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Abstract A fractional power of the Laplacian is introduced to a reaction–diffusion
system to describe water’s anomalous diffusion in a semiarid vegetation model. Our
linear stability analysis shows that the wavenumber of Turing pattern increases with
the superdiffusive exponent. Aweakly nonlinear analysis yields a system of amplitude
equations, and the analysis of these amplitude equations shows that the spatial patterns
are asymptotic stable due to the supercritical Turing bifurcation. Numerical simula-
tions exhibit a bistable regime composed of hexagons and stripes, which confirm our
analytical results. Moreover, the characteristic length of the emergent spatial pattern
is consistent with the scale of vegetation patterns observed in field studies.

Keywords Pattern formation · Superdiffusion · Turing instability · Amplitude
equations

Mathematics Subject Classification Primary 35B35 · Secondary 35B40 · 47D20

1 Introduction

Vegetation patterns are found inmany semiarid regions such as parts of Africa (Worrall
1960; White 1970), Australia (Ludwig and Tongway 1995), and Mexico (Montana
et al. 1990). There have been a lot of mathematical models to depict the behavior of
the vegetation patterns during the last two decades. They can be classified into three
types: Thefirst approach is based on the relationship between the structure of individual
plants and the facilitation–competition interactions existing within plant communities
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(Lefever and Lejeune 1997; Lejeune and Tlidi 1999; Tlidi et al. 2008). The second
is based on the reaction–diffusion approach which takes into account the influence of
water transport by below-ground diffusion and/or above-ground runoff (Klausmeier
1999). The third approach focuses on the role of environmental randomness as a
source of noise-induced symmetry-breaking transitions (Borgogno et al. 2009; Ridif
et al. 2011; Couteron et al. 2014; Escaff et al. 2015). In Klausmeier (1999), Klausmeier
has proposed a pair of partial differential equations to describe the interaction between
plants and water, where the motion of plants obeys a reaction–diffusion equation and
that of water obeys an advection equation. By analyzing the Turing instability and
obtaining close agreement between the mathematical theory and field observation or
numerical experiment, Klausmeier has shown that nonlinear mechanisms are of great
importance in determining the spatial structure of plant communities. However, the
jump size of water molecule, obeying a heavier-tailed distribution, grows faster than
the plant (Benson et al. 2000). In this paper, we introduce the fractional power (more
than 1) of the Laplacian to describe themotion of water, when the jump length variance
of water molecule possesses a Lévy distribution.

In order to describe the above scenario of vegetation patterns (Worrall 1960; White
1970; Ludwig and Tongway 1995;Montana et al. 1990; Klausmeier 1999), we propose
a mathematical model which includes a pair of partial differential equations for water
U and plant biomass V . Here, V (x, t) is the density of the vegetation at time t and point
x . We define this density as the plant biomass per unit area on the level of individual
plant, which is a dominant species accounting for most of the community biomass.
Water is supplied uniformly at a rate A and loses at a rate LU due to evaporation.
Plants take up water at a rate RG(U )F(V )V , where G(U ) is the functional response
of plants to water and F(V ) is an increasing function which describes how plants
increase water infiltration. For simplicity, we use the linear functions G(U ) = U
and F(V ) = V , but the results are not sensitive to the exact form of these functions.
J is the yield of plant biomass per unit water consumed. Plant biomass is lost only
through density-independent mortality and maintenance at a rate MV . Plant dispersal
is modeled by a diffusion term with normal diffusion coefficient D. Field observation
in Klausmeier (1999) shows that the motions of plants and water are not on similar
timescales. The study of Benson et al. (2000) shows that water motion is faster than
Gaussian motion. Moreover, the flux of water obeys the Lévy motion. We use the
fractional Laplace operator ∇γU to describe this process. The mathematical model is
written in the form:

∂U

∂t
= A − LU − RUV 2 + B∇γU,

∂V

∂t
= RJUV 2 − MV + D∇2V, (1)

where

∇γU = − sec(πγ /2)

2Γ (2 − γ )

d2

dx2

∫ ∞

−∞
U (s)

|x − s|γ−1 ds. (2)
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In Klausmeier’s semiarid model (Klausmeier 1999), the coefficient B represents the
speed of water flow via a form of advection term. From a mathematical point of
view, the advection term only considers the locally spatial effect. However, we must
introduce a nonlocal fractional Laplacian if we aim to consider thewhole spatial effect.
Moreover, the nonlocal diffusion has been observed in the movement of real-world
river (Benson et al. 2000).

To minimize the number of parameters involved in the model, we introduce dimen-
sionless variables by setting

u = R1/2L−1/2 JU, v = R1/2L−1/2V, t̃ = Lt, x̃ = L1/2D−1/2x . (3)

Omitting the tildes, we arrive at a dimensionless fractional reaction–diffusion system:

∂u

∂t
= a − u − uv2 + d∇γ u,

∂v

∂t
= uv2 − bv + ∇2v, (4)

where

a = AR1/2L−3/2 J, d = BD−γ /2L(γ−2)/2, b = M/L . (5)

The nondimensionalized model (4) has only four parameters: a, measuring water
input; b, plant death rate; d, controlling rate at which water flows downhill; γ , the
order of the fractional Laplacian.

The plant density in a spatially heterogeneous environment depends on space,
whereas normal diffusive terms are usually introduced to the evolution system (see,
e.g.,Okubo andLevin (2002)).As is known to all, atmolecular level, classical diffusion
arises as the result of the standard Brownian motion, and it is typically characterized
by the dependence of the mean square displacement of a randomly walking par-
ticle on time 〈(�x)2〉 ∼ t . Apart from classical (or normal) diffusion, molecules
may undergo anomalous diffusion effects (Bouchard and Georges 1990; Metzler and
Klafter 2000, 2004; Sokolov et al. 2002; Golovin et al. 2008; Gambino et al. 2013),
which, in contrast to normal diffusion, need to be characterized by the more general
dependence 〈(�x)2〉 ∼ tα . Here, the exponent α is not necessarily an integer. For
α = 1, anomalous diffusion reduces to normal diffusion. For α < 1(α > 1), the dif-
fusion process is slower (faster) than normal diffusion, where it is called subdiffusive
(resp., superdiffusive). An important limiting case of superdiffusion corresponds to
Lévy flights (Metzler and Klafter 2004), which is a phenomenon occurring in systems
where there are long jumps of particles, i.e., a jump size distribution with infinite
moments. Since in Klausmeier (1999) it is stated that water changes on a much faster
timescale than plant biomass does, we incorporate the superdiffusion with Lévy flights
to describe the motion of water, and the normal diffusion to the motion of plant. In
our model (4), 〈(�x)2〉 ∼ t2/γ means the superdiffusion.

Pattern formation in reaction–diffusion systems with anomalous diffusion has
received considerable attention (Gafiychuk and By 2006; Henry et al. 2005; Weiss
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et al. 2003; Golovin et al. 2008; Gambino et al. 2013; Zhang and Tian 2014). For
instance, the Lévy motion-type superdiffusion is shown to induce the formation of
Turing pattern (Golovin et al. 2008). Furthermore, subdiffusion is shown to suppress
the formation of Turing pattern (Weiss et al. 2003). In Gambino et al. (2013) and
Zhang and Tian (2014), Turing patterns were induced by the anomalous diffusion in
both Brusselator chemical system and Boissonade chemical system. Additionally, in
systems with Lévy motion, the emergence of spiral waves and chemical turbulence
from the nonlinear dynamics of oscillating reaction–diffusion patterns was investi-
gated in Nec et al. (2008). A natural question is how superdiffusion affects the spatial
patterns from the mathematical viewpoint. Our aim is to show that the Turing bifur-
cation causes the spatial regular vegetation.

The remainder of this paper is structured as follows: In Sect. 2, by considering the
linear stability of the steady state, we give the Turing parameter space to ensure that
Turing bifurcation occurs prior to Hopf bifurcation. In Sect. 3, we present a weakly
nonlinear analysis to derive a set of coupled amplitude equations. By analyzing these
equations, we show that the regular spatial pattern is asymptotic stable with the slow
timescale. In Sect. 4, we present the results of numerical computations, which are in
accordance with the field observations. Our paper closes with a brief discussion.

2 Linear Stability Analysis

In this section, we derive the conditions for Turing bifurcation by analyzing the linear
stability of the uniform equilibrium to the system (4). This system has three spatially

uniform equilibria (a, 0),
(
a+√

a2−4b2
2 , 2b

a+√
a2−4b2

)
, and

(
a−√

a2−4b2
2 , 2b

a−√
a2−4b2

)
.

The equilibrium consisting of no plants (a, 0) exists and is linearly stable if and

only if a < 2b. But in this case, the coexistent equilibria
(
a+√

a2−4b2
2 , 2b

a+√
a2−4b2

)

and
(
a−√

a2−4b2
2 , 2b

a−√
a2−4b2

)
do not exist. From the biological perspective, we are

interested in studying the stability behavior of the coexistent equilibrium. There-
fore, we only consider the case a > 2b. After the routine linear stability analysis,

the equilibrium
(
a+√

a2−4b2
2 , 2b

a+√
a2−4b2

)
is always an unstable saddle. In this

paper, we only analyze the stability of the third positive equilibrium (us, vs) ≡(
a−√

a2−4b2
2 , 2b

a−√
a2−4b2

)
.

In the absence of water convection, when a > 2b, the spatially homogeneous
system corresponding to the system (4) exhibits a Hopf bifurcation at b = 1+v2s . The
equilibrium (us, vs) is stable to any small spatially homogeneous perturbation for the
following hypothesis (H1):

b < min
{
a/2, 1 + v2s

}
. (H1)

The linearized system in the neighborhood of (us, vs) is

∂U
∂t

= LU + KU, U =
(
u − us
v − vs

)
, (6)
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where we have defined

L =
(
d∇γ 0
0 ∇2

)
≡ Ddiag(∇γ ,∇2), K =

(−1 − v2s −2usvs
v2s 2usvs − b

)
. (7)

For the above equations, we seek the general solution

U =
(

ρ1
ρ2

)
exp(σ t + ikx) (8)

to the linearization of system (4) as a superposition of normal modes. Here, σ is
the growth rate of the perturbation in time t . i is the imaginary unit and i2 = −1,
and k is its wavenumber. According to the definition of fractional Laplacian ∇γ , it
is easy to verify that the Fourier transform of ∇γ v satisfies F(∇γ v) = −|k|γF(v),
and ∇γ v = −(−�)γ/2. Substituting (8) into the system (6), we obtain the following
matrix equation

(
σ + 1 + v2s + dkγ 2usvs

−v2s σ + b − 2usvs + k2

) (
ρ1
ρ2

)
=

(
0
0

)
.

Therefore, we obtain the dispersion relation

σ 2 + g(k)σ + h(k) = 0, (9)

where g(k) = 1+b+v2s −2usvs +dkγ +k2 and h(k) = (1+v2s +dkγ )(b−2usvs +
k2) + 2usv3s .

The equilibrium can lose its stability via both Hopf and Turing bifurcation. Hopf
instability occurs when g(k) = 0 for k = 0. Then, we can get the critical value of the
Hopf bifurcation parameter bH

bH = 1 + v2s .

The system (4) undergoes Turing bifurcation if and only if h(k) = 0. Hence, the
neutral instability curve can be written in the form

b = 2usvs − k2 − 2usv3s
1 + v2s + dkγ

. (10)

h(k) has a single minimum at (kc, bc), where

kc = x
1
γ , bc = 2usvs − x2/γ − 2usv3s

1 + v2s + dx
. (11)

In conclusion, we obtain the Turing instability threshold bc and the critical value
of the wavenumber kc. Moreover, in order for Turing bifurcation to occur prior to
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Fig. 1 Dispersion relation of the system (4) for three different γ = 1, 1.5, and 2, where γ = 2 represents
the normal diffusion. Other parameters are a = 2, b = 0.45, and d = 242.5 (Color figure online)

oscillatory instability as a decreases, we need the following parameter space of Turing
instability

2usvs < 1 + v2s + x2/γ + 2usv3s
1 + v2s + dx

(H2)

such that the system is stable to any small spatially homogeneous perturbation.
In terms of the disperse relation (9), we illustrate in Fig. 1 the real part of the

eigenvalue corresponding to three different sets of parameters as a function of the
wavenumber. The superdiffusive exponent γ plays an important role in the active
wavenumber which increases with γ . In view of Turing space (H2), we can depict
the parameter spaces where Turing instabilities are expected to appear. In Fig. 2,
we illustrate that the behavior of the model (4) is determined by the water input
rate a and plant death rate b when water superdiffusion coefficient d = 242.5. The
contours give the dimensionalwavelength inmeters as determined by themost unstable
mode found with linear stability analysis. As water input is decreased or plant loss is
increased, the model, to Turing pattern of increasing wavelength, predicts a transition
from homogeneous vegetation to no vegetation.

3 Weakly Nonlinear Analysis

In this section, we study the dynamics of Turing pattern by performing a weakly
nonlinear analysis of system (4) near the Turing instability threshold. It is convenient
to rewrite the system (4) in terms of the deviation of the solution from the positive
equilibrium (us, vs) by introducing
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Fig. 2 Turing pattern of the system (4). γ = 1.65 represents the superdiffusion. Other parameter is
d = 242.5

ũ = u − us, ṽ = v − vs .

Omitting the tildes, we have

∂u

∂t
= (−1 − v2s )u − 2usvsv + d∇γ u + (−2vsuv − usv

2 − uv2),

∂v

∂t
= v2s u + (2usvs − b)v + ∇2v + (2vsuv + usv

2 + uv2). (12)

By defining

N =
(−2vsuv − usv2 − uv2

2vsuv + usv2 + uv2

)
,

we have

∂U
∂t

= LU + KU + N(U,U). (13)

The solution of system (12) is written as a weakly nonlinear expansion in the small
control parameter ε, representing the dimensionless distance from the threshold. Here,
we let ε2 = b−bc

bc
. In the Turing pattern formation, the slow mode is the active mode.

We introduce the slow time T = ε2t and expand both u and v as

(
u
v

)
= ε

(
u1
v1

)
+ ε2

(
u2
v2

)
+ ε3

(
u3
v3

)
+ · · · . (14)
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We rewrite the linear operator L + K in the following form:

L + K = Lc − (b − bc)M, (15)

where

Lc =
(−1 − v2s + d∇γ −2usvs

v2s 2usvs − bc + ∇2

)
, M =

(
0 0
0 1

)
(16)

Substituting Eq. (14) into the system (13) and collecting same powers of ε, we
obtain at orders ε j ( j = 1, 2, 3) the sequences of equations as follows

O(ε) : Lc

(
u1
v1

)
= 0,

O(ε2) : Lc

(
u2
v2

)
=

(
2vsu1v1 + usv21−2vsu1v1 − usv21

)
,

O(ε3) : Lc

(
u3
v3

)
= ∂

∂T

(
u1
v1

)

+
(

2vsu1v2 + 2vsu2v1 + 2usv1v2 + u1v21−2vsu1v2 − 2vsu2v1 − 2usv1v2 − u1v21 + bcv1

)
.

(17)

A denotes the amplitude of the solution to system (13). By solving the above
equations (17), we have the amplitude equation

dA

dt
= σ A − L A3, (18)

where

σ = ρ2(v
2
s + a + dx)

u2s − v2s − 1 − dx
(b − bc),

L = 3

4
ρ2
2 + 2vsρ2w

1
20 + (2vs + 2usρ2)w

2
20 + vsρ2w

1
22 + (vs + usρ2)w

2
22.

(19)

The detailed parameters of σ and L are given in “Appendix.”
Since the growth rate coefficient σ is always positive, the dynamics of the amplitude

Eq. (18), depending on the sign of L , can be divided into two qualitatively different
cases: the supercritical case when L > 0 and the subcritical case when L < 0.

4 Numerical Results

In this section, we present the results of computational examples using pseudospectral
method (Huang and Sloan 1994). The domain of (4) is confined to a two-dimensional
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(a) (b) (c)

Fig. 3 A comparison between real-world semiarid vegetation and the numerical experiment. c is the
numerical result with combination of spotted pattern and striped pattern. a and b are grayscale images of
semiarid vegetation in Chad and Republic of Niger, captured from Google Earth. Dark shades are inferred
vegetation, and white/lighter shades are inferred bare sediment. In each image, north is vertical, and each
image covers approximately 300 × 300m. From left to right, the image locations are a 11◦52’09.52”N,
15◦59’42.7”E (Chad); b 13◦06’08.29”N, 2◦13’19.12”E (Republic of Niger)

domain [0, Lx ]× [0, Ly]. The wavenumber for this two-dimensional domain is there-
fore

k = 2π(m/Lx , n/Ly), |k| = 2π
√

(m/Lx )2 + (n/Ly)2, m, n = 1, 2, . . . .

Here, the fractional Laplacian is a symmetry operator written in the following form:

∇γ u(x, y) = − sec(πγ /2)

2Γ (2 − γ )

(
∂2

∂x2

∫ ∞

−∞
u(s)

|x − s|γ−1 ds + ∂2

∂y2

∫ ∞

−∞
u(s)

|y − s|γ−1 ds

)
.

(20)

The model (4) is in agreement with field observation by order of magnitude. Some
field data from Africa area are as follows: a = 0.94 to 2.81, b = 0.45, and d = 242.5
(Klausmeier 1999). The exponent of water’s superdiffusion is γ = 1.65 (Benson et al.
2000). Field observations show that grass-striped pattern ranged from 30 to 60m in
wavelength (Fig. 3a, b). In view of the above reality, we choose the parameters as
follows:

a = 2, b = 0.45, d = 242.5, γ = 1.65. (21)

Given these parameters, our numerical experiment predicts tree stripes to have wave-
lengths from 23 to 67 m (seen in Fig. 3c). The wavelength of the real-world semiarid
vegetation is similar to the one of the numerical experiment. On the one hand, the
real-world semiarid vegetation has two types: spotted pattern (Fig. 3a) and striped
pattern (Fig. 3b). The numerical experiment (Fig. 3c) exhibits a mixed state of these
two kinds.

Moreover, we wish to compare our numerical experiment with the theory of pattern
selection for semiarid vegetation model by Lejeune et al. (2004). In Lejeune et al.
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(2004), the authors found that in many arid regions, the rainfall affects the pattern
selection; when the rainfall reduces, patterns constituted of spots of sparser vegetation
transform into an alternation of stripes of sparser and thicker vegetation, and they
ultimately transform into a pattern of vegetation spots separated by bare ground. As
for our numerical experiment, the transient pattern is spot (Fig. 4 left). As time goes
on, some spots in the left and bottom part are gradually replaced by stripes. Ultimately,
the stripped patterns coexist with the spotted patterns (Fig. 4 right), which exhibits a
bistable regime.

5 Discussion

In this paper, we have developed a theoretical framework for studying pattern for-
mation in a two-dimensional fractional reaction–diffusion system. In our semiarid
vegetation model, we have shown that the field observation on striped patterns can
be mathematically interpreted by the Turing pattern formation. With the application
of a weakly nonlinear analysis and suitable numerical simulations, we investigate the
Turing parameter space, the Turing bifurcation, and stability of amplitude equations.
A threshold of the plants loss rate has been defined to determine the spatial pattern
of the vegetation. Numerical studies have been employed to confirm and extend the
obtained theoretical results.

In fact, the semiarid vegetation model has been investigated in the previous works
(Klausmeier 1999; Sherratt 2005; Kealy and Wollkind 2012). The difference lies on
how to describe the effect of water flow. The effect of water flow was described
by an advection term in Klausmeier (1999) and Sherratt (2005) as well as a normal
diffusion term in Kealy and Wollkind (2012). We compare our theoretical results and
numerical results with both theoretical predictions (Kealy and Wollkind 2012) and
relevant observational evidence (Sherratt 2005) involving tiger and pearl bush patterns.
One main object is the effect of the water flow on the scope of Turing parameter space.
In Fig. 5,wefind that the advection-typewater flowadmits the largest Turing parameter

Fig. 4 Snapshots of plant densities obtained by model (4) on a 100 by 100 domain (in dimensional terms,
2500m2). The left figure is the transient at time t = 100, which is a spotted pattern. The right one is the
steady state at time t = 5000, which is a bistable pattern combined spots and stripes
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Fig. 5 A comparison of superdiffusion’s neutral stability curve between normal diffusion and advection.
The domain below the curve is unstable

space, while the normal-type water flow admits the smallest Turing parameter space.
In terms of the superdiffusion’s fractional derivative, when γ = 2, the fractional
derivative is reduced to the normal diffusion; when γ = 1, the fractional derivative
is reduced to the advection. The biological meaning of the comparison lies when the
water flow is faster; the dynamical system composed of water and plant more easily
generates plant vegetation.

In conclusion, this fractional Laplacianmodel for biomass and surfacewater defined
over an semiarid environment provides a new method to describe the motion of water.
If motion of water obeys fractional Laplacian, the amount of rainfall causing plant
vegetation far exceeds that in normal diffusion and is less than that in advection.

Acknowledgments C. T. acknowledges the support from the National Natural Science Foundation of
China (Grant No. 11201406), and the Qinglan Project.

Appendix: Derivation of the Amplitude Equation

In this appendix, we sketch a derivation of the amplitude Eq. (18). Note that in Zhang
and Tian (2014), the authors study a fractional system with the same fractional order.
However, in the system (4), the two fractional orders are different.

Since Lc is the linear operator of the system at the Turing instability threshold,
(u1, v1)T is the eigenvector corresponding to the eigenvalue 0. Therefore, at O(ε) the
solution is given in the form

(u1, v1)
T = ρA(T ) cos(kcx), with ρ ≡ (ρ1, ρ2)

T ∈ Ker
(
L − Ddiag

(
kc

γ , kc
2
))

,
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where A(T ) is the amplitude of the pattern and is still arbitrary at this level. Its form
is determined by the perturbational term of the higher order. The vector ρ is defined
up to a constant, and we shall make the normalization in the following way:

ρ = (1, ρ2)
T , with ρ2 = −(1 + v2s + dx)/(2usvs). (22)

Next, we turn to O(ε2). The equation is written in the form

Lc

(
u2
v2

)
= A2(1 + cos(2kcx))(ρ2vs + ρ2

2us/2)

(
1

−1

)
. (23)

Since the right-hand side does not have the resonance, the Fredholm alternative is
automatically satisfied. The solution of system (23) is then explicitly computed in
terms of the parameters of the full system

(
u2
v2

)
= A2(w20 + w22 cos(2kcx)),

where w20 and w22 are, respectively, the solutions of the following linear systems

(L − Ddiag
(
0kc

γ , 0kc
2
)
)w20 = (ρ2vs + ρ2

2us/2)(1,−1)T , (24)

(L − Ddiag((2kc)γ , (2kc)
2))w22 = (ρ2vs + ρ2

2us/2)(1,−1)T . (25)

Now O(ε3). The equation is written in the form

Lc

(
u3
v3

)
=

(
1

−1

) [
cos(kcx)

(
dA

dT
+ A3

(
3

4
ρ2
2 + 2vsρ2w

1
20 + (2vs + 2usρ2)w

2
20

+ vsρ2w
1
22 + (vs + usρ2)w

2
22

) )
+ cos(3kcx)

(
1

4
ρ2
2 + vsρ2w

1
22

+ (v2 + usρ2)w
2
22

) ]
−

(
0

bcρ2A cos(kcx)

)
. (26)

According to the Fredholm solubility condition, the vector function of the right-
hand sidemust be orthogonalwith the zero eigenvalues of the operatorL+

c to ensure the
existence of the nontrivial solution to this equation, where L+

c is the adjoint operator
of Lc. The nontrivial kernel of the operator L+

c is

(
1

(v2s + 1 + dx)/u2s

)
cos(kcx). (27)

In order to ensure the Fredholm solubility condition, we only consider the resonance
of the system (26). Thus, we have the amplitude equation

d A

dt
= σ A − L A3, (28)
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where

σ = ρ2(v
2
s + a + dx)

u2s − v2s − 1 − dx
(b − bc),

L = 3

4
ρ2
2 + 2vsρ2w

1
20 + (2vs + 2usρ2)w

2
20 + vsρ2w

1
22 + (vs + usρ2)w

2
22.

(29)
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