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Abstract Understanding of spatiotemporal patterns arising in invasive species spread
is necessary for successfulmanagement and control of harmful species, andmathemat-
icalmodeling is widely recognized as a powerful research tool to achieve this goal. The
conventional view of the typical invasion pattern as a continuous population traveling
front has been recently challenged by both empirical and theoretical results revealing
more complicated, alternative scenarios. In particular, the so-called patchy invasion
has been a focus of considerable interest; however, its theoretical study was restricted
to the case where the invasive species spreads by predominantly short-distance disper-
sal. Meanwhile, there is considerable evidence that the long-distance dispersal is not
an exotic phenomenon but a strategy that is used by many species. In this paper, we
consider how the patchy invasion can be modified by the effect of the long-distance
dispersal and the effect of the fat tails of the dispersal kernels.

Keywords Biological invasion · Allee effect · Predator–prey system ·
Integro-difference equation · Cauchy kernel

1 Introduction

Biological invasion of alien (exotic) species is regarded as one of the major threats to
ecosystems all around the world (Vitousek et al. 1996; Williamson 1996) and often
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has a significant negative effect on agriculture, forestry, fishery, etc., with direct and
indirect economic losses being on the order of hundreds of billions of dollars (U.S.
Congress OTA 1993; Pimentel 2002). For this reason, biological invasion has been
a focus of intense research for several decades. Indeed, an effective management
of invasive species can hardly be possible unless the underlying mechanisms are well
understood, controlling factors are revealed, and typical scenarios are identified. Com-
mon research approaches include data collection, statistical analysis of the data and
mathematical modeling. In particular, mathematical modeling has been very helpful
as it creates a ‘virtual laboratory’ where various hypotheses about invasive species
dynamics can be tested and refined (Hengeveld 1989; Shigesada and Kawasaki 1997).

Biological invasion has a few clearly distinguishable stages (Shigesada and
Kawasaki 1997; Sakai et al. 2001). Once the introduced species has been established
locally, it usually starts spreading; this stage is referred to as geographical spread.
Patterns of spread have been attracting considerable attention recently (Sherratt et al.
1995; Hastings 1996; Parker 2004; Johnson et al. 2006). The conventional idea about
the pattern of spread is based on seminal theoretical results by Fisher (1937) and
Kolmogorov et al. (1937) and is supported by many field observations, e.g., Skellam
(1951), Andow et al. (1990), Dwyer (1992); see Shigesada and Kawasaki (1997) for
more references. It predicts the existence of a self-organized steep gradient in the pop-
ulation density, a so-called traveling population front, which separates invaded and
non-invaded areas. The front propagates into the open space (i.e., away from the place
of the original species introduction) so that the invaded area grows with time, although
the growth of the corresponding population size may not necessarily be monotonous
(cf. Wilder et al. 1995; Morozov et al. 2006).

This baseline scenario of species spread has, however, been at odd with some field
studies. It has been observed that a continuous front does not always exist. Instead,
the spread of invasive species can take place by means of creating separate ‘patches’
or isolated colonies. Several cases of such a ‘patchy invasion’ have been studied,
both empirically and theoretically; examples are given by the invasion of house finch
(Mundinger and Hope 1982; Shigesada et al. 1995), cordgrass Spartina alterniflora
(Davis et al. 2004; Taylor et al. 2004) and gypsy moth (Liebhold et al. 1992; Liebhold
and Tobin 2006; Petrovskii and McKay 2010; Jankovic and Petrovskii 2013).

The underlying mechanisms of the patchy invasion are not always clear, and differ-
ent cases can be attributed to the effect of different factors. Apparently, it may occur
as a result of external forcing when patches of land favorable for the given invasive
species are surrounded by a less suitable environment (e.g., With 2002). It can occur
due to a specific density-dependent behavior resulting in a small-group migration, the
phenomenon known as the ‘stratified diffusion’ (Hengeveld 1989; Shigesada et al.
1995). An extension to this mechanism is given by the stratified diffusion due to either
wind- or water-borne long-distance dispersal (e.g., Davis et al. 2004) or vector-borne
dispersal (Tobin and Blackburn 2008; also Petrovskii and Li 2006, section 8.3). Patchy
invasion can also occur due to the impact by either predators (Petrovskii et al. 2002;
Mistro et al. 2012) or pathogens (Petrovskii et al. 2005; Petrovskii and McKay 2010;
Jankovic and Petrovskii 2013), or due to more complex multi-species interactions
(Davis et al. 1998; Morozov et al. 2008). Patchy invasion can also be a generic pattern
of stochastic invasion hence reflecting the inherent stochasticity of the population dis-
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persal (Lewis 2000; Lewis and Pacala 2000), especially long-distance dispersal (Clark
et al. 2001; Taylor et al. 2004).

In this paper, we focus on the patchy invasion arising as a result of inter-species
interactions.While other possiblemechanismsof the patchy invasionhavebeen studied
relatively well, see the references above, the prerequisites of the patchy spread due to
inter-species interactions yet remain obscure. It has been shown theoretically that, in
simple systems like predator–preyor host–pathogen, patchy invasionbecomespossible
in a certain parameter range if the growth rate of prey or host is affected by the strong
Allee effect1; seePetrovskii et al. (2002, 2005), respectively. It has also been shown that
the scenario of patchy invasion is robust with respect to the model. In particular, it can
be observed in space-time discrete models (Mistro et al. 2012) as well as in continuous
ones, which proves that it is not an artifact of a specificmodeling framework. However,
it remains unclear how sensitive is the invasion pattern, e.g., patchy or not, to the
dispersal properties of the interacting species.

It is well known that the properties of the spatiotemporal dynamics of interact-
ing species may depend significantly on their relative dispersal abilities. The classical
example is given by the Turing instability (cf. Segel and Jackson 1972), but non-Turing
mechanisms resulting in spatiotemporal pattern formation have been discovered as
well (Hastings et al. 1997; Petrovskii and Malchow 2001; Morozov and Petrovskii
2009). The effect of differential diffusivity on the spread of invasive species has also
been observed (Shigesada and Kawasaki 1997). Most of the studies, however, were
done using diffusion–reaction models where dispersal is reduced to diffusion2. Diffu-
sion is a local phenomenon in the sense that its rate is fully determined by the density
gradients at a given location; therefore, it takes into account only a short-range pop-
ulation dispersal. Meanwhile, importance of a long-range (non-local) dispersal has
been increasingly recognized, for both animals and plants; in particular, it has been
shown that it can increase the invasion rate by an order of magnitude or even more
(Hengeveld 1989; Liebhold et al. 1992; Kot et al. 1996).

Diffusion–reactionmodels have been very useful in ecology (Skellam 1951; Okubo
1980; Holmes et al. 1994; Okubo and Levin 2001), but they have also been criti-
cized for giving an oversimplified caricature of population dynamics, in particular, by
assuming that individuals disperse and reproduce at the same time. In reality, many
animal species are stage-structured so that these processes are clearly separated in
time, e.g., there are the dispersal stage and the reproductive stage of the life cycle.
Eventually, an alternative modeling framework was developed based on kernel-based
integro-difference equations (Kot and Schaffer 1986; Andersen 1991; Neubert et al.
1995). This modeling approach is free from the limitations of the diffusion–reaction
equations and is hence thought to provide a more adequate description of the spa-
tiotemporal dynamics of a stage-structured population (cf. Hastings et al. 2005).

It is well known that the properties of the dispersal kernel can significantly affect
the invasion rates (cf. Andersen 1991; Kot et al. 1996), but the question remains

1 Note that the strong Allee effect is not a necessary condition of patchy invasion in multi-species systems,
cf. Morozov et al. (2008).
2 But see Kot and Schaffer (1986) where the conditions of diffusive instability were obtained for the
kernel-based model described by an integro-difference equation.
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open as to how much it can affect the invasion pattern. The goal of this paper is to
reveal typical invasion patterns during the spread of stage-structured alien species. The
problem is considered theoretically and by numerical simulations using a kernel-based
model consisting of two coupled integro-difference equations. In particular, we want
to demonstrate that the patchy invasion can be observed subject to relative mobility
of the interacting species. Our other goal is to reveal the effect of the long-distance
dispersal (described by fat-tailed dispersal kernels) on the pattern and rate of species
spread.

2 Model

Consider a system of two interacting species N and P that, at each generation t , are
described by their densities Nt (r) and Pt (r) over a continuous space r = (x, y). We
consider the case that the species are stage-structured so that generation t disperses
after reaching maturity but before giving birth (e.g., laying eggs or producing seeds)
to the next generation (t + 1). We assume that both species have a similar life cycle
so that they interact during their maturation stage:

Ñt (r) = f (Nt (r) , Pt (r)) , P̃t (r) = g (Nt (r) , Pt (r)) , (1)

where Ñt (r) and P̃t (r) are thus the population densities prior to the dispersal stage.
The dispersal of the populations is described by the dispersal kernels kN

(
r, r′) and

kP
(
r, r′) so that

Nt+1(r) =
∫

�

kN
(
r, r′) Ñt (r′)dr′, Pt+1(r) =

∫

�

kP
(
r, r′) P̃t (r′)dr′, (2)

where � is the dispersal domain. The dispersal kernel ki
(
r, r′) (where i = N , P)

gives the probability density of the event that an individual of species i located before
dispersal at position r′ = (x ′, y′)moves after dispersal to the position r; e.g., see Lewis
et al. (2006). Obviously, if dispersal takes place in an infinite space, or the dispersal
domain is closed (so that there is no loss of individuals because of their moving out of
the domain), then

∫
�
ki

(
r, r′) dr′ = ∫

�
ki

(
r, r′) dr = 1. We assume that dispersal is

homogeneous and isotropic so that the probability of travel from r to r′ depends only
on the distance between the two positions, ki

(
r, r′) = ki

(|r − r′|) = ki
(|r′ − r|).

Having combined (1)with (2), one can convenientlywrite themodel in an equivalent
form as a system of integro-difference equations:

Nt+1(r) =
∫

�

kN
(|r − r′|) f

(
Nt

(
r′) , Pt

(
r′)) dr′, (3)

Pt+1(r) =
∫

�

kP
(|r − r′|) g (

Nt
(
r′) , Pt

(
r′)) dr′. (4)

For the interspecific interactions, we consider species N to be prey and species P
to be predator. More specifically, we consider the case where the growth rate of prey
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is affected by the strong Allee effect and that P is a specialist predator, and choose
functions f and g as follows:

f (Nt , Pt ) = A (Nt )
2

1 + B2 (Nt )
2 · exp (−κPt ) , (5)

g (Nt , Pt ) = δNt Pt , (6)

where A is the prey intrinsic growth rate, 1/B is the prey density forwhich its per capita
growth rate reaches its maximum, κ is the predator efficiency, and δ is the predator
growth rate. The biological rationale behind this parameterization is discussed inmuch
detail in Rodrigues et al. (2012). Due to their biological meaning, all parameters are
positive.

For convenience, we re-scale the population sizes as

N ′
t = δNt and P ′

t = κPt , (7)

so that Eqs. (5–6) turn into

f (Nt , Pt ) = a (Nt )
2

1 + b (Nt )
2 · exp (−Pt ) , (8)

g (Nt , Pt ) = Nt Pt , (9)

where we have omitted the primes for the sake of notation simplicity. Here a = A/δ

and b = (B/δ)2 are new parameters. Since Eqs. (8–9) correspond to the ‘reaction’
stage of the system dynamics, we will call a and b the reaction parameters.

It is readily seen (for details, see Rodrigues et al. 2012) that the system f (N , P) =
N , g(N , P) = P has at most four steady states, i.e., the extinction state (0, 0), two
prey-only states (N∗

1 , 0) and (N∗
2 , 0) and the coexistence state (N∗, P∗) where

N∗
1 = a − √

a2 − 4b

2b
, N∗

2 = a + √
a2 − 4b

2b
, (10)

(
N∗, P∗) =

(
1, ln

[
a

b + 1

])
. (11)

While (0, 0) always exists, the boundary states (N∗
1 , 0) and (N∗

2 , 0) are only feasible
for a > 2

√
b. They merge for a = 2

√
b and disappear for a < 2

√
b. The coexistence

state (N∗, P∗) is feasible for

b + 1 < a. (12)

Applying the linear stability analysis, it is readily seen that (0, 0) is always stable.
(N∗

1 , 0) is always unstable, while (N∗
2 , 0) is stable for 2 < a < b+1. Correspondingly,

(N∗
2 , 0) can only be stable for b > 1. The coexistence state is stable for
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Fig. 1 The structure of the
parameters space for the system
(8–9); see details in the text.
From Rodrigues et al. (2012),
with permissions
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The structure of the parameter plane (b, a) is shown in Fig. 1. The coexistence
equilibrium is feasible and stable for parameters from Domain 1. The solid curve in
Fig. 1 corresponds to a = acr , see (13), where (N∗, P∗) loses its stability through the
Hopf bifurcation; on this line, the determinant of the Jacobianmatrix at the coexistence
equilibrium is equal to one (cf. Allen 2007). Inside Domain 2, the local dynamics is
oscillatory according to the (multi-point) limit cycle. When crossing the long-dashed
curve (obtained numerically), the limit cycle disappears so that, for parameters from
Domain 3, the only attractor is the extinction state. The straight dotted line corresponds
to a = b + 1, cf. (12); therefore, for Domains 4, 5 and 6, the coexistence state is not
feasible. In particular, in Domain 5, the only steady state is (0, 0), and in Domains
4 and 6 (above the short-dashed curve which corresponds to a = 2

√
b) also the

two ‘prey-only’ states exist. The prey-only equilibrium (N∗
1 , 0) is never stable, while

(N∗
2 , 0) is stable for parameter values inside Domain 6.

2.1 Parameterization of Dispersal

The choice of the dispersal kernels is a controversial issue. While earlier studies usu-
ally considered it to be either the normal distribution or a distribution with exponential
decay (Kot and Schaffer 1986; Andersen 1991) and there is some experimental evi-
dence of this (Kareiva 1983; Turchin 1998), later papers tended to assume a lower
rate of decay at large distances (Kot et al. 1996; Clark et al. 2001). Lower rate of
decay means higher frequency of long-distance travel; therefore, a dispersal kernel
with a lower rate of decay (often referred to as a fat-tailed kernel) takes into account
the so-called long-distance dispersal. One mechanism that is thought to result in the
long-distance dispersal is the pattern of individual movement known as the Levy flight
(Klafter and Sokolov 2005; Viswanathan et al. 2011) when the probability distribution
of the travel over distance r has a power-law tail, that is
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k(r) ∼ r−μ, 1 < μ < 3, (14)

for large r in the one-dimensional (1D) space, and

k(r) ∼ |r|−(μ+1), (15)

for large |r| = √
x2 + y2 in the two-dimensional (2D) space.

Correspondingly, for the purposes of this paper, we consider a few dispersal kernels
with different properties. Firstly, we consider the 2D kernel described by the normal
distribution:

ki
(|r − r′|) = 1

2πα2
i

exp

(

−|r − r′|2
2α2

i

)

, (16)

where αi is a parameter quantifying the spatial scale of dispersal, i = N , P . Normal
distribution corresponds to the standard Fickian diffusion, e.g., see Neubert et al.
(1995), also Petrovskii and Li (2006), section 2.2. Kernel (16) therefore makes the
properties of the system (3–4) comparable to those of diffusion–reaction systems.

Secondly, in order to account for the long-distance dispersal, we consider a dispersal
kernel with the power-law rate of decay, cf. Eqs. (14–15). Since there is certain theo-
retical evidence that the case μ = 2 can optimize the search efficiency (Viswanathan
et al. 1999) and hence may appear as a result of natural selection and evolution (cf.
De Jager et al. 2011), we consider the case μ = 2. In the 1D space, the corresponding
dispersal kernel is described by the Cauchy distribution:

k(r) = β

π(β2 + r2)
. (17)

Generalization of (17) onto the 2D case is not straightforward as there is some ambi-
guity about it. In particular, Heinsalu et al. (2010) proposed the following expression:

ki (r, r′) = βi

π(βi + |r − r′|)3 , (18)

where βi > 0 (note that we define the distribution parameter differently compared
to the original paper) and i = N , P . Obviously, expression (18) has the required
power-law tail as prescribed by (15).

However, it is readily seen that the following function

ki (r, r′) = γi

2π(γ 2
i + |r − r′|2)3/2 (19)

(where γi > 0 and i = N , P) has the same asymptotics as (18), i.e., the same power-
law tail as in (15). Hence, one of our objectives is to find out whether the dispersal
pattern—more specifically, patchy invasion—is robust to the choice of the kernel
parameterization. We will call (18) as the 2D Cauchy kernel Type I and (19) as the 2D
Cauchy kernel Type II.
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In order to compare the results for different kernels, we consider the radius ε within
which the probability of finding an individual after the dispersal is 1/2:

Pε =
∫ 2π

0

∫ ε

0
ki (r, θ)rdrdθ = 1

2
. (20)

For the Gaussian kernel, we obtain that the required radius is

ε = α
√
2 ln 2. (21)

Having applied conditions (20–21) to each of the kernels (18) and (19), we find the
corresponding parameter value as

β = ε(
√
2 − 1) = α(2 − √

2)
√
ln 2 ≈ 0.4877α, (22)

for the Cauchy kernel Type I, and

γ = ε√
3

= α

√
2

3
ln 2 ≈ 0.6798α, (23)

for the Cauchy kernel Type II.We regard (22) and (23) as the conditions of equivalence
between the normally distributed kernel (16) and the fat-tailed kernels (18) and (19),
respectively.

3 Numerical Simulations and Preliminary Discussion

Equations (3–4) are solved in a square spatial domain � = {(x, y) : −L ≤ x ≤
L ,−L ≤ y ≤ L}, parameter L thus quantifying the domain size. We consider the
prey to be an invading alien species and use the initial conditions accordingly, i.e., at
t = 0 prey is only present inside a certain (small) area of the domain and absent
everywhere else. As for the predator, we regard it as the biological control agent, so
that it is initially present only inside a smaller subdomain of the area inhabited by prey
(cf. Petrovskii et al. 2005).

3.1 Initial Conditions

Specifically, we use the following initial species distributions:

1. Symmetrical initial conditions. The prey population is distributed in the central
part of the computational domain, and the predator is present in a smaller region
also centered around the origin:
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N0(x, y) = N∗
2 for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1,

and N0(x, y) = 0 otherwise, (24)

P0(x, y) = P∗ for − 0.1 ≤ x ≤ 0.1 and − 1 ≤ y ≤ 1,

and P0(x, y) = 0 otherwise, (25)

where N∗
2 is the prey equilibrium density in the absence of the predator and P∗ is

the predator equilibrium density in the predator–prey system; see Eqs. (10–11).

The initial conditions (24–25) are obviously invariant with regard to the reflection
x → −x and y → −y, and hence, the mathematical problem as a whole, i.e., Eqs. (3–
4) with (24–25), attains this reflectional symmetry as well. The emerging distributions
of prey and predator are hence expected to be symmetrical, too. This can be regarded
as a special case and is not entirely realistic. Correspondingly, in order to make the
simulation results somewhat more general, along with (24–25) we consider the initial
population distribution without any apparent symmetry:

2. Asymmetrical initial conditions. The prey population is distributed in the same
central part of the domain as above, but the predator population is now initially
distributed in an acentric region:

N0(x, y) = N∗
2 for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1,

and N0(x, y) = 0 otherwise, (26)

P0(x, y) = P∗ for − 1 ≤ x ≤ 0.2 and − 0.9 ≤ y ≤ 0.4,

and P0(x, y) = 0 otherwise. (27)

3.2 Boundary Conditions

Unlike partial differential equations where boundary conditions are required in order
to ensure the uniqueness of the solution, the integro-difference Eqs. (3–4) do not nec-
essarily require boundary conditions. The mathematical problem is well defined when
system (3–4) is complemented just by the initial conditions. However, the absence
of boundary conditions as such, i.e., the absence of additional constraints imposed at
the domain boundary, in fact corresponds to a specific biological situation where at
every time step a certain fraction of the population leaves the computational domain�

because of the dispersal. Since the space outside of domain� is not taken into account
by our model in any way, it means that this fraction never comes back and hence is
lost forever. In the discussion below, we will refer to this situation as the ‘free outflow’
boundary conditions. The exact amount that is lost at every time step depends on the
population density distribution across domain � and on the properties of the dispersal
kernel. Although this situation is ecologically meaningful (e.g., if the environment
outside of the domain is very harsh), it gives only one possible option out of the great
multiplicity of possible ecological situations.

Different boundary conditions can have a different effect on the solution of the
system (3–4) inside the computational domain �, hence resulting in the population
dynamics with different properties. In the literature, this situation is known as the
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boundary forcing. For instance, the free outflowboundary condition is likely to hamper
the population growth inside the domain, or even bring it down to extinction altogether.
Therefore, especially if the purpose of the study is the inherent dynamics of the system
rather than the dynamics imposed by the boundary conditions, alternatively to the
free outflow, one might need to consider some less intrusive boundary conditions
in order to minimize the population flux through the boundary; see Appendix 1 for
a detailed discussion of this issue. Also, different numerical methods may require
different boundary conditions, e.g., periodical; see the discussion of the FFT method
below.

However, the actual magnitude of the boundary forcing depends not only on the
type of the boundary condition but also on the population distribution over domain �

at the given time. For instance, if the population density is only significantly larger than
zero in the central part of the domain but is approximately zero closer to the boundary,
then, because the dispersal kernel is a fast decaying function, it may be expected that
the outflowing fraction of the population is going to be very small. In this case, the
effect of the boundary forcing is going to be very small too. Correspondingly, one can
expect that the choice of the boundary condition (e.g., free outflowing, zero flux or
periodical) will not have any significant effect on the population dynamics inside the
domain.

Let us recall that, in this paper, we are mainly interested in the biological inva-
sion scenario, i.e., in the population dynamics initiated by initial conditions (24–25)
and (26–27). Therefore, based on the above argument, we hypothesize that the pop-
ulation dynamics will not be sensitive to the choice of the boundary condition over
the time when the spreading populations remain sufficiently far from the domain
boundary, i.e., if the domain is sufficiently large. In order to prove this hypothesis,
we compared the simulations performed under two different boundary conditions (the
periodic boundary conditions as is required by the FFT method, see below, and the
free outflow boundary conditions) and obtained that the results did not show any sig-
nificant difference over the simulation time. In order to find out what domain can
be regarded as ‘sufficiently large,’ we performed simulations in domains of different
size. We obtained that, for the simulations ran up to t = 200, the domain size L = 20
is sufficient to exclude any visible effect of the boundary forcing in the case of the
Gaussian kernel (16) for the values of αN and αP being on the order 0.1 or less. How-
ever, the simulations with either of the Cauchy kernels (18) or (19) require a larger
domain with L = 80, which is in a good agreement with the semi-analytical analysis
performed in Appendix 1. Finally, we applied a strong numerical test where, at each
time step, the population densities at the two rows of the numerical grid adjacent to
the boundary were replaced by zeros, and we did not observe any significant change
in the simulation results for the time and domain size mentioned above.

3.3 Simulations and Results

Having chosen the initial and boundary conditions, Eqs. (3–4) cannot be solved ana-
lytically (except for a few trivial cases that we do not discuss here); therefore, we
have to use numerical simulations. For this purpose, we discretize the domain � by
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changing the continuous space to a discrete one, i.e., by introducing a numerical grid
with K nodes in each dimension, that is

{−L ≤ x ≤ L} → {xk+1 = xk + �, k = 1, . . . , K − 1, x1 = −L , xK = L}, (28)

and

{−L ≤ y ≤ L} → {yk+1 = yk + �, k = 1, . . . , K − 1, y1 = −L , yK = L}, (29)

so that the step size of the grid is � = 2L/(K − 1). The number of nodes K (and,
correspondingly, the step size�) is an important technical parameter as it is responsible
for the accuracy of the numerical approximation, e.g., see Burden and Faires (2005).
Hence, it is important to choose K sufficiently large (or � sufficiently small) in order
to avoid numerical artifacts.

Themost straightforwardmethod of solving Eqs. (3–4) is the numerical integration,
e.g., by using the trapezium method. Numerical integration does not require any addi-
tional information about the population density at the domain boundary except for that
already given by the model (3–4) itself. According to the discussion in Section 3.2, it
corresponds to the free outflow boundary conditions. By varying the number of nodes
and the domain size L , we can obtain the baseline information about the numerical
error and the minimum required number of nodes; see Appendix 1 for details.

Numerical integration is easy to implement, and it is a robust and reliable method to
solve the system (3–4); however, it is computationally expensive as it requires O(K 4)

operations at each time step. Thus, for a sufficiently fine numerical grid, i.e., for a
sufficiently large number of nodes K , it may require a very long computer time. A
convenient alternative is the fast Fourier transform (FFT) method which appears to be
much faster; see Appendix 2. Correspondingly, the simulation results shown below
were obtained by the FFT method. Equations (3–4) were solved with the periodical
boundary conditions (as required by the FFT) on the 2D grid consisting of 210 × 210

nodes altogether (i.e., K = 210 nodes in each direction x and y) in the domain of size
L = 20 in the case of the Gaussian kernel, and on the 2D grid of 212 × 212 nodes in
the domain of size L = 80 in the case of the Cauchy kernels.

The next issue is the choice of the population dynamics parameters, i.e., a and b in
Eqs. (8–9). Recall that in this paper, we are mostly interested in revealing the patchy
invasion. Basing on the inferences made for other relevant models (e.g., Petrovskii
et al. 2005; Mistro et al. 2012), the patchy invasion is likely to occur for parameters
from Domain 3 where the only attractor in the non-spatial system is the extinction
state. Correspondingly, for numerical simulations, we choose a = 4.5, b = 0.68.
However, we want to emphasize that the results shown below are not specific for this
parameter value but in fact are typical for the whole Domain 3 in the (b, a) parameter
plane.

We begin with the dispersal kernel described by the Gaussian distribution (16).
Figure 2 shows snapshots of the spatial preydistribution3 obtained at differentmoments

3 For the sake of brevity, we do not show the distribution of predator as it exhibits features similar to the
distribution of prey.
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in the case that the dispersal parameters are set to some hypothetical values, αN = 0.1
and αP = 0.125. It is readily seen that the evolution of the initial conditions eventually
results in an irregular patchy structure. The population density is high inside the patches
and close to zero between the patches. Remarkably, at any time, there is no continuous
boundary separating the invaded and non-invaded areas. The alien population (prey)
invades the space by means of the movement of separate population patches that
eventually moves away from the place of the initial species introduction described
by the initial conditions (24–25). This is the pattern of spread known as the patchy
invasion (Petrovskii et al. 2002, 2005; Morozov et al. 2006; Mistro et al. 2012). The
spatial population distributions arising at a later time are completely irregular; below
we will show that it corresponds to chaotic dynamics. We also mention here that, for
the parameters of Fig. 2, the Turing instability is not possible (see Rodrigues et al.
2012 for details); therefore, the emerging patterns should be attributed to another,
non-Turing mechanism.

Interestingly, although the kernel-based description of the population dynamics
with kernel (16) is known to be to some extent equivalent to the diffusion–reaction
systems (because the Gaussian kernel corresponds to the usual Brownian diffusion),
the pattern of spread described by Eqs. (3–4) shows greater sensitivity to the choice
of dispersal parameters αN and αP than the dependence on the diffusion coefficients
in the PDE-based models reported in the literature. The patchy spread shown in Fig. 2
is obtained for the case where αP is somewhat larger than αN . This appears to be
important. Our simulations made for other values of the dispersal parameters (not
shown here) demonstrate that the case of αP = αN corresponds to the propagation of
continuous front with the formation of a patchy pattern in the wake, thus following
a scenario different from the patchy invasion. Interestingly, in the diffusion–reaction
systems, the patchy invasion canbeobservedwhen the ratio of the diffusion coefficients
for the prey and predator is anywhere between approximately 0.7 and 1.5 (Morozov
et al. 2006), hence including the case of equal diffusivity.

Considering the simulated population distributions in the context of the real eco-
logical dynamics, the reflectional symmetry observed in Fig. 2 is hardly realistic.
However, this is obviously a consequence of the symmetrical initial conditions and
would not be observed otherwise. Figure 3 shows the snapshots of the prey spatial dis-
tribution obtained for the same value of parameters a, b, αN and αP as in Fig. 2 but for
the asymmetrical initial conditions (26–27). It is readily seen that the species spread
takes place following the same scenario of patchy invasion; however, the emerging
population distribution does not show any sign of symmetry.

Now, we are going to consider how the pattern of spreadmay changewhen the long-
distance dispersal is taken into account, i.e., when the dispersal kernel has a fatter tail
than the normal distribution. Correspondingly, we now solve Eqs. (3–4) numerically
(using the FFT method) in the case where the dispersal is described by the kernel with
a power-law tail. Figure 4 shows the snapshots of the prey spatial distribution obtained
for the Cauchy kernel Type I, see Eq. (18). In order to make the results comparable
with the case of the short-distance dispersal (described by the Gaussian kernel), we
use the equivalence condition (22) so that the values αN = 0.1 and αP = 0.125 used
in Figs. 2 and 3 turn into βN = 0.0488 and βP = 0.061, respectively. Interestingly,
patchy invasion does not occur and the species spread follows an alternative scenario,
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Fig. 3 Snapshots of the prey spatial distribution at different moments t , a 20, b 80, c 140 and d 200, as
obtained for theGaussian dispersal kernel and the asymmetrical initial conditions (24–25). Other parameters
are the same as in Fig. 2

i.e., the propagation of the continuous front followed by the formation of irregular
spatial pattern in the wake. Patchy invasion however is observed for a larger value of
parameter βP ; Fig. 5 shows the snapshots obtained for βP = 0.098 (other parameters
are the same as in Fig. 4). We therefore conclude that the effect of the long-distance
dispersal makes the parameter constraints more restrictive for the patchy invasion to
occur.

A situation appears to be similar in the case of Cauchy kernel Type II. Figure 6
shows the snapshots of the prey spatial distribution obtained for the dispersal kernel
described by Eq. (19) with parameters γN = 0.0680 and γP = 0.1, which correspond
to the dispersal parameters of Figs. 2 and 3 by the equivalence condition (23). Hence,
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Fig. 5 Snapshots of the prey spatial distribution at different moments t , a 20, b 100, c 140 and d 190,
as obtained for the Cauchy kernel Type I and the asymmetrical initial conditions (24–25). Parameters are
βN = 0.0488 and βP = 0.098

we see it again that, while the short-distance dispersal results in the patchy invasion
(see Fig. 2), the corresponding long-distance dispersal results in the propagation of
the continuous front followed by the formation of irregular pattern in the wake. As
well as in the previous case, patchy invasion can be observed for a higher predator
dispersal; see Fig. 7 obtained for γP = 0.1205.

3.4 Sensitivity to the Initial Conditions

So far we have shown that, in a certain parameter range, the evolution of initial
conditions (24–25) or (26–27) (which describes the invasion of an alien species N
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Fig. 7 Snapshots of the prey spatial distribution at different moments t , a 40, b 80, c 140 and d 200, as
obtained for the Cauchy kernel Type II and the asymmetrical initial conditions (24–25). Parameters are
γN = 0.068 and γP = 0.1205

biologically controlled by a predatory species P) results in the patchy invasion where
the spread of the alien species occurs not by the propagation of the continuous popu-
lation front but by the dynamics of separate population patches. This is observed for
all three dispersal kernels (16), (18) and (19), i.e., both with the short-distance and
long-distance dispersal.

The question remains as to whether the irregular spatial distributions shown in
Figs. 3, 5 and 7 actually correspond to chaotic dynamics, in particular, whether the
irregularity of the emerging spatial pattern is combined with an irregularity of the
temporal dynamics. This is a non-trivial question as there are examples of population
modelswhere a regular spatial distribution corresponds to chaotic temporal oscillations
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(cf.Morozov et al. 2004) and exampleswhere irregular spatial pattern shows periodical
temporal oscillations (e.g., Kopell and Howard 1981).

Afingerprint of chaos is known to be the sensitivity of the dynamics to a perturbation
of the initial conditions when the trajectories of the perturbed and unperturbed systems
stay close to each other until a certain time (quantified by the dominant Lyapunov
exponent λ, e.g., seeNayfeh andBalachandran 1995; Strogatz 2000) but then promptly
become different. In order to investigate this issue, we run simulations with the same
parameter values as in Figs. 3, 5 and 7 but with the initial prey density perturbed
by 0.1%, i.e., by changing N∗

2 to 1.001N∗
2 in Eqs. (26–27). Since the comparison

between the spatial distributions is technically challenging, instead we consider the
prey density at the central point of the domain, i.e., N (0, 0, t), and the total population
size in the computational domain �:

Ntot(t) =
∫ ∫

�

N (x, y, t) dxdy, (30)

where the integral is calculated numerically on the computational grid (28–29).
Figure 8 shows these quantities vs time obtained for the perturbed and unperturbed

initial conditions. It is readily seen that N (0, 0, t) and Ntot(t) exhibit qualitatively
similar behavior. In all three cases, the perturbed and unperturbed trajectories are
indistinguishable from each other during the early stage of the population dynamics
but become completely different (i.e., the timing of the peaks and/or troughs does not
coincide in the perturbed and unperturbed trajectories) at a later time. This sensitivity
points out at the chaotic dynamics of the system for all three kernels. Note that the
observed chaotic dynamics is essentially a spatiotemporal phenomenon as the corre-
sponding systemwithout space does not exhibit chaos in the given range of parameters
a and b, cf. Eqs. (8–9) and Fig. 1.

Interestingly, the moment when the difference becomes noticeable is different for
each of the kernels. The system with the Cauchy kernel Type II appears to be the most
sensitive to the perturbation; the trajectories become visually different from about
t = 45 (see Fig. 8f) and completely different from t = 75 (cf. Fig. 8e). In the system
with the Gaussian kernel, these moments are, respectively, 100 and 130. The least
sensitive appears to be the systemwith the Cauchy kernel Type I where the trajectories
become visually different only from t = 120 and become completely different from
the time t = 175. Altogether, it suggests that the corresponding Lyapunov exponents
are ordered as

λCauchy II > λGauss > λCauchy I > 0, (31)

although we cannot provide their exact numerical value.

3.5 Rate of Spread

The rate of spread, i.e., the rate at which the alien species or gene advances into the
new space, is a quantity of high theoretical and practical importance, and it has been
a focus of numerous studies (Fisher 1937; Andow et al. 1990; Hastings 1996; Kot
et al. 1996; Lewis 2000; Clark et al. 2001). The rate of spread is known to depend
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Fig. 8 Sensitivity to the initial conditions. Left-hand side column the prey density N (0, 0, t) at the center
of the domain for a Gaussian kernel, c Cauchy kernel Type I and e Cauchy kernel Type II. Right-hand side
column the total population size Ntot(t) as obtained for b Gaussian kernel, d Cauchy kernel Type I and
f Cauchy kernel Type II. In all panels, the solid curve is obtained for the asymmetrical initial condition
(24–25), and the dashed curve is obtained for the slightly perturbed initial condition (see details in the text).
Parameters correspond to those used in the figures above, i.e., (a, b) as in Fig. 3, (c, d) as in Fig. 5, (e, f) as
in Fig. 7

strongly on the dispersal mode, so that the short-distance dispersal normally results
in the advance with a constant speed, but the long-distance dispersal (described by a
fat-tailed kernel with a power-law decay) may lead to a spread with accelerating speed
(Kot et al. 1996). However, the analysis of this issue was restricted to the standard
invasion pattern via the propagation of a population front and it is not immediately
clear whether it applies to the patchy invasion too.
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In order to make an insight into this issue, we calculated the rate of spread for the
cases of patchy invasion shown in Figs. 3, 5 and 7. For this purpose, at every moment
t , we first calculate the extent of the invaded area. Note that, since the dispersal kernels
that we use are formally positive over the whole space, it means that the population
density is positive everywhere in space at any t > 0. However, very small densities
are not biologically feasible. We therefore introduce a certain threshold density ω and
assume that the position (x, y) in space is invaded at time t only if N (x, y, t) ≥ ω. The
collection of all such positions gives the required extent.We then calculate the distance
rω from the center of the domain (i.e., from the location of the species introduction)
to the farthermost invaded position:

rω(t) = max
(x,y)|N (x,y,t)≥ω

√
x2 + y2, (32)

and regard rω as the radius of the invaded area.
Figure 9 shows rω(t) (solid curve) calculated for all three kernels with ω = 0.01.

In order to estimate the possible effect of chaotic dynamics on the results, the dashed
curves show rω(t) calculated for the slightly perturbed initial conditions (see Sect. 3.4
for details). It is readily seen that the radius of invaded area oscillates with time, these
oscillations beingmore prominent for the Cauchy kernels than for the Gaussian kernel.
Interestingly, the oscillations occur around a certain average value which grows with
time linearly. This constant growth rate appears to be about two times larger for the
Cauchy kernels than for the Gaussian kernel, which we attribute to the effect of the
long-distance dispersal. Perturbation of the initial conditions affects the exact value
of rω(t) but does not affect the value of the average. We also observe that chaos does
not seem to have much effect on the linear growth rate of the average (as the dashed
curves in Fig. 9 follow qualitatively the same pattern as the solid curves), although
the exact timing of the oscillations in the value of the radius rω(t) becomes different
after a certain time, which is consistent with the results of Sect. 3.4.

We therefore conclude that, in case of patchy invasion, the species spread takes
place with a constant speed. There is no accelerating spread even for the kernels with
a very fat tail such as (18) and (19). This apparently contradicts to some previous
results (Kot et al. 1996; Medlock and Kot 2003; Garnier 2011). However, a closer
look reveals that those previous results were obtained for a linearized system (i.e., for
the system where the nonlinear function describing the population growth is replaced
by the linear term of the Taylor series) at the leading edge of the invaded area where
the population density is very small. This approach does not apply to the case where
the population growth is affected by the strong Allee effect, cf. ‘pulled’ and ‘pushed’
population waves (Lewis and Kareiva 1993). The strong Allee effect changes the rate
of spread dramatically and preclude accelerating invasion. Constant rate of species
spread resulting from the interplay between the long-distance dispersal and the strong
Allee effect was earlier observed for single-species models (Kot et al. 1996; Chen
1997; Wang et al. 2002). Here we show that this holds also in the case of patchy
invasion in the two-species predator–prey system.
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Fig. 9 Rate of the population
spread. Radius rω of the invaded
area vs time obtained for a
Gaussian kernel, b Cauchy
kernel Type I and c Cauchy
kernel Type II. Parameters
correspond to those used in the
figures above, i.e., (a) as in
Fig. 3, (b) as in Fig. 5, (c) as in
Fig. 7. Solid and dashed curves
correspond to unperturbed and
perturbed initial conditions,
respectively, see details in the
text
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4 Discussion and Concluding Remarks

In this paper, we have considered biological invasion of an alien species that is
affected by its predator, the latter presumably being introduced as a biological con-
trol agent. Both species have a structured life cycle with distinctly different stages of
growth/reproduction and dispersal. The corresponding mathematical model is given
by a system of two coupled integro-difference equations where the kernel can be
either thin-tailed (Gaussian) or fat-tailed (Cauchy), hence taking into account short-
and long-distance dispersal, respectively. We have shown that, in a certain parameter
range, the invasion takes place by a somewhat unusual scenario where there is no
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population front and the species are spreading into space through the dynamics of
separate patches of high population density. We call this scenario the patchy invasion.

Patterns of species spread during biological invasion have been a focus of attention
for at least two decades (Sherratt et al. 1995; Shigesada et al. 1995; Davis et al. 1998;
Lewis and Pacala 2000; Petrovskii et al. 2002; Parker 2004; Johnson et al. 2006;
Morozov et al. 2006; Mistro et al. 2012) for both theoretical and practical reasons. It
is important to distinguish between the cases where the population density behind the
front is relatively uniform and where it exhibits large-amplitude oscillations (Sherratt
et al. 1997), in particular because the latter may pose a much greater challenge for
the monitoring and control of the invading species (Petrovskii et al. 2014). Even a
greater challenge can be posed by the scenario of species spread where the continuous
invasion front as such ismissing altogether. In this case, the invasion takes place via the
formation and dynamics of separate population colonies or patches of high population
density separated by wide stretches of space where the population is virtually missing
and hence is undetectable. Several cases of this patchy invasion have been observed
including the notoriously famous case of the gypsymoth invasion (Liebhold et al. 1992;
Liebhold and Tobin 2006). One possible mechanism resulting in the patchy invasion
is the interaction of the spreading species with a predator (Petrovskii et al. 2002;
Morozov et al. 2006) or a pathogen (Petrovskii et al. 2005; Jankovic and Petrovskii
2013) coupled with dispersal.

In the previous work, the patchy invasion was studied theoretically in much detail
using diffusion-reaction models, which is a natural framework to describe a popula-
tion with overlapping generations (i.e., stage-unstructured) spreading predominantly
by means of the short-distance dispersal. In this paper, we extended those results far
beyond the diffusion–reaction framework and showed that the patchy invasion can be
observed as well in the invasion of a stage-structured species spreading by predomi-
nantly long-distance dispersal.We have observed that, in agreementwith the properties
of patchy invasion studied previously in terms of differentmodels (e.g., Petrovskii et al.
2005; Mistro et al. 2012), in the discrete-time space-continuous kernel-based model
(3–4), patchy invasion occurs in the parameter range close to the species extinction.
(In particular, the corresponding non-spatial system exhibits only trivial dynamics
always resulting in the extinction of both species.) Note that this applies not only to
the parameters of the equations but also to the choice of the initial conditions; for
the initial conditions similar to (26–27) but with a somewhat different distribution of
predator, the system’s dynamics can result in species extinction.

We emphasize that the extension of the results obtained for the short-range dispersal
onto the case of the long-distance dispersal, e.g., as described by the Cauchy-type
kernels, is non-trivial and is hardly possible to predict intuitively. In particular, the
characteristic spatial scale of the chaotic patchy pattern is known to be controlled
by the spatial correlations so that, for instance, the characteristic size of the patch
coincides (up to a numerical coefficient on the order of unity) with the correlation
length of the system (Petrovskii et al. 2003; Malchow et al. 2008). The much fatter tail
of the Cauchy distribution means the existence of long-range spatial correlation; in
fact, it is sometimes thought about as an infinite-range correlation because the Cauchy
distribution has infinite variance. Thus, the onset of the spatiotemporal chaos as a
result of the patchy spread is a highly counter-intuitive result.
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We mention here that numerical simulations of chaotic dynamics are challenging
and have to be done with great care. In particular, chaotic dynamics of the system
(3–4) can result in a curious effect that can be called an artificial loss of symmetry.
The matter is that, when the problem is solved numerically by a computer, there is
usually a very small random noise present in the computer memory. This noise can
be cleared out in various ways, e.g., by introducing a technical threshold, say η, so
that once the content of the memory cell is less than η than it becomes exactly zero.
In case of the regular dynamics, this small noise normally would not have any effect
on the results. However, the situation can be different in case of chaos because of its
inherent sensitivity to perturbations. Consider Eqs. (3–4) with initial conditions (24–
25). As was discussed in Sect. 3.1, this mathematical problem is symmetrical with
regard to reflection x → −x and y → −y. Therefore, the solution N (x, y, t) should
possess this symmetry at any time t , and this is indeed what is seen in the snapshots
shown in Fig. 2. The results shown in Fig. 2 are obtained with the noise clearing
at the threshold η = 10−8. However, the situation becomes different if the noise is
not cleared. Figure 10 shows the simulation results obtained for the same parameters
and initial conditions as Fig. 2 but without noise clearing. It is readily seen that the
snapshots obtained at the earlier stage of the dynamics (Figs. 10a–c) demonstrate clear
reflectional symmetry. However, the symmetry starts breaking at about t = 100 and
the patterns obtained for a later time promptly become irregular, see Figs. 10d–f. Note
that the moment when the symmetry starts breaking due to the chaotic amplification of
the random noise is in a good agreement with the results of Sect. 3.4. We also mention
that this loss of symmetry due to the effect of computer noise is not a unique property
of the kernel-based model and it has previously been reported for diffusion–reaction
systems (Petrovskii et al. 2005).

In this paper, we were mostly interested in demonstrating that the ecologically
highly relevant scenario of patchy invasion can occur for an alien species that spreads
across space by means of long-distance dispersal. Having achieved that, our study
leaves a number of open questions. In particular, considering our mathematical model
in the context of real-world biological invasions, a question arises as to whether the
properties of the emerging patchy spatial pattern are actually close to the properties
of the spatial population distribution of invading species observed in nature. In order
to address this problem, one can quantify the patterns in various ways, e.g., by calcu-
lating the powers spectra (Ranta et al. 2005), by applying the wavelet analysis (Dale
and Mah 1998), by calculating the fragmentation index (Garnier et al. 2012) or by
applying more specific methods of pattern recognition (Duda et al. 2001). Compari-
son between the results of such analysis for the real-world patterns and for simulation
results obtained from different relevant models may help to identify ‘the best model’
and hence to shed the light onto the mechanisms behind the patchy invasion. In its
turn, a better understanding of the invasion mechanisms and scenarios is likely to
lead to more efficient control strategies. Although this challenging and ambitious task
clearly lies behind the scope of this paper, it should become the focus of the future
research.

Acknowledgments This work was partially supported by FAPERGS Grant n.2199 12-1.
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Appendix 1: Details of numerical integration

Boundary Conditions, Stationary Case

For the purposes of this paper, we need a boundary condition as non-intrusive as
possible in order to minimize the boundary effect on the population dynamics in
the interior of the domain. Since the kernel-based model is non-local, the relevant
boundary condition is expected to be non-local as well.

Consider the normally distributed symmetrical kernel in the 1D domain �:

k(x, y) = 1√
2πα2

exp

(
− (x − y)2

2α2

)
. (33)

where (x, y) ∈ �. In the context of individual organism’s movement, the dispersal
kernel k(x, y) gives the probability density of the event that an individual located at
the position y before the dispersal will be found at the position x after the dispersal,
and parameter α quantifies the spatial scale of the dispersal. We therefore require that
the total probability is

P(x) =
∫

�

k(x, y)dx =
∫

�

k(x, y)dy ≡ 1. (34)

The boundary can be regarded as non-intrusive when the requirement (34) holds at
any point in the computational domain �. However, it is obviously not so when x
is sufficiently close to the domain’s boundary regardless the size of the domain, see
Fig. 11.

In order to understand how the problem should be modified in order to make sure
that condition (34) holds everywhere in the computational domain, we now consider
the 1D domain � = [−L , L]. From (33) and (34), we obtain:
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Fig. 11 Validation of the condition (34) in the domain �. The kernel (33) has the variance α = 3. The
domain size is � = [−L , L], where a L = 10 and b L = 50
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P(x) =
∫

�

k(x, y)dy =
L∫

−L

k(x, y)dy = 1

2

[
erf

(
L − x√

2α

)
+ erf

(
L + x√

2α

)]
,

where erf(ξ) is the error function.Clearly, in order to satisfy (34),weneed to ensure that

erf
(
(L − x)/(

√
2α)

)
≈ 1 and erf

(
(L + x)/(

√
2α)

)
≈ 1 with sufficient precision.

We recall that erf(−ξ) = −erf(ξ), and erf(ξ) is amonotone function of its argument
ξ , erf(ξ) → 1 as ξ → ∞. It is well known that erf(ξ) is very close to 1 for ξ ≥ 3, as
we have erf(3) = 0.99998. Hence, we require that

L − x√
2α

≥ 3 and
L + x√

2α
≥ 3 (35)

in order to make P ≈ 1 with sufficient precision. That can be achieved by performing
the integration on a smaller domain, i.e., x ∈ [−L+3

√
2α, L−3

√
2α]. Alternatively,

however, if our domain of interest is [−L , L], we can consider an extended domain
�ext where the integration is performed. From the conditions (35), it is obvious that
the extended domain preserving the condition (34) with sufficient accuracy can be
defined as follows:

�ext = [−L − 3
√
2α, L + 3

√
2α]. (36)

Note that, apart from the size of the extended domain, parameter α also gives us
a rough estimate of the grid step size in the problem, as we require that the interval
of the length α should contain at least one grid point. For instance, if L = 10 and
α = 0.1, then the minimum size of the domain �ext is �ext = [−10.425, 10.425] and
the minimum sensible number of grid points should be nmin = 210. For n < nmin,
the poor approximation will result in P being considerably less than 1 or may lead to
P > 1 which is senseless.

The analysis similar to that performed above for the normal distribution can be
carried out for a different type of the kernel. Consider now the Cauchy-distributed
kernel,

k(x, y) = β

π((x − y)2 + β2)
, (37)

where β is a parameter. Again, we require that the condition (34) holds. Let us fix
the value of x in (37) and consider it as the Cauchy distribution of the variable y.
Integration over the domain � = [−L , L] gives

P(x) =
L∫

−L

k(y)dy = 1

π

[
arctan

(
L − x

β

)
+ arctan

(
L + x

β

)]
. (38)

In order to meet the requirement P = 1, we need to ensure that arctan ((L − x)/β) =
π/2 and arctan ((L + x)/β) = π/2.
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Table 1 Convergence of arctan(v) to its limiting value π/2 for large argument v

v 20 30 40 50 100 200 500

arctan(v) 0.4841π 0.4894π 0.4920π 0.4936π 0.4968π 0.4984π 0.4994π

Let v∗ be a parameter that provides the required accuracy of the integration, such
that arctan(v∗) ≈ π/2 with the desired precision. We then require

L − x

β
≥ v∗ and

L + x

β
≥ v∗, (39)

in order to approximate P ≈ 1 in the expression (38). That will give us the necessary
range of x as

x ∈ [−L + βv∗, L − βv∗].

Therefore, the extended domain �ext can be defined as

�ext = [−L − βv∗, L + βv∗]. (40)

Clearly, for any chosen accuracy v∗, the size of the domain is fully controlled by the
value of the parameter β.

We notice here that the asymptotic convergence of the function arctan(v) is much
slower than the convergence of the function erf(v). Correspondingly, in simulations
with the Cauchy kernel, the domain extension has to be considerably larger than in
simulations with the normally distributed kernel. By the way of example, several rele-
vant values of arctan(v) are given in Table 1. Considering, for instance, the minimum
accuracy of 0.2% (i.e., at most 0.002 of the total population is lost because of its
dispersal through the domain boundary), we observe that factor v∗ ≈ 200. For a
hypothetical value β = 0.1, it leads to the requirement that the margin separating the
spreading population from the domain boundary should be about 20 or larger.

The above approach readily applies to the 2D problem as well, with the obvious
modification that it should be used in both directions x and y.

Accumulation of Integration Error with Time

We now investigate how fast the numerical error is accumulated with time when the
kernel is defined in either the original domain � or the extended domain �ext. For this
purpose, we consider

Nt (x) =
∫

�

k(x, y)Nt−1(y)dy, (41)

where, at each generation t , we take into account only dispersal but not reproduc-
tion. Consider the case where the dispersal kernel is normally distributed; see (33).
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Assuming for the sake of simplicity that the initial condition is given by the normal
distribution as well, i.e.,

N0(y) = 1
√
2πα2

0

exp

(

− (y − μ)2

2α2
0

)

, (42)

the population density after t generations is given by the following normal distribution:

Nt (x) = 1
√
2πα2

t

exp− (x − μ)2

2α2
t

, (43)

where the variance is
α2
t = α2

0 + tα2, (44)

t = 1, 2, 3 . . ..
Let us now compute the function Ñt (x) by numerical integration in the domain

� and compare it with the exact solution Nt (x) given by (43). For any fixed t , the
error ei = |Nt (xi ) − Ñt (xi )| is computed at every point i = 1, 2, . . . , K of a uniform
computational grid where K is the total number of grid nodes. The error norm is then
defined as

||e|| = max
i=1,...,K

ei . (45)

The graph of the error norm (45) as a function of t is shown in Fig. 12 by the dashed
curve. The parameters of this test case are α = 3.0, α0 = 1.0, μ = 0, t = 10
and � = [−20, 20]. The number of grid nodes on a uniform computational grid is
K = 2049. Here and below, the error is shown on the logarithmic scale. It is readily
seen that the error increases rapidly as the time progresses. Further refinement of the
grid does not result in any significant improvement in accuracy. Hence, we conclude
that poor accuracy of numerical integration for t > 10 is related to inaccurate kernel
computation at the domain boundaries as discussed in the previous section.

Fig. 12 Computation of the
convolution by numerical
integration. The test case
parameters are α = 3.0,
α0 = 1.0, μ = 0, t = 10 and
� = [−20, 20]. The graph of the
error norm (45) as a function of
t . The computation is made in
the domain �ext (solid line,
open square) and the domain �

(dashed line, closed circle)
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Fig. 13 Computation of the convolution by numerical integration when the kernel parameter α is varied.
The other parameters are α0 = 1.0, μ = 0, � = [−20, 20] and t = 25. a The graph of the function N (t, x)
given by (43) for α = 0.05, α = 0.5 and α = 2.0. b The graph of the error norm (45) as a function of
α. The computation is made in the domain � (dashed line, closed circle) and the domain �ext (solid line,
open square)

We nowmake use of the findings in the previous section and compute the solution of
Eq. (41), which we denote as Ñt (x), by numerical integration in the extended domain
�ext. The numerical solution Ñt (x) is then compared with the exact solution Nt (x) in
the domain�. We emphasize that the domain�ext should be thought of as an auxiliary
domain only used for accurate computation of the kernel. The resulting function Ñt (x)
is still considered in the domain � where we assume the species population exists in
the framework of our model.

The error norm for the function Ñ (t, x) when the computation is performed in the
domain �ext is shown in Fig. 12 by the solid curve. The problem parameters remain
the same as in the previous test case. According to the analysis done in the previous
section, see (36), the size of the extended domain is �ext = [−32.7279, 32.7279]. It
is therefore clear that computation in the extended domain �ext provides very good
accuracy for the solution evaluation in the original domain �.

Note that the error only becomes large when the integrand function Ñt−1(x) has
relatively large values close to the endpoints of the domain. Let us fix the time t and
vary the parameter α in the formula (33). The corresponding graphs of the function
Nt (x) are shown in Fig. 13a. For each value of α, we compute the error norm shown
in Fig. 13b, where the results of computation are presented in the domain � and the
domain �ext.

We therefore conclude that the accuracy of computation will deteriorate with time,
provided that the support of the integrand Nt−1(x) gets bigger as the time progresses.
The ‘critical’ time tc when the error becomes unacceptably large can be roughly
estimated from the condition 3αt = L , where αt is given by the Eq. (44). For L = 20,
α0 = 1.0 and α = 3.0, we have tc ≈ 4 and this estimate appears to be in a good
agreement with the results of Fig. 13a.
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Grid Convergence Test

Now we consider a nonlinear integro-difference equation that takes into account both
dispersal and reproduction:

Nt (x) =
∫

�

k(x, y) f (Nt−1(y))dy. (46)

In order to test the quality of our numerical approach, we need a function f that could
provide a non-trivial spatiotemporal dynamics such as pattern formation. Correspond-
ingly, we consider

f (N ) = r N exp (−N ). (47)

As for the dispersal, we consider the normally distributed kernel given by (33).
Equation (46) is solved numerically in the domain [−L , L] to obtain the solution

Nt (x) at generation t from the solution Nt−1(x) at the previous generation t − 1. We
use a regular grid, so that the location of each grid node in the domain is given by
xi+1 = xi + �, where the grid step size � = 2L/K and K is the number of grid
nodes. For any fixed time t , the accuracy of the solution depends on the total number
of nodes in the spatial grid used for numerical integration. The example of numerical
solution on a coarse grid of K = 129 nodes and a fine grid of K = 8193 nodes at the
fixed time t = 20 is shown in Fig. 14. It is readily seen that the solution accuracy is
lost on the coarse grid where the grid step size is not sufficiently small to resolve the
solution oscillations.

The above observations can be summarized by computing the solution error on a
sequence of spatial gridswhen the time t is fixed.Namely,wefirst compute a numerical
solutionon averyfinegrid of K f = 8193nodes.Weconsider this numerical solution as
this ‘exact’ solution and denote it N exact(x). We then generate a sequence of uniformly
refined grids where the ‘exact’ solution obtained on the fine grid should be available
on each grid in the sequence. Hence, we consider a projection of fine grid onto a
uniform coarse grid of K nodes. The number K is defined as K = sK0 + 1, where
K0 = 32 is the number of grid subintervals on the initial coarse grid and the scaling
coefficient is s = 2p, p = 0, 1, 2, . . . , 7. The nodal coordinates xci , i = 1, . . . , K and

Fig. 14 Comparison of the
solution on a fine grid of 8193
nodes (a bold line) with the
solution on a coarse grid of 129
nodes at the fixed time t = 20.
The domain size is [−L , L],
where L = 15.0. The other
parameters are α = 0.1 and
r = 7.0
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Fig. 15 The error norm as a
function of the number K of grid
nodes

101 102 103

10-6

10-5

10-4

10-3

10-2

10-1

100

101 ||e||

K

x f
i , k = 1, . . . , K f , considered on the coarse and fine grid, respectively, are related as

xci = x f
k , where k = si . Once the grid projection has been made, the ‘exact’ solution

is readily available at nodes xi of a coarse grid and the solution error

ei = |N (t, xi ) − N exact(t, xi )| (48)

is computed at each node. The error norm is defined accordingly as ||e|| = maxi ei .
The graph of the error norm as a function of the number K of grid nodes is shown in

Fig. 15. It is seen from the figure that very good accuracy of computation is approached
when the number of grid nodes is K ≥ 513, i.e., the grid step size is � < 0.0586.
Meanwhile, the solution is very poorly resolved on coarse grids with K ≤ 65 where
the maximum error is ||e|| ∼ 1.

Appendix 2: Details of the FFT Numerical Technique

Let the function f (x) be defined in the domain x ∈ (−∞,+∞). The Fourier transform
f̂ (s) of the function f (x) is given by

f̂ (s) =
+∞∫

−∞
f (x)e−2π isxdx, (49)

and the inverse Fourier transform is

f (x) =
+∞∫

−∞
f̂ (s)e2π isxds.
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Consider now two functions f (x) and g(x) defined for x ∈ (−∞,+∞). Their
convolution denoted f ∗ g is defined as

f ∗ g =
+∞∫

−∞
f (y)g(x − y)dy. (50)

Obviously, the convolution f ∗ g is a function of x , f ∗ g ≡ f ∗ g(x) and we can
apply (49) to f ∗ g(x) to obtain the Fourier transform ̂f ∗ g(s) of the convolution.

Let f̂ (s) be the Fourier transform of a function f (x) and ĝ(s) be the Fourier
transform of a function g(x). The convolution theorem states that

̂f ∗ g(s) = 1

2π
f̂ (s)ĝ(s), (51)

i.e., the Fourier transform of the convolution of two functions is equal to the product of
their Fourier transforms (e.g., see Champeney 1973). Thus, the convolution f ∗ g(x)
of two functions can be found by calculating and inverting the Fourier transform
̂f ∗ g(s) rather than by performing straightforward integration in (50).
It is important to note that the convolution theorem (51) can be applied in the multi-

dimensional case where f (x) and g(x) are functions of the vector argument x. The
following discussion refers to the one-dimensional case as all basic results can be
readily extended to a two-dimensional problem.

The functions f and g in the theorem (51) are generally supposed to be complex
functions. Clearly, real functions in the generic population dynamicsmodel (2) present
a particular case of complex functions and the theorem (51) can therefore be employed
in our problem to compute

f ∗ k =
∫ L

−L
f (y)k(x − y)dy, (52)

where f ∗ k is required to obtain population distributions and the definition of the
kernel k(x) is given in the text. The interval L has to be chosen large enough so that
in the time considered in the simulation, there is no boundary effects on the solution
and we can assume that y ∈ [−L , L] is a good approximation of the infinite interval
(see also the discussion in Appendix 1).

The convolution theorem gives us the theoretical background for finding the values
of a continuous function f ∗ k in the formula (52). However, when the problem (2) is
solved numerically, see Sect. 3.3, both the population density and the kernel are only
defined at nodes of a computational grid. Thus, the continuous Fourier transform has
to be replaced with the discrete Fourier transform (DFT).

Let a continuous function f (x) be discretized over the interval x ∈ [0, 1] so that
only the values fk ≡ f (xk) are considered, where xk = k�x , k = 0, . . . K − 1,
�x = 1/(K − 1) is the grid step size and K is the number of grid nodes chosen
in the problem. We denote [ fk] the discrete function given by the set of numbers
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f0, f1, . . . , fK−1. The DFT of the function [ fk] denoted Fs is defined as

Fs = 1

K

K−1∑

k=0

fke
2π iks/K . (53)

The corresponding inverse transform is

fk =
K−1∑

s=0

Fse
−2π iks/K . (54)

The discrete Fourier transform can be loosely thought of as approximation of the
integral (49) by the finite sum (53).

One important consequence of the definition (53) is that the convolution theorem
is still valid in the discrete case stating that the product of the two individual DFTs
will give the DFT of the discrete convolution (e.g., see Nussbaumer 1982). Thus, the
task of computing the convolution (52) can be decomposed as computing k̂ and f̂ to
produce ̂k ∗ f = k̂ f̂ and then computing the inverse DFT of the product.

Computing and inverting the DFT can be done efficiently with help of the fast
Fourier transform (FFT) numerical algorithms. The key idea behind any FFT compu-
tational routine is to reduce the number of operations required to compute the DFT
and its inverse transform.

While the number of operations in a straightforward DFT computation using the
formula (53) is O(K 2), an FFT algorithm reduces that number to O(K log2(K )). It
is worth noting here that the FFT is also superior to methods of numerical integration.
For instance, numerical integration of (52) by a composite trapezoidal rule can be done
in O(K 2) operations.

The significant reduction in the number of operations requires a sophisticated algo-
rithm incorporating a number of computational tricks, e.g., choosing the number K to
be K = 2m for some integerm and interchanging the first and second parts of the out-
put vector in a computer program. The detailed explanation of the FFT algorithm can
be found elsewhere (e.g., Press et al. 2007). In our problem, there also are some small
modifications to the standard FFT routine dictated by the problem statement: We have
to multiply the result by 2L (as the standard FFT algorithm assumes that the functions
are defined on the interval [0, 1]) and remove the imaginary vector components created
during the calculations as we deal with real functions only.

In the two-dimensional case, the FFT can be split into a series of one-dimensional
FFTs resulting in the total number of operations O(K 2 log2(K )). We use internal
Mathematica routines to calculate the two-dimensional Fourier transform by FFT
and, hence, obtain the population distributions over the lattice.

The results of the FFT computation performed for several test cases have been
verified by direct numerical integration of (52), and very good agreement between the
results of the two methods (i.e., the FFT and the trapezoidal rule of integration) was
demonstrated in all test cases.
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