show the mean species numbers and the coloured bands one and two standard deviations from the mean
(Color figure online)

error. This arises as we have studied only a subset of possible systems paths, and are
therefore somewhat uncertain as to our estimate. More precisely, if the variance of
our n sample points is σ 2, then the estimator variance is σ 2/n. This can be used to
construct a confidence interval to characterize the statistical error.

2.4 Example

To illustrate use of the Gillespie DM, we return to the example of Sect. 2.2, with
the aim of estimating the dimer population, X3(t), at terminal time T = 1. Figure 1
shows evolution of XT (t) = (X1(t), X2(t), X3(t))T up until this terminal time. The
solid black lines show the mean species numbers and the coloured bands one and two
standard deviations from the mean.

To compute E[X3(1)] to within a single dimer with 95% confidence requires the
generation of approximately 4,800,000 sample paths. Using an optimized Gillespie
DM algorithm, this calculation took a little over 2h (7650s) with code written in
C++, when run on our AMD desktop computer. With code written in MATLAB, the
same computation took approximately 6h (21,472s). Table 2 shows the approximate
molecular populations at the terminal time. Although our optimized DM algorithm
performs adequately, the fact remains that for this system, and many others, eSSAs
which simulate each reaction explicitly are prohibitively costly. In this light, a number
of aSSAs have been proposed. We discuss one such aSSA, the so-called tau-leaping
method, here.

2.5 Tau-Leaping Algorithm

As previously illustrated, constraints on computing resources often limit the applica-
bility of the Gillespie DM, and other eSSAs, as they simulate each and every reaction
individually. The large costs in doing so come from two main sources: first is the
computational overheads in generating the large quantity of random numbers required
by the algorithm; and second is the search time involved in determining which reac-

123

Extending the Multi-level Method for the Simulation... 1647

Table 2 Estimated populations of system (7) at time T = 1, as determined by the DM, using 4,800,000
paths

Species Mean

E[X1] 23.79 ± 0.004

E[X2] 3052.9 ± 0.33

E[X3] 3714.0 ± 0.99

95% confidence intervals have been constructed; these are indicated with the ‘±’ terms

tion occurs. One possible solution to the problem can be found in using approximate
algorithms that enable one to fire a number of reactions within a single time step.

The tau-leaping method, first proposed by Gillespie (2001), generates approximate
sample paths by taking steps, of length τ , through time and firing several reactions
during each time step. In this way, it ‘leaps’ over several reactions at a time. If the
system is in state X and a time step of τ is to be performed, let K j (τ, X) represent the
number of times that reaction channel R j fires within that time step. The key, time-
saving assumption of the tau-leaping method is that all reaction rates are assumed to
remain constant over each time step of length τ . This means that K j (τ, X) is Poisson
distributed, i.e. K j ∼ Poisson(a j (X(t)) · τ). To see this, we start from the Kurtz
perspective of Sect. 2.1 and write

X(t + τ) = X(t) +
M∑
j=1

Y j

(∫ t+τ

t
a j (X(t ′−))dt ′

)
· ν j .

When t ′ ∈ [t, t + τ), by assumption a j (X(t ′−)) = a j (X(t)), and so we immediately
deduce that

∫ t+τ

t a j (X(t ′−))dt ′ = a j (X(t)) · τ as required.
The algorithm proceeds at each time step by generating Poisson variates with the

correct parameter for each of the K j , and then updating each molecular species
and propensity function simultaneously. In general, τ can be chosen adaptively as
a function of the copy numbers, but, for simplicity, we implement this technique by
considering a fixed choice of τ throughout. This is the tau-leaping algorithm (Gillespie
2001):

1. set X := X(t0) and t := t0;
2. if t + τ ≤ T , calculate the propensity function, a j , for each reaction channel, R j ,

j = 1, . . . , M , based on X(t), the population vector at time t . Otherwise, exit the
algorithm;

3. generate Poisson random variates, p j , as sample values of K j (τ, X), j =
1, . . . , M ;

4. set X := X +∑M
j=1 p jν j and t := t + τ ;

5. return to step 2.

As the tau-leaping algorithm produces sample paths that do not fully conform with
the dynamics of the CME, any estimators calculated using the tau-leapingmethodmay
be biased: the expected difference between the tau-leaping estimate and the true value

123

1648 C. Lester et al.

of the point estimate is nonzero. The level of bias in a tau-leaping estimate depends
on the value τ takes, with lower values of τ corresponding to a lower bias. As τ ↓ 0,
the estimator bias tends to zero (Anderson et al. 2011). However, the algorithm takes
O(1/τ) units of time to generate a path, and so generating a tau-leaping estimator
with low bias requires a high level of computational resources.

3 Discrete-State Multi-Level Simulation

The multi-level method of Anderson and Higham (2012) divides the work done in
calculating a point estimate of the system into parts, known as levels, in an effort
to increase computational efficiency. Much of the approach taken by Anderson and
Higham (2012) emulates that taken by Giles (2008), in the context of numerically
approximating the solutions of stochastic differential equations. Suppose we wish to
estimate the expected value of Xi (T), the population of the i-th species at time T . On
the base level (level 0), a tau-leaping aSSA with a large value of τ (which we denote
τ0) is used to generate a large number (n0) of sample paths of the system. The resulting
point estimate is

Q0 := E
[
Zτ0

] ≈ 1

n0

n0∑
r=1

Z (r)
τ0

(T), (10)

where Z (r)
τ0 (t) is the copy number of species i at time t in path r generated using the

tau-leaping method with time step τ0, and n� is the number of paths generated on
level �. As τ0 is large, this estimate is calculated cheaply (recall that tau-leaping takes
O(1/τ0) units of time to generate each sample path), with the downside being that it
is of considerable bias.

The goal with the next level (level 1) is to introduce a correction term that begins
to reduce this bias. In essence, in order to compute this correction term, two sets of n1
sample paths are calculated. One set comes from the tau-leaping aSSA with the same
value of τ as on the base level (τ0). The other set comes from the same tau-leaping
aSSA, but with a smaller value of τ (which we denote τ1). The correction term is the
difference between the point estimates calculated from each set of sample paths:

Q1 := E
[
Zτ1 − Zτ0

] ≈ 1

n1

n1∑
r=1

[
Z (r)

τ1
(T) − Z (r)

τ0
(T)
]
.

Adding this correction term to the estimator calculated on the base level gives an
overall more accurate estimator. This can be seen by noting that Q0+Q1 = E

[
Zτ0

]+
E
[
Zτ1 − Zτ0

] = E
[
Zτ1

]
, so that the sum of the two estimators has a bias equivalent to

that of the tau-leaping method with τ = τ1. The key to the efficiency of the multi-level
method is to generate the two sets of sample paths,

{
Z (r)

τ1
(T), Z (r)

τ0
(T) : r = 1, . . . , n1

}
,

123

Extending the Multi-level Method for the Simulation... 1649

in a clever way, so that the variance in their difference is minimised. If the variance
in their difference is denoted as V�, then the estimator variance is given as V�/n�.
A lower sample variance will mean that fewer sample paths need to be generated to
achieve the same estimator variance.

On the level 2, this process is repeated to give a second correction term. Two sets
of n2 sample paths are generated, one set has τ = τ1 and the second has τ = τ2 < τ1.
Again, the correction term is the estimator of their difference,

Q2 := E
[
Zτ2 − Zτ1

] ≈ 1

n2

n2∑
r=1

[
Z (r)

τ2
(T) − Z (r)

τ1
(T)
]
,

and it is added to the combined estimator from the level 0 and level 1 to give Q0+Q1+
Q2 = E

[
Zτ2

]
. Carrying on in this way, the multi-level method forms a telescoping

sum,

E
[
ZτL

] = E
[
Zτ0

]+
L∑

�=1

E
[
Zτ�

− Zτ�−1

] =
L∑

�=0

Q�.

With the addition of each subsequent level, the bias of the estimator is reduced further,
until a desired level of accuracy is reached.

Finally, and optionally, by generating two sets of nL+1 sample paths, one set using
an eSSA and the other using tau-leaping with τ = τL , we can efficiently compute a
final correction term,

Q∗
L+1 = E

[
Xi − ZτL

] ≈ 1

nL+1

nL+1∑
r=1

[
X (r)
i (T) − Z (r)

τL
(T)
]
,

which can be added to the telescoping sum in order to make the estimator unbiased
and hence give

E [Xi] = E
[
Zτ0

]+
L∑

�=1

E
[
Zτ�

− Zτ�−1

]+ E
[
Xi − ZτL

] =
L∑

�=0

Q� + Q∗
L+1. (11)

Importantly, it turns out that the total time taken to generate the sets of sample paths
for the base level, Q0, and each of the correction terms, Q� for � = 1, . . . , L , and
Q∗

L+1, can be less than that taken to estimate E [Xi (T)] using an eSSA. In Sect. 3.3.1,
we describe the bespoke simulation method used to provide samples for the correction
terms which is responsible for this time-saving.

The biased estimator,

Qb :=
L∑

�=0

Q�, (12)

is influenced by two distinct types of error: a statistical error, and a bias. Taking into
account the choice of τ0, the bias is controlled by having sufficiently many correction
terms within the sum. This will be discussed in detail later in this guide.

123

1650 C. Lester et al.

The statistical error is controlled by bounding the associated estimator variance,Vb,
by a parameter ε2. Each of the estimators, Q�, which make up Qb has an estimator
variance associated with it: if the estimate on level � has sample variance V�, and
was calculated using n� samples, then the estimator variance is V�/n�. Since each
level is estimated in an independent fashion, Vb = ∑L

�=0 V�/n�. Therefore, if n� is
sufficiently large, we will have ensured that the overall estimator variance is below a
given threshold. That is, Vb < ε2. The unbiased estimator

Qu :=
L∑

�=0

Q� + Q∗
L+1, (13)

also suffers from a statistical error, and it can be controlled in much the same way as
described for the biased case.

To use the multi-level method, a number of decisions have to be made. We must
consider:

– The choice of levels in the algorithm. This affects both the simulation time and
the bias of Qb and is determined by both L and the values of τ0, τ1, . . . , τL ;

– The values the target estimator variance, V�/n�, should take on each level, �. This
ensures statistical accuracy and also affects the simulation time;

– The choices of simulation techniques for the base level (0), the correcting levels,
1, . . . , L , and (if desired) the final level L + 1.

We will now discuss each of these choices.

3.1 The Time Step

We let K ∈ {2, 3, . . .} be a scaling factor and take τ� = τ(�−1)/K so that

Q0 ≡ E[Zτ0],
Q1 ≡ E[Zτ0/K − Zτ0],
Q2 ≡ E[Zτ0/K 2 − Zτ0/K],

...

Q� ≡ E[Zτ0/K L − Zτ0/K L−1].

This means that the intervals are nested, with the same scaling factor between each,
and it renders the algorithm more simple to understand and implement.

3.2 The Estimator Variance

The aim is to minimize the total expected computational time, subject to the overall
estimator variance, Vb, being sufficiently small. This is therefore a constrained opti-
mization problem; on each level, we will choose the number of sample paths, n�. If
each sample path on level � takes c� units of time to generate, and the estimator of

123

Extending the Multi-level Method for the Simulation... 1651

interest on level � has population variance V�, then we minimize the total expected
computational time, subject to a suitable statistical error:1

L∑
�=0

n�c� such that
L∑

�=0

V�

n�

< ε2. (14)

In this case, ε2 controls the estimator variance of our combined estimator. We per-
formed the required optimization using Lagrange multipliers. We seek a λ ∈ R such
that

∂

∂n�

[
L∑

m=0

cmnm + λ

L∑
m=0

Vm
nm

]
= 0 for � = 0, 1, . . . , L .

This implies n� = √
λ · V�/c�. As we require

∑L
m=0 Vm/nm < ε2, it follows that√

λ =∑L
m=0

√
Vm · cm/ε2. Therefore, each n� should be chosen to be

n� =
{

1

ε2

L∑
m=0

√
Vm · cm

}√
V�/c�. (15)

Of course, this approach is helpful if the values of V� and c� are known. Whilst it
may be possible to estimate c� as c� ≈ (τ0/K �)−1, the population variances, V�, will
often not be known analytically. However, these can be estimated using the sample
variances, which have been generated from a small number of preliminary simulations.
For example, Anderson and Higham (2012) generate 100 initial sample paths on each
level as a basis for estimating these quantities

The time taken for each level is the product of the number of paths, n�, and the time
taken for each path on that level, c�. Thus, the total amount of time for the multi-level
simulation is

1

ε2

{
L∑

�=0

√
c�V�

}2

, (16)

units of CPU time.

3.3 The Estimation Techniques

We now outline how to calculate the estimates for each level. These include:

– The base level, Q0. This can be handled with the regular tau-leaping algorithm
with time step τ0, as described in Sect. 2.5;

– the tau-leaping correction terms, Q�, for � ∈ {1, . . . , L}. This is discussed in detail
below;

– the exact SSA coupled to tau-leaping correction term, Q∗
� . This is discussed in

detail.

1 Note that here, and throughout the rest of this work, we implicitly include the final exact coupling level
in our summations, where appropriate.

123

1652 C. Lester et al.

3.3.1 The Tau-Leaping Correction Terms

Given our choices of τ�, � = 1, . . ., L , we have that

Q� = E
[
Zτ0/K � − Zτ0/K �−1

] ≈ 1

n�

n�∑
r=1

[
Z (r)

τ0/K � − Z (r)
τ0/K �−1

]
, (17)

where Z (r)
η represents the population of the i-th species at a time T in the r -th sample

path generated using tau-leaping with time step η (= τ0/K � or τ0/K �−1). The idea
underlying the multi-level method is to generate sample paths to estimate (17) so that
Q� has a low sample variance. This means that few sample paths will be required to
attain a specified statistical error.

To generate the r -th sample value, Z (r)
τ0/K � − Z (r)

τ0/K �−1 , we will need to simultane-
ously generate two sample paths using tau-leaping, but with different time steps. As
we are constructing a Monte Carlo estimator, we require each of the sample values,
Z (r)

τ0/K � − Z (r)
τ0/K �−1 , to be independent of the other bracketed terms. The key point to

note is that for each sample there is no need for Z (r)
τ0/K � and Z (r)

τ0/K �−1 to be independent
of one another. This is because our estimator Q� is not dependent on the actual copy
numbers within each system, but merely their difference. By recalling that

Var
[
Zτ0/K � −Zτ0/K �−1

]=Var
[
Zτ0/K �

]+Var
[
Zτ0/K �−1

]−2Cov
[
Zτ0/K � , Zτ0/K �−1

]
,

we note it is therefore permissible, and in our interests, for Z (r)
τ0/K � and Z (r)

τ0/K �−1 to
exhibit a strong positive correlation as this will give rise to a lower estimator vari-
ance. We achieve this positive correlation by keeping the r -th sample paths of the
approximate processes with time steps τ0/K � and τ0/K �−1 as similar to each other
as possible. We now describe how to do this.

For the purposes of our discussion, suppose we wish to simulate a single pair of
sample paths on level � and call the sample path with time step τ� = τ0/K � the fine
resolution path and that with time step τ�−1 = τ0/K �−1 the coarse resolution path.
Since both paths have the same initial conditions, one approach to achieving strong
positive correlation between the two paths is to use the same tau-leaping process to
simultaneously simulate each sample path, and aim to have each reaction channel fire
a similar number of times in both systems. In doing so, however, it is crucial that the
two paths are distributed as they would be if generated using a standard tau-leaping
method.

The thickening property of the Poisson distribution (Norris 1998) lets this aim be
realized. Suppose P1, P2, and P3 are independent Poisson distributions. Then, for
parameters a > 0, b > 0,

P1(a + b) ∼ P2(a) + P3(b), (18)

where ∼ implies equality in distribution. This means that a Poisson random variate
with parameter a + b can be generated by generating two Poisson variates, one with

123

Extending the Multi-level Method for the Simulation... 1653

parameter a and the other with parameter b, and then adding them. In terms of our
sample paths, the thickening property implies that we can use one Poisson random
variate to determine how many of a particular type of reaction happen in both the
coarse and fine resolution systems during a time step and then ‘top up’ any further
reactions that happen in only one of the systems using further Poisson random variates.

In practice, this can be achieved be creating ‘virtual reaction channels’ and we
reformulate each reaction channel, R j , into three virtual channels.We call these virtual
channels R1

j , R
2
j and R3

j and define them such that:

– R1
j : reactions through this channel occur in both the coarse and fine systems;

– R2
j : reaction through this channel occur only in the coarse system;

– R3
j : reactions through this channel occur only in the fine system.

We will assign propensity functions to these channels so that reactions occur at the
appropriate rates in both the coarse and fine systems.

To generate coupled sample paths, we use an algorithm that steps forward with fine
resolution time steps τ�. We update the propensity functions of the fine resolution sys-
tem at each time step, but only update the propensity functions of the coarse resolution
system every K steps. In other words, we only update the propensity functions of the
coarse resolution system after time steps of τ�−1.

To set out the multi-level algorithm, we let Zc and Zf be the copy numbers in the
coarse and fine resolution sample paths, respectively. For each reaction channel R j ,
we define acj to be its propensity function in the coarse resolution system and similarly

for afj . We will assume that T/τ0 is an integer, so that on each level we always take an

integer number of time steps. With scaling factor K , we then have τ� = τ0/K �. The
algorithm then proceeds as follows:

1. set Zc := Zc(t0), Zf := Zf(t0) and t := t0;
2. for α = 1 to T/τ0:

(a) calculate the propensity function acj for each reaction channel R j ,
j = 1, . . . , M ;

(b) for β = 1 to K :
i. calculate the propensity function afj for each reaction channel R j ,

j = 1, . . . , M ;
ii. define the propensity functions of the three virtual channels as

b1j = min
{
a f
j , a

c
j

}
,

b2j = acj − b1j ,

b3j = a f
j − b1j ;

(19)

iii. for each of the virtual reaction channels, r = 1, 2, 3, generate Poisson
random variates, Yr

j , with parameters brj · τ� and set

123

1654 C. Lester et al.

Fig. 2 A diagrammatic representation of the steps in the algorithm, shown on a time axis, from time t = 0
to t = 1. The vertical lines represent the discretization of time

Zc := Zc +
M∑
j=1

(Y 1
j + Y 2

j)ν j ,

Z f := Z f +
M∑
j=1

(Y 1
j + Y 3

j)ν j ; (20)

otherwise terminate;
3. return to step 2.

In step 2(b), K time steps of duration τ� are carried out, to give a time step of length
K τ� = τ�−1 in total. Within each of these steps, b1j is the reaction propensity of the

virtual reaction channel R1
j , b

2
j is that of R

2
j , and b

3
j that of R

3
j .We note that by equation

(18), with a time step of τ� = τ0/K �,

P
(
acj · τ�

)
∼ P

(
b1j · τ�

)
+ P

(
b2j · τ�

)
,

P
(
a f
j · τ�

)
∼ P

(
b1j · τ�

)
+ P

(
b3j · τ�

)
, (21)

so that each sample paths is updated using the correct propensity functions. In Fig. 2,
we illustrate how the time steps are arranged on the time axis. We have shown a coarse
time step of τ�−1 = 1/3, and a fine time step of τ� = 1/9. In this case our scaling
factor, K = 3, and so we have three steps of the fine process for every step of the
coarse process.

Using the same Poisson random variates, Y 1
j , j = 1, . . . M , to update both the

coarse and fine system populations in (20) is crucial to the success of the method,
and has the effect of introducing a strong path-wise correlation between the coarse
and fine resolution sample paths. The premise is as follows: if the state vectors Zc(t)
and Z f (t) show similar populations for each species, then we expect acj and a

f
j to be

similar for all j , as these are continuous functions of the underlying populations. If this
is the case then the brj , as defined in (19), are such that for all j , b1j � max {b2j , b3j }.
Over the fine time step τ�, we can share the randomness between the coarse and fine
systems by using a single Poisson random number, generated with parameter b1j · τ�,

to introduce Y 1
j reactions in channel R j into both systems. To ensure compliance with

the tau-leaping algorithm, we introduce a further Y 2
j and Y 3

j j reactions in the coarse

and fine systems, respectively. Note that at least one of Y 2
j and Y

3
j will be zero so that

123

Extending the Multi-level Method for the Simulation... 1655

we ‘top up’ at most one of the systems. As we expect Y 1
j to be significantly larger

than both Y 2
j and Y

3
j , the main part of the fluctuation is common to both systems. The

result is that the state vectors in both systems remain comparable. The argument then
repeats itself for each time step, and the population differences between equivalent
species at the terminal time are therefore likely to be small and strongly correlated.

3.3.2 The Exact Coupling

We now provide a novel technique for estimating Q∗
L+1, the final correction term

that is needed to produce an unbiased point estimator, Qu . Q∗
L+1 is the expected

difference between the point estimator generated from a tau-leaping approximation
with τL = τ0/K L and that generated using the DM eSSA. The benefit of including
this final correction term into the multi-level estimator is that it allows us to produce
an overall unbiased estimator and therefore provides an output of equivalent accuracy
to that of the DM. Recall that

Q∗
L+1 = E

[
X − Zτ0/K L

] ≈ 1

nL+1

nL+1∑
r=1

[
X (r) − Z (r)

τL

]
,

where X (r) and Z (r)
τL represent the copy numbers of the species of interest at time T in

the r -th sample paths, generated by the DM, and tau-leaping aSSA with time step τL ,
respectively. As for levels � = 1, . . . , L , we aim to correlate the sample paths X (r)

and Z (r)
τL in order to reduce the variance in Q∗

L+1.
The difficulty in coupling the two sample paths arises because the tau-leaping

system has its reaction propensities updated after a fixed period of time, not after a
fixed number of reactions. The DM is not equipped to provide sample paths which
exhibit this non-Markovian behaviour.We thus have to dealwithwhatAnderson (2007)
describes as a time-inhomogeneous Poisson process. One approach to handling this
situation is to use a form of the modified next reaction method (MNRM) (Anderson
2007) to simulate the required sample paths (Anderson and Higham 2012). We do not
explore this approach further, but rather present our own simpler and more efficient
method. However, our technique is mathematically equivalent to the MNRM and
therefore generates equivalent statistics. In particular, we preserve the same mean and
variance. We demonstrate the improvements in simulation time in comparison to the
algorithm of Anderson and Higham (2012) in Sect. 3.4.1.

In order to couple the same paths, we reformulate the tau-leaping algorithm so that it
can be implemented in the sameway as the DM, one reaction at a time. This is possible
for the following reasons. Firstly, we can express a (homogeneous) Poisson process in
terms of a number of exponential random variables: a Poisson process with rate λ has
inter-arrival event times exponentially distributed with rate parameter λ (Norris 1998).
Instead of using a single Poisson random number to decide how many events occur in
our Poisson process over a time interval τ , we can simulate a number of inter-arrival
times, and work out how many fit into the time interval τ . This then gives the number
of reaction events and will be distributed in the same way as the Poisson random

123

1656 C. Lester et al.

variable. Secondly, we can extend these results to account for parameters which are
step functions in time.

We then implement the tau-leaping aSSA one reaction at a time by creating random
variates that specify the time between reaction within the time step of length τL . We
will therefore simulate a number of reaction events—however, unlike the DM, the
parameters (reaction propensities) are not immediately updated.Wecan therefore think
of the generation of exponential random variables as modeling delayed reactions. This
means that if we initialize a reaction at time t ∈ [nτL , (n+1)τL)where n ∈ N, say, we
only alter the species numbers at the later time t = (n + 1)τL , so that (n + 1)τL − t is
the delay. In line with the regular tau-leaping algorithm, the propensity functions are
only updated at the end of each time step. This means that our ‘delayed tau-leaping’
algorithm is equivalent to the regular tau-leaping algorithm. Crucially, it resembles
the same structure as the DM.

Since, in this work, we are only interested in the state vector at a terminal time,
we can simplify our method by thinking of delayed reactions as having an immediate
effect on the population, but a deferred effect on the propensity functions. This has
the effect of simplifying the internal dynamics of the algorithm, without altering our
final estimate.

Let X(t) represent the state vector in the exact sample path at time t , and similarly
let Z(t) represent the state vector in the tau-leaping sample path. Let a j represent
the reaction propensity of reaction channel R j in the exact system, and b j represent
the reaction propensity of the same channel in the tau-leaping system. Following the
approach outlined previously for coupling coarse and fine tau-leaping paths, we will
think of each reaction channel, R j , as having three virtual channels, which we call
R1
j , R

2
j and R3

j and define as follows:

– R1
j : this channel causes reaction j to happen in both systems, and has propensity

function c j = min{a j , b j };
– R2

j : this channel causes reaction j to happen in the exact system only, and has
propensity function a j − c j ;

– R3
j : this channel causes reaction j to happen in the tau-leaping system only, and

has propensity function b j − c j .

The purpose of this coupling is to share random fluctuations between the two paths.
Reaction R1

j will occur far more often than R2
j and R3

j , and hence the populations
of both systems will remain similar. Importantly, this approach is consistent with the
requirements of the system dynamics for the following reasons.

Note that the overall reaction propensity of these three virtual reactions is d j =
max{a j , b j }. Moreover, if a j > b j (therefore c j = min{a j , b j } = b j and d j =
max{a j , b j } = a j) we can say that if a j reaction is to happen, it will definitely
happen in the exact system. This is because the only way it cannot happen is if reaction
channel R3

j fires, but this is impossible as R3
j has propensity of b j − c j = 0. Reaction

j also happens in the tau-leaping systemwith probability min{a j , b j }/max{a j , b j } =
b j/a j . This follows because it is the probability of reaction channel R1

j firing, given
a j reaction happens. An equivalent result can be derived if b j > a j : if a j reaction
is to occur, it will definitely occur in the tau-leaping system, and will also occur in

123

Extending the Multi-level Method for the Simulation... 1657

the exact system with probability a j/b j . Finally, if a j = b j then, if a j reaction takes
place, it must do so in both systems.

We will therefore simulate the coupled system according to a two step process.
The first step will be to decide which reaction, j , fires in at least one of the systems.
The second step will be to decide whether the exact, tau-leaping or both systems are
affected. We now state our algorithm for generating coupled sample paths up to a
terminal time T :

1. set X := X(t0), Z := Z(t0) and t := t0. Set the start time of the tau-leap time
step as tB := t0, and the end time as tE := t0 + τL ;

2. calculate propensity function b j (Z(tB)) for each reaction channel R j ,
j = 1, . . . , M in the tau-leaping system;

3. calculate the propensity function a j (X(t)) for each reaction channel R j ,
j = 1, . . . , M in the exact system;

4. for each reaction, j , calculate d j = max{a j , b j } and the total firing propensity
d0 := ∑M

j=1 d j ;
5. generate�, a random exponential variate with parameter d0. This can be achieved

by generating r1 uniformly on (0, 1) and then setting � := (−1/d0) log(r1);
6. if t + � > T , terminate the algorithm. Otherwise, if t + � ≥ tE update the

tau-leaping propensities. Do this by setting t := tE , tB := tE and tE := tE + τL ,
and returning to step 2. If t + � < tE , set t := t + � and continue to step 7;

7. choose a firing channel j such that each reaction j has probability d j/d0 of firing.
Do this, for example, by generating r2 uniformly on (0, 1) and determining the
minimal j such that

∑ j
k=1 dk > d0 × r2;

8. implement reaction j in the system which has reaction propensity d j

= max{a j , b j }, and update the population levels correspondingly;
9. sample r3 uniformly from (0, 1). If r3 < c j/d j , then fire reaction j in the other

system also;
10. if R j has been implemented in the exact system, return to step 3. Otherwise, return

to step 5.

In the context of computational efficiency, we expect our revised algorithm to
differ from the original MNRM (Anderson and Higham 2012), in two significant
ways. Firstly in step 6, a number of time steps will be ‘rejected’ as the algorithm
returns to step 2. This step is justified by the memoryless property. This means that
a number of random variates will be ‘wasted’, with the extent of wastage depending
on the value of τL . In contrast, one of the main attractions of the MNRM is that it
barely wastes any random numbers. However, if the generation of random numbers
is a concern, then r3 in step 9 can be generated cheaply by recycling r2 (Yates and
Klingbeil 2013). Secondly, in step 7, a firing channel is chosen, and then the affected
paths are determined in steps 8 and 9. The search in step 7 is amenable to optimization
in much the same way as the DM (McCollum et al. 2006; Li and Petzold 2006; Cao
et al. 2004). The downside of the MNRM in this context is that a substantial amount
of complex maintenance work needs to be carried out within the algorithm and that
choice of the next reaction involves an unavoidably time-consuming search to find the
minimum within a matrix of ‘next reaction times’ on a substantially enlarged state
space (as there are three virtual channels for every reaction channel). Optimization of

123

1658 C. Lester et al.

Table 3 The contribution from each level in producing an unbiased overall estimator, Qu , for E[X3] in
system (7) at T = 1

Level τ�−1 τ� Estimate Variance Paths Time (s)

Q0 – 3−2 3187.47 1.03 × 106 7.11 × 106 89.9 (93.8)

Q1 3−2 3−3 350.52 16287.10 420,814 24.9 (24.8)

Q2 3−3 3−4 117.48 2666.80 114,125 15.5 (15.5)

Q3 3−4 3−5 39.15 658.14 40,972 12.0 (12.1)

Q4 3−5 3−6 13.00 196.09 17,534 10.7 (10.7)

Q5 3−6 3−7 4.42 48.28 6406 7.0 (6.9)

Q∗
6 3−7 DM 2.19 38.75 2870 5.8 (5.8)

Total 3714.23 ± 0.99 – 165.8

We have taken τ0 = 1/9, K = 3, and L = 5. In the time column, the true simulation time is shown, and
the estimated simulation time is shown in brackets

the MNRM is somewhat less straightforward, but the method of Gibson and Bruck
(2000) can potentially be adapted.

In the next section, we test our multi-level algorithm with a range of different
parameters. In particular, we compare our updated method with the original MNRM
method of Anderson and Higham (2012) in Sect. 3.4.1.

3.4 Example

We are now in a position to implement the multi-level method on our example gene
expression system, (7). We first give a detailed breakdown of the contribution to the
simulation of each level using the canonical set of parameters given in (7). We then
demonstrate the effects on the simulation efficiency of varying these parameters when
generating both biased and unbiased estimators. In particular, we demonstrate how our
new final coupling method has contributed to a significant performance improvement
in the situation where an unbiased estimator is required.

Initiallywe chose K = 3, τ0 = 1/9 and L = 5. UsingC++, we estimate the value of
the mean dimer population,E[X3(1)], to be 3714.23±0.99, with approximately 166s
of computation (where the error tolerances refer to a 95% confidence interval). The
same calculation can be performed using MATLAB; in this case, we estimate E[X3(1)]
to be 3714.55 ± 1.06 within 579s of computation.

Comparedwith the 7650s taken for the DMusingC++ (see Sect. 2.4; the equivalent
figure for MATLAB is 21,472s), the multi-level approach is approximately 46 times
faster (equivalently, 37 times) for this example system with these canonical parameter
values. In Table 3, we detail the contribution of each level of the multi-level estimator
to the simulation time and the cumulative estimate of E[X3(1)], when C++ has been
used to produce the simulations. In this case, the final estimator, Q∗

L+1, contributes a
relatively small proportion of the simulation time, which makes the calculation of the
unbiased estimator a feasible option. We also show that the actual simulation times
compare very well with those estimated by Eq. (16).

123

Extending the Multi-level Method for the Simulation... 1659

Table 4 Various simulation times for calculation of Q∗
L+1 in system (7)

Time step (τL) Matlab C++

Modified DM MNRM Saving (%) Modified DM MNRM Saving (%)

Seconds per 1000 paths Seconds per 1000 paths

1/34 8.69 16.33 47 1.74 2.21 21

1/35 8.77 16.69 47 1.75 2.21 21

1/36 8.83 17.34 49 1.82 2.28 20

1/37 9.38 18.74 50 1.95 2.41 19

1/38 12.35 22.39 45 2.35 2.69 13

1/39 22.10 32.79 33 3.45 3.49 1

In each case, we have compared the simulation time for nL+1 = 1000 paths using the traditional MNRM
and our novel Modified Direct Method

3.4.1 Final Coupling

In order to compare theperformanceof our newalgorithm to estimateQ∗
L+1 with that of

Anderson andHigham (2012),we produced a number of simulations to estimate Q∗
L+1,

the final, bias-removing estimator using both MATLAB and C++. We implemented
Anderson and Higham’s method on our equipment in order to compare simulation
times fairly. By considering nL+1 = 1000 samples, in Table 4, we demonstrate that
our approach reduces the simulation time in comparison with the original method
of Anderson and Higham. All efforts were taken to use the optimal code for each
approach. These results are demonstrated for a wide range of choices of τL , the time
step used to increment the coarse, tau-leaping paths. A reduction in simulation time is
particularly noticeable when making use of MATLAB. The C++ implementation also
shows a time-saving, except for very small choices of τL . Such small values for τL
fall outside the range that we would encounter when implementing the multi-level
simulation algorithm (including increasingly small values of τL result in an increased
overall simulation time, as there are more levels to simulate). Clearly this reduction in
simulation time for Q∗

L+1 is problem-dependent andmay vary widely from problem to
problem. However, we have found significant reductions in simulation time for all the
reaction networks we have tested and suggest that similar reductions will be possible
for most systems.

3.5 Exploring Variation in Algorithm Parameters

Throughout the rest of this section, we focus on a C++ implementation of the multi-
level method. The use of MATLAB will be demonstrated in the following example in
Sect. 5. We now ask what the effect of changing L , the number of levels, τ0, the size
of the time step on the base level, and K , the scaling factor, will be on the simulation
time. In Tables 5 and 6, we demonstrate the effect of varying L for three different
values K for biased and unbiased estimators respectively.

123

1660 C. Lester et al.

Table 5 A range of biased
estimators, Qb , of the terminal
dimer population of X3(1) in
our example gene expression
system (7)

τL refers to the time step used
on the finest correction level. We
show L + 1, the total number of
estimators used to generate Qb .
The last column shows the CPU
time taken; the estimated time,
given by (16), is shown in italics.
For each set of parameters, we
used Eq. (15) to determine how
many simulations to perform on
each level

τ0 τL L + 1 K Estimate Duration (s)

2−3 2−8 6 2 3695.00 ± 1.00 121.4

2−4 2−8 5 2 3695.95 ± 1.01 173.8

3−2 3−5 4 3 3694.62 ± 1.00 121.6

3−2 3−6 5 3 3707.85 ± 0.98 139.5

3−2 3−7 6 3 3711.32 ± 1.00 146.3

3−2 3−8 7 3 3714.13 ± 0.99 163.2

3−2 3−9 8 3 3714.14 ± 0.96 180.3

3−3 3−7 5 3 3711.23 ± 0.99 272.1

3−4 3−7 6 3 3712.48 ± 1.00 586.6

4−2 4−4 3 4 3695.59 ± 1.00 159.5

4−2 4−5 4 4 3710.41 ± 0.99 182.1

Table 6 This table shows a
range of exact estimators, Qu , of
the terminal dimer population of
X3(1) in our example gene
expression system (7)

τL refers to the time step used
on the finest correction level for
the biased estimator, Qb , before
the final exact correction Q∗

L+1,
has been added to remove the
bias. We also show L + 2, the
number of terms contributing to
the estimator Qu

τ0 τL L + 2 K Estimate Duration (s)

3−2 3−5 5 3 3713.97 ± 1.00 166.2

3−2 3−6 6 3 3715.61 ± 0.97 156.7

3−2 3−7 7 3 3714.23 ± 0.99 165.8

3−2 3−8 8 3 3713.98 ± 0.99 179.2

3−2 3−9 9 3 3714.47 ± 0.97 173.2

3−3 3−6 5 3 3714.84 ± 0.99 280.8

4−2 4−5 5 4 3713.94 ± 1.00 199.0

4−2 4−6 6 4 3713.86 ± 1.00 199.6

6−1 6−3 4 6 3714.09 ± 0.99 171.1

6−1 6−4 5 6 3714.46 ± 1.00 173.6

As previously noted, for our canonical parameter values, Table 3 suggests that an
unbiased estimator comes at little additional cost to a biased estimator, and should,
therefore, be preferred. However, for completeness in Table 5, we show the values
of the biased estimators for a range of values of L and K , as well as comparisons
between the estimated and actual simulation times. We will return to this point in the
discussion. These tables demonstrate the impact of a judicious choice of τ0 and L , but
unfortunately shed little light on the optimal choice of K , the scaling factor. In the
case of SDEs, Giles suggests that K = 4 may well be sensible (Giles 2008).

We discuss the biased and unbiased cases separately. For the biased estimator, Qb,
the choices of τ0 and L determine the overall bias of the estimator. A larger value of
L will lead to a lower bias, but also to increased simulation time. For the unbiased
estimator,Qu , the situation is less straightforward. Our view is that the simulation time
is not particularly sensitive to the particular choice of L . However, we do note that the
choice of τ0, the resolution on the base level, can substantially affect simulation time.

123

Extending the Multi-level Method for the Simulation... 1661

We will therefore present an algorithm which provides for a reasonable choice of this
input.

In both the biased and unbiased cases, the confidence intervals have not been faith-
fully attained: this is because we have predicted the number of paths necessary for the
generation of each estimator with a specific variance based on an initial number of
preliminary samples and this method has not turned out be accurate. Reasons for this
are outlined later in the Discussion.

4 Method Configuration

In the previous subsection, as well as demonstrating the improved efficiency of our
novel exact coupling method for the final level, we found that the choice of parameters
for themulti-levelmethod canhave a significant effect on simulation time and estimator
accuracy. In this section, we provide a number of concrete suggestions for algorithmic
choices that automatically determine suitable values for these tunable parameters. We
will suggest:

A. An optimal choice of τ0, the resolution on the most inaccurate level;
B. Optimal choices of K and L , that is, the scaling factor and the number of levels to

use in total;
C. The choice of whether to use a biased or an unbiased estimator.

4.1 Choice of the Base Level Time Step, τ0

It is tempting to assume that, since the multi-level method benefits from using many
low quality population estimates which are simulated quickly, a large choice of τ0
would be prudent. The effect of choosing too large a value of τ0 is that, whilst the
base level estimate, Q0, may be calculated quickly, Q1 and other correction terms
will require increased computational time since more sample paths will be needed to
correct the inaccurate base level estimate. The optimal value for τ0 maywell depend on
the particular choice of K , the scaling constant. For the purposes of this investigation,
however, we fix the value of K . We will also consider the time step on the finest
level, τL , as fixed at a (unknown) value. Based on this, we choose a value for τ0 and,
subsequently, L .

From Eq. (16) in Sect. 3.2, we recall that

1

ε2

{
L∑

�=0

√
c�V�

}2

,

units of CPU time are required to attain an estimator variance of ε2. Recall also that
c� represents the per-path simulation time, and V� the sample variance on a level �.
To simplify notation, we introduce k�, where

k� := c�V�. (22)

123

1662 C. Lester et al.

This gives an indication of the relative cost of producing simulated paths for level �.
As in Sect. 3.2, k� can be estimated cheaply using a fixed (and relatively small) number
of paths.

We take an iterative approach to optimizing the choice of τ0, beginning with an
initial guess, and improving on it in subsequent iterations. Given a initial choice of τ0,
τ

(1)
0 , we propose two candidates for an improved choice, τ (2)

0 :

– A smaller choice, τ (2,1)
0 = τ

(1)
0 /K ;

– a larger choice, τ (2,2)
0 = τ

(1)
0 K .

Making the reasonable assumption that there will be at least one level in addition to
the ‘base’ level, we can calculate the difference in expected overall simulation times
using τ

(2,1)
0 or τ

(2,2)
0 . If using τ

(2,1)
0 or τ

(2,2)
0 results in a time-saving compared with

using τ
(1)
0 , we set our improved guess τ

(2)
0 to equal the appropriate value. We can

repeat this algorithm until we reach a choice of τ0 for which no further improvement
is gained. This corresponds to a local minimum of the overall simulation time, and we
take τ0 = τ

(n)
0 . If, by chance, we begin at a local maximum we follow the refinement

process in both directions (both increasing and decreasing τ0).
In general, our iterative algorithm will require comparison of the computational

complexity of generating an estimator with coarse base level time step τ c0 , with the
computational complexity of generating an estimator with a fine base level time step
τ
f
0 = τ c0 /K . The estimator for the coarse base level, given a desired level of accuracy,
will be given by

Q = E

[
Zτ c0

]
+ E

[
Zτ c0 /K − Zτ c0

]
+

L∑
�=2

E

[
Zτ c0 /K � − Zτ c0 /K �−1

]
, (23)

and the estimator for the fine base level will be given by

Q = E

[
Zτ c0 /K

]
+

L∑
�=2

E

[
Zτ c0 /K � − Zτ c0 /K �−1

]
. (24)

The majority of the levels are simulated for both choices of base level and, as such,
will have the same relative cost, k�. The terms that will have different relative costs

will be E
[
Zτ c0

]
and E

[
Zτ c0 /K − Zτ c0

]
on the coarse level (for which we will denote

the relative costs as kc0 and k
c
1, respectively), andE

[
Zτ c0 /K

]
on the fine level (for which

we will denote the relative cost as k f
0). We can use this knowledge to prove a theorem

which will allow for acceptance/rejection of a proposed base level time step, using a
simple comparison of these three proportionality constants.

Proposition 1 The configuration with the fine base level time step, τ
f
0 = τ c0 /K,

should be preferred over that with coarse base level time step, τ c0 , if√
k f
0 <

√
kc0 +

√
kc1, (25)

123

Extending the Multi-level Method for the Simulation... 1663

where we recall that k� represents the relative cost, and is given by k� = c�V�.

Proof In order to see where this inequality comes from proceed as follows: without
loss of generality set the variance target at ε2 = 1. Then, the expected difference
in simulation time between the estimator with the fine base level time step and the
estimator with the coarse base level time step is given by

{ L f∑
�=0

√
k f
�

}2
−
{ Lc∑

�=0

√
kc�

}2
.

Using the fact that, for i ≥ 1, kci+1 = k f
i , and that L f + 1 = Lc, we can rewrite this

as {√
k f
0 −

√
kc1 +

L f +1∑
�=1

√
kc�

}2
−
{√

kc0 +
L f +1∑
�=1

√
kc�

}2
.

Thus, after rearrangement, the net change in simulation time is

[√
k f
0 −

√
kc0 −

√
kc1

]{√
k f
0 +

√
kc0 +

√
kc1 + 2

L f +1∑
�=2

√
kc�

}
. (26)

As the terms within the braced brackets are positive, we have the required condition.

4.1.1 Example

We again consider the gene expression system (7) and use our algorithm to choose τ0

in C++. First impose the choice of K = 3. If we take τ
(1)
0 = 1/9, then there are two

alternatives to consider, τ
(2,1)
0 = 1/27 and τ

(2,2)
0 = 1/3. With 10, 000 samples, we

calculate estimates for the relevant proportionality constants and present the results in
Table 7. We then use Theorem 1 to decide on the appropriate choice of τ0. The initial
base level time step τ

(1)
0 is coarse in comparison with the proposed base level time step

τ
(2,1)
0 . Since we have

√
k(1)
0 +

√
k(1)
1 = 4.5666 < 6.7624 =

√
k(2,1)
0 , by Theorem 1

τ
(2,1)
0 = 1/27 is an inferior choice to τ

(1)
0 = 1/9. Similarly, as

√
k(2,2)
0 +

√
k(2,2)
1 =

9.0220 > 3.5859 =
√
k(1)
0 , Theorem 1 implies that τ

(2,2)
0 = 1/3 is also an inferior

choice. We therefore take τ0 = 1/9.
Despite the fact that we have rejected τ

(2,1)
0 and τ

(2,2)
0 and thus selected τ

(1)
0 , it

may be that choices of τ0 between τ
(1)
0 and τ

(2,1)
0 or between τ

(1)
0 and τ

(2,2)
0 , (for

example, τ0 = 1/12 or τ0 = 1/7, respectively) provide better performance than τ
(1)
0 .

Fortunately, efficient multi-level simulation does not require that the choice of τ0 is
exactly optimal, rather that particularly poor choices of τ0 are avoided. Our iterative
procedure provides a mechanism by which a value of the base level time step, τ0, can
be selected, given a value of K . A further benefit of our algorithm is that it does not
require that τL be chosen at the outset.

123

1664 C. Lester et al.

Table 7 Details of the cost
measure for each potential
ensemble of estimators for the
gene expression system (7) with
different choices of τ0, the time
step on the base level

Guess Estimates

τ
(1)
0 = 1/9

√
k(1)
0 = 3.5859

√
k(1)
1 = 0.9807

τ
(2,1)
0 = 1/27

√
k(2,1)
0 = 6.7624 N/A

τ
(2,2)
0 = 1/3

√
k(2,2)
0 = 3.5576

√
k(2,2)
1 = 5.4644

4.2 Choice of Final Accuracy in the Biased Estimator

As discussed previously, ensemble statistics collected with a biased system give rise to
point estimates laden with both a bias, and a statistical error. It is sensible to combine
these errors into a single quantity, as the source of an error may not be relevant to
an end-user. If the population of species i , Xi , is estimated by the biased multi-level
method as Qb = θ̂ and the true expectation is given by E[Xi] = θ , then the mean-
squared error (MSE) is

MSE(θ̂) = E[(θ̂ − θ)2] = Var(θ̂) + (Bias(θ̂ , θ))2. (27)

We can estimate the bias (Li 2007) by noting that if E[Zi] is an estimator generated
using a tau-leaping algorithm with fixed time step τ , then there exists a constant C
such that as τ → 0, E[Zi]−E[Xi] ≈ Cτ . The estimator variance can be estimated by
noting that, for each level, V� ∝ 1/n�. Equation (27) therefore suggests that the MSE
can be controlled in two ways. Firstly, given τ0, we can take the number of levels,
L , sufficiently large. This controls the MSE because incorporation of each additional
level into the algorithm has the effect of approximately dividing the model bias by a
factor of K . Secondly, we can increase the number of sample paths, n�, on each level
� to decrease the variance of the biased estimator.

Suppose we are given a MSE allowance, ε2, and have to ascribe a portion of this
to the square of the bias, and the remainder to the variance. As a first attempt at a
solution, we pre-assign a proportion, λ ∈ (0, 1) of the MSE allowance to the square
of the bias, and leave1 −λ to the variance. Previous work (Giles 2008) has made the
simple choice λ = 1/2, that is, assigning half the MSE to the square of the bias, and
the other half to the estimator variance. However, it is not clear how best to choose λ

for a particular system. We demonstrate the effects of varying λ later in this work.

4.3 Towards an Adaptive Simulation Approach

Recall that Eq. (16) estimates the units of CPU time required to attain an estimator
variance of (1−λ)ε2. If we add an additional level into the algorithm, this will reduce
the bias, but more sample paths may be required on each level in order to reduce the
variance of the combined estimator below the target of (1 −λ)ε2. Therefore, given a
choice of λ, it is not clear how to best choose L such that the computation is most

123

Extending the Multi-level Method for the Simulation... 1665

efficient. We suggest using the following incremental approach to obtain MSE = ε2,
given a choice of λ:

1. initially work with a single level so that L = 0. Choose τ0 according to the
algorithm of Sect. 4.1. Estimate k0 and generate n0 sample paths. This gives an
estimator of Qb = Q0 with desired statistical accuracy (an estimator variance of
(1 −λ)ε2);

2. perform a bias test (using Eqs. (29) or (30), below) on the estimator, Qb =∑L
�=0 Q�. If the bias is at most

√
λε, terminate the algorithm;

3. if not, introduce a new level into the system and let L := L + 1. Estimate kL and
the calculate the optimal number of sample paths for each level, n�, � = 0, . . . , L
according to (15);

4. generate the required number of sample paths;
5. return to step 2;

To evaluate the bias we note, for large �,

Q� = E
[
Zτ0/K � − Zτ0/K �−1

] = E
[
Zτ0/K � − Xi

]− E
[
Zτ0/K �−1 − Xi

]

≈ Cτ0/K
� − Cτ0/K

�−1

= (K − 1)E
[
Xi − Zτ0/K �

]
.

Therefore, we can estimate the bias as,

E
[
Xi − Zτ0/K �

] ≈ Q�

K − 1
, (28)

and so to obtain MSE = ε2, the algorithm should be terminated, at level L , when

|Q�| ≤ √
λ(K − 1)ε. (29)

Note that to improve the reliability of this approach, one could follow Giles (2008)
and perform the bias test using the two levels. The algorithm thus terminates with

max {K−1|Q�−1|, |Q�|} ≤ √
λ(K − 1)ε. (30)

The incremental approach outlined here also provides the opportunity to correct the
errors inherited from the use of (initially poorly) approximated values for k�. This can
be done in several ways. Firstly, when the incremental algorithm is used, the estimates
for each k� can be recalculated at step 3 as each additional level is added into the
system. However, the use of updated k�’s means that there may be a set of levels,
Γ , where more sample paths have already been simulated than required by (15). This
corresponds to the associated estimators, Q�, � ∈ Γ , having estimator variances lower
than required by the bound

∑L
�=0 V� < (1 −λ)ε2. If we set

ε∗ := (1 −λ)ε2 −
∑
�∈Γ

V�/n�, (31)

123

1666 C. Lester et al.

then we can still satisfy our overall variance target by achieving the variance target of
ε∗ for the combined levels � ∈ {0, . . . L} \ Γ . Note that if we recalculate our target n̂�

for � ∈ {0, . . . L}\Γ , we now require fewer sample paths for each level. It is therefore
now possible that more sample paths than required have already been generated for
some � ∈ {0, . . . L} \ Γ . These levels can then be added to the set Γ and ε∗ can be
recalculated. This argument can be repeated until no more levels can be added to Γ .

Once we have ensured that the required bias limitation has been achieved, we then
check whether the required statistical error has been achieved, and generate more
sample paths if this is appropriate. In this way, we have a high degree of confidence
that the algorithm has attained an estimator with the required error.

5 A Second Example System

In this section, we consider a second, synthetic sample system:

R1 : S1
8

GGGA S1 + S1, R2 : S1 + S1
0.004

GGGGGGGA S1,

R3 : S2
4

GGGA S2 + S2, R4 : S2 + S2
0.002

GGGGGGGA S2,

R5 : S1 + S2
0.0001

GGGGGGGGA S1 + S1 + S3. (32)

System (32) could, for example, represent a predator-prey model with S1 a predator
of S2. S3 simply counts the number of predator prey interactions. For the purposes
of this discussion, we will simulate sample paths from time t = 0 until a terminal
time T = 9. Throughout this section, we will make use of MATLAB to illustrate the
advantages of the multi-level method. This system exhibits different dynamics to our
other model system and, as such, presents different modeling challenges. Figure 3
shows evolution of XT (t) = (X1(t), X2(t), X3(t))T up until this terminal time. The
solid black lines show the mean species numbers and the colored bands one and two
standard deviations from the mean. To benchmark the performance of our multi-level
method,wewill initially estimate themean copy numbers of S1, S2 and S3, denoted X1,
X2 and X3, respectively, at time T using theDM, and then compare the simulation time
with that of the multi-level method. In each case, we will attempt to approximate the
mean populations of S3 with an estimator variance of 1.0. The results from MATLAB,
DM simulation are displayed in Table 8. In total, 14,500 paths were generated, taking
a total of 1070s (approximately 18min).

As an example of an efficient multi-level parameter set for system (32), we take
τ0 = 1/9, K = 3 and L = 4 and seek an unbiased estimator forE[X3(T)]. This means
we have six estimators, Q0, . . . , Q∗

5, which combine to produce an overall estimator,
Qu . The multi-level method (implemented in MATLAB) gives Qu = 3026.85 ± 1.05
within 222s, an estimate consistent with that of the DM (see Table 8) but produced in
a fifth of the time.

In order to explore our result in greater detail, we explicitly consider the contribution
of each estimator Q� to the overall estimator Qu and present our findings in Table 9.

123

Extending the Multi-level Method for the Simulation... 1667

0.0 2.0 4.0 6.0 8.0
0

500

1000

1500

2000

2500

3000

3500

S
1

Time

C
op

y
nu

m
be

r

0.0 2.0 4.0 6.0 8.0
0

500

1000

1500

2000

2500

3000

3500

S
2

Time

C
op

y
nu

m
be

r

0.0 2.0 4.0 6.0 8.0
0

500

1000

1500

2000

2500

3000

3500

S
3

Time

C
op

y
nu

m
be

r

Fig. 3 Evolution of XT (t) = (X1(t), X2(t), X3(t))
T up until terminal time T = 9. The solid black lines

show the mean species numbers and the colored bands one and two standard deviations from the mean
(Color figure online)

Table 8 Estimated populations of system (32) at time T = 9, as determined by the DM

Species Sample mean Sample variance

S1 2047.4 ± 0.73 2022.8

S2 1897.3 ± 0.73 1995.8

S3 3027.2 ± 1.00 3808.6

95% confidence intervals have been constructed; these are indicated with the ‘±’ terms

Table 9 The contribution from the estimator on each level, Q�, in producing an unbiased overall estimator
Qu for X3 of system (32) at T = 9

Level τ�−1 τ� Estimate Sample variance Paths Time (s)

Q0 – 3−2 2951.71 3664.38 39,339 23.7 (152.8)

Q1 3−2 3−3 50.13 215.93 5910 16.1 (73.0)

Q2 3−3 3−4 16.61 89.21 2480 16.1 (62.7)

Q3 3−4 3−5 5.56 36.26 1138 18.5 (47.0)

Q4 3−5 3−6 1.85 15.58 678 26.7 (48.4)

Q∗
5 3−7 DM 1.01 11.42 172 120.6 (108.1)

Total 3026.85 ± 1.05 – 221.8

We have taken τ0 = 1/9, K = 3, and L = 4. In the time column, the true simulation time is shown, together
with an estimated simulation time in brackets

We see that 54% of simulation time is allocated to the calculation of Q∗
L+1, despite our

best attempts at optimizing calculations on this final level. Unfortunately, this effort
is somewhat wasted as Qu is adjusted by only 0.03% with the inclusion of Q∗

L+1.
Moreover, Q∗

L+1 contributes approximately 25% of the total estimator variance. With
the benefit of hindsight, we can say that it may have been better to neglect the final
coupling level and consider instead the corresponding biased estimator, Qb, with the
same multi-level parameter set. In addition, we note that the true simulation times, as
shown in Table 9, compare poorly with the simulation times estimated by Eq. (14).
We discuss this MATLAB-specific problem in Sect. 7.2.

123

1668 C. Lester et al.

Table 10 The contribution from each level estimator Q� in producing an unbiased overall estimator Qu
for X3 at T = 9

Level τ�−1 τ� Estimate Sample variance Paths Time (s)

Q0 – 30 130.78 508.21 127,197 4.5

Q1 30 3−1 2301.85 68,962.36 539,383 183.9

Q2 3−1 3−2 519.10 67,553.46 522,755 681.7

Q3 3−2 3−3 50.15 209.611 17,984 45.75

Q4 3−3 3−4 16.91 82.88 6,781 37.7

Q5 3−4 3−5 5.66 36.45 3,593 47.0

Q6 3−5 3−6 2.01 18.07 2,781 92.9

Q∗
7 3−7 DM 1.05 11.38 477 154.5

Total 3027.15 ± 1.12 – 1247.8

We have taken τ0 = 1, K = 3, and L = 4

The choice of the ‘most efficient’ parameter set for the multi-level method depends
on the system to be simulated and, in general, is a non-trivial problem to solve. We
now explore further the choices of τ0 and L for our example system (32) and then
conclude with a discussion of the final coupling level.

5.1 Choice of the Base Level

In Table 10, we demonstrate that an inappropriate choice of τ0 in the multi-level
method can lead to a dramatically increased simulation time (1247.8 s, compared with
221.8 s). Whilst this choice of τ0 results in a reasonable estimate of E[X3(T)], the
CPU time required is greater than that of our DM. Looking in detail at the CPU time
required for each level, we see that the estimator Q0 is calculated within 4.5 s, but
the estimator Q1 takes 183.9s to compute and Q2 takes 681.7s. The base level is too
inaccurate to capture the salient details of the system, and consequently these must be
restored with the subsequent estimators.

In order to avoid this situation, we need to choose τ0 in an intelligent manner. To
do this, we follow the method suggested in Sect. 4.1. As a first guess, take τ

(1)
0 = 3.

Using the results displayed in Table 11, we refine our choice of τ0:

1. We let τ (2,1)
0 = 1, τ (2,2)

0 = 9 be the candidate refinements of τ0. We have

√
k(1)
0 +

√
k(1)
1 >

√
k(2,1)
0 ,

√
k(2,2)
0 +

√
k(2,2)
1 >

√
k(1)
0 ,

and so we accept τ (2,1)
0 and reject τ (2,2)

0 . We therefore set τ (2)
0 = τ

(2,1)
0 .

123

Extending the Multi-level Method for the Simulation... 1669

Table 11 Details of the cost
measure for each potential
ensemble of estimators for (32)
with different choices of τ0, the
time step on the base level

Guess Estimates

τ
(1)
0 = 3

√
k(1)
0 = 4.8609

√
k(1)
1 = 9.1735

τ
(2,1)
0 = 1

√
k(2,1)
0 = 0.1701

√
k(2,1)
1 = 6.0573

τ
(2,2)
0 = 9

√
k(2,2)
0 = 0.0028

√
k(2,2)
1 = 5.1600

τ
(3)
0 = 1/3

√
k(3)
0 = 5.8497

√
k(3)
1 = 10.0359

τ
(4)
0 = 1/9

√
k(4)
0 = 1.7699

√
k(4)
1 = 0.8384

τ
(5)
0 = 1/27

√
k(5)
0 = 3.0284 N/A

2. We let τ (3)
0 = τ

(2)
0 /3 = 1/3. As

√
k(2)
0 +

√
k(2)
1 >

√
k(3)
0 ,

we accept τ (3)
0 as an improvement.

3. We let τ (4)
0 = τ

(3)
0 /3 = 1/9. As

√
k(3)
0 +

√
k(3)
1 >

√
k(4)
0 ,

we accept τ (4)
0 as an improvement.

4. We let τ (5)
0 = 1/27. However,

√
k(4)
0 +

√
k(4)
1 <

√
k(5)
0 ,

and so we reject τ (5)
0 , and conclude that a good choice is τ0 = 1/9.

We therefore, under the restriction of K = 3, fix τ0 = 1/9 and proceed with the rest
of the method.

InTable 12,we demonstrate the performance of a range of alternative base level time
steps with a corresponding change in number of levels so that the biased estimators
that would be produced (before the final, exact, coupling) always have the same level
of bias. τ0 = 1/9 is, as predicted by our method for choosing the base level time step,
the most efficient choice for the example system (32)

5.2 Choice of the Final Level

Asmentioned in the previous section, it may be prudent to use theMSE as an accuracy
metric. We recall that

MSE = Var(Q) + {Bias(Q,E [X3(T)])}2 , (33)

123

1670 C. Lester et al.

Table 12 Various estimates of E[X3(T)] for system (32) generated using the unbiased multi-level method
with different base level time steps

τ0 τL L K Estimate Duration (s)

30 3−6 6 3 3027.15 ± 1.12 1247.83

3−1 3−6 5 3 3027.38 ± 1.11 1223.35

3−2 3−6 4 3 3026.46 ± 1.03 208.34

3−3 3−6 3 3 3027.03 ± 1.06 224.59

Note that τL now refers to the overall accuracy of the biased estimator, before the final estimator Q∗
L+1 is

included to produce an unbiased estimator

Table 13 Details of the simulation times for each potential ensemble of estimators for (32) with different
choices of λ, the proportion of the total MSE assigned to the bias

λ Estimate Levels Time (s)

0.95 3026.18 ± 0.44 5 103.07

0.75 3026.29 ± 0.98 6 154.05

0.50 3026.67 ± 1.38 6 97.27

0.25 3026.67 ± 1.70 6 72.92

0.05 3027.52 ± 1.91 7 397.82

The value of λ has been fixed, and the procedure of Sect. 4.3 followed

and we seek to bound this by some ε2. We choose λ ∈ (0, 1) and then aim to bound
the estimator variance of Q by (1 −λ)ε2, and the bias by

√
λε2. For our sample

problem (32), we have taken τ0 = 1/9, K = 3, and sought to estimate E[X3(T)]
subject to a maximum MSE of 1.0. In Table 13, we present a range of results for
different choices of λ. Our answers, unsurprisingly, compare very favorably with the
exact estimates given in Table 8. Moreover, our algorithm ensures that the required
MSE has been attained.

This approach is simpler to implement than the unbiased method and can be easily
automated. By contrast, the unbiased approach cannot be easily automated, and the
decision as to howmany levels to incorporate before the final coupling is implemented
is far from obvious. Future work could focus on the optimal choice of λ, or indeed,
an adaptive choice of λ as the simulation progresses. This could potentially take full
account of the fact that the number of estimators incorporated will be necessarily
discrete.

6 A Third Example System

In this section, we consider a third example system. Our simulations will be con-
ducted in C++. This model describes the mitogen-activated protein kinase (MAPK)
cascade, which is involved in a wide variety of signalling processes that govern tran-
sitions within the phenotype of a cell, and has previously been used as a test case
for stochastic simulation algorithms (MacNamara et al. 2008). This model comprises

123

Extending the Multi-level Method for the Simulation... 1671

ten coupled Michaelis–Menten schemes (Huang and Ferrell 1996) and has N = 22
species and M = 30 reactions. A Michaelis–Menten scheme is constructed as fol-
lows (MacNamara et al. 2008): there are four species and three reaction channels
within the scheme. The species are substrate (‘S’), enzyme (‘E’), complex (‘ES’) and
product (‘P’) particles. The reaction channels are as follows:

R1 : E + S
r1

GGGGA ES, R2 : ES
r−1

GGGGGA E + S, R3 : ES
r2

GGGGA E + P. (34)

A quasi-steady state assumption can then be applied to reduce the computa-
tional complexity associated with simulating the system. This reduces the scheme
to two species: substrate (‘S’) and product (‘P’) particles. The three reaction channels
described by (34) are reduced into a single reaction channel, which is given as

R∗ : S
k∗

GGGGA P, (35)

where the propensity function followsMichaelis–Menten kinetics, which are given by

k∗ = k2E0S

S + r−1+r2
r1

,

where E0 represents the initial enzyme population. As explained, the MAPK cascade
comprises ten coupled Michaelis–Menten schemes: we provide a diagrammatic rep-
resentation in Fig. 4. We will now simulate the model using the quasi-steady state
assumption. This means we will simulate a model comprising ten reaction channels.
The propensity value of each reaction channel is given by the Michaelis–Menten
kinetic formula detailed in Eq. (35). The substrate, enzyme and product particles for
each channel are as shown in Fig. 4. The reaction channels are therefore as follows:

R1 : KKK
k1

GGGGA KKK−P, R2 : KKK−P
k2

GGGGA KKK ,

R3 : KK
k3

GGGGA KK−P, R4 : KK−P
k4

GGGGA KK ,

R5 : KK−P
k5

GGGGA KK−PP, R6 : KK−PP
k6

GGGGA KK−P,

R7 : K
k7

GGGGA K−P, R8 : K−P
k8

GGGGA K ,

R9 : K−P
k9

GGGGA K−PP, R10 : K−PP
k10

GGGGGA K−P, (36)

where the k j are functions of the form of Eq. (35). We will estimate the mean MAPK
population (indicated by ‘K–P’ in System (36) and Fig. 4) at a terminal time T . We
use suitable initial conditions to simulate the model until a terminal time T = 250.

123

1672 C. Lester et al.

E1

KKK KKK-P

E2

KK KK-P KK-PP

K-P’ase

K K-P K-PP

Output

Fig. 4 A diagrammatic representation of the MAPK cascade. The text refers to chemical species, whilst
the arrows represent Michaelis–Menten schemes. The arrow points from the substrate towards the product;
the species on top of the arc indicate the enzyme. This diagram has been adapted from Huang and Ferrell
(1996)

Table 14 This table provides
the initial values for the MAPK
cascade model detailed in (36)

Species Initial value Species Initial value

KKK 90 KKK−P 10

KK 280 KK−P 10

KK−PP 10 K 280

K−P 10 K−PP 10

The initial conditions are detailed in Table 14. We now provide the model parameters.

Each Michaelis–Menten reaction is of the form R j : X
k j

GGGGA Y , and the function

k j is expressed as k j = α j · X/(X + β j). For each reaction R j , the initial enzyme
populations give α j and β j their values. We use the following values: α1 = 2.5,
α2 = 0.25, α3 = 0.025, α4 = 0.75, α5 = 0.025, α6 = 0.75, α7 = 0.025, α8 = 0.5,
α9 = 0.025, and α10 = 0.5. We also have β1 = 10, β2 = 8, β3 = 15, β4 = 15,
β5 = 15, β6 = 15, β7 = 15, β8 = 15, β9 = 15, and β10 = 15. If the DM is used, it
will take approximately 7300s to estimate the mean MAPK population at time T to a
suitable level of accuracy in C++ (approximately 2h). In Table 15 we show a multi-
level configuration which estimates the mean MAPK population as 2682.87 ± 0.10;
this calculation in C++ takes approximately 1376s. This demonstrates that with even
a relatively complicated reaction network, a fivefold reduction in simulation time can
be achieved with the multi-level method.

123

Extending the Multi-level Method for the Simulation... 1673

Table 15 The contribution from each level estimator Q� in producing an unbiased overall estimator for
the mean MAPK population at time T = 250

Level τ�−1 τ� Estimate Sample variance Paths Time (s)

Q0 – 4−2 2331.79 15,846.10 1.24 × 106 681.2

Q1 4−2 4−3 275.99 537.44 1.15 × 106 243.9 s

Q2 4−3 4−4 57.59 166.21 424,012 211.8

Q3 4−4 4−5 13.21 31.75 121,385 146.7

Q∗
4 4−6 DM 4.29 11.19 58,235 100.7

Total 2682.87 ± 0.10 – 1384.3

We have taken τ0 = 1/16, K = 4, and L = 3

7 Discussion and Outlook

This final section discusses some remaining challenges in implementing the multi-
level method. Under specific circumstances, these challenges might make it difficult
to implement the multi-level method. We discuss one particular difficulty which arises
where two simultaneously generated paths grow far apart over time; a number of
potential remedies are then discussed.Weproceed to discuss a range of implementation
issues.

7.1 Catastrophic Decoupling

Consider the contribution of each term in Q = Q0 + Q1 + · · · + QL(+Q∗
L+1) to the

multi-level estimator. In the course of our exploration of the multi-level method, we
have noticed that occasionally sample paths on one level undergo what we will call a
‘catastrophic decoupling’ so that species populations in a pair of sample paths become
very different from one another. This can have a dramatic effect on the variance of
the estimator on that level and hence on the results of the multi-level method. For
example, if such a sample path is generated in the course of estimating the n�, the
optimization algorithm of Sect. 3.2 then suggests that a huge number of samples are
needed on that level. This slows the multi-level calculation, and the result is often that
the actual variance of the estimator is much lower than the target variance. On the
other hand, if we do not see a catastrophic decoupling during estimation of the n�, but
one or more occur during generation of sample paths for the Q�, the target variance
for the estimator Q is not achieved.

We now give an example of a catastrophic decoupling event. For the example gene
expression system (7), we take τ0 = 1/9 and K = 3. In Table 16, we show percentile
data for distributions of Q3, Q4 and Q5. It is clear that the sample values contributing
to Q3, Q4 and Q5 all possess extreme tails to their distributions as a result of one or
more catastrophic decoupling events. For example, over 90% of the sample values for
Q5 lie in the interval [1, 9], but approximately 1 in 1150 sample paths provide sample
values of −100 or less. This makes catastrophic decoupling events appear deceptively
unlikely; however, if 100 sample paths are generated, there is an 8% chance that such

123

1674 C. Lester et al.

Table 16 Sample values for various percentiles in the distributions used to estimate Q3, Q4 and Q5 for
the gene expression system (7) using τ0 = 1/9 and K = 3

Estimator 0.01 0.1 1 5 50 95 99 99.9 99.99

Q3 −360.5 −311 10 21 40 63 74 87 198.5

Q4 −379 −256.5 3 6 13 22 27 32 43

Q5 −349.5 −58.5 0 1 4 9 11 13 15

100,000 data points have been used for each estimator

Table 17 Statistics demonstrating two different outcomeswhen 1000 sample paths are produced to estimate
Q5 for system (7)

Sample Sample mean Sample variance

No decouplings 4.33 4.82

Single decoupling 4.11 90.41

The system without decouplings has all its data points in [−1; 13], whilst the other system has a single
decoupling, value −288. The rest of the data is contained in [−2; 12]

an event is encountered. If 1000 sample paths are performed, this rises to approximately
58%.

We now explain the cause of this problem and then discuss its consequences. In
effect, a decoupling is possible each time a newmRNAmolecule (M) is introduced into
the system. The coupling technique ensures it is introduced into both the coarse and
fine systems. In the fine system, the decay process of this mRNA starts immediately.
However, in the coarse system this is not always the case: this is because decay of
the mRNA cannot take place in the coarse system until the reaction propensities are
updated. Hence, during this interim period, it is possible for the new mRNA particle
to decay in the fine system but not in the coarse system.

It is clear that the scaling of the system is then what causes problems with the
variance. At time T = 1, there are approximately 24 mRNA molecules, compared
with over 3000 protein molecules. If the decoupling in mRNA species counts occurs
at an early time, the extra mRNA molecule in the coarse system leads to increased
protein generation which, in turn, leads to increased dimer generation. This difference
in generation rates remains until the mRNA populations converge again (if at all). As
the dimer population is monotonically increasing, the population difference is ‘locked
in’ for all subsequent times, and so the difference in sample values of X3(T) is large.

As previously noted, when a simulation exhibiting a catastrophic decoupling is
incorporated into a Monte Carlo estimator, it has a substantial effect on the estimator
variance. However, it is often the case that the estimator itself is relatively unaffected.
In Table 17, we show the dramatic effect that just a single decoupling has on the
sample variance for one level in the gene expression system (7), without having an
overwhelming effect on the mean estimate.

Here we will not present a concrete method which avoids these catastrophic decou-
pling; we suggest this as an area for future work. A first possibility lies in the use of
common inhomogeneous Poisson processes for each of the coarse and fine sample

123

Extending the Multi-level Method for the Simulation... 1675

Table 18 Statistics describing the samples for Q3, Q4 and Q5 for system (7) using τ0 = 1/9 and K = 3

Estimator Mean Variance Kurtosis

Q3 39.33 646.15 108.41

Q4 13.07 197.23 438.00

Q5 4.34 65.62 1257.80

100,000 data points have been used for each estimator

paths. In Table 18, we provide sample means, variances and kurtoses for the gene
expression system. This demonstrates that higher estimators are associated with sub-
stantially higher kurtoses: a second possibility could involve the use of the kurtosis to
detect the presence of a decoupling (Bayer et al. 2012).

7.2 Implementation Challenges

With this work, we provide code for the multi-level method written in both MATLAB
andC++, and nowwediscuss implementation using these two platforms.When sample
paths are produced with MATLAB, the code must be ‘vectorized’ to ensure a high level
of efficiency. To highlight the benefits of this approach, we note that our DM results for
the system (7) shown in Table 2 took around 6h to produce, whereas a non-vectorized
DM code could require 162h (nearly a week).

One of the highly reaction system-dependent components of the multi-level tech-
nique is the optimization algorithm used to choose n�, the number of samples required
on each level. The algorithm should, of course, aim to provide the optimal number of
simulations required on each level; we have followed Anderson and Higham (2012) in
generating 100 initial simulations to guide this choice. However, the results in Table 9
show that the actual simulation time is different to that predicted by the optimiza-
tion algorithm. In MATLAB, this is largely because code vectorization means that, for
example, the CPU time per path when generating, say, 100 sample paths is different
(and usually greater) than the CPU time per path when generating 1000 paths. As
such, the optimization algorithm does not work as well for MATLAB vectorized code
as it does for code implemented using C++, as it overestimates the simulation time:
especially where very many simulations are required.

7.3 Higher Order Estimators

In this manuscript, we have focussed on estimating only the mean and variance of a
population within a chemical reaction network. The method can be naturally extended
to estimate other summary statistics, for example, the signal-to-noise ratio. One partic-
ularly interesting challenge is to dealwith systemswhich comprisemultiple favourable
states, such as the Schlogl system (Vellela and Qian 2009). In this case, the multi-level
method can be used to estimate the r -th moments of the copy number, μr = E[Xr],
for r = 1, . . . ,C . These moments can then be used to construct an approximate prob-

123

1676 C. Lester et al.

ability distribution for the copy number by using the Method of Moments (Kavehrad
and Joseph 1986). We leave the details to a future work.

7.4 Summary

The multi-level method provides the potential for great savings to be made in the
world of stochastic simulation of chemical systems. Although there are many intri-
cacies associated with the method, many of them software- and system-dependent,
the benefits of using multi-level approaches are enormous and open up the range of
problems that can be fully explored using stochastic simulation. We have introduced
a number of novel enhancements to the multi-level method which, we feel, make it
easier to understand and implement, as well more computationally efficient.

References

Anderson D (2007) A modified next reaction method for simulating chemical systems with time-dependent
propensities and delays. J Chem Phys 127(21):214107

Anderson D, Higham D (2012) Multi-level Monte Carlo for continuous time Markov chains, with applica-
tions in biochemical kinetics. SIAM Multiscale Model Simul 10(1):146–179

Anderson D, Ganguly A, Kurtz T (2011) Error analysis of tau-leap simulation methods. Ann Appl Probab
21(6):2226–2262

Arkin A, Ross J, McAdams H (1998) Stochastic kinetic analysis of developmental pathway bifurcation in
phage λ-infected escherichia coli cells. Genetics 149(4):1633–1648

Auger A, Chatelain P, Koumoutsakos P (2006) R-leaping: accelerating the stochastic simulation algorithm
by reaction leaps. J Chem Phys 125(084):103

Barrio M, Burrage K, Leier A, Tian T (2006) Oscillatory regulation of hes1: discrete stochastic delay
modelling and simulation. PLoS Comput Biol 2(9):e117

Bayer C, Hoel H, Von Schwerin E, Tempone R (2012) On non-asymptotic optimal stopping criteria in
Monte Carlo simulations. SIAM J Sci Comput 2(36):A869–A885

Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation algorithm for chemically
reacting systems. J Chem Phys 121(9):4059–4067

Cao Y, Gillespie D, Petzold L (2006) Efficient step size selection for the tau-leaping simulation method. J
Chem Phys 124(4):044109

Cao Y, Gillespie D, Petzold L (2007) Adaptive explicit-implicit tau-leaping method with automatic tau
selection. J Chem Phys 126(22):224101

El SamadH,KhammashM, PetzoldL,GillespieD (2005) Stochasticmodelling of gene regulatory networks.
Int J Robust Nonlinear Control 15(15):691–711

Elowitz M, Levine A, Siggia E, Swain P (2002) Stochastic gene expression in a single cell. Sci Signal
297(5584):1183

Engblom S (2009) Spectral approximation of solutions to the chemical master equation. J Comput Appl
Math 229(1):208–221

Erban R, Chapman S, Kevrekidis I, Vejchodskỳ T (2009) Analysis of a stochastic chemical system close to
a sniper bifurcation of its mean-field model. SIAM J Appl Math 70(3):984–1016

Fedoroff N, Fontana W (2002) Small numbers of big molecules. Science 297(5584):1129–1131
Gibson M, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and

many channels. J Phys Chem A 104(9):1876–1889
Giles M (2008) Multilevel Monte Carlo path simulation. Oper Res 56(3):607–617
Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. J Comput Phys 22(4):403–434
Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–

2361

123

Extending the Multi-level Method for the Simulation... 1677

Gillespie D (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem
Phys 115(4):1716–1733

Gillespie D (2005) Stochastic chemical kinetics. In: Yip S (ed) Handbook of materials modeling. Springer,
Netherlands, pp 1735–1752

Higham D (2008) Modeling and simulating chemical reactions. SIAM Rev 50(2):347–368
HouZ,XinH (2003) Internal noise stochastic resonance in a circadian clock system. JChemPhys 119:11508
Huang C, Ferrell J (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad

Sci 93(19):10078–10083
Jahnke T (2011) On reduced models for the chemical master equation. Multiscale Model Simul 9(4):1646–

1676
Jahnke T, Huisinga W (2007) Solving the chemical master equation for monomolecular reaction systems

analytically. J Math Biol 54(1):1–26
Jahnke T, Huisinga W (2008) A dynamical low-rank approach to the chemical master equation. Bull Math

Biol 70(8):2283–2302
Jahnke T, Udrescu T (2010) Solving chemical master equations by adaptive wavelet compression. J Comput

Phys 229(16):5724–5741
Kavehrad M, Joseph M (1986) Maximum entropy and the method of moments in performance evaluation

of digital communications systems. IEEE Trans Commun 34(12):1183–1189
KurtzT (1980)Representations ofMarkovprocesses asmultiparameter time changes.AnnProbab 8(4):682–

715
Li H, Petzold L (2006) Logarithmic direct method for discrete stochastic simulation of chemically reacting

systems. Technical Report, Department of Computer Science, University of California, Santa Barbara
Li T (2007) Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. SIAM

Multiscale Model Simul 6(2):417–436
MacNamara S, BersaniA,BurrageK, SidjeR (2008) Stochastic chemical kinetics and the total quasi-steady-

state assumption: application to the stochastic simulation algorithm and chemical master equation. J
Chem Phys 129(9):095–105

McCollum J, Peterson G, Cox C, Simpson M, Samatova N (2006) The sorting direct method for stochastic
simulation of biochemical systems with varying reaction execution behavior. Comput Biol Chem
30(1):39–49

Norris J (1998) Markov chains. Cambridge University Press, Cambridge
Paulsson J, Berg O, Ehrenberg M (2000) Stochastic focusing: fluctuation-enhanced sensitivity of intracel-

lular regulation. Proc Natl Acad Sci USA 97(13):7148–7153
Székely T, Burrage K, Erban R, Zygalakis K (2012) A higher-order numerical framework for stochastic

simulation of chemical reaction systems. BMC Syst Biol 6(1):85
Vellela M, Qian H (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical

system: the schlögl model revisited. J R Soc Interface 6(39):925–940
Yates C, Burrage K (2011) Look before you leap: a confidence-basedmethod for selecting species criticality

while avoiding negative populations in τ -leaping. J Chem Phys 134(8):084–109
Yates C, Klingbeil G (2013) Recycling random numbers in the stochastic simulation algorithm. J Chem

Phys 138(9):094–103

123

	Extending the Multi-level Method for the Simulation of Stochastic Biological Systems
	Abstract
	1 Introduction
	1.1 Outline

	2 The Chemical Master Equation Setting
	2.1 The Kurtz Representation
	2.2 Example
	2.3 An Exact Stochastic Simulation Algorithm
	2.4 Example
	2.5 Tau-Leaping Algorithm

	3 Discrete-State Multi-Level Simulation
	3.1 The Time Step
	3.2 The Estimator Variance
	3.3 The Estimation Techniques
	3.3.1 The Tau-Leaping Correction Terms
	3.3.2 The Exact Coupling

	3.4 Example
	3.4.1 Final Coupling

	3.5 Exploring Variation in Algorithm Parameters

	4 Method Configuration
	4.1 Choice of the Base Level Time Step, τ0
	4.1.1 Example

	4.2 Choice of Final Accuracy in the Biased Estimator
	4.3 Towards an Adaptive Simulation Approach

	5 A Second Example System
	5.1 Choice of the Base Level
	5.2 Choice of the Final Level

	6 A Third Example System
	7 Discussion and Outlook
	7.1 Catastrophic Decoupling
	7.2 Implementation Challenges
	7.3 Higher Order Estimators
	7.4 Summary

	References

