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Abstract Bacterial quorum sensing (QS) refers to the process of cell-to-cell bacterial
communication enabled through the production and sensing of the local concentration
of small molecules called autoinducers to regulate the production of gene products (e.g.
enzymes or virulence factors). Through autoinducers, bacteria interact with individuals
of the same species, other bacterial species, and with their host. Among QS-regulated
processes mediated through autoinducers are aggregation, biofilm formation, biolumi-
nescence, and sporulation. Autoinducers are therefore “master” regulators of bacterial
lifestyles. For over 10years, mathematical modelling of QS has sought, in parallel
to experimental discoveries, to elucidate the mechanisms regulating this process. In
this review, we present the progress in mathematical modelling of QS, highlighting
the various theoretical approaches that have been used and discussing some of the
insights that have emerged. Modelling of QS has benefited almost from the onset of
the involvement of experimentalists, with many of the papers which we review, pub-
lished in non-mathematical journals. This review therefore attempts to give a broad
overview of the topic to the mathematical biology community, as well as the current
modelling efforts and future challenges.

B Judith Pérez-Velazquez
perez-velazquez @helmholtz-muenchen.de

Institute of Computational Biology, Helmholtz Zentrum Miinchen, German Research Center for
Environmental Health, Ingolstddter Landstr. 1, 85764 Neuherberg, Germany

2 Centre for Mathematical Science, Technical University Munich, M12 Boltzmannstr. 3,

85747 Garching, Germany
3 Department of Molecular Biology and Genetics, Bilkent University, SB2, 06800 Ankara, Turkey
4

Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional
Auténoma de México, Ciudad Universitaria, Av. Universidad 3000, CP. 04510 Ciudad de México,
D.F., Mexico

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-016-0160-6&domain=pdf
http://orcid.org/0000-0003-0969-075X

1586 J. Pérez-Velazquez et al.

Keywords Bacteria - Communication - Quorum sensing - Antibacterial -
Autoinducers - Mathematical modelling - Simulations

Mathematics Subject Classification 05C38 - 15A15 - 05A15 - 15A18

1 Introduction

Quorum sensing (QS) is a cell-to-cell bacterial communication mechanism among the
same or different bacterial species, which is enabled through small diffusible signal
molecules which bacteria produce (autoinducers) and perceive (inducers). When a
stimulatory threshold of signalling molecules secreted by other cells is encountered,
this activates transcription of several genes (see Fig. 1). This coordinated behaviour
(we later discuss whether the entire population is involved) of bacterial cells is used
in a variety of forms (QS-regulated processes). Among QS-regulated processes are
aggregation, luminescence, biofilm formation, and virulence factor production (see
Table 1 for a review including the references of associated mathematical models).

QS is a central topic in microbiology and considered as one of the most “conse-
quential stories” in molecular microbiology (Winzer et al. 2002; Busby and Lorenzo
2001) with hundreds of new publications every year (Web of Knowledge) and several
thousand since QS was first observed in the marine bioluminescent bacteria Vibrio
fischeri (Hastings and Nealson 1977; Nealson and Hastings 1979) in the late 1970s. It
is also, however, a great source of debate with many publications (Hense et al. 2007,
Platt and Fuqua 2010; Redfield 2002; Stacy et al. 2012; West et al. 2012) dedicated to
questioning the current understanding of the process which underlays the term quorum
sensing, introduced by Fuqua et al. (1994).

. . Low autoinducer
Q production

., Activated State
*" (increased signal
production)

Gene
Expression

Fig. 1 At low cell density, there is a low autoinducer concentration. As the population grows, a certain
autoinducer concentration threshold leads to QS activation, which in turn generates increased signal pro-
duction, leading to coordinated changes in gene expression. Taken from Biology Direct 2009, 4:6

@ Springer



Mathematical Modelling of Bacterial Quorum Sensing 1587

Table 1 QS-regulated processes

QS-regulated Bacteria Mathematical model QS signalling
process

Antibiotics Pseudomonas aeruginosa Anguige et al. (2004, 2005)

Bioluminescence Vibrio fischeri AHL

James et al. (2000), Kuttler and Hense
(2008), Romero-Campero and Pérez-
Jiménez (2008), Perez et al. (2011),
Miiller et al. (2008)

Biofilm formation  Pseudomonas putida Barbarossa et al. (2010) AHL
and maturation

Vibrio cholerae, Hunter et al. (2013) AHL
Vibrio harveyi
Pseudomonas Chopp et al. (2002a,b), Ward et al. (2003)
aeruginosa
Competence Streptococcus Karlsson et al. (2007) CSP
pneumoniae
Exopolysaccharides — Frederick et al. (2011)
Motility (e.g. Pseudomonas Pérez-Veldzquez et al. (2015) AHL
swimming, syringae
foraging)
Sporulation - Tang et al. (2007), van Gestel et al. (2012)
Virulence Pseudomonas AHL, AHQ
aeruginosa Dockery and Keener
(2001), Fagerlind et al.
(2003, 2005), Viretta
and Fussenegger
(2004), Netotea et al.
(2009)
Staphylococcus AIP
aureus Koerber et al. (2005),
Jabbari et al. (2010),
Gustafsson et al. (2004)
Escherichia coli Li et al. (2006) Al-2, Indole
Lee et al.
(2007)

See Taga and Bassler (2003), Miller and Bassler (2001) and West et al. (2012) for a more comprehensive
list. Note that not all models concentrate on a particular bacterium

Besides the traditional paradigm of QS, alternative models suggest it evolved not
to enable bacteria to estimate cell density but to indicate whether the diffusion or
mass transfer is low. Redfield (2002) suggested that QS helps determine whether
secreted molecules rapidly move away from the cell. In this paradigm (called diffusion
sensing), cells rely first on the secretion of metabolically inexpensive autoinducers to
later safely invest in the production and secretion of the most costly molecules such as
siderophores or degradation enzymes. QS is therefore employed due to its collective
beneficial effects while diffusion sensing is used for individual benefits.

However, a third paradigm, efficiency sensing, unifies both concepts and solves
potentially significant problems such as the negative effects of cheaters, which do
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not produce or over produce signals. Another issue efficiency sensing tackles is sig-
nalling in complex environments in which the spatial distribution of cells can be more
important for sensing than cell density. Indeed, simple mathematical models show
that the spatial arrangement of autoinducer producing bacteria allows cell clusters to
autoinduce. In essence, the efficiency sensing paradigm states that cells measure a
combination of their density, limitations to autoinducer mass transfer, and spatial dis-
tribution simultaneously and that this phenomenon evolved because it provides both
individual and group fitness benefits (Hense et al. 2007).

The debate about the ecological and evolutionary function of QS coincided with
the state of knowledge at the time. The first reports of QS appeared when observed
only at high cell density. Nowadays, it is known that many factors besides cell density
are involved in autoinduction, e.g. environmental pH and temperature (Uroz et al.
2005), diffusion and advection (Redfield 2002), spatial distribution of cells (Boyer
and Wisniewski-Dyé 2009). That is, bacteria use QS signals to infer social (density)
and physical (mass transfer) properties of the environment.

Among the most well-known QS-regulated processes are biofilm formation
(Sect. 2.2.1), bioluminescence (Sect. 2.2.2) and, perhaps the most relevant to human
health, virulence (Sect. 2.2.4). However, QS is also pivotal in the environment such
as degradation processes in sewage plants and nitrogen cycling (Hense and Schuster
2015). Table 1 lists a few well-known QS-regulated processes.

Given that QS, or more generically, autoinduction (AI), controls a wide variety of
functions, the question of whether there are unifying principles that underlie all Al
systems has been explored by Hense and Schuster (2015). They argued that such core
principles do exist, which is why mathematical modelling remains a powerful tool for
understanding the regulation of QS. Employing mathematical tools to study QS has
given rise to a wide range of mathematical models: while the autoinducer production
and its binding to the regulator protein may be explained deterministically (Dockery
and Keener 2001; Nilsson et al. 2001), binding of the autoinducer/regulator protein to
a promoter region of DNA is often examined stochastically (Goryachev et al. 2005;
Miiller et al. 2008; Weber and Buceta 2013). Models involving the spatial effects of the
environment, e.g. diffusion or advection, have put forward hybrid approaches (Miiller
et al. 2008; Vaughan et al. 2010; Hense et al. 2012). See Fig. 2). The various mathe-
matical modelling approaches employed so far include mostly continuous (differential
equations) and discrete (cellular automata or agent-based models) models, stochastic
and evolutionary models. A rough classification as a summary is found in Table 3.

The most recent findings regarding QS include the discovery of a broad set of
bacterial strategies such as combinatorial QS (Cornforth et al. 2014), phenotypic switch
(Dumas et al. 2013), and reversible non-genetic phenotypic heterogeneity (Pradhan
and Chatterjee 2014), possibly to cope with changing environments.

One of the aims of this review was to create awareness of mathematical modelling
of QS in the mathematical biology community, as many of these works have been
published in biology journals. To provide a broad overview, we classify the models
in a series of categories involving their modelling goal, rather than the mathematics
employed to address the issue, as many models involve more than one mathemati-
cal approach. Section 2.1 examines the modelling of the QS molecular mechanism;
Sect. 2.2 surveys models of QS-regulated processes; Sect. 2.3 presents models that
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Fig. 2 Multiscale nature of QS ranges from molecular to population interactions. We indicate in which
section the associated models can be found. Reproduced with permission from Dr. Tomas Perez-Acle

have investigated whether targeting QS can be used as a therapeutic strategy; Sect.
2.4 discusses evolutionary models; and finally, Sect. 2.5 describes novel approaches
to understanding QS, including models of QS from a single-cell viewpoint or as a
signalling circuit. Some papers fall in more than one category, and we will note its rel-
evance when appropriate. The review is not intended to be exhaustive, but should give
the reader a broad overview of the topic. Although this review is for bacterial QS, cell-
to-cell communication takes place in other cell types; therefore, we mention a couple
of examples concerning QS of immune cells. We conclude with a discussion of future
challenges in the field of mathematical modelling of QS. In Box 1, a glossary of neces-
sary terminology is presented. Table 2 shows a timeline of research highlights in QS.

1.1 The Signalling System

At low cell density, the autoinducer is synthesized at basal levels and diffuses into
the surrounding medium, where it is diluted. With increasing cell density, however,
the intracellular concentration of the autoinducer rises until it reaches a threshold
concentration beyond which it is produced autocatalytically, resulting in a dramatic
increase (positive feedback). See Fig. 3.

Bacterial QS systems can be roughly divided into the two main types of bacteria:
Gram negative and Gram positive (the cell wall type being the main difference).
Gram-Negative Bacteria generally use acylated homoserine lactones as autoinduc-

ers (Als); a single QS process in Gram-negative bacteria has a gene regulatory

system that includes two essential components: the inducer protein (known as I,

e.g. LuxI) synthesizes the autoinducer molecules and the transcriptional regulator

protein (known as R, e.g. LuxR), interacts with the autoinducers molecules (e.g.

AHL) and forms a complex. Bacterial growth causes Als accumulation. Als diffuse

freely through the cell membrane or are otherwise efflux and outspread spatially.

The receptor—autoinducer complex (R-Al) binds to the promoter of the protein

operon on the DNA to trigger the positive feedback loop for an increasing produc-

tion of Als (Waters and Bassler 2005) (Fig. 4).
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Box 1 Glossary

Acyl homoserine lactones (AHL): Preferred QS autoinducer signals in Gram-negative bacteria
Autocrine: Cells capable of producing the signal and also receiving it
Autoinducers: QS signal molecules that accelerate their own production

Biofilm: Tri-dimensional structures attached to biotic or abiotic surfaces, made of an extra-
cellular matrix and cells in which bacteria and other micro-organisms are mostly found in
nature

Competence: is the ability of a cell to take up extracellular DNA from its environment

Exopolysaccharides: Polymers which protect from environmental stresses and can be a com-
ponent of biofilms

Exoproducts: Molecules exported outside cells to exert their functions, e.g. exoproteases,
siderophores

Extracellular polymeric substances (EPS): are high molecular weight compounds mostly
composed of polysaccharides (exopolysaccharides)

Evolutionarily stable strategy (ESS): is a strategy which, if adopted by a population in a given
environment, cannot be invaded by any alternative strategy

Gram-negative bacteria: Bacteria with a double external membrane and a periplasmic space

Gram-positive bacteria: Bacteria with only one external membrane and a thick cell wall made
mostly of peptidoglycan

Lactonase: Enzyme that degrades AHL autoinducers

Opportunistic pathogen: One that normally is not harmful to healthy individuals but attack
immunosuppressed or compromised ones, e.g. of bacterial opportunistic pathogens: P. aerugi-
nosa, Chromobacterium violaceum

Quorum sensing (QS): Cell-to-cell communication involving the production and detection of
autoinducers that allow bacteria to coordinate gene expression as a function of cell density

Quorum quenching (QQ): The process of attenuating QS by disrupting signal production or
perception

Resistance: Innate or acquired ability of a micro-organism to be impervious to the inhibitory
effects of growth antimicrobials or anti-infective in virulence

Social Cheaters: Individuals that enjoy the benefits of a cooperative trait without investing in
its production. Bacteria social cheaters had been identified in P. aeruginosa and other bacterial
species, these are QS mutants that do not produce beneficial exoproducts like siderophores
or exoproteases but enjoy the iron delivered by the siderophores made by the cooperative
individuals or the amino acids/peptides generated by the exoproteases made by cooperative
individuals

Swarming: Concerted movement of a bacterial community in a given direction, for example
towards nutrients

Virulence: Parasite-induced damage to the host

Gram-Positive Bacteria use processed oligopeptides; QS in Gram-positive bacteria
differs from the Gram-negative bacteria on the type of Als (e.g autoinducing pep-
tides) used and the perceiving mechanism of cells. Peptides are bound by receptors
present in the cell membrane and do not diffuse freely through the cell membrane.
Binding of the peptide to the receptors causes phosphorylation of proteins in the
cytoplasm. The phosphorylation of the transcription factor promotes changes in
gene expression (Waters and Bassler 2005) (Fig. 5).
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Table 2 Timeline of modelling of quorum sensing, in cyan are biological research highlights, in black
mathematical research highlights, and in magenta are research findings as a result of interdisciplinary work

The first report of a QS-regulated mechanism: luminescence,

1977 .- (Hastings and Nealson, 1977; Nealson and Hastings, 1979).
1994 ... ... Fuqua et al. (1994) introduce the term QS.
2000 -- - .- James et al. (2000) introduce the first formal mathematical
model of QS, for V. fischeri.
2001 .- - .- Dockery and Keener (2001)’'s model the QS of Pseudomonas
aeruginosa .
2001 ------ First of Ward's series of papers on QS, Ward et al. (2001).
2001 ------ Brown and Johnstone (2001) evolutionary model.
The role of lactonase: AHL-induced AHL degradation (Dong
2002 ------
et al., 2002).
2002 ------ Redfield (2002) introduces the concept of diffusion sensing.
2002 ------ QS in biofilms.
2006 ------ Multi-scale models of QS.
2006 ------ The evolutionary stability of QS.
2007 - .- - Hense et al. (2007) introduces the concept of efficiency
sensing.
2008 - - - - - - QS is observed in small colonies.
2010 ---- - - Agent based models of QS.
2010 ------ Mathematical models including lactonase.
2010 - - -+ QS is observed in single cells.
2012 - -+ QS and the immune system interactions.
2013 .- ... QQ resistance is reported, (Maeda et al., 2012;
Garcia-Contreras et al., 2013).
Gradual or an all-or-none activation, (Fujimoto and Sawai,
2013 ------
2013).
2014 .- .- Non-genetic Heterogeneity of QS is reported.
2014 -----. Combinatorial communication.

1.2 Quorum-Sensing Molecules

Currently, three main types of QS molecules are known:

1. Acyl homoserine lactones (AHL) mediate QS in Gram-negative bacteria, and there
are several types depending on their length of acyl side chain. AHL are able to dif-
fuse through the cell membrane. AHL are synthesized by an autoinducer synthase
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Fig. 3 How the cell density and the autoinducers concentration changes with time. Note however that QS-
regulated enzymes which degrade autoinducers have been reported Dong et al. (2002); therefore, strictly
speaking the AHL curve is not monotone increasing, see discussion section and Fekete et al. (2010). For this
particular example however, the data correspond to QS system of P. syringae, kindly provided by Beatriz
Quinones from the US Department of Agriculture, see Pérez-Veldzquez et al. (2015) for relevant details

LuxI and recognized by an autoinducer receptor/DNA-binding transcriptional acti-
vator protein LuxR. In addition, lactonases can also degrade and inactivate AHL
(Dong et al. 2002).

2. Autoinducer peptides (AIP) are small peptides that regulate gene expression
in Gram-positive bacteria such as Bacillus subtilisand Staphylococcus aureus.
AIP are recognized by membrane-bound histidine kinase receptors and regulate
processes such as competence, sporulation, and virulence factor production.

3. Autoinducer-2 (AI-2): It is believed to be involved in interspecies communication
among bacteria, as is present in both Gram (4) and Gram (—) bacteria. Chemically
it is a furanosylborate diester. See Kumar et al. (2013) for more novel peptides
belonging to various chemical classes.

A database of quorum-sensing peptides is available under the name Quo-
rumpeps (Wynendaele et al. 2013), see Fig. 6 for examples of the AHL class of
autoinducers.

0
regulatory regulatory regulatory

protein protein protein o °
(o s 6-3 E

(b) | (©)

Fig.4 In Gram-negative bacteria, the signal molecule is AHL, when the signal molecule reaches a threshold
concentration a binds to and activates a regulatory protein which b binds to a specific site on the DNA ¢ the
binding of this regulatory protein transcription activator results in the production of the specific quorum-
dependent protein as well as enzymes to make more AHL
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Fig.5 QS in Gram-positive bacteria involves a different type of signal molecule; a a precursor oligopeptide
is cleaved into functional signal molecules of 10 to 20 amino acids; b these molecules are actively transported
out of the cell through a special transporter protein; ¢ when the signal oligopeptides reach a threshold
concentration on the outside the cell, they are detected by a sensor protein on the surface of the cell; d
when the oligopeptide reacts with the sensor protein, the protein becomes phosphorylated on the inside the
cell membrane; e the phosphate is then transferred to a response regulator protein which allows it to bind
to a specific site on the DNA; f this binding results in alteration in the transcription of target genes, and
quorum-dependent protein is produced

2 Mathematical Modelling of Quorum Sensing

In this review, we present mathematical models of bacterial QS, which we divide into
five categories: models investigating the QS molecular mechanism, models studying
specific QS-regulated processes, therapy-related models, evolutionary models, and
other approaches to understanding QS (including single-cell-based models). This cat-
egorization is more in biological terms, rather than in terms of mathematical methods,
given that most models use a combination of approaches. Some papers can be put in
more than one category but will be dealt with the first time they appear.

Before starting the review, it should be mentioned that many computational mod-
els of QS have been proposed. A thorough review by Goryachev (2011) discussed
this type of model up to 2011. Some of the models review here include computa-
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TRENDS in Microbiology

Fig. 6 BHL, OdDHL, and OOHL are examples of the AHL class of autoinducers. S-THMF-borate and
R-THMF are known AI-2 signalling compounds. Picture from Galloway et al. (2012). Reproduced with
permission

tional approaches; therefore, some works reviewed in Goryachev (2011) will also be
examined here.

2.1 Models of the QS Molecular Mechanism

This category consists of models examining the generic regulation system of QS, i.e.
models of the biochemistry of autoinducer regulation, which are considered to be
seminal papers on the mathematical modelling of QS. As mentioned in the previous
section, the regulation network includes interactions between the inducer protein and
the transcriptional regulator protein with the resulting complex, triggering a positive
feedback loop. More complex interactions have also been described, see Goryachev
(2011, 2009) for a review of the various layouts, including single positive feedback,
additional positive feedback, and negative feedback.

The mathematical modelling of QS started' with the almost simultaneous publica-
tions of three groups: James et al. (2000), Dockery and Keener (2001), and Ward et al.
(2001). The first two concentrated on the molecular mechanism, whereas Ward et al.
(2001) focused on cell growth and autoinducer production. The model of James et al.
(2000) was developed for the QS system of V. fischeri (Gram-negative bacteria); it
took a deterministic form and focused upon the regulatory system within a single cell
accounting for the cellular and extracellular concentration of Als. The equations have
two stable metabolic states corresponding to the expression of the luminescent and
non-luminescent phenotypes. The corresponding first-order nonlinear ODE system
has three steady states, one of which is stable and the other two are stable under cer-
tain conditions which lead to a “switch-like” behaviour of the regulation system. The

1" A mathematical framework was used before to address QS in the context of evolution, see Sect. 2.4.
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Fig. 7 Nonlinear dynamics of the activation of a generic QS (auto-inducer) system, following Hense and
Schuster (2015), who argue there exist core principles in all bacterial autoinducer systems. Bistability
means the existence of two stable states at the same cell density (an off state and an on state), which is often
associated with hysteresis

production and loss of regulatory proteins and autoinducer molecules were examined
by means of the chemical kinetics of the system.

Dockery and Keener (2001) presented one of the first mathematical models of QS.
Their model examines the QS of Pseudomonas aeruginosa, a human pathogen. At
that time, it was known that these bacteria possess two regulatory QS systems, called
the Las and the RAl systems. In that work, they emphasized the kinetics of the Las
system and described it with an eight-dimensional ODE system, taking into account
Michaelis—Menten-type expressions. They simplified this ODE system by studying
different timescales of certain chemical reactions: LasR and Lasl enzymes live much
longer than their producers, lasR mRNA and las] mRNA, respectively. The stability of
the nonlinear ODE system, which has three steady solutions, was dependent upon the
parameter of the local density of cells. The two stable states switch between one with
low level and one with high levels of autoinducers (bistability, see Fig. 7). Further,
they extended the model in homogeneous environment to a more realistic model by
adding a spatial variable.

In a paper published nearly simultaneously, Ward et al. (2001), using a population
dynamics approach, developed a model of the QS system of V. fischeri, which examines
bacterial population growth and autoinducer production rather than the biochemical
mechanism of the QS regulatory system. We place it into this category as it deals
directly with the effects of up-regulation. The focus was on the population dynamics
for V. fischeri, in view of down-regulated and up-regulated subpopulations, and their
switching behaviour with increasing autoinducer production. They analysed the cor-
responding ODE system numerically and compared it to experimental data. This is a
foundational work as experiments were specifically designed to estimate the model
parameters. An important biological result of this paper was identifying that Als pro-
duction is much faster in the down-regulated than the up-regulated bacterial population.
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Fagerlind et al. (2003) developed one of the first mathematical models focusing
on the two QS systems of P. aeruginosa, in particular the way in which the las/rhl
system and the regulators Rsal. and Vfr interact. Their model is for a single bacterium
and consists of a system of eight ODEs (for the concentrations of LasR, RhIR, RsaL,
OdDHL, BHL and complexes). Their system has two steady states (uninduced and
induced phenotypes), regulated by the concentration of the autoinducer OdDHL, which
in turn is regulated by RsalL and Vfr. Like Dockery and Keener (2001) and James et al.
(2000), they found that a high concentration of the autoinducers will cause the system
to exhibit mono-stability. They investigated the behaviour further by examining the
LasR/OdDHL complex as a bifurcation parameter and analysed the role of Rsal. as an
inhibitor and Vfr as a modulator. Although their experiments showed no significant
difference in either the overall growth or the total (after 24 h) signal production of three
strains (wild type and two vfr mutant types), it was clear that Vfr plays an important
role in distinct growth stages (e.g. the Vfr mutant produces fewer signals during the
early phase of growth but increases its production at later stages).

Gustafsson et al. (2004) used a mathematical model to investigate the QS of S.
aureus, a Gram-positive bacteria, specifically to determine the role of SarA in the
agr system. They further used the model to examine AIP (auto-inducing peptide)
antagonists. The model consists of seven ODEs for AgrC, AgrA, SarA, and complexes.
Steady states and their stability, including a bifurcation analysis (in terms of the AIP
concentration), were studied which showed hysteresis [typical of QS systems, Anguige
et al. (2004), Dockery and Keener (2001), Fagerlind et al. (2003), James et al. (2000)].
According to their model, inhibitory AIP delays activation of the agr system.

Goryacheyv et al. (2006) developed QS model consisting of two positive feedback
loops designed to explain the relationship between the structural organization of intra-
cellular networks and the observable phenotype changes. Using a standard chemical
kinetic approach based on the mass-action rate law, they described the intracellular
QS dynamics while the extracellular concentration of autoinducer was assumed to be
a free parameter. The model was not developed for a specific bacterium; however, it
can be related to the work on QS of V. fischeri (James et al. 2000) and the QS network
in P. aeruginosa (Dockery and Keener 2001). Goryachev et al. (2006) pointed out the
importance of the dimerization of the transcription factor and of the presence of the
auxiliary positive feedback loop for the switch-like behaviour of the network. They
also added molecular noise.

Lietal. (2006) studied the luxS-derived autoinducer system Al-2 of E. coli employ-
ing a stochastic mathematical model often used in quantitative molecular biology
called stochastic petri dish (SPN), see Goss and Peccoud (1998). Thanks to their inte-
grative approach they were able to unveil an alternative pathway for AI-2 synthesis.
The simulations helped them to discover that the synthesis rates are glucose-dependent.
Other models of the AI-2 of E. coli have been proposed (Gonzélez-Barrios et al. 2009;
Gonzélez-Barrios and Achenie 2010), see Goryachev (2011) for a review.

Miiller et al. (2008) employed an innovative approach. A low-pass filter allows
signals to pass at a certain threshold frequency but attenuates those signals above
the threshold. This results in smoother signals, removing short-term fluctuations and
leaving the longer-term trend. Miiller et al. (2008) suggested that QS works as such a
filter. They proposed that this mechanism helps to overcome the intrinsic stochasticity
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underlying a system where very small numbers of molecules produced per cell seem
to be sufficient to induce a response. In particular, given that cells also respond to
their own signal, this type of filtering ensures that cells distinguish their own signal.
They proposed a statistical model and applied it to V. fischeri luminescence induction
data. Their model has two parts, one describing the dynamics of receptor molecules
(involving p, the probability of a receptor molecule binding to an AHL molecule, «
and o complex formation parameters, and A an input experiment parameter, which
stands for AHL concentration) and the second one covering transcription processes.
A differential equation was used to describe the transcriptional messenger and a set
of linear equations to model the different steps involved in the luminescence process.
They applied their model to the experiments of Kaplan and Greenberg (1985) and found
that their model fitted well in spite of the simplifications and linearization involved.
They found a range of molecule concentrations the signalling system is most sensitive
to, which could be associated with the low-pass filter threshold.

The study of Williams et al. (2008) is another example of the use of inte-
grative approaches to unveil hidden molecular pathways. They showed that two
interlocked feedback loops are involved in controlling the autoinducer 3-oxo-
hexanoyl-L-homoserine lactone autoinducer regulationin V. fischeri. They investigated
two possibilities: presence and absence of the two feedback loops. The model is a sys-
tem of ODE:s for the LuxR concentration and LuxR-Al complexes. Some of the model
predictions were tested experimentally (Fig. 8), allowing them to exhibit hysteresis
(luxI expression can assume two levels in response to externally added Als) depending
on the cell’s previous exposure to Als. This suggests that two nested feedback loops
are involved in controlling the lux operon. The authors discussed the advantages of
such network architectures, including how to make it more robust to withstand per-
turbations; giving a “memory” to cell sub-populations (which remains up-regulated
even if the Al concentration falls below the activation threshold); and diversification
responses, providing cells with strategies to adapt to changing environments.

As part of these models of the QS mechanism, we mention the study of Fekete
et al. (2010) for two reasons: it contains quantitative information which can be used
to estimate parameters such as the rate of production of the signalling molecules and
threshold concentration to achieve activation, often used in mathematical models of QS
but seldom computed. Secondly, because of this quantitative information, the key role
of an AHL-regulated enzyme which degrades AHL was identified. Their experiments
consisted of measuring AHL at different phases of bacterial growth. The mathematical
model is based on Miiller et al. (2006) and consists of an equation describing AHL
net production (involving a Hill-type function) and one describing cell growth. The
model possesses bi-stability (stable resting state and stable active) with the possibility
of hysteresis. To complete the AHL circuit, they examined the role of the Ppur—AHL
complexes and how AHL production depends on the complex. They further added
abiotic degradation and an AHL-degrading enzyme (five ODE:s in total), which was
needed to reproduce the data and which was regulated through an on/off switch.
Additionally, they investigated how the homoserines and the homoserine-degrading
enzymes interact.

Barbarossaetal. (2010) used a delay ODE system to describe the effect of lactonases
(ametalloenzyme which degrades AHLs) on QS of P. putida, a plant growth-promoting
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Fig.8 Mathematical modelling and experimental analysis of the /ux circuit response. a The bistability curve
describing the expression of /uxR as a function of [Als]. b The predicted dependencies of luxR expression
on [Als]. ¢ Experimental analysis of the regions of hysteresis for different glucose concentrations. d Flow
cytometry analysis of the hysteresis in /ux single-cell response. Figure from Williams et al. (2008)

bacterium which can be found on tomato plant roots. They based their model on Fekete
etal. (2010) and investigated AHL dynamics. Cultures of the bacterium were grown in
flasks, and measures of bacterial population density and AHL concentration were taken
every hour for a period of 36 h. The AHL concentration changes with time showed
an initial maximum which was lower than a second maximum that appeared later and
was followed by a steep decline (see Fig. 9). The model describes bacterial (logistic)
growth, total AHL concentration, the PpuR receptor protein, AHLPpuR complex, and
lactonase concentrations and has positive feedback loop. They used the experimental
data to estimate growth and AHL-associated parameters. They explored the dynamics
of the delay model, including bifurcation and oscillation regimes (as both positive
and negative feedbacks are present). The authors chose the carrying capacity and
the abiotic degradation rate as their bifurcation parameters as they can be perturbed
externally. After introducing a time delay for the activation of the lactonase, the model
fit the data better. This suggests that lactonase is produced and activated by bacteria
only after a certain time.

Weber and Buceta (2013) used both stochastic and deterministic approaches for
their QS model. Their paper explores the way in which a highly heterogeneous cell
response may affect gene expression of luxR. In the deterministic model, the population
of cells is described by a unique volume with average and continuous concentrations of
all species. In the stochastic model, cells are modelled as individual compartments and
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Fig. 9 AHL concentration curve, figure from Barbarossa et al. (2010). Reproduced with permission

all molecular species are represented as discrete entities. They included a noise term
(on the luxR gene expression), which depends on the cell density and may influence
phenotypic changes stochastically. They showed that the transition of the QS switch
around the critical autoinducer concentration is very slow compared to other dynamics
of the process.

Hunter et al. (2013) analysed the QS system in V. harveyi and V. cholerae, which
regulates the production of virulence factors and bioluminescence, respectively. They
introduced a deterministic mathematical model for a small RNA (sRNA) circuit to
explain the kinetic differences and the underlying mechanisms, despite their topolog-
ical and genetic similarities. The model consisted of four regulatory pathways in the
sRNA circuit represented by an ODE system, which was non-dimensionalized and
analysed at steady states. They fit the model to the data and found suitable parameter
values for their model. Another model also exploring differences in the QS-induced
luminescence phenotypes of Vibrio harveyi and Vibrio cholerae is that of Fenley et al.
(2011), which extended work reported in Banik et al. (2009).

2.1.1 QS Self-Controlling Mechanisms

It has been argued that the general purpose of Al systems is the homoeostatic control
of costly cooperative behaviours (Hense and Schuster 2015); to this end, bacteria have
evolved mechanisms to repress certain components of the QS if needed. Ward et al.
(2004) presented a mathematical model to investigate three of these mechanisms: the
first two involve reducing the signalling molecule production (1) by a constitutively
produced agent (background inhibition), and (2) due to a negative feedback process.
These two processes are employed by P. aeruginosa. The third mechanism examines
the loss of signalling molecules by binding directly to a constitutively produced agent
(called soaking up), which has been observed in the plant pathogen Agrobacterium
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tumefaciens. The modelling approach consists of two sub-populations, down- and
up-regulated cells, producing signal molecules at different rates. The QS signalling
molecule concentration activates the switch. Their model is an extension of Ward
etal. (2001). They were able to estimate some parameters using P. aeruginosa growth
curves in liquid culture and used asymptotic analysis to explore the diverse timescales
involved, which allowed them to make some simplifications in each of the three mech-
anisms. They also explored therapy implications by incorporating a putative drug that
targets bacteria expressing a particular gene during virulence (given that their mod-
els predict that only a fraction of the population will be up-regulated if one of the
suppression mechanisms is operating). Finally, they extended Ward et al. (2003) to
include QS repressions in biofilm development and studied how it affects travelling
wave behaviour.

The modelling of the QS regulation system has evolved significantly. Early models
were mostly monomeric while recent models have tended to be of higher order. See
Goryachev (2011) for a review of this particular type of models. Other models in this
area are those from Mehra et al. (2008), Brown (2010), and Chen et al. (2004), which
are not included here as they have already been reviewed in Goryachev (2011).

Overview and Future Research Directions The first mathematical models of QS con-
centrated on the architecture of the signalling pathways activating QS, in particular to
understand its switch-like behaviour. Models including autoinduction threshold, the
effect of bacterial density, and up- or down-regulated populations were developed.
Generally, there are two different focus points in these models:

e the dynamics of substances (cellular—extracellular autoinducer concentration,
induced protein concentration, lactonase activity, etc.) (Fekete et al. 2010)

e the cell response to QS (number of cells, number of activated cells) (Ward et al.
2001), including bifurcations between the steady-state solutions (Dockery and
Keener 2001).

These approaches focused on the relevant regulation network at either the cellular or
population level, though more recent models have involved both scales. Many analyt-
ical approaches predicted mono-stability and bistability within the network. Initially,
deterministic models were used, but the potential influence of stochasticity for small
numbers of certain proteins was needed. Stochastic models frequently concentrated
on intra- and extracellular interactions separately, often including an analysis of the
effect of potential noise on the QS network (see (Koerber et al. 2005) and Sect. 2.2.4).
Furthermore, a stochastic model for a single cell, which is able to describe the prob-
ability density function for the cell to be in a down- or up-regulated state, has been
proposed (see Miiller et al. 2006 and Sect. 2.5.1).

We propose that new models of the QS molecular gene activation should in principle
integrate deactivation too. In the same way that QS activates gene expression, under
certain conditions the possibility should exist to inactivate or regulate cooperation, for
example, by limiting the number of cooperating cells or the extent of cooperation. For
instance, in the LuxR-type family, most members function as transcriptional activators
but some function as depressors. Examples of how this may be realized include negative
feedback loops, detachment or enzymes that degrade QSMs, some of which have
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Fig. 10 Stages of biofilm development. This diagram is a cartoon of the five stages of biofilm development:
initial attachment, irreversible attachment, maturation 1, maturation 2, and finally, dispersal. Under the
cartoon are five electron micrographs showing what the biofilm actually looks like at each stage. Image
from Monroe, D “Looking for Chinks in the Armor of Bacterial Biofilms” PLoS Biol, Vol 5, issue 11. Open
access

been included in mathematical models (e.g. for the agr QS system in S. aureus which
regulates detachment), but they have often not been interpreted in the context of QS
as a homoeostasis regulator. See Sect. 3 for further discussion of this point.

Many mathematical models in this section assume a constant and identical Al
production rate for all cells, but recent evidence of multiple Als in one species suggests
that Al production rates vary over time and independently for each QS system produced
by a cell. Moreover, this is a function of the environmental and cellular conditions.

2.2 QS-Regulated Processes
2.2.1 Biofilms

Most bacteria live in biofilms (see Fig. 10), which are microbial communities attached
to biotic or abiotic surfaces and encased in a matrix of extracellular polymeric sub-
stances [EPS, Costerton et al. (1999)]. This isolation protects the bacteria from
antimicrobial stress in the environment. Biofilm formation is a QS-regulated mech-
anism, and therefore, the concentration of signal molecules is directly related to the
position in the biofilm, its thickness, boundaries of the biofilm surface, etc.

Mathematical models for biofilm formation, maturation, and dissolution have been
investigated for almost 30 years [see a review in, e.g. Eberl et al. (2006)]. The first
models consisted of one-dimensional partial differential equations modelling a biofilm
as aflatlayer. Then, multidimensional models describing spatial non-uniformities were
developed.

Eberl et al. (2001) developed a mathematical model of biofilm formation which is
composed of a set of nonlinear density-dependent reaction—diffusion equations, which
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can be thought of as a precursor of the QS-regulated biofilm model. The model is for
single-species biofilm system:

IC(t) ki CM
dr ky+C
IM () = V(Dy (M)VM) + M k€
dr M ko + C 4
Mb
Dy (M) = dypy————, 1
M) = dy )

where D¢, dy, k1, ka, k3, k4 are positive constant parameters and a > 1,5 > 1.
M denotes biomass density, and C is the growth-limiting substrate. Afterwards, the
dynamics affecting the spatio-temporal QS induction patterns in the developing biofilm
were studied.

Nilsson et al. (2001) presented a mathematical model to describe the changes in the
AHL concentration and explored the effects of biofilm growth. The model included
bacterial growth using a standard logistic equation. They determined the AHL con-
centration within the cell and in the biofilm medium using two coupled ODEs. Solving
the ODE system, they were able to track changes in AHL concentration inside the cell
and in the biofilm over time and analysed the stability of equilibria graphically. They
concluded that early on in population growth, high concentrations of AHL within the
bacterial cell are positively affected by slow diffusion rates out of the cell and the
biofilm. Therefore, bacterial growth rates impact autoinduction directly.

A more detailed model was presented by Chopp et al. (2002b) for a growing one-
dimensional P. aeruginosa biofilm coupled with a model of its QS systems (the /as
system). Their model was extended in Chopp et al. (2002a). This spatio-temporal
model described the biofilm growth, oxygen, and production of the signalling mole-
cules, where the biofilm was described in two parts: active biomass (live cells) and
inactive biomass (EPS and dead cells). They studied approximate solutions to the PDE
system to derive the relationship between physical parameters and signalling molecule
concentration within the biofilm. Moreover, they obtained a critical biofilm depth and
the corresponding approximate time for the induction of QS.

Ward et al. (2003) combined the QS activity and biofilm formation by including
growth along the surface, where cell growth generates movement within the colony.
They presented a nonlinear PDE model as an extension of Ward et al. (2001), with
the addition of the release and diffusion of QS molecules. The model was analysed
numerically, and their results agreed with the experimental data. Analytical solutions
were derived by assuming uniform initial conditions. The existence of a bifurcation
was investigated between a non-active and an active QS state. Finally, they investigated
the travelling wave behaviour of the QS process within a certain time frame.

Janakiramen et al. (2009) developed a QS-regulated biofilm model in a closed sys-
tem, namely microfluidic devices. The model comprises the mass and momentum
transport in the microfluidic channel, and it explores how they impact QS and biofilm
development. They showed that the flow rate has a great impact on both QS and
biofilms. At higher flow rates, the stable biofilm thickness is smaller, the production
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of QS molecules reduces, and the transport rate of QS molecules out of the biofilm
can be greater than the production rate, which inhibits QS. They constructed a one-
dimensional conservation equation for the diffusible QS molecules and combined it
with a Fick’s diffusion equation. The nonlinear parabolic system describes the shear
stress in the microfluidic environment. The system is solved using an implicit tridi-
agonal finite difference scheme, and the numerical results were compared with the
experimental data.

A two-dimensional model was presented by Vaughan et al. (2010) explaining the
advection, diffusion, degradation, and production of signalling molecules involve in
biofilm formation. They presented an finite element method to solve the reaction—
diffusion—advection system and simulated the results. They concluded that for a rough
biofilm surface (contrary to flat biofilm surface), less biomass may be needed to reach
a quorum. Moreover, they investigated the interaction between biofilm colonies and
showed that the biofilms create a region of influence where they can motivate another
biofilm to reach the QS threshold.

Klapper and Dockery (2010) studied some important aspects of biofilm models
including QS, growth, and antimicrobial tolerance mechanisms. They focussed on the
two QS systems of P. aeruginosa, in particular, describing substance concentrations
over time.

Frederick et al. (2011) investigated a mathematical model for QS and EPS pro-
duction in a growing biofilm and analysed how a biofilm is affected by QS-regulated
EPS production. The model consisted of reaction—diffusion equations, and numerical
solution was computed. They concluded that low-EPS-producing biofilms generally
appear in high cell populations and rapidly increase their volume to parallel high-EPS
producers.

Ward and King (2012) used thin film (a thin monolayer of material) methods to
address biofilm growth. The biofilm was modelled as viscous fluid. The governing
equations are a system of PDEs for the biofilm volume, nutrients, two population
types (up and down QS-regulated), and QS molecules. They explored two different
boundary conditions between the biofilm and the sold surface: shear stress-free and
no-slip conditions. For the former, they presented a hodograph solution, and for the
latter, they studied the travelling wave behaviour of the resulting equation. The growth
for both boundary conditions is similar, but the long-term spreading rate differs. The
core of their approach was to assume that bacteria in a biofilm behave like a low
Reynolds’s number viscous fluid blob with volumetric growth and a small height-to-
length ratio. They showed the potential of incorporating additional physical effects,
in particular with regard to their effect for maturing biofilms.

Other important biofilm models are those from Kirisits et al. (2007), Duddu et al.
(2009), reviewed in Goryachev (2011).

2.2.2 Bioluminescence
Bioluminescence (see Fig. 11) led to the discovery of QS-regulated process (Hastings
and Nealson 1977; Nealson and Hastings 1979) understandingly some of the first

mathematical models on QS investigate bioluminescence (James et al. 2000; Ward
et al. 2001). Indeed, all mathematical models for the QS mechanism of V. fischeri
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Fig. 11 Colonies of the bioluminescent marine bacterium Vibrio fischeri. This photograph of the colonies
growing on agar (left) was taken with a light source. The photograph of the colonies on the right was taken
using their own bioluminescence as a light source. Credit: Courtesy J. W. Hastings, Harvard University,
through E. G. Ruby, University of Hawaii. Reproduced with permission

directly or indirectly deal with bioluminescence. In this section, we concentrate on the
papers that specially point out this phenotypic switch in bacteria (James et al. 2000;
Goryachev et al. 2006).

V. fischeri is a free-living marine bacterium which often appears as a symbiont of
some fish and squid. At low cell densities, V. fischeri remains non-luminescent (see
Fig. 11). V. fischeri has a QS system consisting of two main regulatory pathways (lux,
involve in the production of the signalling molecule and ain in the regulation of the
luminescence), Kuttler and Hense (2008) proposed an ODE system to describe the
interplay between them. They extend Miiller et al. (2006)’s lux model to include the
ain system. Their model involves equations for external AHL concentration and the
intracellular components of the regulation system. They also account for luciferase
(light-producing enzyme), as luminescence (rather than AHL concentration) is most
frequently measured experimentally. The number of stationary states in their system
depends on external AHL concentrations. They used biochemical pathway mutants
(i.e. bacterial strains missing part(s) of the full QS system) to fine-tune their model. It
is known that certain strains have distinct induction behaviour (e.g. strength of lumi-
nescence, time shift) when compared to the wild type. They took ainS (no transcription
of ainS is possible) and /uxO (transcription of /ux0 is not possible) mutants. When
they simplified their model to account for the first case, they obtained an /ux-only like
system. In the second case, they found that only one stationary state is possible. In
both cases, they explored how the time course of induction becomes affected: the ainS
mutant starts to luminescence earlier than the wild type, and the /uxO mutants shows
an activation time shift.

Melke et al. (2010) proposed a cell-based QS model of growing bacterial micro-
colonies at the single-cell level. They analysed the molecular network with two positive
feedback loops. They found regions of multistability and showed dependence of the
QS mechanism on different model parameters as well on the local cell clustering.
They modelled the cell response for QS as a switch from “off state” to “on state”
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and observed that the switching potential of cells is highly dependent not only on the
population size, but also on the degree of local cell clustering and on the environ-
ment in which the bacteria are growing. Their model describes molecular interactions,
intercellular transport, and external diffusion. Their equilibrium analysis showed that
parameters can be chosen so that a single bacterium without AHL transport is in an
“on” state, but close enough to the multistable region to allow inclusion of the transport
terms to switch the single bacterium into its “off” state.

Majumdar et al. (2012) modelled a well-mixed population of up-regulated and
down-regulated cells of V. fischeri and corresponding QS molecule production by a
system of ODEs. They found analytical exact solutions to this complex ODE model
and analysed the stability. They showed how the solutions can be interpreted in terms
of the biological process.

Liu et al. (2013) presented a computational model for the switch-like regulation
of the QS mechanism of V. harveyi that uses multiple feedbacks to precisely control
signal transduction. Using the mass-action law and Michaelis—Menten kinetics, they
introduced a nonlinear ODE system to include the basic principles of QS models.
Their model suggests that different feedbacks play critical roles in the switch-like
regulation, and more Als cause much sharper switching. They investigated how their
models relate to experimental results. As V. harveyi uses three signalling molecules
in parallel, researchers (Tu et al. 2010; Mehta et al. 2009; Teng et al. 2010) have
investigated how this bacterium seems to sense a weighted sum of the individual input
signals. We refer the reader to Goryachev’s review where the work of this group is
discussed in depth.

Recently, a one-dimensional reaction—diffusion model for QS-regulated biolumi-
nescence of the marine bacterium Aliivibrio fischeri was presented in Langebrake et al.
(2014). The model is based on Dilanji et al. (2012) and consists of a reaction—diffusion
equation for the autoinducer concentration and an equation for the LuxI concentration
measured as luminescence. They showed propagating waves of activation or deactiva-
tion of the QS mechanism in a spatially extended colony and the existence of travelling
wave solutions. They assumed that there exists a maximum QS signal decay rate if
the cell growth rate was ignored. For QS signal decay rates less than this maximum,
they found a threshold that determines whether a QS system becomes completely
up-regulated or completely down-regulated. Another important result of their work is
that the speed of the travelling wave of QS activation increases with the diffusion rate
of the QS signal and decreases with the decay rate of the QS signal.

2.2.3 Swarming

Netotea et al. (2009) presented an 2D agent-based computational model for the onset
of swarming in P. aeruginosa, which is controlled by threshold levels of AHL signals
and secreted factors (public goods). Their experimental framework utilizes swarming
agar plates that allow the growth of activated bacteria, but not of non-activated ones.
They analysed the behaviour of the wild-type strain compared to two mutants: one
which produces no signal, signal negative (SN), and one that is unable to respond to the
AHL signal, signal blind (SB). In their model, there is only one signal molecule, whose
concentration is in equilibrium with the environment. All public goods are included

@ Springer



1606 J. Pérez-Velazquez et al.

in a generalized secreted factor F' which stimulate cell’s metabolism and movement
if a threshold concentration of F is reached. The model has three states: (1) solitary
or planktonic state, where cells produce low levels of signal molecule and have low
rates of movement: (2) activated state, where the signal production increases and the
production of secreted factor (public goods) starts and (3) swarming. During each time
interval, cells move to a new location, consume nutrients, and produce AHL signals.
Cells move randomly, as long as the nutrient availability suffices (i.e. they stop moving
if there are not enough nutrients). Cells divide when a level of “energy” (nutrients)
is reached. Activation is not “on/off” (threshold-dependent) but accounts for sensing
gradients of AHL/nutrients. The model also includes diffusible materials (nutrients,
AHL signals) whose concentration is bell-shaped. They assumed that producing the
AHL signal is less costly than producing F. Their findings include the spontaneous
formation of an “activation zone” (a niche where nutrients levels allow them to keep
activated), which may further move towards one direction (e.g. nutrients enriched
region). Although the initial conditions of their simulations are random in terms of
location and metabolic states, the population eventually shows coordinated (switch-
like) behaviour. Their models show how SN mutants swarm if exogenous AHL is
added, but SB will not. They further used their model to explore the kinetics, which
shows a typical saturation-type behaviour. They defined the “swarming fitness” as a
measure of how efficiently a cell reaches a certain location in space. Higher swarming
fitness was found to out-compete the less fit counterpart.

Netotea’s model is able to produce dendritic growth patterns, but this was not further
explored. In this regard, we refer the reader to Ben-Jacob et al. (2000), who presented
a survey of patterns formed during colony development of various micro-organisms,
emphasizing the pivotal role that communication plays in self-organization.

2.2.4 Virulence

Another QS-regulated process is virulence, observed in many species of bacter-
ial pathogens, such as Vibrio cholerae (Zhu et al. 2002) which causes cholera;
Pseudomonas aeruginosa (Lazdunski et al. 2004), a fatal pathogen for cystic fibro-
sis patients; and Staphylococcus aureus (Lyon and Novick 2004), known to cause
infections in surgical wounds.

Staphylococcus aureus is a bacterium which causes wound infections: endocarditis
and septic shock. Some S. aureus strains are highly resistant to antibiotics, such as
the MRSA (multiresistant S. aureus) strain, although not all S. aureus strains are
MSRA. It is known that the virulence factors of S. aureus are under QS control: S.
aureus enters the cell and gets surrounded by a membrane, an endosome. Inside the
endosome, the bacterium becomes up-regulated and destructs the membrane. Inside
the cell, S. aureus is protected against the immune system and antibiotics. Hence,
it could calmly multiply. The cell dies and the bacteria infect other cells around it.
Koerber et al. (2005) developed a deterministic and a stochastic model describing the
process of endosome escape of S. aureus focusing on the case of a single bacterium.
Their deterministic model included the basis of the QS process of S. aureus and
provided the limiting behaviour for their stochastic model. They presented a detailed
asymptotic analysis for the stochastic problem supported by Monte Carlo simulations.
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Comparisons between simulations and asymptotic solutions were made. This model
showed via both asymptotic and numerical solutions that the up- and down-regulation
rates of the bacterium are rapid and pointed out the importance of the distribution of
endosome escape times.

Karlsson etal. (2007) developed a nonlinear dynamical model to understand the reg-
ulation of the QS-regulated competence system of Streptococcus pneumoniae, which
causes community-acquired infections like meningitis and bacteremia. Its QS sys-
tem regulates serotype switching, evolution of virulence factors, and rapid emergence
of antibiotic resistance. They focused on the molecular mechanism responsible for
the abrupt shut-off of the ComABCDE system. The model’s hysteretic behaviour
was examined through elasticity analysis. They showed that shutdown of competence
possibly occurs at the transcriptional level on the comCDE operon and showed that
competence appears in waves in the mathematical model. These results are supported
by experimental studies showing the appearance of successive competence cycles in
pneumococcal batch cultures.

Haseltine and Arnold (2008) examined the lux circuit of V. fischeri and how this
impacts QS operons in bacterial pathogens (e.g. bistability in the regulation of the plant
pathogen Agrobacterium tumefaciens and the human pathogen P. aeruginosa). Their
mathematical model examines three different network architectures, with a determined
threshold for bistable gene expression. The models were analysed, and the steady states
were shown to be a function of the population density. They showed how virulence
can be “turn” on and off depending on an induction density.

Jabbari et al. (2010) studied the QS mechanism of S. aureus, an opportunistic
bacteria which although form part of the human microbiome and can also cause serious
diseases including pneumonia and endocartitis. This switch is QS-regulated. Their
model differs from others because it focusses on the AHL concentration threshold
needed to activate virulence, rather on the quorum size. QS of S. aureus is performed
by the agr operon, consisting of two transcription units, making it an example of a two-
component system (the receptor protein AgrC can detect the presence of a signal AIP
and activate the response regulator AgrA). Their model follows Dockery and Keener
(2001) and consists of a system of ODE representing the intracellular components of
the full agr operon. Their main variable relates to the proportion of agr up-regulated
cells. The system has three layers: outside the cell, the cell membrane, and inside
the cell. They performed numerical simulations initially to understand the overall
dynamics and used parameter values from the literature. They later use asymptotic
analysis to explore the timescales involved (eight in total), in particular to understand
how an up-regulated state is reached, which for this bacterium may mean becoming
virulent, if sufficient signal molecule is retained in the environment of the cells. Similar
to other QS systems, bistability was observed. Jabbari later extended this model and
examined other QS systems.

Anand et al. (2013) proposed a computational model of the LuxI/LuxR QS system,
in particular to study the effects of inhibiting QS at multiple levels: inhibit the AHL
synthesis by LuxI; the degradation of AHL; the inhibition of AHL-LuxR complex
formation; and the degradation of LuxR. Their ODE model is based on Goryachev
et al. (2006) and accounts for the dynamics of the cell population; the intracellular
protein concentrations; and the diffusible signal. They found that a combination of
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LuxI and LuxR non-competitive inhibitors may inhibit virulence. In contrast, LuxR
competitive inhibitors act antagonistically with LuxI inhibitors, which may increase
virulence.

Sepulchre et al. (2007) also examined virulence, it has been reviewed in Goryachev
(2011).

2.2.5 EPS Production

Frederick et al. (2011) presented a model of QS-regulated EPS production in a growing
biofilm (cells and EPS) subject to various environmental conditions. They extended a
two-dimensional model of QS in patchy biofilm communities (Frederick et al. 2010)
and investigated how environmental conditions such as a hydrodynamic environment
and nutrient conditions affect biofilm growth and QS. They explored the hypothesis
that EPS production is QS-regulated, following a series of experimental evidence.
They looked at the question of how does QS affects biofilm growth and why it may
be beneficial. Their model is deterministic and consists of a system of PDEs for the
local density of cells and EPS (four populations: down-regulated low-EPS producers,
up-regulated high-EPS producer, non-QS low-EPS producer, and non-QS high-EPS
producer), EPS, nutrients, and AHL. Nutrients reach the cells by diffusion. They dis-
tinguish between up- and down-regulated cells, and regulation is controlled by AHL
concentration. AHL also diffuses. To model the QS-dependent EPS production, they
assume that up-regulated cells produce EPS at higher rates than down-regulated cells.
With numerical simulations, they investigated the distribution of low- and high-EPS
producers in the biofilm under diverse conditions (high nutrients, with and without EPS
consumption, random colony placement in mixed biofilms). They found that colony
growth was indeed enhanced with high-EPS-producing non-QS biofilms. They also
found that the location of the colonies plays a pivotal role on EPS production induc-
tion. Moreover, they found a clear relation between biofilm composition and EPS
production: at low-EPS production, the biofilm is mainly composed by cells, but at
high-EPS production rates, it is mainly EPS. They discussed the advantages of using
QS-induced EPS production: protection, securing nutrient supply, or out-competing
other colonies (of their own or a different species).

Overview and Future Research Directions Modelling a wide variety of QS-regulated
processes has led to the use of a variety of mathematical tools. While QS regulation may
be understood as a reaction—diffusion problem, spatial models require the integration
of fluxes, forces, and geometrical properties of the micro-environment. In terms of the
analyses performed on these models, they range from asymptotic methods to reduce
the complexity of a reaction—diffusion system to optimizing numerical approaches.
While biofilm formation was modelled using mass and momentum transport equations,
swarming was suitably described using agent-based models. Modelling of virulence
often required both deterministic and stochastic approaches. Further developments
in mathematical modelling of bioluminescence have appeared in parallel to novel
approaches to model the basic QS molecular mechanism.

In many bacteria, QS regulates several hundred genes rather than individual phe-
notypes and, to add a level of complexity, not every gene may be directly connected
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with changes in the environment. This diversity has called into question whether uni-
fying principles exist in QS systems. Hense and Schuster (2015) argue that the general
purpose of Al systems is the homoeostatic control of costly cooperative behaviours.

The apparent paradox of two phenotypes possessing mutually exclusive benefits
might be explained by division of labour, for example in B. subtilis, where both release
of public goods and induction of detachment are QS-regulated. Mathematical models
describing more than one QS-regulated process in the same bacteria are needed to
address this interesting perspective.

Developing models which describe a QS-regulated process has shed a great deal of
specific knowledge. However, the question of which processes are QS-regulated should
be directly linked to the ecological and evolutionary context of a given QS system.
Hense and Schuster (2015) argue that Als regulate processes whose evolutionary
benefit is strongly coupled with the efficiency of controlling environmental changes.
Experimental settings such as batch cultures allow only partially to make explorations
in this context, and therefore, mathematical modelling remains a powerful approach
(see Sect. 2.5) to study QS.

2.3 Therapy Models

QS is particularly relevant to human health when it comes to pathogenic bacteria. Mod-
els concentrating in QS as a target for therapy form an important group, in particular
as an alternative to antibiotics. The danger posed by growing resistance to antibiotics
has been ranked along with terrorism and global warming on the list of global human
threats (Davies 2011; Smith and Coast 2013). Alternatives to antibiotics therefore
represent a major research challenge. Disrupting, manipulating, or targeting QS as a
therapy strategy have been explored from the moment it was clear that virulence is QS-
regulated. To this group belong several models of QQ or other mechanisms targeting
the disruption of QS, see 2.1.1 for a model that can also be placed in this section.

2.3.1 Quorum Quenching

Anguige et al. (2004) focused on the QS system of the human pathogen P. aeruginosa.
They developed a model to investigate two strategies to disrupting QS: antagonize the
transcriptional activator—AHL interaction, and destroy the AHL signal molecule. Their
model is based on the works of Ward et al. (2001) and assumes a spatially homogeneous
population of cells in batch culture. The cells could have one of four possible states:
those with full lux boxes, those with one lux box empty and the other one full (LasR-
lux-box or LasI-lux-box), and those with both lux boxes empty. Their variables include
concentration of the signalling molecules and complexes, extracellular concentration
of 3-0x0-C12-HSL and AHL degradation enzyme concentration. The model consists
of five ODEs. They explored the model behaviour when a standard antibiotic treatment
is applied. They found that sufficient doses of the anti-QS agent can reduce the AHL
concentration, but the treatment success depends heavily on the rest of the parameters.
Anguige et al. (2005) extended this work to include well-mixed spatially structured
planktonic P. aeruginosa populations.
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Viretta and Fussenegger (2004) developed a deterministic model of the P. aerug-
inosa QS network (at the transcriptional and translational levels) including the
interactions between its three known QS systems las, rhl and mvfR-PQS. This model
focused on understanding P. aeruginosa virulence and the response of QS to pharmaco-
logical interference. The QS network dynamics were described as a set of qualitative
states and transitions between these states. They showed that the LasR:3-oxo0-C12-
HSL is the network node with the highest signal integration potential (two incoming
and four outgoing connections), and hence, it constitutes an optimal target for the
utilization of QS inhibitors. They also proposed that degradation of the HSL signals
can be an effective strategy in the initial phases, but it fails when the QS mechanism
is in full operation. They validated the interference of the PQS signalling system as a
useful anti-virulence target.

Fagerlind et al. (2005) presented one of the first models of QQ. Their model is
for the QS molecule antagonist (which they called QS blockers, QSB) of one of the
P. aeruginosa signalling molecules, 30-C12-HSL. Given that certain experimental
evidence had shown that the sole use of an antagonist may not be as effective to inhibit
QS, they explored how to further alter this QSB to improve it. They extended Fagerlind
et al. (2003)’s model by introducing different QSBs with: (1) different affinity values
with the R-proteins and (2) different rates of 30-C12-HS-induced degradation of the
R-proteins. They assumed that the QSBs bind to but do not activate R-proteins. Their
model of eight ODEs includes the dynamics of the QSBs by assuming that they are
able to diffuse through the cell membrane and bind to both LasR and RhIR, forming
new complexes. To investigate the effect of adding QSBs, they consider a high stable
steady state (which was shown to exist in (Fagerlind et al. 2003)), i.e. growing a colony
until the cell density is high enough to induce QS. Then, they added the QSBs and
asses their ability to bring this stable state down. They did this for different antagonists
differing in their ability to induce degradation of the R-proteins and their affinity for
the R-proteins. Their model suggests that QSB-induced degradation of LasR is key
for successful QQ. They further discuss ways to increase this effectiveness, such as
developing QSBs with high affinity and high degradation of LasR.

Ward (2008) presented a continuous models of QQ (anti-quorum-sensing treat-
ments) in both batch cultures and biofilms. The biofilm is viewed as a multiphase
fluid whose growth is governed by nutrients that diffuse from the surrounding fluid.
They extended Anguige’s series of papers (Anguige et al. 2004, 2005, 2006) on QS
inhibitors, which are based on Ward et al. (2001, 2004). The model is for the LasRI
QS System of P. aeruginosa. For the batch culture case, the population consists of
two populations (down-regulated and up-regulated cells). The regulation is mediated
by QS, whose mechanism is modelled through a series of ODEs for the concentration
of LasR, Lasl, AHL, and LasR-AHL complex. Through scaling, they describe the QS
dynamics with one equation for the change in AHL concentration. They studied three
QSI therapies: anti-LuxR agents, anti AHL agents, and anti LuxR agents. The model
involves equations for the two population types, AHL, and for each of the concentration
of these three agents. For the biofilm case, they viewed the bacterial subpopulations
as volume fractions of the whole of living cells. The remaining space is occupied by
EPS and water. Biofilm growth is assumed to be QS- and nutrient-regulated. The QS
process is modelled in the same way as in the batch culture. AHL, QSIs, and nutrients

@ Springer



Mathematical Modelling of Bacterial Quorum Sensing 1611

are assumed to diffuse. Their model is one-dimensional and consists of 10 PDEs and
one ODE, with growth occurring perpendicular to the a solid surface.

Ward (2008) investigated what happens when the three QSIs are administrated (by
drip-feeding or by pretreatment of the growth media) and they compare their potency.
For both, batch cultures and biofilms, they found that the time of application of the
QSImay be a key parameter for the efficacy of the treatment. In particular, early appli-
cation will delay or prevent up-regulation. However, the amount required to suppress
QS increases exponentially. In biofilms, the QSI concentration needed for successful
activation repression seems to be very dependent on local growth conditions. Their
third QSI method (putative anti-Las/ treatment) seems the most potent.

Beckmann et al. (2012) studied an evolution model of QS in populations of digital
organisms, a type of self-replicating computer program, and investigated the effects
of impairing QS on these populations. They used the computational evolutionary biol-
ogy platform Avida (Ofria and Wilke (2004)). Their setting contemplated individual
organisms (with a list of instructions, its genome) living on two-dimensional spaces
(batch) consisting of cells (each cell contains an organism). The genome of the organ-
isms contains information to create off spring (replicate). Organism communicates to
each other by sending messages. Their model evolves QS (i.e. the population evolves
a strategy that collectively suppresses growth if a population threshold is reached).
Then, they added mutant organisms incapable of either producing or detecting the
signal molecule. They found that receiver-impaired mutants prevent QS more effec-
tively than sending-impaired mutants. They argued that this may be related to the
cost of producing a signal. They further explored how, in spite of the introduction
of mutants, QS is still observable (resistance). Higher resistance to receiver-impaired
mutants was observed. Finally, they tested what happens when the introduction of the
mutants was gradual. In this case, both mutants seem to produce equivalent levels
of resistance, meaning that as the environment becomes adverse, adaptation kicks in.
Although they observed “resistance”, they did not validated their data experimentally.
However, simultaneously, a group provided evidence that resistance to QQ is indeed
possible (Maeda et al. 2012; Garcia-Contreras et al. 2013).

Anand et al. (2013) used an experimentally validated computational model of
Luxl/LuxR QS to study the effects of using inhibitors individually and in combination.

Recently, Schaadt and collaborators developed a combined model of the regulatory
and metabolic network for the three QS systems of P. aeruginosa, which enabled them
to investigate the effects of gene knockouts, enzyme inhibitors, and receptor antago-
nists. The authors focused on the PQS production and the biosynthesis of pyocyanin,
an important virulence factor, and according to their model, inhibiting the enzymes
that produce PQS is an ideal strategy to block the HHQ and PQS formation, but block-
ing the receptor PqsR that regulates its biosynthesis is more effective to decrease the
pyocyanin levels (Schaadt et al. 2013).

The QQ model of Gonzalez-Barrios et al. (2009) was reviewed in Goryachev (2011).

2.3.2 Quorum-Sensing Manipulation

Koerber et al. (2002) presented a deterministic model of PDEs for one of the QS
systems of P. aeruginosa (3-oxo-C12-HSL) based on Ward et al. (2001). The model
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accounts for populations of down- and up-regulated cells. Parameters of their model
were taken from previous work of this group. The main contribution lies on the fact that
the model addresses the wound environment explicitly and how QS plays a role. They
represented a wound as a two-dimensional region with layers (outer surface, uncolo-
nized wound, bacterial layer, undamaged skin). They investigated, through numerical
simulations, the evolution of the autoinducers concentration and the fraction of up-
and down-regulated cells under diverse wound colonization possibilities (by changing
the thickness of the regions of the wound, diffusive ratio, a fully colonized wound).
They put forward the idea of exploring QS disruption as a possible therapy by turning
their attention to the effect of the QSM degradation term.

Anguige et al. (2006) used a multiphase approach to model biofilm formation of
P. aeruginosa. It is an extension of Anguige et al. (2005) to include EPS production
control by QS, this generates a watery ECM surrounding the bacteria. Their model
incorporates four phases: live cells, dead cells, EPS, and extracellular watery fluid.
Nutrients and antibiotics diffuse into the biofilm from its upper surface. They obtained
a system of PDEs for the volume fractions and velocities of these phases. AHL is pro-
duced by the cells and also diffuses. EPS production depends on the level of LasR/AHL
dimmer. They used numerical simulation to explore the role of QS in EPS production.
They also investigate how antibiotics and QQ treatments affect biofilm formation. They
found that most of the biomass in a wild-type biofilm consists of EPS and that living
bacteria are agglomerated in a nutrient-rich region near the surface. Mutant biofilms
(LasI-negative) are thinner and enable bacteria to uniformly distribute. Therapy seems
most effective in wild-type biofilms.

Brown et al. (2009) suggested the use of the ability of QS cheats to invade cooper-
ative, wild-type populations as a potential new strategy for treating bacterial disease.
They presented ecological models of within-host competition in three cases: (a) coop-
erative social traits, such as the production of exoproducts; (b) spatially structured
populations, which will reduce the ability of non-cooperative cheats to spread; and (c)
harmful, or spiteful, social traits (anti-competitor chemicals, bacteriocins, and temper-
ate bacteriophage viruses). The mixtures of social cheaters and cooperative individuals
in P. aeruginosa mice infections indeed showed a reduced virulence Rumbaugh et al.
(2009); however, further experiments are needed in order to test the effects of applying
cheaters in previously established infections by cooperative individuals.

Other groups looking at degradation of autoinducer are Chen et al. (2005), reviewed
in Goryachev (2011).

Overview and Future Research Directions Although many of the therapy models
presented are theoretical, experimental evidence validates some of the central insights
derived from those models. Important predictions made by the models remain to be
tested and eventually exploited to develop anti-quorum therapies. The focus should be
on the generation of robust anti-quorum therapies, with an emphasis on the interplay
between therapy models and experimentation.

Koerber et al. (2002) developed one of the earliest models to explore the possible
application of QQ as a therapeutic alternative. Importantly, this model was developed
explicitly for P. aeruginosa infection in wounds, and to the best of our knowledge, this
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is one of the few QS therapeutic models that is not generic for bacterial infections but
indeed tries to represent a specific kind of infection. Remarkably, although the model
incorporates several simplifications such as modelling only the LasR QS system, it
provides valuable insights, including the prediction that a combination of antibiotics
that will decrease the carrying capacity of the system (number of viable bacteria)
together with the degradation of the 3-oxo-C12-HSL autoinducer will synergistically
reduce the expression of QS-dependent virulence factors.

Other models had found no significant enhancement of antibacterial treatments
in combination with antibiotics and QS inhibitors (Anguige et al. 2004); however,
Gupta et al. (2015) have demonstrated experimentally that a combination of lactonase
(which degrades the HSL autoinducers) and the antibiotic ciprofloxacin could prevent
the death of infected thermally injured mice, significantly reducing systemic bacterial
dissemination, the severity of histopathologic lesions and promoting skin regeneration.
This approach contrasts to the independent utilization of the compounds which had
more modest beneficial effects, hence confirming Koerber and co-workers prediction.

The successful prediction made by some of these models should encourage the
development of new specific infection models that aim to design robust anti-quorum
therapies. A recent model of a quorum-mediated infection containing a far more
detailed description of the complex QS systems of P. aeruginosa also highlights
the importance of autoinducer degradation. The authors concluded that although
interfering with 3-oxo-C12-HSL autoinducer, mediated QS could be useful in the
prevention of bacterial colonization and the establishment of infections, once the
signal concentration reaches the threshold level (i.e. activating the QS phenotypes).
Removing 3-ox0-C12-HSL autoinducer will not suffice to eliminate the expression of
QS-dependent virulence factors since the RhIR module will remain functional (Viretta
and Fussenegger 2004); however, this important prediction has not yet been experimen-
tally evaluated. This model also indicates that high PQS concentrations are sufficient
to up-regulate 7[R independent of LasR, hence identifying PQS as a possible target
for pharmaceutical treatment of P. aeruginosa. Experimental evidence confirms that
the RhIR system does indeed have high relevance for P. aeruginosa virulence in vivo,
at least in animal model infections (O’Loughlin et al. 2013). Furthermore, Palmer et al.
(2007) show that growth in sputum promotes the synthesis of high PQS concentration,
which indicates that this system may be primordial for P. aeruginosa QS-regulated
virulence in the lungs of cystic fibrosis patients.

Interfering with PQS decreases the in vitro and in vivo P. aeruginosa virulence
(Calfee et al. 2001; Lesic et al. 2007). The model from Schaadt et al. (2013) confirms
that inhibiting the PqsR receptor is an effective strategy to inhibit the synthesis of
the virulence factors pyocyanin. Since it is estimated that at least 65 % of chronic
infections are produced by biofilms and given that biofilm formation (particularly its
maturation involving the synthesis of several matrix biofilm components such as EPS or
extracellular DNA) is regulated by QS, therapy models explicitly developed to explore
the effects of QS interference on biofilm infections are especially relevant. Anguiges
work represents an influential contribution in this context: by modelling early-stage
P. aeruginosa biofilm subject to treatment with topically applied anti-QS drugs and
conventional antibiotics, they found that if the biofilm formation is a slow process,
both kinds of anti-QS drugs are able to maintain low autoinducer concentrations.
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Importantly, for an administrated surface drug concentration, a critical biofilm depth
enables treatment success; however, once this depth is reached, the treatment fails. The
critical concentration of each drug increases exponentially with the biofilm thickness;
hence, targeting biofilms will remain an extremely challenging task. By incorporating
biofilm maturation via QS-controlled EPS production, they further predicted that the
combination of anti-QS and antibiotics is the best strategy to maximize the chances
of efficiently eradicating biofilm infections (Anguige et al. 2004); however, suitable
experiments to address the effects of the combination of anti-QS compounds and
antibiotics to test the model’s predictions are still needed.

2.4 Evolutionary Models

The topic of how QS has evolved and, more importantly, is stable (i. e. it is a strategy
which has not been out-competed) is a fundamental research topic within bacterial
communication. In principle, given that the synthesis of exoproducts coordinated by
quorum sensing is a cooperative behaviour, is subject to a known emerging feature:
the appearance of “cheaters” mutants. These mutants contribute less (or not at all) to
the effort of cooperation but still benefit from it (Popat et al. 2012). Theory predicts
that, given that these cells possess a competitive advantage over the rest, the cheater
population will take over, far from what is actually observed experimentally. The
ecological and evolutionary function of QS is at the core of this apparent paradox.
There exists anumber of theories attempting to explain this paradox, which can roughly
be divided into:

Direct and Indirect Individual Fitness Individuals gain fitness through the
impact of their own reproduction (direct fitness) and through their impact of the
reproduction of related individuals (indirect fitness) (Hamilton 1964; West et al.
2007).

Group Selection Cooperation is favoured when the response to between-group selec-
tion is greater than the response to within-group selection (Fletcher and Doebeli
2009; Queller 1992).

Further strategies have been reported to explain the population equilibrium towards
ahigher survival of the cooperative individuals, restricting the proliferation of potential
social cheaters: “cheater punishment” (Friman et al. 2013), a strategy which appears
to favours cooperation, potentially leading to lower cheat frequency; protist predators
(for P. aeruginosa) which preferentially predate QS-deficient mutants Friman et al.
(2013); higher susceptibility to abiotic stress of the QS mutants Garcia-Contreras et al.
(2015) or to the stress produced by the QS-proficient individuals (by the generation
of the HCN toxic compound) (Wang et al. 2015).

Damore and Gore (2012) reviewed standard evolutionary theory techniques used to
understand microbial cooperation. In the context of evolution of bacterial QS, Brown
(1999) presented the first mathematical model to study the evolutionary stability of host
manipulation by parasites, which critically depends on cooperation, bacterial QS being
a particular case. His model includes a fitness function, modulated by relatedness. He
investigates the evolutionary stable strategies (EES) using game theory. He separates
between individual / and group fitness G functions, a decreasing and an increasing
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function, respectively. Cooperation is then costly for individuals but benefits the group.
He then tests two types of group fitness. In both cases, the model predicts a group size
threshold, below which manipulation (cooperation) cannot take place.

Brown and Johnstone (2001) is one of earliest mathematical models of QS, and in
terms of modelling approach, it precedes that of Brown (1999). They developed a two-
trait model describing the optimal level of cooperation (production of group beneficial
traits) and signalling as a function of relatedness, costs to the individual, benefits
to the group, and demographic parameters. Their independent variables include: s
an individual’s investment in the production of the signalling molecule, ¢ the total
concentration of the signalling molecules which it experiences, n colony size, and r
relation coefficient. They further assumed that the individual investment in cooperation
m is a function of ¢. The model comprises a PDE for the fitness of an individual,
this equation involves individual and group fitness functions. Although individual
investments in both signalling and cooperation negatively impact individual fitness,
the later positively impacts group fitness. Comparable to Brown (1999), there is a stable
level of cooperation, which can be used to find stable signalling. They investigated the
effect that group size distribution has on cooperative and signalling effort.

Brown and Johnstone (2001) and Brookfield (1998) have analysed group selection
models, where selection at the individual level operates against cooperation, while
selection at the group level favours QS.

Nadell et al. (2008) used an agent-based model of biofilm formation to explore QS-
regulated EPS production. They investigated why, in Vibrio cholerae, QS seems to up-
and down-regulate polymer secretion at high cell density. Their modelling framework
is similar to Picioreanu et al. (2004) and includes colonizing cells attached to a flat
surface growing in a two-dimensional space. Cells consume nutrients and produce
additional biomass. They describe four strains interacting and differing in their ability
to produce EPS: (1) no polymer secretion and no QS; (2) polymer secretion but no
QS; (3) polymer secretion under negative QS control; and (4) polymer secretion under
positive QS control. Their results suggest that QS enables bacteria to control (switch
on or off) polymer secretion to increase their competitive ability against other strains or
other species within the biofilm, that is, selectively synthesize EPS. This does contrast
with the common view that EPS is only a public good to help binding the biofilm.
Here, we take the opportunity to highlight the work at Foster’s Lab on social evolution.

Czaran and Hoekstra (2009) used a stochastic cellular automata model to show that
QS can evolve from initially non-cooperating strains, by selection of specific mutations
as long as spatial mixing in the population is low. Cheating and exploitation were found
to develop in their simulations, but although social cheaters emerge and reach substan-
tial equilibrium frequencies, they are incapable of completely eradicate cooperators.

Overview and Future Research Directions Several studies have found that the pres-
ence of proficient QS systems is important for bacterial virulence and that in spite
of putative QS cheaters, putative cooperators are very common (Castillo-Juarez et al.
2015). Interestingly, at least in the clinical setting, P. aeruginosa lasR mutants that can
behave as social cheaters are often found; however, there are few studies that address
whether these kinds of mutants can coexist with cooperative QS-proficient strains.
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Remarkably, one recent study, made with eight cystic fibrosis (CF) patients, demon-
strates that each patient carries a complex mixture of QS-proficient and QS-deficient
isolates. However, the study did not find a single patient with 100 % QS-deficient
isolates (Wilder et al. 2009), a result which supports the prediction of Czaran and
Hoekstra (2009).

There is strong evidence supporting (spatial) assortment as a process to evolution-
ary stabilize cooperation. This could mean new colony formation, repeated cycles of
colony dispersal, mixing, and regrowth. Models dealing with these issues have been
put forward.

A comprehensive list of environmental factors that could in principle select the
presence of functional QS systems during evolution from biotic, abiotic stress to
spatial organization is provided in Garcia-Contreras et al. (2015). Novel experiments
regarding the evolution of bacterial QS systems in the laboratory are feasible, and such
experimental approaches in combination with mathematical modelling can provide
insights into the roles of direct and indirect individual fitness, group selection, kin
selection, social cheating, and environmental variables in the rise and selection of QS
bacterial systems. These evolutionary insights can provide a better understanding of
QS bacterial systems.

The evolutionary stability of QS depends heavily on the environment where it takes
place. Luminescence for instance seems beneficial only if produced by many cells;
however, it has been speculated that oxygen detoxification is the original purpose
of bioluminescence. In this view, isolated or non-cooperator cells may also benefit
from activation. New experimental set-ups such as beads or dialysis bags represent an
important source of new data in this respect.

The evolutionary context is of particular relevance when targeting QS as a treatment
strategy. Inhibiting mechanisms may affect QS-proficient and QS-deficient bacteria
differentially, depending on habitat conditions. Models investigating the long-term
effect of changing environments, such as stochastic evolutionary models, should be
further developed.

van Gestel et al. (2012) suggested that cell-to-cell communication evolves because
cells are capable of anticipating environmental stress, which leads to ecological diver-
sification. See Sect. 2.5.1 for more details. Here, we note the work of Beckmann et al.
(2012) (Sect. 2.3.1), as it relates to evolution of QS too.

2.5 Novel Approaches
2.5.1 Cell-Based Models

Modelling QS on a population scale has been possible through the use of agent-based
models, which make it possible to describe a range of conditions for individuals, for
example undergoing activation at varying concentrations of autoinducers.

Miiller et al. (2006) proposed a spatial single-cell model of QS. Their model
describes two layers: within and between cells. It describes a population of single cells,
with the QS signalling system modelled by nonlinear ordinary differential equations,
containing variables describing AHL outside of the cell and within the cytoplasm. The
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Fig. 12 Miiller et al. (2006) spatial model. Circles (black if activated, grey for resting producer cells)
denote the measured location of producers. Plus signs mark the measured location of resting, cross signs
that of active detector cells. The equipotential lines denote the density of AHL concentration predicted by
the model (normalized units). Reproduced with permission

model contains a parameter to account for the external signalling substance, effectively
enabling them determine whether a cell is resting, activated, or in the bistable regime.
They combined the ODE model with a PDE to give spatial structure. They assumed
no spatial structure within the cell; therefore, only the influx/efflux of AHL through
the cell membrane impacts the dynamics. The linear PDE describes what happens to
the signalling substance outside the cells. They coupled the ODEs and the PDE via
mixed boundary conditions at the cell surface. The system typically starts subcritical
(low levels of the signalling substance); later, the population density grows until the
critical density is reached, which leads to a jump to the activated state. Their results
indicate that trajectories starting from very small or from very large initial condi-
tions tend to stationary states. Given that the cells are quite small compared to their
distance, through rescaling they obtained an approximative equation, where cells are
represented as inhomogeneities on the right-hand side of the partial differential equa-
tion. They also showed how their work could be applied to spatial data obtained by
CLSM for P. putida colonizing wheat roots (see Fig. 12).

Tang et al. (2007) used an individual-based model to study bacterial foraging behav-
iour. It is an extension of a “varying environment bacterial modelling” (VEBAM)
approach (see Tang et al. 2006) to include QS. Their modelling framework is composed
of two parts: the cells and the environment. The environment is a two-dimensional
surface (segmented equally into small niches) used for food searching, it is defined by
its characteristics such as boundary and the map of food distribution. The cells have
both a receptor (to detect the value of its surrounding environment) and a decision-
making system (which feeds from the information obtained by the receptors). They
modelled QS through clusters (aggregation of population) defined by population den-
sity, position, and an autoinducer diffusion parameter. Depending on the population
density, the cluster is in an “on” or “of” state. They also included the energy that
cells use to produce autoinducers. Their model displays common features of QS such
as that, at a low cell density, the autoinducer is synthesized at basal levels and dif-
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fuses into the surrounding medium, where it is diluted. They found that QS impacts
growth and nutrient consumption: a simulation of a QS population will produces less
(number) bacteria than the non-QS case. Also, a QS population achieves a higher
population level with less nutrient consumed as compared to the population without
QS.

A P system is a modelling framework which consists of a hierarchical arrange-
ment of “membranes” corresponding to regions inside the system. These regions have
objects and a finite set of rules of interaction. P systems were introduced in Pérez-
Jiménez and Romero-Campero (2006) and are based on Gillespie (1977)’s stochastic
simulation of coupled chemical reactions. It can be thought of as an agent-based
model, where a P system is an individual agent. Romero-Campero and Pérez-Jiménez
(2008) presented a model for the QS of V. fischeri using this modelling framework.
They examined the importance of the level of noise in the system. Their simulations
showed that at low cell densities, bacteria remain dark while at high cell densities
some bacteria start to be bright. They further studied how QS functions in colonies.
Their results suggested that very limited information of the local environment can help
coordinate collective behaviour of multiple agents.

van Gestel et al. (2012) presented an agent-based model to describe how cell com-
munication plays a role in the sporulation of the bacterium Bacillus subtilis. They
assumed cells scattered throughout the soil in locations where nutrients are available.
Cells can grow and differentiate (into spores, communicating cells, or remain undif-
ferentiated) and will enter starvation if nutrients do not suffice. Sporulation takes place
if both nutrients are enough and QS signal is above a threshold. Cells can also migrate
to find better locations. Communicating cells produce signalling molecule at a fixed
rate, signal is also degraded. The amount of signal changes over time depending on
the number of signalling cells. Sporulation is assumed to be an irreversible state which
requires a specific amount of time to be completed. Spores cannot longer divide. Both
division and differentiation depend on the environment (nutrients for the first and both
nutrients and signal for the later). Mutations are also permitted. The time of sporula-
tion is key; if a cell sporulates too early, it loses reproductive potential; and if it does
it too late, it has more chances of dying due to the lack of nutrients. They examined
how QS evolves under two scenarios: colonies are initiated by a single individual (i.e.
genetic variation can only arise via mutations) or assuming within-colony variation.
They further explored how signal production cost may impact the stability of QS devel-
opment. They found that QS development is highly dependent on sporulation time.
QS evolution depends on both signal production evolution (by differentiation) and
signal sensitivity. Their model shows how QS can evolve as a mechanism to evaluate
environmental cues such as nutrients availability. They further showed that QS can
also evolve if there are genetic variations within the colony and under certain levels
of signal production costs. See Fig. 13.

Fozard et al. (2012) used an agent-based model of a developing biofilm subjected
to QQ. It represents a 3D biofilm reactor with two compartments, the biofilm compart-
ment and the bulk liquid compartment based on Picioreanu et al. (2004) but including
EPS production explicitly; a QS model (requiring particles to keep track of the num-
ber and states—up- or down-regulated—of the cells) and biomass spreading. There
are three diffusible substances in the bulk liquid compartment: nutrients, QS mole-
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Fig. 13 Evolution of cell-to-cell communication under clonal and non-clonal growth conditions. The upper
panel a and b shows the clonal growth conditions. The lower panel ¢ and d shows the non-clonal growth
conditions. The left plot in each panel a and ¢ shows the evolutionary trajectory (evolution of cell-to-cell
communication). Figure from van Gestel et al. (2012)

cules, and QS inhibitors. Individual cells are integrated into biomass particles and can
produce EPS. Their setting contains several stochastic elements: size of the daughter
particles at division, regulation, etc. To model QS, they assumed that the switch from
down-regulated to up-regulated states is random but dependent of the concentration of
the signalling substance in the containing voxel. QQ affects both the time of activation
and QSM levels depending on when QSI was introduced: if introduced before activa-
tion, the proportion of up-regulated cells stays low for several hours before increasing;
if introduced after activation, there is a higher proportion of up-regulated cells. This
seems to be related to bistability in the system. They further explored the EPS pro-
duction rate and how this affects QQ. Increasing EPS production leads to a thicker
biofilm, making it more difficult for QSI to penetrate.

Cornforth et al. (2014) argued that bacteria use QS to infer both their social and
physical properties of their environment simultaneously by combinatorially respond-
ing to multiple signalling molecules. They used a combination of approaches including
a simple mathematical model for the extracellular dynamics of signal molecules
in a well-mixed environment leading to a simple threshold behaviour. They also
used an individual-based model to show that (1) differential decay and (2) com-
binatorial responses to two signals can provide better resolution when it comes to
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information regarding density and mass transfer. Using model selection, they iden-
tified several possible logic gates. From their study, they conclude that although
QS (also commonly used to control secreted factors) seems more beneficial at high
densities, under high-mass transfer conditions the digestive product will also be sub-
jected to higher removal. Therefore, synergistic information on both cell density and
mass transfer (and AND gate) is more beneficial. The AND gate limits the expres-
sion of costly secreted factors to the most beneficial high-density, low mass transfer
environments.

Other models in this category worth to be mentioned are that from Goryachev et al.
(2005), already reviewed in Goryachev (2011).

2.5.2 Circuit and Feedback Loops Models

A hybrid mathematical model combining stochastic simulation with frequency domain
analysis showed that noise in QS signalling has the role to enable the entire bacterial
population to engage in the positive feedback function of autoinduction. This is the
model of Cox et al. (2003) for the QS system of V. fischeri. Given that the autoinducer
concentration can make some individual cells to reach the apparent signal threshold
earlier, this can lead to the production of additional autoinducer, therefore contributing
to engaging those cells that had not reach the apparent threshold.

You et al. (2004) coupled gene expression to cell growth dynamics to investigate
QS in a population of Escherichia coli. They designed a circuit which incorporates
programmed death in response to changes in the environment (cell density). They
used a simple mathematical model to show that their circuit can have a stable steady
state in terms of cell density and gene expression that one can fine-tune by varying
the stability of the cell-to-cell communication signal (expression of the LacZaCcdB
killer protein). It could also have damped oscillations while approaching the steady
state. Experiments confirmed the predictions of the model, although the circuit was
found to be sensitive to perturbations. By varying the level of AHL degradation, it
was possible to manipulate the system. Their model also predicted that intracellular
levels of the killer protein would not be affected by changes in pH. They discussed how
indeed cell heterogeneity (in terms of size, age, plasmid copy number, gene expression,
response to the killer protein) is actually required for the population control circuit to
work.

Kuznetsov et al. (2004) constructed a genetic oscillator. The model consists of two
subsystems: a toggle switch (which can displays bistability and hysteresis) and QS. It
is a system of ODEs involving the cellular protein concentrations and active promoters
as well as the autoinducer concentration. The first gives the condition for oscillations
in isolated cells. There are basically two timescales, and they identified regions where
a fast subsystem can be driven through a bistable region. They investigated these
oscillations in more detail including how the requirements to obtain oscillations change
if the cells interact. They claimed that strong interactions may result in suppression of
synchronous oscillations. On the other hand, weak interactions may lead to oscillation
but not synchronized. A large variation in the parameter values of the individual
elements decreases the possibility of synchronized oscillations.

@ Springer



Mathematical Modelling of Bacterial Quorum Sensing 1621

An interesting theoretical paper showed that in a synthetic system of represilators
QS, can be successfully used to create macroscopic rhythms (Garcia-Ojalvo et al.
2004).

Perez et al. (2011) studied the noise and crosstalk between two acyl homoserine
lactone signals (30C6 HSL and C8HSL) in the QS mechanism of V.fisheri. Their math-
ematical model includes competitive-binding interactions between these two signals
and describes the average (bulk culture) response of the lux operon to combinations
of C8 HSL and 30C6 HSL signals. The first equation of their model was built on
the basis of the power law and was able to predict different noise levels for lumines-
cence versus fluorescence reporters of /ux. They showed through several simulations
that although the robust [ux response to 30C6 HSL activation is highly heteroge-
neous (noisy), the presence of C8 HSL quenches the response largely by switching
off the brightest cells. That is, the crosstalk does not seem to alleviate noise but tune
sensitivity of the switch. They speculated that the QS circuit does not distinguish
between different combinations of HSL inputs that produce the same average lux
output.

Fujimoto and Sawai (2013) investigated whether QS could be graded (cells in the
on and off states coexist within a population) or an all-or-none activation mechanism.
The argue that QS circuits appear to be tuned so that the cells can use either type
of transition depending on the environmental conditions. They used generic ODE
models to describe QS across two levels of organization: single cell and cellular
ensemble. They showed that graded transitions occur when the intracellular posi-
tive feedback alone can support bistability. All-or-none transitions occur when the
secreted signal within the population serves predominantly to realize bistability at the
group level.

There are many more models in this category, mainly computational models, we
mentioned Tanouchi et al. (2008), Zhou et al. (2008), reviewed in Goryachev (2011).
Another model on the topic of extracellular noise we would like to mention, but do
not review due to the lack of space, is that of Hong et al. (2007).

2.5.3 Heterogeneity in QS

There is increasing evidence that heterogeneity of QS activation occurs. This variability
has been reported for bacterial species such as Vibrio fischeri (Anetzberger et al. 2009),
Pseudomonas putida (Meyer et al. 2012), and Escherichia coli (Megerle et al. 2008).
Furthermore, studies have focused on reporting that this heterogeneous distribution of
gene expression is mainly observed when bacteria are grown in their natural habitat
(Kang et al. 1999; Joyner and Lindow 2000) as opposed to well-mixed batch cultures,
where QS has traditionally been analysed.

Meyer et al. (2012) used a microfluidic set-up to investigate Pseudomonas putida
IsoF QS under flow and non-flow conditions at the single-cell level. Their experiments
followed gene expression over time (using an AHL sensor). The mathematical model
is an extension of Fekete et al. (2010) to a compartment model with interior and
exterior space. They proposed two modelling approaches: a cell wall model (each
cell constitutes a separate, but identical compartment, communicating via the external
space) and compartment-barrier model (many bacteria are enclosed in a single large
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Fig. 14 Cell wall model a assumes that the cell membrane acts as an exchange barrier, while in the
compartment-barrier model b, AHL can accumulate in a volume surrounding the bacteria. Expression
kinetics at different external AHL concentrations (0, 10, and 100 nM, without flow and with flow) and best
fits of two different versions of the two-compartment model. The markers represent the average of the mean
fluorescence of individual colonies, and the /ines the corresponding model predictions. Figure from Meyer
et al. (2012). Reproduced with permission

compartment, which is separated from the exterior). Their basic model is a system of
ODE:s for the number of bacteria, and for the time evolution of the fluorescence, the
two distinct approaches are modelled in the third and fourth equations, for the internal
and external AHL concentrations. They found that the non-fluorescent off state was
reached in a slow exponential decay manner and showed that gene expression was
suppressed by flow. The dynamics when AHL was added externally were similar
under both conditions (with and without flow). Given that both modelling approaches
reproduce the experimental observations reasonably well, they proposed that a hybrid
model including transport mechanisms might improve the fit to the data. See Fig. 14.

Generally, Meyer study added to evidence of spatially heterogeneous gene expres-
sion and that QS regulation is not solely governed by cell density. They reported than
variability was found to be more pronounced when AHLs were externally added to
the media. Overall, their results suggested an extrinsic (external factors) rather than
intrinsic (within the regulatory network) origin for this heterogeneity between colonies.
They suggested division of work as a possible advantage/reason for this heterogene-
ity. This work is important because it provides further proof that QS systems give rise
to complex, heterogeneous behaviour, rather than the common view of synchronous
population response.

Hense et al. (2012) studied the issue of how QS generates spatially heterogeneous
behaviour. They used a 3D QS model for attached microcolonies based on a lux-
type system. They specifically looked at the influence of nutrients as an example of
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changing environmental factors. Their deterministic model consists of equation for
the nutrients, AHL and cell concentration. They investigated the model behaviour
with and without the influence of nutrients on the AHL production. Their aim was to
promote a better understanding of the role of nutrients in QS activation. They solved
the model numerically (PDEs) and discussed the ecological implications, including
a hypothesis (pull-push approach) on why heterogeneities may be observed: local
autoinducer concentration integrates both information on cells demand (pull) and
cooperative potential (push). This is dependent on cell density, cell distribution, and
mass transfer limitations. They suggested that the subpopulations generated by this
heterogeneity (only possible in spatially structured populations) can be thought of
division of work.

Pseudomonas syringae is a Gram-negative bacterium which lives on leaf surfaces.
Pérez-Veldzquez et al. (2015) used the integral of a non-negative stochastic process
to study the QS state of bacterial colonies of P. syringae. They investigated the extent
to which factors such as water availability and diffusional losses of QS signalling
molecules would affect QS across colonies. Their results support that QS activation
is indeed a good indicator of diffusional limitation, as QS is enhanced when diffu-
sion of autoinducers signal decreases (either as a result of water availability or loss
by diffusion). Using further experimental data, they explored heterogeneity of QS
activation of this bacterium (colonies do not become homogeneously activated) when
growing in this natural habitat. They were able to conclude that stochastic growth
and uneven nutrient availability of the leaf surface may contribute only partially to
the heterogeneity observed, discussing possible (evolutionary) explanations of this
strategy.

2.5.4 Cell-to-Cell Communication in Non-Bacterial Cells

Almeida et al. (2012) proposed that CD4™ T cells may be capable of cell-to-cell com-
munication. It is known that these cells control their population numbers, but the
mechanisms are not clear, more importantly how a constant balance (homoeostasis)
is achieved, i.e. how do they “count” their number and “know” when to stop growing.
The authors proposed that lymphocytes may be able (much the same as bacteria) to
assess the number of molecules with which they interact and respond accordingly. In
particular, they suggested that IL-2 (a cytokine signalling molecule in the immune
system) producing cells may be involved in this process. QS in this case is defined as
an indirect feedback loop, where CD4™ T cells sense the produced quantities of IL-2.
This would explain how these cells regulate their number, in particular by restraining
their growth. Moreover, they further hypothesize that a malfunction of this mecha-
nism may lead to uncontrolled autoimmunity. A deterministic mathematical model
to explore their hypotheses was presented. Their model describes the time evolution
for four different CD4+T cells, and although the analysis is left for a further publica-
tion, they do however present some qualitative simulations (both for the deterministic
model and for an stochastic version of it) to show the behaviour of their system, using
arbitrary parameter values. In particular, how homoeostasis may be achieved.
Cancer stem cells (CSCs) differentiate or proliferate according to the feedback they
receive from neighbouring cells. Vainstein et al. (2012) presented a simple discrete
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mathematical model for homoeostasis in developing tissues that is governed by a
QS-like control mechanism, where stem cells differentiate or proliferate according to
the feedback from the neighbouring cell populations. Previous analysis indicated that
excessive stem cell proliferation leading to malignant transformation mainly results
from altered sensitivity to micro-environmental signals. They analysed the dynamics of
cancer cells and examined possible therapeutic approaches, e.g. by eliminating cancer
stem cells (CSCs). They classified populations of cells in two categories, CSCs which
can divide indefinitely and differentiated cancer cells, which do not divide and have
a limited lifespan. They showed that neither stimulation of CSC differentiation nor
inhibition of CSC proliferation alone is sufficient to completely eliminate CSCs. Only
a combination of both can reduce population sizes. Their mathematical model consists
of differentiation therapy and standard (cytotoxic or anti-proliferative) therapy. They
investigated how these affect tumour progression separately and together, where they
defined the cell behaviour stochastically.

2.5.5 Others

Miiller and Uecker (2013) extended the work of Miiller et al. (2006). They examined N
cells that communicate via a diffusive signalling substance. Linear diffusion equations
were used to describe the dynamics outside the cell and an ODE was used to describe
the dynamics inside the cell. The extracellular space and the intercellular space are
linked via appropriate boundary conditions. The cells are represented as balls of radius
R in R?, and the aim was to investigate the limit R — 0. They start by considering
the case of a single cell and showed that the dynamics of the signalling substance (in
the original model a integro-differential equation) can be approximated by solutions
of an ODE. For N > 2, although it is possible to find an approximate ODE model,
this cannot be easily scaled. They introduced a delta source for each cell which leads
to a delayed (due to diffusion between different cells) system. They further discussed
which approximation should be used in different cases (e.g. with more than one cell
with O (1) distances, the DDE model is a good approximation). They investigate QS by
examining a colony of 27 cells arranged in a cubic pattern and explore how the distance
between cells affects activation (if the distance between cells increases, we may or
may not observed activation, including bistable regimes). The position of the cells is
also relevant to the activation process, whereas the mass of signalling substances in
the central cell may act as a trigger to activate other cells.

Brown (2013) challenged standard modelling approaches and proposed a new sim-
ple way to model QS systems, for both well-mixed and biofilm populations. Given that
QS is amultiscale process, he claimed that the key is accurately take into consideration
the interaction between molecular and population processes. His main assumption was
that all QS systems share the following two processes: (1) there is a synthesis of the
signal, and (2) there is transport of diffusion of this signal in and out of the cell. He
assumed a well-mixed population of cells and then proposed one model for Gram-
negative QS system (with intra- and extracellular signalling molecule concentration)
and one for the Gram-positive one. His models relies on keeping track of the signal
accumulation in compartments with different volumes. He added that models which
do not do this may violate conservation of matter. He incorporated autoinduction using
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a Hill function. The derivation of the two model differs as follows: in Gram-positive
bacteria, the intracellular signal refers to precursor peptide and extracellular signal
to the AIP; transport occurs only in one direction, and the synthesis of the precursor
peptide depends on the AIP concentration. He extended his model to incorporate a
spatial model by considering a one-dimensional cross section of biofilm and approxi-
mate the population as a continuous population density. He further discussed the issue
of bistability in QS systems both at the individual and population level, arguing that
indeed heterogeneity (having a population where 80 % of the cells are on and 20 %
are off) of activation is, unlike other models, predicted by his model. Furthermore, his
spatial model can give rise to localized QS regions within the biofilm.

Uecker et al. (2014) presented a model of QS when background flow is present. It
describes cells with fixed locations in a laminar flow with constant velocity. It follows
Miiller et al. (2006) and Miiller and Uecker (2013). It examined the time evolution of
the internal state of the cell (through ODEs) and an external one (tube subjected to
background laminar flow) where the signalling substance diffuses. In this context, the
signalling substance can be either washed out or accumulated downstream. They found
that washout causes communication to break down rather than causing activation due
to downstream effect.

Golgeli Matur et al. (2014) addressed the QS mechanism of single cells in the
stationary case, which is crucial to understanding the effect of chemical gradients
and inter-cell variations. Based on a reaction—diffusion system, they developed a
method that drastically reduces the computational complexity of the model. They
obtained approximative algebraic equations through a suitable scaling. They simu-
lated a scenario for different spatial cell arrangements that explores the question of
microscale communication. Their approach allows computing the signalling substance
distribution in real-world problems, such as for the pathogenic bacteria Pseudomonas
aeruginosa in (spatially unlimited) lung mucus (see Fig. 15).

Other mathematical models reviewed in Goryachev (2011) are Bischofs et al.
(2009). He also has a section on QS in synthetic systems, including McMillen et al.
(2002), Koseska et al. (2007), Ullner et al. (2007), Danino et al. (2010), Chen and
Weiss (2005), which we do not cover here.

Overview and Future Research Directions Given that QS controls a vast range of
target functions and, in nature, takes place in complex environments, mathematical
models of QS require the use of novel and diverse techniques. In particular, models
should be able to integrate the role of the conditions in which QS takes place, i.e. the
ecological context and life history of the bacteria now known to play a pivotal role in
QS systems. Models that take into consideration both spatial configuration (such as
agent-based models) and evolutionary dynamics (for instance adaptive dynamics) are
in principle well equipped to address this complexity. Agent-based models have the
additional advantage of enabling the investigation of QS at the single-cell level. Some
of the models of Sect. 2.5 addressed these issues (Sect. 2.5.1).

Given that autoinduction often depends on the metabolic state of the cell, models
that can describe a QS circuit but are unable to determine how this circuit depends
on other processes fail to completely understand an Al system. Models including
the interaction of the QS regulation system with its ecological function, specifically

@ Springer



1626 J. Pérez-Velazquez et al.

Fig. 15 Here, 20 cells randomly distributed in space, adapted to the situation in lung mucus: water (left), 2.5 % mucus (centre), 8 % mucus (right). Figure from Golgeli Matur

et al. (2014). Reproduced with permission
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in systems with several interconnected Al systems, should be further developed. B.
subtilis is an example of this complexity as its signalling network differentiates cells
into at least seven subtypes.

Recent findings have led to the re-evaluation of the classical QS paradigm (syn-
chronous all-or-none behaviour of the population): a graded response at the population
level is also possible. QS does not necessarily work under synchronous, uniform
responses of all cells in a population. Chemical gradients or stochastic variations
may lead to heterogeneous QS activation. In such cases, QS activation is non-
synchronous and heterogeneous yet cooperative and coordinated such that it benefits
the whole population. Models addressing this, similar to the work of Fujimoto and
Sawai (2013), provide interesting future research directions on QS broad range of
operation.

Physical properties of the environment in which QS takes place are pivotal, for
example how they affect solubility and degradation of Als. Additionally, these condi-
tions may vary in time and space. Miiller or Brown’s approaches are important distinct
steps in this direction. Mechanical and multiphase models may also be well equipped
to describe the role of these properties.

The van Gastel et al.’s model successfully includes both evolutionary and envi-
ronmental aspects of QS, which makes it a well-rounded model. It adds to the
understanding of QS as a cost and benefit predictor. Under certain circumstances,
it may be crucial for bacteria to anticipate environmental conditions, whereas in other
circumstances it may be ecologically irrelevant (e.g. cells living under constant, pre-
dictable mass transfer conditions). Their model is relevant in cases where QS activation
constitutes a lifetime switch, from resident to pathogenic, for example. In this case, QS
evolutionary benefits are strongly coupled with efficient assessment of environmental
changes.

Heterogeneity in QS is now very well documented. Typically, in QS active pop-
ulations, there is a fraction of non-contributors. In spatially structured populations
(e.g. biofilms), physiochemical gradients cause this heterogeneity, but the precise
mechanisms and functions are not well understood. Mathematical models, includ-
ing molecular noise and stochasticity, are a step forward to describe heterogeneity of
QS.

In terms of future research directions, we would like to highlight two potential areas
which in our view deserve more attention in terms of novel approaches:

e the fact that environmental factors are known to directly affect QS. Temperature
and pH influence the stability of QS molecules; other bacterial or eukaryotic species
may degrade or block Als. These factors naturally affect what QS “measures” and
for what purpose. Mathematical models which enable the incorporation of these
consideration may prove really useful.

e division of labour/multiple Al systems. In B. subtilis for example, both competence
and sporulation are QS-regulated, but they cannot work simultaneously in the same
cell; therefore a “division of labour” may take place. This mounting evidence of
complexity requires ad hoc tools such as mathematical modelling, for example for
the underlying circuits of the multiple Al systems as they may involve different
Al thresholds for different phenotypes.
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3 Future Challenges and Discussion

We conclude this review by discussing the future potential of modelling in QS as well
as current research challenges.

Remarkable progress has been made towards an integrative (theoretical and experi-
mental) understanding of bacterial communication. The mathematical modelling of QS
involves a variety of modelling approaches, depending on the subject of exploration.
These models may include Als production and transport, cellular growth and division
dynamics. Models can be deterministic (when describing the Al dynamics, for exam-
ple) or stochastic (when describing heterogeneity of activation). Two approaches have
been used to describe QS activation. The first divides the population into up-regulated
and down-regulated subpopulations (Ward et al. 2001), whereas the second option
is to focus on the concentration of Als (Dockery and Keener 2001). Often, a time
delay occurs in bacterial gene regulation (Barbarossa et al. (2010). In deterministic
approaches, the activity and production of signalling molecules (Dockery and Keener
2001), the way they bind to the promoter gene region (Goryachev et al. 2006), and the
feedback loops (Frederick et al. 2011) are often described by an ODE system at the
population level. A rough classification of all presented models by way of summary
can be found in Table 3.

Bacterial communication could mean several things, from autoinduction (cells
sense and perceive their own signal) to communication from a more classical view-
point (one cell type is a signal sender while another is a receiver). In this review, we
concentrated on QS (autoinduction) and refer the reader to Hense and Schuster (2015)
for a more generalist discussion.

What is known as QS has turned out to be a highly sophisticated mechanism
employed by bacteria to regulate gene expression. It is now widely accepted that
bacterial communication provides information on population (social) as well as phys-
ical properties of the environment, i.e. both density and diffusion matter. Several
studies have now shown that apart from its recognized group benefits, QS can also
operate at the single-cell level (Boedicker et al. 2009; Carnes et al. 2010; Whitaker
et al. 2011). Generally, we can name two properties common to most QS systems:
(1) auto-regulation and (2) cooperativity. The interdependencies of these properties in
particular in relation to its ecological function is central to understanding QS.

The nature of this autocrine type of communication has allowed researchers to use
mathematical as well as computational approaches to analyse specific and global
properties of several QS systems. In many cases, with the help of technological
development, it has been possible to test experimentally these models. The field of
mathematical modelling of QS has been fortunate enough to benefit from close cooper-
ation with microbiologists to further our understanding of how bacteria communicate.
Most of the works reviewed here have been interdisciplinary efforts, culminating in
successful integrative approaches. In several cases, the use of mathematical models
was crucial.

Several important questions still remain. The ecological context of QS is key
to understanding its function. What appears as social cheating or non-cooperative
behaviour at first may actually be viewed as altruistic when interpreted in the appro-
priate ecological context (for instance, detachment of cells from biofilms). Moreover,
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there exist examples of QS triggering non-cooperative behaviour. Hense and Schus-
ter (2015) argue that QS regulates cooperative behaviour, but specific circumstances
may not always allow for cooperation, i.e. it is the situation that determines whether
a behaviour is cooperative and not the behaviour itself.

The development of new experimental and image analysing techniques is making
it possible to elucidate more intricate features of cell-to-cell bacterial communica-
tion, such as combinatorial QS (Cornforth et al. 2014), phenotypic switch (Dumas
et al. 2013), and reversible non-genetic phenotypic heterogeneity (Pradhan and Chat-
terjee 2014). As a sub-area of mathematical biology, mathematical modelling of QS
represents an exciting and vast research area with rich potential for interdisciplinary
collaboration.

The classical interpretation of QS as a cell-density-controlled mechanism has now
been broadened. The relevance of spatial distribution and mass transfer properties has
now been confirmed experimentally. QS is nowadays understood to have a variety of
ecological functions that differ according to the species and the environment where it
takes place.

Extracellular factors could affect QS systems, e.g. in V. fischeri, nutrient deficiency
ceases QS. This research avenue has not been explored broadly with mathematical
models and offers potentially rich possibilities: for example, in extreme stressful sit-
uations, activation may lead bacteria to commit suicide for the benefit of others.

Spatial, hybrid, and multiscale models represent useful techniques to address QS.
Spatial location may represent specific demands at the single cell level but should
translate in integrated responses at the population level. Agent-based models also per-
mit the inclusion of environmental factors (such as pH and temperature), the presence
of competing or beneficial microbes, and the developmental state of the cell (such as
sporulation and mobility).

The ability of a mathematical model to predict depends heavily on its parametriza-
tion, and therefore, obtaining suitable data from in vivo and in vitro QS systems is
essential. With new experimental data available, some assumptions made in mathe-
matical models have been corroborated or disclaimed. For example, it has been shown
that low nutrient availability does decrease growth but increases QS gene expression
per cell. QS systems require information about the physical properties of the environ-
ment to enable both isolated cells and groups to optimize their behaviour accordingly.
Spatio-temporal data of QSM concentrations are highly desirable for the validation
of mathematical models. The role of QQ enzymes should also be explored further
with modelling. It has been suggested they may regulate inter-colony communication.
Current models of QQ are relatively descriptive, mostly owing to the lack of suitable
data.

Increasing complexity in the model does not necessarily lead to a better under-
standing of QS. The auto-regulatory nature of QS often leads to including a positive
feedback loop in the associated mathematical model. More complex architectures
predict bistability, which has been assumed to depend on the stability of receptor—Al
complexes but has only rarely been confirmed experimentally.

It remains unclear how best to investigate the evolutionary purpose of QS. It has
been proposed that, originally, Als may not have been released to detect cell density
but simply, e.g. as waste products, and that eventually bacterial cells realized the
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advantages of being endowed with information of the local concentration of these
substances, leading to the evolution of QS as we know it today. Models addressing
this evolutionary purpose represent an interesting research avenue.

Quantitative approaches that help exploring novel therapies and treatments, such
as phage therapy in combination with either antibacterial or QQ therapies, are needed.
This also applies to the investigation of the interaction of QS with the host.

The use of mathematics to understanding QS has given rise to new analytical tools
and novel modelling approaches. It has also helped addressing certain gaps to compre-
hensively investigate QS, from the ecological context to gene regulation. We believe
mathematical modelling of QS has been instrumental in this field and will continue to
play a key role.
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