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Abstract We consider a simple food web with commensal relationship, where organ-
isms utilize both external resources and resources produced by other organisms. We
show that in such a community with no competition, there is at most one possible
equilibrium for each fixed set of surviving species, and develop a natural condition
that determines which species survive based on available resource. Our main result
shows that among all possible communities described by equilibria, the one which is
stable has the largest number of surviving species and largest combined biomass and
hence maximizes utilization of available resources.

Keywords Microbial consortia · Chemostat · Commensal relationship

1 Introduction

From van Leeuwenhoeks’s earliest observations of the microverse to contemporary
interest in human microbiomes, it has been apparent that microbes do not exist as
monocultures. Naturally occurring ecosystems, optimized by eons of evolution, are
almost exclusively organized in communities. In fact, a general positive correlation has
been established between community diversity and productivity (Kassen et al. 2000;
Venail et al. 2008). Recent advances in metagenomic techniques have given us the
tools to estimate the diversity of naturally occurring microbial communities. In a wide
range of samples from soil (Fierer and Jackson 2006), to the ocean (Venter et al. 2004),
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to the human gut (Gill et al. 2006), it has been found that microbial communities are
incredibly diverse, often consisting of thousands of interacting species. Due to these
interactions, studying the behavior of individual microbes in isolation does not capture
their behavior in a natural community.

Subsets of these communities form consortia that act together to enhance their
capabilities. The interactions in these consortia lead to emergent behaviors, allowing
the systems to perform advanced functions that the individualmicrobes are not capable
of Eiteman et al. (2008). Emergent properties of microbial interactions are known
to be important in diverse areas including medical infections (e.g., diabetic ulcers),
biofuels synthesis [e.g., biodiesel production (Zuroff and Curtis 2012; Peralta-Yahya
et al. 2012)], environmental nutrient cycling (e.g., CO2 sequestering), bioprocessing
(Shong et al. 2012) and wastewater treatment (Seitz et al. 1990a, b; Schink 1997).

Natural consortia are often organized as either syntrophic or commensal consortia
around the sequential degradation of complex compounds like lignocellulosic mate-
rial. In these systems, one species catabolizes the available substrate, oxidizing it to
produce a byproduct that the second species can consume. If the byproduct inhibits
the growth of the producer species, then the interaction is syntrophic; if it has no
effect on the producer, the interaction is commensal. The syntropic chain community
has been studied mathematically, and it can be shown that for n species in the chain,
the coexistence state is stable (Reilly 1974; Powell 1985, 1986). This system can be
modified to include other forms of inhibition, external toxins, multiple substrates and
other forms of mutualism. In all cases a stable coexistence steady state is found (Aota
and Nakajima 2001; Elkhader 1991; Burchard 1994; Katsuyama et al. 2009; Sari et al.
2012), indicating that this is a good candidate system for producing stable consortia.

The commensal chain can be seen as a way of dividing up the steps involved in
degrading the available substrate, thereby allowing for the maximum utilization rate
of the available energy, in agreement with the maximum power principle (MPP).
Originally formulated by Lotka (1922) and further developed by Odum and Pinkerton
(1955), the MPP states that biological systems capture and use energy to build and
maintain structures andgradients, allowing additional capture andutilization of energy.
Some arguments have been put forward to explain how such a system might naturally
evolve and reach a steady state (de Mazancourt and Schwartz 2010; Doebeli 2002;
Pfeiffer and Bonhoeffer 2004; Bull and Harcombe 2009; Estrela and Gudejl 2010;
Beardmore et al. 2011). An alternative resource ratio theory (de Mazancourt and
Schwartz 2010; Tilman 1982) can describe cooperative populations by accounting
for mutualistic resource exchange. Cooperating populations that exchange limiting
resources can exist in awider range of resource environments than is possible for either
population individually. This highlights an evolutionary advantage of cooperation that
has been observed in natural ecosystems (de Mazancourt and Schwartz 2010).

In experiments where a wild-type E. coli was allowed to evolve for many genera-
tions, it was found to lead to a similar system, where one strain consumed the glucose
substrate and another consumed the acetate the first strain produced. However, there
was an additional secondary scavenger species that preferentially consumed glycerol
(another byproduct of the primary glucose consumer) (Rosenzweig et al. 1994). This
hub system of a primary producer and multiple scavengers has been found to evolve
repeatably and to be robust to system perturbations (Helling et al. 1987; Treves et al.
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1998; Rozen and Lenski 2000) and thus is another good candidate for producing stable
consortia.

Our goal in this paper is to develop a general theory for a commensal food web of
arbitrary size, where the product of one species is consumed by another species. Since
we want to concentrate on commensal relationships, we exclude competition from
consideration. The food webs that we consider include both the food chains, where
a resource is sequentially degraded by a set of organism, and a hub-type food webs,
where the principal resource is degraded to a set of secondary resources which then
support a set of specialist species.

We now briefly summarize our results. We show under very general assumptions
that a n+m-dimensional consortium model which includes n species and m essential
resources has an n-dimensional invariant manifold. It follows that the system can
always be reduced to an n-dimensional system. We compute the reduced equations
on this manifold. We then consider a narrower class of simple food webs with no
competition for resources and commensal relationships between species. We show
that there is at most one equilibrium with a given set of species surviving, and we
provide a condition in terms of available resources that guarantees the survival of a
particular species in such a community equilibrium.

Ourmain result concerns the stability of the equilibria.We show that there is unique
stable equilibrium in the system which corresponds to the largest community that can
be supported by the available resources. In other words, out of all existing equilibria,
the one that is stable has the greatest number of species. Furthermore, this equilib-
rium maximizes biomass over all other equilibria. This is in agreement with the MPP
principle which suggests that if coexistence occurs, the resulting communities should
have higher power than either species could have alone, or other less effective commu-
nities (DeLong 2008). Indeed, the stable equilibrium corresponds to the consortium
that transforms more of the resources into biomass, and hence utilizes more of the
available energy than any other consortium in the system.

2 General System

We consider a chemostat model with n microbes and m substrates, which are both
consumed and produced by the microorganisms.

ẋ1 = ( f1 − D)x1
ẋ2 = ( f2 − D)x2

...

ẋn = ( fn − D)xn

Ṡ1 = (Sin1 − S1)D −
∑

j

α1 j f j x j +
∑

j

β1 j f j x j

Ṡ2 = (Sin2 − S2)D −
∑

j

α2 j f j x j +
∑

j

β2 j f j x j
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...

Ṡm = (Sinm − Sm)D −
∑

j

αmj f j x j +
∑

j

βmj f j x j (1)

Here Sini is the influx rate of the substrate Si into the chemostat, xi is a concentration of
the i th microorganism, and D is a dilution rate, which is assumed to be the same for all
substrates and species. The growth rate fi = fi (S1, . . . , Sm) of each microbe xi may
depend on every other substrate Si , and the effect of a substrate may be positive when
a substrate is consumed or detrimental when the substrate is poisonous and decreases
the growth rate of xi . We denote consumption yield coefficients by αi j > 0 where i is
the substrate and j is the consumer. On the other hand, when a microbe j produces a
substrate i , we denote the corresponding conversion, or yield coefficient, by βi j . We
assume that both types of yield coefficients are constant.

In vector form these equations can be written as

ẋ = (F − DI)x

Ṡ = (Sin − S)D − YFx (2)

where Sin −S is a vector with elements Sini − Si ,Y is the net consumption matrix with
(i, j)th element yi j := αi j − βi j , and the matrix F = F(S) is a n × n diagonal matrix
with fi (S) being the (i, i) element on the diagonal.

Following Smith and Li (2003), our first observation is that this system admits a
globally attracting affine n-dimensional manifold M . To see this, consider a new set
of variables

wi = Si +
∑

j

αi j x j −
∑

j

βi j x j , i = 1, . . . ,m

which summarize the influx and outflow of substrate i . We write this change of vari-
ables in the vector form

w = Yx + S,

where w,S and x are vectors of the corresponding variables
Then the S equations in (2) can be replaced by m equations in new variables w

ẇ = Yẋ + Ṡ

= Y(F − DI)x + (Sin − S)D − YFx

= −DYx + (Sin − S)D

= (Sin − w)D (3)

Therefore the system (2) is transformed into
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ẇ = (Sin − w)D

ẋ = (F(w − Yx) − DI)x (4)

Observe that this system has a globally attracting n-dimensional affine invariant
manifold defined by

M :=
{
(x,w) ∈ R

n+ × R
m+ | w = Sin

}
=

{
(x,S) ∈ R

n+ × R
m+ | S = Sin − Yx

}

whereR
n+ denotes the nonnegative orthant inR

n . The dynamics of the original system
on the manifold M have the form

ẋ = (F(Sin − Yx) − DI)x (5)

where the dependence of F on S is replaced by a dependence on Sin − Yx.
Note that the dynamics on the invariant manifold M depend on the yield matrix Y.

3 Simple Food Webs

In what follows we will put additional simplifying assumptions that will allow us to
analyze the system, yet that are general enough to include interesting examples, some
of which are analyzed in the following section. To describe the set of assumptions, we
will use the language of graph theory.

Let G(V, E) be an oriented graph, where each vertex is labeled by a species xi , and
each edge is labeled by a resource S j . Each edge connects a producer to a consumer of
the resource labeling the edge. In other words, an edge starting at a node xi corresponds
to a resource S j that is produced by xi , and an edge that terminates in xk corresponds
to a resource that is consumed by xk . The influx of external resources to chemostat is
represented by edges with only a terminal node and labeled by a particular resource.

Definition 1 A simple food web is a collection of n species and m resources,
represented by an oriented graph G(V, E) where

1. there are no nontrivial oriented cycles in G, i.e., no cycles except possibly when
a species produces and consumes the same substrate;

2. each species xi consumes a dedicated substrate S j . This eliminates the competition
in the system. After a change of indices, if necessary, we will assume that species
xi consumes substrate Si . This means that all edges that terminate at a vertex xi
must have the same label and that these labels are distinct for different vertices;

3. the growth functions fi , which by (2) depend on a single substrate Si , aremonoton-
ically increasing.

4. If species i produces S j and consumes the same S j , then the substrate-from-
biomass yield β j i is smaller than the biomass-from-substrate yield α j i . The
opposite case would allow a net production of biomass without any external
resource.

We now discuss several consequences of our assumptions.
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– Without loss of generality, we can restrict our attention on simple food webs that
are represented by a connected graph; if this is not the case, we can restrict our
attention to each connected component separately.

– Assumption (2) implies that m ≥ n, i.e., the number of resources m is greater or
equal to number of species n. Ifm > n, then the extra resources are not consumed,
and their dynamic behavior does not affect the rest of the system. Therefore we
can restrict our attention to the core system of n species and n resources that
are consumed by these species. If some species produce resources that are not
consumed, their behavior can be determined after the behavior of the core system
is identified.

– Our assumptions imply a stratification ofG into food chain layers X0, X1, . . . , Xk .
We denote the set of all vertices i with Sini > 0 by XS . A depth d(xi ) of the species
xi in the food chain is defined to be the length of the longest path in G from xi
to some vertex in XS . Again, by assumption (1) depth is well defined for each
species. The j th layer of the simple food chain is the set Xk of those species xi
with d(xi ) = k.

We now prove that simple food webs have the following property.

Lemma 1 In the core system of any simple food web, the n species and n resources
can be relabeled in such a way that the matrix Y is lower triangular and invertible.

Proof We order all species according to their depth, starting with X0, species with
depth 0. Since each substrate Si is assigned to a unique species xi , we order substrates
in the same order the species are in. Therefore αi j = 0 for all i �= j , and αi i > 0 for
all i .

Now we examine yields βi j . Observe that a species xi with depth d(xi ) = k cannot
depend on resource S j if d(x j ) ≥ k. If this was the case, then there will be a path in
G from XS to xi through x j with length at least k + 1. This contradicts the fact that
xi has depth k. Therefore βi j , the measure of production for substrate i by species j ,
is 0 for i ≤ j .

Finally, by (4) the diagonal entries yii = αi i − βi i are greater than zero. Hence
the yield matrix Y representing the core system is square and lower triangular with
nonzero entries along the diagonal. Therefore Y is invertible. ��

4 Existence of Equilibria

Let N := {1, . . . , n} and let P(N ) be the collection of all subsets of N . Then the
phase space R

n+ can be decomposed into disjoint subsets CU , parameterized by the
sets U ∈ P(N ), and defined by

CU = {x ∈ R
n+ | xi > 0 for i ∈ U, xi = 0 for i /∈ U }.

Definition 2 The necessary resource for a species xi is the value Sneci implicitly
defined by

fi (S
nec
i ) = D.

123



Dynamics of Simple Food Webs 1839

The proof of the next theorem requires conditions that are significantly weaker than
those in Definition 1. In particular, we only require monotonicity of each fi , not that
fi is an increasing function.

Theorem 1 Assume that every fi (Si ) is monotonically increasing, or monotonically
decreasing. Let YU be a principal minor of U specified by the index set U ∈ P(N );
that is, YU is submatrix of Y that is constructed by deleting all rows and columns i
where i /∈ U.

Then, if detYU �= 0, then the system (5) can have at most one equilibrium in CU .
This equilibrium, if it exists, is determined by equations

xi = 0 for all i /∈ U ; xi > 0 for all i ∈ U ; SinU − SnecU = YUxU ,

where xU , SinU and SnecU are vectors of x,Sin and Snec restricted to indices i ∈ U,
respectively.

Proof In a given set U, the equations that determine the equilibria are

xi = 0 for all i /∈ U ; fi (S
nec
i ) = D for all i ∈ U,

which follows immediately from (5) and the fact that at an equilibrium where xi �= 0,
we must have fi (Si ) = D. By monotonicity of fi , there is at most one solution Sneci
of fi (Si ) = D for any i ∈ U . If for some i ∈ U such Sneci does not exist, then CU

will not contain an equilibrium. With the vector SnecU assembled, we compute the xi
components of the equilibrium by solving [see (5)] Snec − Sin = Yx restricted to the
species xi , i ∈ U . This yields equation

SinU − SnecU = YUxU

which has a unique solution when YU is invertible. If this solution has a positive
component xi > 0 for all i ∈ U , then CU contains an equilibrium. ��

We have the following corollary for a simple food web.

Corollary 1 In a simple food web, each CU contains at most one equilibrium.

Proof Since Y is lower triangular with nonzero diagonal elements, each principal
minor is invertible. ��

At this point a natural question is whether there is a simple criterion to determine
whether a given CU contains an equilibrium. We will need a concept of an available
resource at x = (x1, . . . , xn).

Definition 3 Given a location in phase space x = (x1, . . . , xn), the available resource
for species i is

Savi (x) := Sini − [Yx]i
where [Yx]i is the i th entry of the vector Yx.
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Definition 4 For each species xi the set of predecessors Pi is the set of species j
such that x j produces the essential resource needed by xi . In other words, j ∈ Pi if,
and only if, there is an edge from j → i in the graph G.

For each vector e = (e1, . . . , en), let ê j be a vector

ê j i =
{
ei if i ∈ Pi \ { j}
0 otherwise.

Theorem 2 A vector e = (e1, . . . , en) ∈ R
n+ is a equilibrium if, and only if, for each

i , either ei = 0 or, if ei > 0, then

ei = Savi (êi ) − Sneci

yii
. (6)

Proof (	⇒) We assume that e is an equilibrium in R
n+. Then by (5) either ei = 0,

or, if ei > 0, then fi (Sneci ) = D and Sneci = Sini − [Ye]i .
This implies

Sneci = Sini − [Ye]i
= Sini −

∑

k∈Pi

yikek − yii ei

= Savi (êi ) − yii ei ,

from which (6) follows.
(⇐	) Observe that ei = 0 always satisfies (5). Suppose that if ei > 0 then (6)

holds. Then we have

Sini − [Ye]i = Sini −
∑

k∈Pi

yikek − yii ei

= Savi (êi ) − yii ei
= Sneci

and therefore (5) is satisfied for component i . This shows that (5) holds for all com-
ponents and hence e is an equilibrium. ��
Definition 5 A set of species corresponding to a set of vertices I is independent if
i /∈ Pj for any two indices i, j ∈ I .

The next corollary gives an inductive way to construct the set of all possible equilibria,
after taking into account that 0 = (0, . . . , 0) is always an equilibrium.

Corollary 2 Let e = (e1, . . . , en) be an equilibrium contained in some CU . Let I
be an independent set of species with U ∩ I = ∅, satisfying Savi (e) > Sneci for all
i ∈ I . Then there exists an equilibrium E = (E1, . . . , En) in CU∪I with Ei > 0 for
all i ∈ I ∪U.
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Proof Pick an arbitrary i1 ∈ I . We observe that since I ∩ U = ∅, we have ei1 = 0
and thus

Savi1 (êi1) = Savi1 (e) = Sini1 −
∑

k∈Pi1∩U
yikek .

We construct a vector E1 where E1
j = e j for all j �= i1 and replace ei1 = 0 by

E1
i1 = Savi1 (êi1) − Sneci1

yi1i1
= Savi1 (e) − Sneci1

yi1i1
> 0,

then by Theorem 2 the resulting vector E1 is an equilibrium with E1 ∈ CU∪{i1}.
Select now an arbitrary i2 ∈ I \ {i1}. Since I is an independent set of species,

i1 /∈ Pi2 and therefore the i1th component of êi2 is zero. Therefore

Savi2 (êi2) = Savi2 (e) = Savi2 (E1) = Sini2 −
∑

k∈Pi2∩U
yikek .

As before, we construct a vector E2 such that E2
j = E1

j for all j �= i2 and replace
ei2 = 0 by

E1
i2 = Savi2 (êi2) − Sneci2

yi2i2
= Savi2 (E1) − Sneci2

yi2i2
> 0.

ByTheorem2 the resulting vectorE2 is an equilibriumwithE2 ∈ CU∪{i1,i2}. Repeating
the argument until we exhaust the index set I finishes the proof. ��
Lemma 2 Consider any equilibrium e = (e1, . . . , en). Then, for each i such that
ei > 0, there is an oriented path p in the graph G connecting a vertex in XS with
external resource input to the vertex xi , such that ek > 0 for all k ∈ p.

Stated more strongly, for each equilibrium e there is a set of species xi1 , . . . , xik and
(not necessarily disjoint) oriented paths pi1, . . . , pik such that pi j connects a vertex
in XS to vertex xi j , with the property that ei > 0 if, and only if, i ∈ ⋃

j pi j .

Proof Let ei > 0. Consider the equation

Sneci = Sini − [Ye]i = Sini −
∑

k∈Pi

yikek − yii ei = Sini +
∑

k∈Pi

βikek − yii ei (7)

Note that since Sneci > 0, in order for (7) to hold there must be either Sini > 0,
and hence x j ∈ XS , or there must be at least one k ∈ Pi with ek > 0. Repeating this
argument for every such k, we see that there must be at least one path in G from XS

to vertex xi such that ek > 0 for all k along that path.
To show the second statement of the theorem, we start with some ei > 0. Then we

enumerate all the paths that connect XS to xi and for which each xk along these paths
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satisfies ek > 0. If this exhausts the nonzero entries of e, we are done; if there is an
e j > 0 that is not accounted for by the paths already selected, we repeat the argument
for e j . Since the number of components of e is finite, this process will terminate in
finitely many steps. ��

Theorem 2 and Lemma 2 motivate the following definition.

Definition 6 Fix the structure of simple food web, the yield matrix Y , and the set of
growth functions fi . The set of feasible equilibria

E = E(Sin, D)

is defined to be the set of equilibria of the system (5) at a given level of inputs Sin and
dilution rate D.

Corollary 2 gives an algorithm how to build the set E from the bottom up by starting
with the zero equilibrium (0, . . . , 0) and adding equilibria to E based on sufficiency
of available resources. On the other hand, Lemma 2 gives a recursive characterization
of equilibria in E . Since the growth functions fi are monotone, the sets of feasible
equilibria are nested as a function of external resources, or the dilution rate D. In
particular, if D1 < D2 then

E(Sin, D2) ⊆ E(Sin, D1) for any fixed Sin

Similar containment holds for external resources. If Sin ≺ S̄
in
stands for partial order

of vectors in the positive orthant (that is Sini < S̄ini for at least one i and Sinj ≤ S̄inj∀ j �= i ), then

E(Sin, D) ⊆ E(S̄ini , D) for any fixed D.

The structure of feasible sets of equilibria is not a priori clear in simple food webs
that are not chains. As an example, consider simple food web in Fig. 1. As we increase
available external resources S1 and S2, a possible sequence of sets of feasible equilibria
may be

E1 = {(0, 0, 0, 0, 0), (e11, 0, 0, 0, 0)},
E2 = {(0, 0, 0, 0, 0), (e21, 0, 0, 0, 0), (e221, e222, 0, 0, 0)},
E3 = {(0, 0, 0, 0, 0), (e31, 0, 0, 0, 0), (e321, e322, 0, 0, 0), (e331, 0, e333, 0, 0)},

where we assume that all eij > 0. However, as we will show in Theorem 3, the set

E3 is not feasible. If equilibria (e321, e
3
22, 0, 0, 0) and (e331, 0, e

3
33, 0, 0) exist, there also

must be an equilibrium of the form (e341, e
3
42, e

3
43, 0, 0).

To study the structure of feasible equilibria, we introduce a set L of all subspaces
that support an equilibrium.
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Fig. 1 (Color figure online) An
example of a simple food web
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x4 x5
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S2 S3
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Definition 7 Let

L = {U ∈ P(N ) | ∃ e ∈ CU such that e is an equilibrium of (5)}.

where L is partially ordered by inclusion.

We then have the following theorem.

Theorem 3 If U,W ∈ L, then U ∪ W ∈ L.

Proof Let e be an equilibrium in CU and let v be an equilibrium in CW . Let
0 = (0, . . . , 0) be the zero equilibrium. We construct, by induction on the depth
of coordinates in U ∪ W , a set of equilibria E0,E1, . . . ,En , where n is the maximal
depth of any vertex in U ∪ W . Let A j := {i ∈ U ∪ W | xi ∈ X j } be the stratification
of vertices in U ∪ W according to their depth. We construct the equilibria E j in such
a way that they satisfy the following properties;

(a) the i th component of E j

{
E j
i > 0 for i ∈ ⋃

k≤ j Ak

0 otherwise.

(b) Furthermore, we have the following inequalities

⎧
⎨

⎩
E j
i ≥ ei for i ∈ A j ∩U

E j
i ≥ vi for i ∈ A j ∩ W

Clearly, when j = n condition (a) implies the statement of the theorem, since we
will then have an equilibrium whose set of positive components is exactly U ∪ W .
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1844 T. Gedeon, P. Murphy

To start the induction, consider first A0 := {i ∈ U ∪ W | xi ∈ X0}. Since species
corresponding to vertices in A0 depend exclusively on the external resources, we have

Savi (0) = Sini = Savi (e) if i ∈ A0 ∩U

Savi (0) = Sini = Savi (v) if i ∈ A0 ∩ W (8)

By assumption, the equilibrium e ∈ CU exists, and therefore by Theorem 2, we have
Savi (e) > Sneci which implies

Savi (0) > Sneci for all i ∈ A0 ∩U.

Similarly, since v ∈ CW exists, we have Savi (v) > Sneci which implies

Savi (0) > Sneci for all i ∈ A0 ∩ W.

Since species in I := A0 are clearly independent, by Corollary 2 with I := A0,
there is an equilibrium E0 where

– if i ∈ A0 then

E0
i := Savi (0) − Sneci

yii
> 0;

– if i /∈ A0 then E0
i := 0.

This proves (a) for j = 0. Furthermore, since by Theorem 2

ei = Savi (e) − Sneci

yii

for i ∈ U , (8) implies that

E0
i = ei for all i ∈ A0 ∩U.

A similar argument for i ∈ W implies statement (b) for j = 0.
We now proceed with the inductive step. Let

Bj =
⋃

0≤k≤ j

Ak .

Assume that (a) and (b) hold for index j .
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Recall that since consumption yields αi i only lie on the diagonal of matrix Y , we
have yik = −βik ≤ 0 for i �= k. We compute for a arbitrary index i

Savi (E j ) = Sini −
∑

k∈Bj∩U
yik E

j
k −

∑

k∈Bj∩W
yik E

j
k

= Sini +
∑

k∈Bj∩U
βik E

j
k +

∑

k∈Bj∩W
βik E

j
k

≥ Sini +
∑

k∈Bj∩U
βikek +

∑

k∈Bj∩W
βikvk, (9)

where we used the inductive hypothesis (b) in the last line. Since at the equilibrium
e, the species in A j+1 ∩U only depend on resources produces by species in Bj ∩U ,
we have that

Savi (e) = Sini +
∑

k∈Bj∩U
βikek for all i ∈ A j+1 ∩U.

Therefore (9) implies

Savi (E j ) ≥ Savi (e) if i ∈ A j+1 ∩U (10)

A similar argument with equilibrium v yields

Savi (E j ) ≥ Savi (v) if i ∈ A j+1 ∩ W (11)

As before, since the equilibria e ∈ CU and v ∈ CW exist, we have Savi (e) > Sneci
and Savi (v) > Sneci , which imply

Savi (E j ) > Sneci for all i ∈ A j+1 ∩U ; Savi (E j )> Sneci for all i ∈ A j+1 ∩ W.

Therefore by Corollary 2 with I := A j+1, there is an equilibrium E j+1 where

– if i ∈ A j+1 then

E j+1
i := Savi (E j ) − Sneci

yii
> 0;

– if i ∈ Bj then E j+1
i := E j

i ;

– if i /∈ Bj+1 then E j+1
i := 0.

This proves (a) for the inductive step.
We observe that (10) and (11) together with definition of E j+1

i imply

E1
i ≥ ei for all i ∈ A1 ∩U and E1

i ≥ vi for all i ∈ A1 ∩ W.

This proves (b) for the inductive step and thus finishes the proof. ��
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Corollary 3 Let e be an equilibrium in CU , let v be an equilibrium in CW , and let q
be an equilibrium in CU∪W . Then the total biomass

∑n
i=1 qi at equilibrium q is larger

than a total biomass at e and a total biomass at v:

n∑

i=1

qi ≥
n∑

i=1

ei , and
n∑

i=1

qi ≥
n∑

i=1

vi .

Proof This is a direct corollary of uniqueness of equilibria in each CU (Corollary 1)
and the inductive statement (b) in the proof of Theorem 3. ��

Theorem 3 andCorollary 3 illustrate two important aspects about simple foodwebs.
If the microbes in a community do not harm each other directly or indirectly and the
growth rate functions are monotone, then increasing either the external resources or
the number of microbes that produce resources internally will result in the existence
of equilibria that represent a larger community in number of species Theorem 3, or
overall biomass Corollary 3. Naturally this leads to the question of stability in the class
of feasible equilibria.

5 Stability Analysis

We now offer a complete characterization of the stability of all feasible equilibria
E(Sin, D) for the system.

Theorem 4 The unstable manifold of an equilibrium e ∈ CU of the system (5) has
dimension

k = #{i /∈ U | Savi (e) > Sneci }.

Therefore an equilibrium e ∈ CU is stable if k = 0, which corresponds to Savi (e) ≤
Sneci for all i /∈ U.

Proof We denote by Ji j the (i, j) entry of the Jacobian J. Using the Chain Rule, we
evaluate Jacobian at a point x to get

Jii (x) = fi (S) − D + ∇ fi (S) · ∂S
∂xi

xi . (12)

and for i �= j ,

Ji j = ∇ fi (S) · ∂S
∂x j

xi .

Since we have S = Sin − Ye, then

∂S
∂x j

= −yj
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where yj is the j th column of the yield matrix Y. The Jacobian matrix J can then be
written as

J = −
⎡

⎢⎣
∇ f1(S)

...

∇ fk(S)

⎤

⎥⎦YX + F(S) − DI

where X is a diagonal matrix with i i th entry xi . With our assumptions on resource
consumption, we can write the Jacobian as

J = −FSYX + F(S) − DI (13)

where FS is a diagonal matrix with i i th entry ∂ fi
∂Si

. These entries are all positive since
fi is a monotone increasing function. The matricesX, DI, and F(S) have nonnegative
entries as well. Recall that by Definition 1, assumption (4), the diagonal entries in Y
are positive.

Now we evaluate Jacobian at an equilibrium e ∈ CU . Since J is lower triangular,
the eigenvalues are the diagonal entries of the Jacobian. We note that if i ∈ U , and
hence ei > 0, then we have fi (Si ) = D. By inspection of (12), we have

Jii (e) = −yii
d fi
dSi

ei < 0.

It follows that e is always stable within the subspace CU ⊂ R
n+.

If i /∈ U then ei = 0 and from (12)

Jii (e) = fi (S
av
i ) − D.

Therefore the positive eigenvalues correspond to those i /∈ V with

fi (S
av
i (e)) > D.

Since D = fi (Sneci ) and fi is monotonically increasing function, this is equivalent to

Savi (e) > Sneci

completing the proof. ��
We are ready for the proof of the main theorem, which states that every simple food

web has a unique stable equilibrium. Furthermore, this equilibrium represents the
most diverse consortium that can survive in the chemostat. In addition to maximizing
diversity, this equilibrium also maximizes biomass of the system.

Theorem 5 Any simple food web has a unique stable equilibrium Es = (e1, . . . , en)
of (5). The stable equilibrium solves two independent optimization problems over the
set of feasible equilibria E(Sin, D):
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1. Es has the maximal number of nonzero components (ei > 0), i.e., the maximal
number of species that are present;

2. Es has the maximal overall biomass
∑n

i=1 ei .

Proof By Theorem 3 if CU1 and CU2 contain equilibria, then also CU∪W contains an
equilibrium. In other words, we have shown that the partially ordered set L , which is
a subset of the lattice of all subsets P(N ) of index set N = {1, . . . , n}, is closed under
the join operation in that lattice. Since L is finite, this implies that L has a unique
maximal element Z . Let e be the unique equilibrium in CZ .

We now show that e is stable. Assume by contradiction that e is not stable. This
implies that there is i /∈ Z such that Savi (e) > Sneci . By Corollary 2, this implies
that there is an equilibrium in CZ∪{i}. This contradicts maximality of the set Z , and
therefore e ∈ CZ is stable.

Since Z is maximal in L , and L is closed under join operation, every other set
U �= Z in the lattice L is a subset of another set that belongs to L . Let V be an
immediate successor of U in the lattice ordering, i.e., U � V and there is no set Q
with U � Q � V . Then V \ U = { j} for some j . Let e ∈ CUand v ∈ CV be the
equilibria in CU and CV , respectively. Then Savj (e) = Savj (v̂) > Snecj , which implies
by Theorem 4 that e has at least a one-dimensional unstable manifold.

This shows that equilibria in CU for U �= Z are unstable and the dimension of the
unstable manifold is equal to the difference in cardinality |Z |−|U |. As a consequence,
the system has unique stable equilibrium in CZ . Maximization of nonzero entries
follows directly from the fact thatU is maximal in L , and themaximization of biomass
follows from Corollary 3. ��

Remark We can interpret Theorem 5 as a statement that the stable equilibrium of the
system corresponds to the most diverse population that is sustainable on a given set of
resources. The condition Savi (e) ≤ Sneci means that the supply of the resource needed
to support the growth of xi is insufficient for its survival.

6 Examples

The theory we have developed for our restricted system (5) can be applied to sev-
eral systems that have a specific interaction graph. We will look at two archetypical
examples: consortium with hub-like graph of interactions and a consortium with a
chain-like graph (Fig. 2).

6.1 Hub Consortium

Our first example is a consortium with hub-like structure, where one species produces
all the substrates that other species feed on. The primary motivation is the evolved
consortium studied by Rosenzweig et al. (1994) and described in the introduction.

Only the initial substrate S1 which feeds species x1 is externally fed into the system.
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x1

x2

...

x3

S1

S2

S3

Sn

x1

x2x3 x4

S1

S2
S3 S4

Fig. 2 (Color figure online) A chain consortium (left) and a hub consortium (right)

Consider the system

ẋ1 = ( f1(S1) − D)x1
Ṡ1 = (Sin1 − S1)D − α11 f1(S1)x1
ẋ2 = ( f2(S2) − D)x2
Ṡ2 = −S2D − α22 f2(S2)x2 + β21 f1(S1)x1

...

ẋk = ( fn(Sn) − D)xn
Ṡk = −SnD − αnn fn(Sn)xn + βn1 f1(S1)x1. (14)

As always, 0 = (0, . . . , 0) is an equilibrium. By Corollary 2, there are two possi-
bilities. If

Sin1 = Sav1 (0) > Snec1

then there is an equilibrium e = (e1, 0, . . . , 0); if Sin1 ≤ Snec1 , the only equilibrium is
0 (which is also then stable).

As an initial check, since Sink = 0 for k > 1 it follows from (5) that at an equilibrium
E with species beyond the first present we need to have [−Ye]i = Sneci . This in turn
implies βk1E1 − αkk Ek = Sneci > 0, and thus it follows that any equilibrium with
Ek > 0 also must have E1 > 0.
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If e exists, then by Corollary 2, CU with U �= ∅ will contain an equilibrium eU if,
and only if

1. 1 ∈ U ; and
2. for every i ∈ U, i �= 1 we have Savi (e) > Sneci .

Thus if we set Q := {i > 1; | Savi (e) > Sneci }, then any CU with U = {1} ∪ B, for
any B ⊂ Q, contains a unique equilibrium eU .

By Theorem 5, the only stable equilibrium will be that which correspond to U =
{1} ∪ Q which is the one where the most possible species survive.

6.2 Chain Consortium

We now analyze systems with a chain-like interaction structure, where each species
beyond the first is dependent on the resource produced by its predecessor in the chain.
Again, we are assuming that only the substrate S1 is fed externally into the system.

We consider the equations

ẋ1 = ( f1(S1) − D)x1
Ṡ1 = (Sin1 − S1)D − α11 f1(S1)x1
ẋ2 = ( f2(S2) − D)x2
Ṡ2 = −S2D − α22 f2(S2)x2 + β21 f1(S1)x1

...

ẋk = ( fn(Sn) − D)xn
Ṡm = −SnD − αnn fn(Sn)xn + βn,n−1 fn−1(Sn−1)xn−1 (15)

It follows from (5) and the chain structure of the equations that if an equilibrium
E with Ei > 0 exists, then we must have Ei−1 > 0 and, by induction, E j > 0 for
all j < i . Therefore the indexing sets U for which CU contains an equilibrium are
nested. In other words, there is a maximal k such that for all sets Us = {1, . . . , s} for
s ≤ k, CUs contains an equilibrium Es . In the case of the zero equilibrium, k = 0. By
Theorem 5, the equilibrium Ek in CUk is stable.

To illustrate these ideas in more detail, it is instructive to make explicit calculations.
By Corollary 2, the equilibrium E1 in CU1 exists if, and only if,

Sav1 (0) = Sin1 > Snec1 .

We compute the available resource at E1 for species x2

Sav2 (E1) = β21

α11
(Sin1 − Snec1 ) (16)

Applying Corollary 2 toE1, if Sav2 (E1) ≤ Snec2 , then there is no equilibriumE2 with
both first and second components greater than zero. On the other hand, if Sav2 (E1) >

Snec2 , then E2 exists and we can calculate available resource at E2 for species x3
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S3 = −α33x3 + β32x2

= −α33x3 + β32

α22
(β21x1 − S2)

= −α33x3 + β32

α22

(
β21

α11
(Sin1 − S1) − S2

)

which implies

Sav3 (E2) = β32

α22

(
β21

α11

(
Sin1 − Snec1

)
− Snec2

)
(17)

By Corollary 2 Sav3 (E2) > Snec3 , then E3 exists and we can continue by induction.
To make the induction easier, we will make the change of variables

snec1 := Snec1

Sin1

sneci = αi−1,i−1αi−2,i−2 . . . α11Sin1
βi,i−1βi−1,i−2 . . . β2,1

Sneci for i ≥ 2.

With these new variables, a short calculation shows that

Savi (Ei−1) = βi,i−1βi−1,i−2 . . . β2,1

αi−1,i−1αi−2,i−2 . . . α11Sin1

⎛

⎝1 −
i−1∑

j=1

sneci

⎞

⎠ . (18)

This formula allows us to sequentially calculate how far down the chain the species
survive. The chain will end at the first species i which satisfies

Savi+1(Ei ) ≤ Sneci+1.

7 Discussion

In this paper we formulate and study simple food webs, where each microbial species
depends on a dedicated resource that is supported either externally or by other species.
Although the real consortia are much more complex, involve mutualistic as well as
antagonistic relationships, and often have multiple alternative food sources, our analy-
sis allows a rather complete understanding of which consortia can be supported in a
simple food web.

Our motivation comes from trying to understand coexistence principles that govern
natural, evolved (Rosenzweig et al. 1994; Helling et al. 1987; Treves et al. 1998;
Rozen and Lenski 2000) and synthetic (Bernstein et al. 2012) microbial consortia.
Synthetic consortia allow to test experimentally in simplified settings principles that
apply in much more complex interactions in microbial communities, as well as to test
predictions of mathematical theory.
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We showed that there is at most one consortium of each type, that is with the same
set of microbial species present (Corollary 1). Furthermore, which communities are
sustainable depends on a simple condition that summarizes sufficiency of supplied
resources (Theorem 2). Finally, we show that the only stable community is the one
that has maximum number of species present for given supply of resources (Theo-
rem 5). We also show that such a community maximizes the overall biomass over all
sustainable communities, which supports the maximal power principle (Lotka 1922;
Odum and Pinkerton 1955; deMazancourt and Schwartz 2010; Doebeli 2002; Pfeiffer
and Bonhoeffer 2004; Bull and Harcombe 2009; Estrela and Gudejl 2010; Beardmore
et al. 2011).

Our results apply to simple prototypes of food webs: chains and fan-like food webs.
For both, we derive conditions that characterize the stable equilibrium in each system.

Real consortia and microbial communities are clearly more complex than those
studied here; however, we believe that the framework developed in this paper can be
used to study communitieswith syntrophic aswell as indirect antagonistic interactions.
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