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Abstract Amathematical model for the honeybee–varroa mite–ABPV system is pro-
posed in terms of four differential equations for the: infected and uninfected bees in
the colony, number of mites overall, and of mites carrying the virus. To account for
seasonal variability, all parameters are time periodic. We obtain linearized stability
conditions for the disease-free periodic solutions. Numerically, we illustrate that, for
appropriate parameters, mites can establish themselves in colonies that are not treated
with varroacides, leading to colonies with slightly reduced number of bees. If some of
these mites carry the virus, however, the colony might fail suddenly after several years
without a noticeable sign of stress leading up to the failure. The immediate cause of
failure is that at the end of fall, colonies are not strong enough to survive the winter in
viable numbers. We investigate the effect of the initial disease infestation on collapse
time, and how varroacide treatment affects long-term behavior. We find that to control
the virus epidemic, the mites as disease vector should be controlled.
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1 Introduction

TheWestern honeybee, Apis melifera, is responsible for pollinating one-third of Cana-
dian food crops (Canadian Honey Council 2013), corresponding to an economic value
to Canadian agriculture of over $2 billion annually (Canadian Honey Council 2013).
The key factor in the effectiveness of honeybees is their colony size and the life span,
which varies with the seasons. A honeybee colony usually consists of a single repro-
ductive queen, 20,000–60,000 adult female worker bees, 10,000–30,000 worker brood
(in the form of egg, larvae and pupae) and hundreds of male drones (Sumpter andMar-
tin 2004). A sufficient number of adult worker bees are required to perform the tasks
of brood rearing, guarding, foraging and honey production. The size of a honeybee
colony and the average life span of individuals vary greatly over the year from season
to season. The egg-laying rate of the queen bee is slow in spring, increases in summer
and then decreases in fall. The queen bee stops laying eggs before winter (Ministry of
Agriculture 2011).

The number of honeybee colony losses worldwide has been increasing rapidly since
2006 (Kevan et al. 2007; Potts et al. 2010; Engelsdorp et al. 2008). The symptoms
of colony failure are different in different parts of the world, and hence, losses are
designated by different names. The losses first observed in USA are called Colony
Collapse Disorder (CCD). The syndrome is characterized by the disappearance of
mature adult bees. The capped brood still remains in the hive. There are no dead
bodies in the colony, but only an insufficient number of young adult worker bees
remain to care for the hive. There is nectar, pollen and honey present in the colony,
indicating that the young bees are reluctant to consume the food. In other countries,
e.g., Canada and Germany, it has been observed that the colonies become so weak in
the winter that they cannot emerge as healthy colonies in the spring. This is known as
wintering losses (Genersch et al. 2010; Guzmán-Novoa et al. 2010). No single factor
is believed to be responsible for these colony losses; various possible factors could
involve weather conditions, poor diet, transportation of bees for agricultural practices,
pesticides and parasites (Becher et al. 2013). One main cause is thought to be the
parasitic mite Varroa destructor and the viruses it carries (Genersch et al. 2010; Conte
et al. 2010; Stankus 2008).

Varroa destructor is an ectoparasitic mite that infests honeybee colonies. It is one of
the haplotypes of Varroa jacobsoni, a parasite that infests the Eastern honeybee Apis
cerana (Anderson andTrueman 2000).Varroa destructor is the species that parasitized
Apis melifera and spread rapidly inWestern countries thereafter. Varroa mites not only
feed on brood and adult bees, but also carry and transmit deadly viruses from bee to
bee (Bowen-Walker and Gunn 1998; Rosenkranz et al. 2010). Mites reproduce inside
a honeybee brood cell. Female mites enter into the brood cell before the cell is capped.
After the capping of the cell, the mite not only feeds on the developing bee but also
reproduces in the cell. When the host bee leaves the cell, the mother mite leaves the
cell with its progeny. The adult female mite becomes attached to the adult bee and
feeds on it by squeezing between the overlapping segments on the ventral side of bee’s
abdomen.

Viral infections may get injected into the bee’s body during this feeding process.
When a virus-carrying mite feeds on an uninfected bee, it might release the virus into
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the bee’s haemolymph. Similarly when a virus-free mite feeds on an already infected
bee, it can acquire the virus. There have been around 20 known honeybee viruses, of
which 12 are transmitted by varroa mites (Kevan et al. 2006; Ostiguy 2004). These
viruses differ in their transmission routes, virulence and impact on the host.

Our focus is on the Acute Bee Paralysis Virus (ABPV). This virus belongs to the
family of Dicistroviridae along with some other viruses such as Kashmir Bee Virus
(KBV) and Israeli Acute Paralysis Virus (IAPV). ABPV is frequently implicated in
honeybee colony failure, especially when the colonies are infested with the parasitic
mite Varroa destructor (Kevan et al. 2006). It has often been associated with wintering
losses (Genersch et al. 2010; ZKBS 2012). This virus is distributed worldwide and
appears to be themost common bee virus in Europe and South America (Antunez et al.
2005; Ball and Allen 1988). Adult bees infected with this virus suffer from paralysis,
trembling, inability to fly and the gradual darkening and loss of hair from the thorax and
abdomen before they die. Pupae that are infected with ABPV die quickly and normally
do not develop into adult bees (Martin 2001; Moore et al. 2015). Varroa mites are a
mechanical vector for the transmission of ABPV, i.e., unlike other honeybee viruses
such as the DeformedWing Virus (DWV) or the IAPV. ABPV does not replicate in the
mites (Genersch 2010; Miranda et al. 2010; ZKBS 2012). Other transmission routes
of ABPV have been suggested, but the literature is inconclusive and quantitative data
that would allow a parameterization of a mathematical model are scarce. For example,
Chen et al. (2006) investigated the question of vertical transmission for six viruses.
While they found for five of them, including DWV, that infection of the queen implied
infection of her offspring, this was not found for ABPV. Chen and Siede (2007) reports
of a study in whichABPVwas detected in pollen but not in the bees and their glandular
secretion, suggesting that the ingestion of food which contains virus might not lead
to infection. Moreover, they report that in colonies without varroa mites ABPV, if it
is present, is latent, whereas the presence of varroa triggers the disease, suggesting
ABPV virulence is directly related to varroa infestation, cf also Genersch (2010),
Moore et al. (2015), ZKBS (2012).

A recent summary of many honeybee mathematical models (Becher et al. 2013),
based on a keyword database search, divides the models into three categories: colony
models, varroa models and foraging models. The level of sophistication and detail of
these models and, accordingly, the level of input data required, vary widely from very
simple models that can be expressed in algebraic relationship to computer simulations
models consisting of several dozens of differential equations. While some of these
models are very detailed with respect to honeybee biology, and while some of these
models include aspects of varroa population dynamics, only very few models can be
found that include mites and the diseases for which they are a vector. In particular,
there are few existing papers that study models for ABPV (Eberl et al. 2010; Ratti
et al. 2013; Sumpter and Martin 2004).

The first published model for the honeybee–mite–virus system in the literature was
(Sumpter and Martin 2004). This is an SIR-type model, in which the overall number
of mites infesting the colony is a fixed parameter but the number of mites carrying
the virus is a dependent variable. The model is formulated for two viruses, ABPV
and DWV, separately. The authors consider the autonomous case and study the model
behavior for each season separately, based on seasonal averages for the parameters.
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The data requirement for this model, in terms of number of parameters, is moderate;
the authors present a complete model parameter set for each season obtained from the
observational and experimental literature. ForABPV, thismodel wasmodified in Eberl
et al. (2010), to include brood maintenance terms reflecting that a minimum number
of worker bees is always required to care for the brood in order for new bees to be
born. This introduces anAllee effect with an unconditionally stable trivial equilibrium.
On the other hand, the original model (Sumpter and Martin 2004) assumes that the
birthrate is independent of colony strength and does not permit a trivial equilibrium,
unless the death rate is higher than the birthrate, which naturally leads to collapse.

In Ratti et al. (2013) [see also (Eberl et al. 2014)], the model of Eberl et al. (2010)
was extended, adding a simple growth model for the mite population dispensing with
the assumption that the mite load in the colony is constant. The mite dynamics are
described by a logistic equation with a carrying capacity that depends on bee colony
strength which is used here as an approximate indicator of brood size. Also, while in
Eberl et al. (2010), Sumpter and Martin (2004) the direct detrimental effect of mites
on bee colony size was subsumed in the bee death rate, the dynamic model for the mite
population (Ratti et al. 2013) distinguished between natural death and death caused
by the parasite.

A current and parallel bee colony model without disease is developed in Khoury
et al. (2011), where the colony is compartmentalized into hive and forager bees. This
leads to a two-dimensional system of ODEs that can be discussed completely in the
phase plane. The original purpose of the model was to investigate the effect of the loss
of forager bees on the adaptive early recruitment of hive bees to foraging, and how
this affects overall colony strength and survival. This model was used to investigate
the effect of environmental pesticides on survival of strength of colonies in Henry
et al. (2012), see also Henry et al. (2012), Henry (2013). In Kribs-Zaleta and Mitchell
(2014), it was extended to account for an unspecified disease that is brought into the
colony by the foragers. This extended model was studied in much detail analytically
and numerically. The description of disease in this model is rather general and it
is left open to what extent the results apply to specific diseases such as ABPV and
DWV, which require both a vector and a causative agent. Another current extension
of Khoury et al. (2011), although less relevant for our particular study but important
in modeling work on the colony collapse phenomenon is Khoury et al. (2013), where
brood size and food stores and their role in colony dynamicswere explicitly considered.
A generic disease model similar to Kribs-Zaleta and Mitchell (2014) is presented in
Betti et al. (2014). This model explicitly accounts for food storage as does the model
(Khoury et al. 2013) and assumes that in addition to worker population size, food
availability can limit the birthrate. The resulting system of five ODEs is numerically
studied through a sensitivity analysis, including an investigation of wintering effects,
by adjusting growth rate, forager recruitment rate and food production rate to zero.
Consistent with Kribs-Zaleta and Mitchell (2014), the model in Betti et al. (2014)
assumes direct transmission of virus between bees, without a vector.

Themodels discussed above all are formulated under assumption of constant model
parameters, i.e., strictly speaking only valid for at most a single season under the
assumption that seasonal averages give a good description of environmental dynamics
and under the assumption that the timescale of the dynamics is sufficiently fast, so
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that the system equilibrates quickly, in significantly less time than the duration of a
season. However, these assumptions preclude the model from being used to study the
fate of a mite, and possibly virus, infested colony over years. This is a severe limitation
of these models as the disease process appears to be, in many cases, fundamentally a
multi-season or even multi-year process. For example, wintering losses occur when
a bee population is too weak at the end of fall to make it through winter in numbers
that allow the colony to rebound and function properly in spring. To investigate these
phenomena, a model must be able to cover the transition between seasons and span
an entire year.

In this study, we build on and extend our previous work: (i) We will study the
behavior of the model with seasonally varying parameters over several years. Some
preliminary ad hoc simulationswere included inRatti et al. (2013). In these exploratory
simulations, seasonally constant parameters were used, i.e., jump functions, which we
extend here to parameters that depend continuously in time. The exploratory simula-
tions in Ratti et al. (2013) focused on the role of two parameters: one of the honeybee
population submodel and the other one of the varroa mite population submodel. In the
current study, we will fix these parameters based on the earlier results and focus on
the quantitative role of the initial levels of mite and virus infestations. (ii) Secondly, in
Ratti et al. (2013), the important theoretical question about the stability of disease-free
periodic solutions remained open. We will give an answer in this paper. (iii) Thirdly,
wewill extend themodel by explicitly including the option to account for mite control,
e.g., by varroacide application. This will allow us to investigate the question under
which conditions (on parameters) vector control is a viable remedial strategy for the
virus infestation.

2 Mathematical Model

2.1 Model Assumptions

Our model is based on the earlier studies discussed above (Eberl et al. 2010; Ratti
et al. 2013; Sumpter and Martin 2004). Accordingly, many of the assumptions made
there will be adopted here as well. Our model will also include features not accounted
for in these earlier models, which will lead to additional model assumptions. A brief
list of key model assumptions is provided here:

1. Following Sumpter and Martin (2004), the model will be formulated in terms of
the dependent variables (i) healthy and (ii) virus-infected bees, and (iii) number
of mites that carry the virus. Following Ratti et al. (2013), we also include (iv)
the total number of mites, virus-carrying and virus-free, as a dependent variable,
which allows us to account for the dependency of the virus and its effect on the
population dynamics of the vector.

2. The queen bee is not affected by the disease. This is an implicit assumption, which
allows us to assume that the egg-laying rate of the queen is independent of mites
and virus. This assumption follows Betti et al. (2014), Eberl et al. (2010), Khoury
et al. (2013), Kribs-Zaleta and Mitchell (2014), Ratti et al. (2013), Sumpter and
Martin (2004).
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3. The only route of virus transmission we account for is horizontal transmission
vectored by varroa mites. In accordance with Genersch (2010), Miranda et al.
(2010), ZKBS (2012), the mites are assumed to be a mechanical vector only, in
particular no virus replication takes place in the mites.

4. In accordance with Martin (2001), Moore et al. (2015), we assume that infected
pupae die quickly before they develop into adult bees, and that all newly born bees
are uninfected. In Ball and Allen (1988), it is suggested that mortality of brood
in mite-infested colonies is associated with secondary infections by pathogenic
agents. Therefore, following Sumpter and Martin (2004), we assume that only
virus-carrying mites affect the rate at which brood emerge as adult bees.

5. Since mite reproduction depends on brood availability, we assume a carrying
capacity for the mite population that depends on colony strength, as in Ratti et al.
(2013). Colony strength is used here as an approximate measure of brood size.
For simplicity, we use a logistic model to describe the development of the mite
population.

6. Since worker bees are needed to allow the brood to develop to the adult stage, the
birthrate is dependent on the number of bees in the colony. Since bees infected
with ABPV suffer from paralysis and die quickly, we assume that only healthy
bees take part in brood rearing. As in Eberl et al. (2010), we use a Hill function to
describe the brood rearing term, which introduces an Allee effect.

7. It is assumed that healthy and sick bees both die naturally, and also due to mites
feeding on them and/or infecting them with virus. Therefore, as in Ratti et al.
(2013), the death rate has two components: one that depends on the mites and one
that does not. In Eberl et al. (2010), Sumpter andMartin (2004), where the number
of mites was a given parameter, this assumption was not necessary, as both effects
could be compounded into one term. We further assume that the death rates of
infected bees are higher than the death rates of uninfected bees.

8. In contrast to Khoury et al. (2011), Sumpter and Martin (2004), we assume that
all model parameters are functions of time. This allows us to account for seasonal
differences in bee biology.We assume that they are periodic functionswith a period
of one year to reflect seasonal patterns.

9. We account for varroacide treatment by introducing additional sink terms for the
vectoring mites. We also include additional sink terms for the bees depending on
varroacide treatment. However, we assume that the varroacide effect on the mites
is stronger than its effect on the bees.

To describe the transmission of the diseases according to the assumptions 2, 3,
4 above, we follow the ABPV model originally worked out in Sumpter and Martin
(2004), where also a complete set of parameters for disease dynamics is given that
was inferred from observational data.

2.2 Model Equations

Our model extends (Eberl et al. 2010; Ratti et al. 2013; Sumpter and Martin 2004 by
introducing the model assumptions 8 and 9 above. It reads:

123



A Mathematical Model of the Honeybee... 1499

dm

dt
= β1(t)(M − m)

y

x + y
− β2(t)m

x

x + y
− δ2m, (1)

dx

dt
= μ(t)g(x, t)h(m, t) − β3(t)m

x

x + y
− d1(t)x − γ1Mx − δ1x, (2)

dy

dt
= β3(t)m

x

x + y
− d2(t)y − γ2My − δ3y, (3)

dM

dt
= r(t)M

(
1 − M

α(t)(x + y)

)
− δ2M (4)

where the dependent variables are:

m, number of mites that carry the virus;
x , number of honeybees that are virus free;
y, number of honeybees that are infected with the virus;
M , number of mites that infest the colony.

The parameter μ(t) in (2) is the maximum birthrate, specified as the number of
worker bees born per day.

The function g(x, t) in (2) expresses that due to nursing, the birthrate depends on
the number of worker bees. If x becomes small, essential work in the maintenance of
the brood cannot be carried out anymore and no new bees are born. If x is large, bee

rearing is not severely slowed down. Thus, g(0, ·) = 0, dg(0)dx = 0, dg(x)dx > 0, x >

0, limx→∞ g(x, t) = 1. A convenient formulation of such switch-like behavior is
given by the sigmoidal Hill function

g(x, t) = xn

K (t)n + xn
(5)

where the parameter K (t) is the size of the bee colony at which the birthrate is half
of the maximum possible rate, and n > 1 is an integer exponent. For n = 1, the same
birth term as in Khoury et al. (2011) is obtained.Wewill use instead n > 1 because we
assume that a sufficient number of healthy worker bees is required to rear the brood,
which induces an Allee effect as in Eberl et al. (2010). If K = 0, then the bee birth
terms of the original model in Sumpter andMartin (2004) are recovered, i.e., the brood
is always reared at maximum capacity, independent of the actual bee population size.
In this case, no trivial solution can be expected. Since the parameter K represents a
sufficient number of healthy adult bees required to care for the brood and the brood
population varies with season, the parameter K also varies with seasons.

The function h(m, t) in (2) indicates that the birthrate of bees is affected by the
presence of mites that carry the virus. This behavior is particularly important for
viruses like ABPV that kill infected pupae before they develop into bees. The func-
tion h(m, t) is assumed to decrease as m increases, h(0, t) = 1, dhdm (m, t) < 0 and
limm→∞ h(m, t) = 0; Sumpter and Martin (2004) suggests that h(m, t) is an expo-
nential function, h(m) ≈ e−mk(t), where k(t) is nonnegative.

The transmission of the disease is described by the terms with coefficients βi , as
originally proposed in Sumpter and Martin (2004). Parameter β1 in (1) is the rate at
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Table 1 Seasonal averages of model parameters, derived from the data in Martin (1998), Martin (2001),
Ratti et al. (2013), Sumpter and Martin (2004)

Parameter Spring Summer Autumn Winter

β1 0.1593 0.1460 0.1489 0.04226

β2 0.04959 0.03721 0.04750 0.008460

β3 0.1984 0.1460 0.1900 0.03384

d1 0.02272 0.04 0.02272 0.005263

d2 0.2 0.2 0.2 0.005300

μ 500 1500 500 0

k 0.000075 0.00003125 0.000075 N/A

r 0.0165 0.0165 0.0045 0.0045

α 0.4784 0.5 0.5 0.4784

The parameters included here are kept constant for all simulations; the values of the parameters that are
varied are given in the text

which mites that do not carry the virus acquire it. The rate at which infected mites lose
their virus to an uninfected host bee is β2. The rate at which uninfected bees become
infected is β3, in bees per virus carrying mite and time.

The parameters d1 and d2 are the natural death rates for uninfected and infected
honeybees, respectively. We can assume that infected bees have a shorter life span
than healthy bees, thus d2 > d1.

The last Eq. (4) is a logistic growth model for varroa mites. By r(t), we denote the
maximum mite birthrate. The carrying capacity for the mites changes with the host
population size, x+ y, and is characterized by the parameter α(t)which indicates how
many mites can be “sustained per bee” on average.

Mites contribute to increased bee mortality. This is considered in (2) and (3) by
including death terms that depend on M ; the parameters γ1,2 give the rates at which
mites directly kill healthy and virus-infected bees.

The potential effects of externally applied varroacides are described by three new
parameters: δ1, δ2 and δ3. The parameters δ1 and δ3, respectively, represent the death
rates of uninfected and infected bees due to varroacides. We assume that, δ2, the effect
of varroacides on the mites that carry the virus and on the total number of mites is the
same.

The parameters μ, k, K , α, βi , di , δi , γi and r are assumed to be nonnegative and
periodic functions of time with a period T ; in practice T = 1 year. Seasonal averages
of the parameters μ, βi , di and k can be computed from the observational data given
in Sumpter andMartin (2004) and for r from the data inMartin (1998), Martin (2001).
A fixed set of seasonal averages for the parameter K is not available in the literature.
However, we have high and low ranges of K based on Ratti et al. (2013) and we use
these sets of values in this paper. The data are summarized in Table 1.

The values of γ1 and γ2 are estimated to be 10−7 for every season, based on order
of magnitude considerations. For the numerical simulations presented below, we will
use these seasonal averages to construct continuous, smooth coefficient functions. The
construction of such functions is not unique.While the particular choice of construction
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affects the solutions quantitatively, it is not a priori clear whether and to what extent
construction will also affect the qualitative behavior, such as the stability of solutions.
The effect of construction on the solutions is discussed and investigated in more detail
in the “Appendix”, where two strategies based Piecewise Cubic Hermite Interpolating
Polynomials (PCHIP) are described and compared.

3 Stability of Periodic Solutions

Numerical simulations suggest the existence of periodic solutions to (1)–(4), see below.
A formal proof of the existence of such solution hinges on additional properties, which
the coefficient functions must have. Since we only have at most a priori information
about piecewisemonotonicity of the coefficients as the seasons change, a general proof
of the existence appears out of reach at this point, without introducing additional con-
ditions on the parameters. Therefore, we conjecture the existence of periodic solutions,
as observed in simulations, and aim to give conditions for their stability, particularly
in the disease-free case. Although our objective is an analysis of the complete four-
dimensional model (1)–(4), it is instructive to study simpler sub-models first.We begin
with the mite- and virus-free model and then analyze the model where bees and mites
are considered, but the virus is absent.

In the absence of mites and virus, model (1)–(4) reduces to the single differential
equation

ẋ = μg(x, t) − dx − δx (6)

where d is the natural death rate of the bees, and δ is the death rate at which bees die
due to varroacides.

Proposition 3.1 Suppose x(t) = x∗(t) is a periodic solution of the bee-only model
(6). Then, x = x∗ is asymptotically stable if

∫ t
0 (μg′(x∗) − d − δ)dρ ≤ 0.

Proof Linearizing equation (6) about x = x∗ gives,

u̇ = (μg′(x∗) − d − δ)u,

where u = x − x∗. This is a linear differential equation that can be solved with the
method of integrating factors. We find

u(t) = c0e
∫ t
0 (μg′(x∗)−d−δ)dρ.

In order for the periodic solution x = x∗ to be asymptotically stable, the solution
of the perturbed system, u(t), should go to zero. This means that the periodic solution
x = x∗ is stable if

∫ t
0 (μg′(x∗) − d − δ)dρ ≤ 0.

This result shows, as intuitively expected, that in the absence of parasites and virus,
a healthy bee colony will be maintained over multiple years only if the death rate
is greater than or equal to the birthrate per bee over a period of time. Otherwise,
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the colony will grow without bound. On the other hand, since x∗ ≡ 0 is a periodic
solution for which the integral in the exponent is always negative, this result also
shows that this trivial equilibrium is unconditionally stable, i.e., that the Allee effect
of the autonomous model in Eberl et al. (2010), Ratti et al. (2013) carries over to the
nonautonomous model.

Next, we consider (1)–(4) in the absence of the viral disease but potential presence
of mites. The model reduces then to the two differential equations for bees and mites.

dx

dt
= μg(x) − δx − γ1Mx, (7)

dM

dt
= (r − δ2)M

(
1 − rM

(r − δ2)αx

)
. (8)

where δ = d1 + δ1. Here, d1 represents the natural death rate of the bees, and δ1 is the
death rate of the bees due to varroacides. The parameter δ2 is the death rate of mites
because of varroacide application.

Proposition 3.2 Suppose x∗(t) is a periodic positive solution of (6). Then, (x∗, 0) is
a periodic solution of (7)–(8). It is stable if

∫ T
0 (r − δ2)dt ≤ 0 and

∫ T
0 (μg′(x∗) − δ)

dt ≤ 0.

Proof That a positive periodic solution of (6) defines a disease-free solution of (7)–
(8) is immediate from the model equations. In order to analyze its stability, we use
linearization and Floquet theory. We linearize the system about the periodic solution
(x∗, 0), i.e., investigate the long-term behavior of the perturbation u := x − x∗, v :=
M − 0.

The Jacobian of the system is obtained as

J (x, M) =
[

μg′(x) − δ − γ1M −γ1x

rM2

αx2
(r − δ2) − 2rM

αx

]
.

and in (x∗, 0), we find

J (x∗, 0) =
[

μg′(x∗) − δ −γ1x∗

0 r − δ2

]
.

Thus, the linearized system about (x∗, 0) is
[
u̇

v̇

]
=

[
μg′(x∗) − δ −γ1x∗

0 r − δ2

] [
u

v

]
.

We choose the linearly independent set of initial conditions

u1(0) = 1, u2(0) = 0

v1(0) = 0, v2(0) = 1
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to find linearly independent solutions (u1(t), v1(t)) and (u2(t), v2(t)) of the linearized
system.

u1(t) = e
∫ t
0 (μg′(x∗(ρ))−δ)dρ,

v1(t) = 0,

u2(t) = e
∫ t
0 (μg′(x∗)−δ)dρ

∫ t

0
−γ1x

∗e
∫ ρ
0 (r−δ2+δ−μg′(x∗(τ )))dτdρ,

v2(t) = e
∫ t
0 (r−δ2)dρ.

The next step is to construct the fundamental matrix A(t) of the linearized system over
the interval 0 ≤ t ≤ T , where T is the period, and to determine the eigenvalues of the
transition matrix

C = A(T ) =
[
u1(T ) u2(T )

v1(T ) v2(T )

]
,

which are found as

λ1 = e
∫ T
0 (μg′(x∗)−δ)dt , λ2 = e

∫ T
0 (r−δ2)dt .

Stability of (x∗, 0) is then obtained if
∫ T
0 (r − δ2)dt ≤ 0 and

∫ T
0 (μg′(x∗) − δ)dt ≤

0, whereas instability is implied if one of the inequalities is reversed.

This indicates that the mite infestation in a colony can be fought off if (i) the
cumulative death rate of mites due to treatment is greater than or equal to their birthrate
and (ii) the cumulative death rate of healthy bees is greater than or equal to their
birth rate. The mite-free equilibrium is always unstable in the absence of varroacide
treatment, when δ2 = 0, i.e., a mite invasion cannot be fought off by the bees alone
as a consequence of the logistic growth assumption for mites. This generalizes the
findings in Ratti et al. (2013) for the autonomous systems. If (x∗, 0) is unstable, it is
not clear whether the system will converge to the trivial state or whether, for example,
an endemic periodic solution will be obtained in which the bee colony persists in the
presence of mites. The simulations in Eberl et al. (2014), Ratti et al. (2013) suggest
the possibility of such an endemic periodic bee–mite solution for certain parameters.
While in principle Floquet theory could be used to derive a stability condition for such
a periodic solution, algebraic complexity prevented this.

Finally, we turn to the full bee–mite–virus model

dm

dt
= β1(M − m)

y

x + y
− β2m

x

x + y
− δ2m, (9)

dx

dt
= μg(x)h(m) − β3m

x

x + y
− δx − γ1Mx, (10)

dy

dt
= β3m

x

x + y
− δ′y − γ2My, (11)
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dM

dt
= (r − δ2)M

(
1 − rM

(r − δ2)α(x + y)

)
, (12)

where δ = d1 + δ1 and δ′ = d2 + δ3.

Proposition 3.3 Suppose (0, x∗, 0, 0) is a periodic nonnegative disease-free solution
of (9)–(12), where x∗ is a periodic solution of the bee-onlymodel (6). Then, (0, x∗, 0, 0)
is linearly stable if

∫ T
0 (μg′(x∗) − δ)dt ≤ 0 and

∫ T
0 (r − δ2)dt ≤ 0.

Proof Suppose that there exists a periodic mite-free solution (0, x∗, 0, 0) of the bee–
mite–virus model. We will again use Floquet theory to examine the stability of the
linearized system.

We find the Jacobian matrix of the system as

J (m, x, y, M)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−β1 y−β2x
x+y − δ2

−β1(M−m)y−β2my
(x+y)2

β1(M−m)x+β2mx
(x+y)2

β1 y
x+y

μg(x)h′(m) − β3x
x+y μg′(x)h(m) − β3my

(x+y)2
− δ − γ1M

β3mx
(x+y)2

−γ1x

β3x
x+y

β3my
(x+y)2

−β3mx
(x+y)2

− δ′ − γ2M −γ2 y

0 rM2

α(x+y)2
rM2

α(x+y)2
(r − δ2) − 2rM

α(x+y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

which applied to (0, x∗, 0, 0) reduces to

J (0, x∗, 0, 0) =

⎡
⎢⎢⎢⎢⎣

−β2 − δ2 0 0 0

−β3 μg′(x∗) − δ 0 −γ1x∗

β3 0 −δ′ 0

0 0 0 r − δ2

⎤
⎥⎥⎥⎥⎦ .

The linearized system about (0, x∗, 0, 0) is then
⎡
⎢⎢⎢⎢⎣

u̇

v̇

ẇ

ṗ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−β2 − δ2 0 0 0

−β3 μg′(x∗) − δ 0 −γ1x∗

β3 0 −δ′ 0

0 0 0 r − δ2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
u
v

w

p

⎤
⎥⎥⎦

where u = m − 0, v = x − x∗, w = y − 0 and p = M − 0. Let
(u1(t), v1(t), w1(t), p1(t)), (u2(t), v2(t)), (u3(t), v3(t), w3(t), p3(t)) and (u4(t),
v4(t), w4(t), p4(t)) denote linearly independent solutions of the linearized system,
with linearly independent initial conditions

u1(0) = 1, u2(0) = 0, u3(0) = 0, u4(0) = 0

v1(0) = 0, v2(0) = 1, v3(0) = 0, v4(0) = 0

w1(0) = 0, w2(0) = 0, w3(0) = 1, w4(0) = 0

p1(0) = 0, p2(0) = 0, p3(0) = 0, p4(0) = 1
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The fundamental matrix A(t) of the linearized system over the interval 0 ≤ t ≤ T ,
where T is the period, is obtained as

A(t) =

⎡
⎢⎢⎢⎢⎣

u1(t) u2(t) u3(t) u4(t)

v1(t) v2(t) v3(t) v4(t)

w1(t) w2(t) w3(t) w4(t)

p1(t) p2(t) p3(t) p4(t)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
∫ t
0 −(β2+δ2)dρ 0 0 0

0 e
∫ t
0 (μg′(x∗)−δ)dρ 0 e

∫ t
0 (μg′(x∗)−δ)dρ

∫ t
0

− γ1x∗e
∫ ρ
0 (r−δ2+δ−μg′(x∗))dτ dρ

e
∫ t
0 δ′dρ ∫ t

0 β3e
∫ ρ
0 (δ′−β2)dτ dρ 0 e− ∫ t

0 δ′dρ 0

0 0 0 e
∫ t
0 (r−δ2)dρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The transition matrix C = A(T )

C =

⎡
⎢⎢⎢⎢⎣

u1(T ) u2(T ) u3(T ) u4(T )

v1(T ) v2(T ) v3(T ) v4(T )

w1(T ) w2(T ) w3(T ) w4(T )

p1(T ) p2(T ) p3(T ) p4(T )

⎤
⎥⎥⎥⎥⎦ ,

has eigenvalues

λ1 = e− ∫ T
0 (β2+δ2)dt ,

λ2 = e
∫ T
0 (μg′(x∗)−δ)dt ,

λ3 = e− ∫ T
0 δ′dt ,

λ4 = e
∫ T
0 (r−δ2)dt .

It is observed that | λ1 | and |λ3| are always less than 1. Therefore, (0, x∗, 0, 0) of the
linearized model is stable if

∫ T
0 (μg′(x∗) − δ)dt ≤ 0 and

∫ T
0 (r − δ2)dt ≤ 0.

Hence, the conditions for the virus infestation to be fought off are the same as the
conditions for the eradication of mites. This indicates that in order for the honeybee
colony to become disease-free, it is sufficient to fight off the mites. An important
observation is that the stability of the periodic disease-free equilibrium depends on
the annual average values of the parameters and not on the seasonal average values. As
in the simpler bee–mite case above, algebraic complexity does not allow an analytical
investigation of the behavior of the system if the disease-free solution (0, x∗, 0, 0)
becomes unstable, i.e., under which condition the colony will converge to collapse or
reach a stable endemic solution. To investigate the system further, we will, therefore,
resort to numerical experimentation.
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4 Computer Simulations

4.1 Sample Simulations Illustrating Model Behavior

Beforewe conduct systematic numerical experiments to investigate themodel in detail,
we present some selected simulations for illustration of potential model outcomes, see
Fig. 1. These are guided by the analysis carried out in the previous section.

The seasonal averages of parameters βi , di , μ, k, r used in Fig. 1 are given in Table
1; these have been used to determine continuous time-varying parameters as described
in the “Appendix”. The seasonal averages of the parameter α are chosen to be 0.4784,
0.5, 0.5, 0.4784 for spring, summer, fall and winter, respectively (see Ratti et al. 2013
for the choice of these values). Since there are various varroa treatment strategies
available in the literature, there cannot be a general profile for the death rates of bees
andmites due to treatment (Giovenazzo andDubreuil 2011; Lambert et al. 2006. Often
varroa treatment is applied in spring and/or fall because the brood is still small then and
not much honey is present in the colony. For simplicity, we assume that the treatment
is applied three times in spring,

δi (t) =
{

δi if 30 ≤ t < 31, 60 ≤ t < 61, 90 ≤ t < 91

0 otherwise

where i = 1, 2, 3. Since there is no concerted data available for the parameters δi ,
we assume that the death rate of uninfected and infected bees (i.e., δ1 and δ3) is small
as compared to their natural death rates (given in Table 1). We assume δ1 = δ3 =
0.005. The parameters that we vary for the simulations in Fig. 1 are δ2 and the brood
maintenance coefficient, K .

The starting point and reference point are in all cases, a stable periodic solution x∗(t)
of (6), i.e., the model in the absence of mites and virus, according to Proposition 3.1, as
in Fig. 1.a. We choose for the brood maintenance coefficient K the seasonal averages
12,000, 14,000, 12,000, 8000 for spring, summer, fall and winter, respectively.

We first show simulations of the model without virus, i.e., with initial data m(0) =
y(0) = 0, but with varroa mites present M(0) = 100 (Fig. 1b). K is the same
as in Fig. 1a. In Fig. 1b, the varroacide control δ2 is chosen strong enough (i.e.,
δ2 = 1.35, i.e., δ2(t) = 1.35 for t = 30, 60, 90), according to Proposition 3.2 for
the mites to be eradicated, so that the system converges to the disease- and mite-free
periodic solution(0, x∗, 0, 0). In Fig. 1c, the varroacide control is reduced (δ2 = 1)
such that (0, x∗, 0, 0) looses its stability according to Proposition 3.2 and a periodic
solution with bees and mites present is found. The colony strength in this case remains
below x∗, but the population is still strong enough to be a working colony. In Fig.
1d, the parameter δ2 is chosen to be 0.1. The colony eventually vanishes, i.e., the
unconditionally stable solution (0, 0, 0, 0) is attained after few years. Prior to failure,
the peak colony strength in summer is already reducing from year to year.

For Fig. 1e–h, the seasonal averages of parameter K are 8000, 12,000, 8000, 6000
for spring, summer, fall, and winter, respectively. We illustrate now potential model
outcomes in the presence ofABPV;we choose initiallym(0) = 80. In a first simulation
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Fig. 1 Illustration of potential model outcomes, tracked over several years: a periodic solution describing
a healthy honeybee colony in the absence of mites and virus with high K values, b the same simulation
scenario as in (a) but with mites present and with enough varroa treatment to fight off the mites, c the same
simulation scenario as in (b) but with insufficient varroa treatment leading to bee–mite coexistence, d failure
of the bee population caused by mites only (absence of ABPV) due to insufficient varroacide treatment, e
presence of ABPV leading to the failure of the colony after more than 10 years with low K values, f same
scenario as in (e) but a rapid failure of the colony after 4 years due to milder varroa treatment application
as compared to (e), g same scenario as in (f) but with the extent of treatment sufficient to fight off virus but
not mites, h same simulation scenario as in (g) but with enough varroa treatment to eradicate the disease
(mites as well as virus)

in Fig. 1e, the control parameter is chosen to be δ2 = 0.3. After an initial transient
period of 2–3 years during which themites establish themselves in the colony, the peak
colony strength in summer is approximately the same every year; the colony seems
to work properly for 6–7 years and suddenly fails. In Fig. 1f, the varroacide control
is reduced to 0.1, which induces a faster colony failure. In Fig. 1g, the varroacide
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control is increased to a level such that ABPV is fought off but the mite population
still establishes itself. The varroacide control parameter is set to be δ2 = 1 in this case.
In Fig. 1h, finally, we choose δ2 = 1.35, strong enough to eradicate both mites and
virus.

The behavior observed is sensitive with respect to parameters. For example, under
the parameter values for K and α chosen in the simulations in Fig. 1e–h, and under
conditions as in Fig. 1d, a periodic solution with mites and bees will be found, qual-
itatively similar as in Fig. 1c (data not shown). Under these conditions, the smallest
colony strength needed for the colony to survive is reduced. In order to present a
scenario of the bee–mite model where the colony collapses due to mites, as in Fig.
1d, we need to choose either high values of K or high values of the parameter α, to
increase the number ofmites to levels that can become harmful. This intricate interplay
between K and α in determining the fate of the colony has been studied in more detail
previously in Ratti et al. (2013) and is not the focus of our current study.

The simulations presented here illustrate awide range of potential solution behavior,
in dependence of initial data andparameter, reaching fromvirus- andmite-free periodic
solutions, over mite–bee periodic solutions, to solutions with gradual colony failure,
and solutionswhich over years seemingly indicate aworking colony and then suddenly
fail. These observations motivate a number of simulation experiments in which we
investigate the relationship between parameter values and long-term colony fate.

4.2 Effect of Initial Disease Infestation on the Survival of the Colony

In this first simulation experiment, we consider the system without varroacide treat-
ment, i.e., δi (t) ≡ 0 for i = 1, 2, 3.Wewill investigate the effect of the initial mite and
virus infestation level, i.e., of M0 and m0, on the time at which the colony collapses
(see Fig. 2). A colony is assumed to collapse if x becomes very small, in particular, if
x < 1; in this case, also the continuous assumption of the model is violated, i.e., the

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

Fig. 2 Effect of initial disease infestation (m0 and M0) on the time at which the colony collapses (where
different lines different M0 values)
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model breaks down due to small numbers. Since the trivial equilibrium has been shown
to be unconditionally asymptotically stable (see Proposition 3.1), the assumption that
small enough colonies imply failure seems justified.

All parameters are the same as in Sect. 4.1with the broodmaintenance coefficient K
chosen to be 8000, 12,000, 8000, 6000 for spring, summer, fall and spring, respectively.
We varied M0 in the range of 0 to 2000 and choose m0 = pM0 where 0.1 < p < 1.
Therefore, each curve is distinguished by the ratio of M0 and m0. It was observed
that when the initial mite infestation is zero, the healthy bee population obtains a
strictly positive limit cycle. As the mite infestation in the colony increases, the colony
eventually dies off. The higher the mite infestation, the sooner the colony vanishes.
Since the bee population is not strong enough in winter to survive in the spring, the
colony collapses in winter. This pattern is observed in the natural honeybee colonies
as well (Engelsdorp et al. 2008) and in Ontario in particular such wintering losses have
been shown to be closely associated with varroa mites (Guzmán-Novoa et al. 2010).

While the fate of the colony is robust, i.e., disease infestation implies eventual
failure, the time to collapse depends heavily on the initial levels. This result suggests
a window of opportunity for the adoption of remedial measures, e.g., by varroacide
application. The stability criterion in the previous section indicated that the yearly
compounded treatment efficacy is more important than the timing and local (in time)
efficacy of treatment. This result together with the observation of the discrete nature
of the failure event suggests that treatment strategies may be relatively robust. We
investigate this possibility in more detail in the next experiment.

4.3 Comparison Between a System Treated with Varroacide and an Untreated
One

In this simulation experiment, we compare a system without varroacide treatment
(δi ≡ 0,∀i) and a system with treatment ( δi 
≡ 0,∀i), all other parameters being the
same in both cases and the same as in Sect. 4.2. We will investigate whether or not the
application of varroacides can protect a colony that would otherwise die off due to the
virus vectored by the mites.

As a baseline for comparison, Fig. 3a represents a mite-infested honeybee colony
also infected with virus, and with no varroacide treatment. In this figure, the bee
population starts increasing in spring and summer and reaches a maximum of 32,000
bees. It then starts decreasing in fall and winter to a minimum of 12,000 bees at the
end of the first year. The colony appears to reach a steady maximum above 30,000
each year initially for the first three years, which indicates that it is working well. The
virus is present in the colony for several years without being noticeable. After almost
4 years, the virus intensifies and has a greater effect on the bee population, reducing
the number of healthy workers. The bee population decreases in spring of the fourth
year but it again starts increasing in summer when the maximum birthrate increases.
The maximum colony strength that years reaches about 29,000. However, the virus
grows rapidly, and the colony is not able to survive the next winter and it vanishes.

Figure 3b, c represents a mite-infested colony infected with virus, where varroacide
treatment is applied three times in spring and fall each, using different treatment-
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Fig. 3 a System without varroacide treatment. b System with treatment. Varroacides are applied three
times in spring and fall each, with an interval of one month (with δ2 = 1.2). c System with treatment.
Varroacides are applied three times in spring and fall each, with an interval of 1month (with δ2 = 1.3)

associated death rates. In Fig. 3b, the death rate of mites due to varroacides (δ2) is
1.2. The bee population follows a similar pattern as in Fig. 3a, i.e., increases slowly in
spring and reaches a maximum of 31,000 in summer. The population starts decreasing
in fall and winter attaining a minimum of 14,000 bees by the end of winter season.
This pattern is repeated annually. The mite population starts increasing very slowly
for the first few years and then becomes established, maintaining a steady maximum
and following a limit cycle (see Fig. 4 for a magnified view of the mite population

123



A Mathematical Model of the Honeybee... 1511

4950 5000 5050 5100 5150 5200 5250 5300 5350

100

200

300

400

500

600

700

800

900

1000

Time (in days)

P
op

ul
at

io
n

m
x
y
M

Fig. 4 Magnified version of Fig. 3b. Vertically downward arrows the times when treatment is applied and
how the mite population decreases

at an instance). The mite infestation level here is relatively low compared to the bee
population. The virus is fought off due to the treatment, but the mites are still present
in the colony, albeit at relatively low levels, compared to the colony strength. In Fig.
3c, the death rate of mites due to varroacides (δ2) is slightly increased to 1.3. The
bee population follows a similar pattern as in Fig. 3a, b. The mite population starts
increasing very slowly in the first two years, but the increase in population is negligible.
The mite population is not able to establish itself further and dies off, indicating the
effectiveness of the treatment in this case, in correspondencewith the stability criterion
found analytically (see Proposition 3.3).

This result suggests that a colony which would otherwise die off due to the virus,
can be protected by using varroacides. Furthermore, it can be maintained as a healthy
colony with zero or very low mite population levels, depending on the efficacy of the
varroacides. In other words, treatment results in control of the vector and control of
the viral disease.

4.4 Effect of Varroacide Treatment on the Average Mite Population Level

In this simulation experiment, we consider a system with varroacide treatment. We
investigate the effect of the death rate of mites due to treatment (δ2), i.e., the efficacy of
the varroacide compounded over one year, on the average of the total mite population
over each year, see Fig. 5. All other parameters are the same as in Sect. 4.2. The average
of the mite population for each year, Mav(i), is calculated using the expression

Mav(i) = 1

i

i∑
c=1

∫ b
a M(t)dt

T
, i = 1, 2, 3, . . .

where a = (c − 1)T, b = cT , i represents the number of years, and T is the time
period.

Wevary δ2 between0.5 and1.5, and track the simulations over 20years. If the annual
varroacide efficacy is small, the mite population will slowly increase and a bee–mite

123



1512 V. Ratti et al.

0 2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4  

Time (in years)

 

1000

2000

3000

4000

5000

6000

Fig. 5 Effect of death rate of mites due to treatment (i.e., δ2) on the average mite population (scale shown
on the color bar)

limit cyclewith amaximumof 6000miteswill be attained. As δ2 increases, the average
mite population decreases over time. The mite population is not able to establish
itself if the death rate is above a threshold value of approximately δ2 = 1.2661,
which is the same as calculated from the analysis of the mite- and virus-free periodic
solution.

To eradicate mites from the colony, their death rate due to varroacides must be
greater than a threshold value. If the death rate due to varroacides is below the threshold
value, a necessary collapse of the colony is not implied, but the mite population might
become established .

5 Conclusions

We studied a mathematical model of infestations of honeybee colonies with varroa
mites and the ABPV with seasonally changing coefficients. Although there is still
much unknown about ABPV, the literature suggests that its virulence and transmission
depend primarily onVarroa destructor as amechanical vector. Therefore, a simplifying
key assumption made in our model is that ABPV is transmitted by Varroa destructor
only. Our main findings can be summarized as follows:

• In the base model without varroacide treatment, the mite- and virus-free solution
is always unstable due to the logistic growth assumption that we made for varroa
mites. If only mites are present, but no virus, then depending on parameters a
periodic endemic solution can be found, where bees and mites are present, or the
colony will fail. The bee population in an endemic bee–mite solution will remain
below the size of the mite-free solution. In the presence of the virus, for parameters
in realistic ranges, the colony is likely to fail rapidly after several years of slow
decline.

• In our model, the disease-free equilibrium can be stabilized by the application of
varroacide with sufficient intensity. This stability criterion can be given explicitly
in integral form. The success of varroacide treatment depends on the cumulative
efficacy over the year, rather than a specific time course. Our computer simulations
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suggest that varroacide treatment, at some intermediate levels, not strong enough
to completely eradicate varroa mites, can keep the disease under control. In this
case, an endemic periodic solution can be found in which case the bee population
remains slightly below the corresponding disease-free solution.

• A particular difficulty in parameterizing a model like the one studied here is that
normally only seasonally averagedparameter values canbeobtained fromavailable
data in the literature, although it is more reasonable to assume that these parame-
ters should vary continuously with time. We have found that different strategies to
infer continuously varying parameters from seasonally averaged data lead to quan-
titatively different solutions, but that this has only minor impact on the qualitative
long-term fate of the colony, i.e., whether it survives or fails.

• Since our results suggest that annual cumulative efficacy of varroacide treatment
is more important than the particular time course of treatment, continuous low
dosage application of chemical or biological control agents might be possible.
This suggests that it might be worthwhile to explore continuous, low mainte-
nance, low-invasive, dispensing techniques as an alternative to current invasive
treatment methods that might contribute to cross-contamination between colonies
in an apiary. Itmight be possible, for example, that such dispensingmethods use the
natural airflow currents in the colony beehive that were studied and characterized
in Sudarsan et al. (2012).
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Appendix: Construction of Continuous Parameters from Seasonal Aver-
ages

Definition Based on Piecewise Cubic Hermite Interpolating Polynomials

We interpolate the average seasonal values (i.e., piecewise constant functions) to obtain
continuous and periodic functions using the built-in MATLAB function PCHIP (see
Fritsch and Carlson 1980 for details). A difficulty is to interpolate μ without hav-
ing the interpolating curve becoming negative as the average value of μ in winter is
zero. Therefore, the standard interpolating polynomials cannot be applied in a straight-
forward manner. We use PCHIP to interpolate between the seasons in two different
ways to construct an interpolating function that preserves the shape of the data and
monotonicity while at the same time trying to approximate the seasonal averages well.
Proceeding in this manner, also the derivative of the interpolating function is contin-
uous. Since PCHIP does not overshoot or undershoot, it solves the purpose without
having the interpolating curve becoming negative in case of the parameterμ, however,
at the expense of not necessarily maintaining seasonal averages exactly.

Overall, three different profiles are observed in the parameters. Profile (a) is
described by its highest average value in summer, lowest in winter and intermedi-
ate value in spring and fall (examples are μ and K ). Profile (b) is described as a
high average in spring and fall and lower values in summer and winter (examples are
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Fig. 6 Three different profiles
observed in the parameters [μ
and K in (a), β1, β2, β3, d1 in
(b), and r and d2 in (c) by
interpolating the piecewise
constant seasonal averages using
two methods
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βi , i = 1, 2, 3, d1). Profile (c) is a high average value in spring and summer and low
average in fall and winter (examples are r and d2). Each of these profiles is shown in
Fig. 6.
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We assume that the year starts with the spring season and that each season is equal
in length, i.e., 91.25 days. Let us denote s = 91.25d. Therefore, the duration of spring
is 0 to s, summer s to 2s, fall 2s to 3s and winter 3s to 4s days.

Method 1 for Profile (a) and (b): Reduce each season by taking off 1
4 s each from

the beginning and end. Consider the parameters to take average values at the reduced
length of the seasons. We interpolate between the seasons (e.g., between spring and
summer, i.e., from 3

4 s to
5
4 s ) by using PCHIP.

Method 1 for Profile (c): Since Profile (c) is such that the average value is the same in
spring and summer, Method 1 is designed in a slightly different manner.We reduce the
interval each from the beginning of spring and the end of summer by 1

4 s. Similarly, we
reduce the interval from the beginning of fall and end of winter by 1

4 s. We consider the
parameters to take average values on the reduced intervals and we interpolate between
summer and fall, and winter and spring using PCHIP.

Method 2 for Profile (a) and (b): For spring and fall, we consider the average values
to be the midpoint of each season instead of reducing the length of seasons by a factor.
For summer and winter, we reduce each length of each season by taking off 1

4 s from
the beginning and end of each season. Then, we use PCHIP to interpolate between all
the seasons.

Method 2 for Profile (c): We designed this method in a way that the higher average
value is considered at the mid of spring and fall, each; the lower average value is
considered at the midpoint of fall and winter, each. We interpolate between these
midpoints using PCHIP.

Seasonal average and annual average values for each of these profiles are calculated
and compared against the seasonal average in Table 2. These methods were designed

Table 2 Comparison between the average values of the parameters obtained from the literature and their
approximate forms shown in Fig. (6)

Parameters Spring Summer Autumn Winter Annual
average

μ From Sumpter and
Martin (2004)

500 1500 500 0 625

Method 1 524.7214 1403 522.7622 55.1444 626.4070

Method 2 549.6787 1458 582.8532 7.5580 649.5225

β1 From Sumpter and
Martin (2004)

0.1593 0.1460 0.1489 0.04226 0.1241

Method 1 0.1319 0.1460 0.1332 0.0487 0.1150

Method 2 0.1516 0.1474 0.1390 0.0494 0.1219

r FromMartin (1998),
Martin (2001)

0.0165 0.0165 0.0045 0.0045 0.0105

Method 1 0.0144 0.0162 0.0063 0.0046 0.0104

Method 2 0.0141 0.0142 0.0067 0.0067 0.0104
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by taking into consideration that average values calculated from them should be as
close as possible to the seasonal averages from the literature and the interpolated
functions should be almost smooth. For instance, the seasonal average for μ by using
Method 1 and Method 2 is higher than the seasonal average from the literature for all
seasons except summer but the annual average using Method 1 is more closer to the
annual average calculated from the literature. Therefore, Method 1 gives an annual
average value more accurate as compared to Method 2 in case of Profile (a). In case
of Profile (b), seasonal average of the parameter β1 using Method 2 is higher than the
seasonal average calculated from the literature. However, the annual average using
the same method is more closer to the annual average from the literature. In case of
Profile (c), although the seasonal average using both methods is different (in particular
Method 1 is closer to the seasonal average obtained from the literature), the annual
average values are the same and are close to the annual average values calculated from
the literature.

Effect of Different Interpolated Forms of Parameters on the Disease Dynamics
of the Colony

Given that data are available in terms of seasonal averages, the question arises whether
the model is sensitive to the particular construction of continuous coefficient functions
from these discrete data. Our numerical simulations indeed show that the qualitative
results are the same whether we use Method 1 or 2 for the approximation of the
piecewise constant parameters, see Figs. 7 and 8. However, it does affect the solutions
quantitatively.

First, we considered a honeybee colony infested with mites. Coexistence of bees
and mites is observed using both methods (see Fig. 7). The quantitative difference is
that in case of Method 1, the minimum of bee and mite population is higher than the
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Fig. 7 (Colour online) Comparison of the bee–mite dynamics using two different methods for interpolation
of the piecewise constant parameters
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Fig. 8 (Colour online) Comparison of the bee–mite–virus dynamics using two different methods for inter-
polation of the piecewise constant parameters
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Fig. 9 (Colour online) Dynamics of the bee–mite–virus system by varying the reduction in the intervals
in Method 1

case where Method 2 is used. This is explained by the observation that for Method 2,
in winter the average birthrate of bees (μ) is lower and the average natural death rate
of bees (d1) is higher compared to the seasonal averages obtained from the literature.

Next,we consider amite-infested honeybee colony infectedwith virus and observed
that although the colony collapses using bothMethod 1 and 2, the latter leads to failure
of the colony one year earlier than the former, see Fig. 8. This is explained by the
observation that the minimum of the bee population is lower in case of Method 2 than
in case of Method 1 and it drops below the brood maintenance coefficient K . This
means that there are enough healthy worker bees to care for the brood present in the
colony which leads to the collapse of the colony.
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In another simulation experiment, we investigate how the dynamics of the bee–
mite–virus system is altered by reducing the length of intervals on which average
parameter value is taken in Method 1, by different proportions (i.e., 9

20 s and 1
10 s)

instead of 1
4 s as we did above. It is observed that the colony collapses one year earlier

if the interval for the parameters is reduced by 1
10 s as compared to the case when

it is reduced by 9
20 s, see Fig. 9. This happens because in case of reduction by 1

10 s,
the minimum of the bee population is lower than in case of 9

20 s and after 2200 days,
it falls below the brood maintenance coefficient K and leads to the collapse of the
colony. However, the fraction by which the interval is reduced does affect the results
quantitatively but not qualitatively.

We conclude that using twodifferent approximated forms of the parameters does not
affect the qualitative results, but it can affect the results quantitatively. This suggests
that data provided as the seasonal averages (i.e., piecewise constant functions) are
sufficient to study the disease dynamics of the honeybee colony. For a truly quantitative
predictive tool, however, better time-resolved data might be required to determine the
continuous model parameters with the desired accuracy
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