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Abstract Human habitat connectivity, movement rates, and spatial heterogeneity have
tremendous impact on malaria transmission. In this paper, a deterministic system of
differential equations for malaria transmission incorporating human movements and
the development of drug resistance malaria in an n patch system is presented. The
disease-free equilibrium of the model is globally asymptotically stable when the asso-
ciated reproduction number is less than unity. For a two patch case, the boundary
equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when
there is no movement between the patches are shown to be locally asymptotically
stable when they exist; the co-existence equilibrium is locally asymptotically sta-
ble whenever the reproduction number for the drug sensitive malaria is greater than
the reproduction number for the resistance malaria. Furthermore, numerical simu-
lations of the connected two patch model (when there is movement between the
patches) suggest that co-existence or competitive exclusion of the two strains can
occur when the respective reproduction numbers of the two strains exceed unity. With
slow movement (or low migration) between the patches, the drug sensitive strain
dominates the drug resistance strain. However, with fast movement (or high migra-
tion) between the patches, the drug resistance strain dominates the drug sensitive
strain.
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1608 F. B. Agusto

1 Introduction

Malaria is caused by parasites (species plasmodium) transmitted to people through the
bites of infected female mosquitoes. Plasmodium falciparum and Plasmodium vivax
are the two most common species, and plasmodium falciparum is the most deadly
(World Health Organization 2010). In the tropical and subtropical areas of the globe,
plasmodium falciparum malaria is a major cause of mortality and morbidity. Accord-
ing to the 2009 Malaria World Report (World Health Organization 2009), half of the
world’s population is at risk of malaria, with an estimated 243 million cases that led
to about 863, 000 deaths in 2008, a slight drop from the 2006 statistics. This decrease
can be attributed to a number of improved policies, including increases in interna-
tional funding, research, the use of insectide-treated bednets and artemisinin-based
combination therapy, and a revival of support for indoor residential insectide spraying
(World Health Organization 2009). Despite this slight drop, there are still challenges
that may lead to significant increase in the malaria burden. These include the global
financial slow down and the changing climatic conditions, both of which affect the
endemic malaria regions (Lindsay and Martens 1998; Zhou et al. 2004). The number
and severity of malaria cases are also being exacerbated by high levels of HIV infection
that weaken the immune system rendering people with HIV more susceptible to con-
tracting the disease (Bush et al. 2001) and also enhancing mortality in advanced HIV
patients by a factor of about 25 % in non-stable malaria areas (Grimwade et al. 2004).

Drug resistance malaria is caused by drug misused or non-compliance to drug reg-
imens, and this development is feared will thwart the malaria control efforts and will
significantly increase the disease burden. This concern is fueled by the emergence of
resistance to artemisinin-based combination therapy in western Cambodia and west-
ern Thailand (Cheeseman et al. 2012; Phyo et al. 2012). Artemisinin resistance is
marked by reduced parasite clearance upon treatment (Cheeseman et al. 2012; Phyo et
al. 2012). In 2002, an indication pointing to artemisinin resistance arose in Cambodia
when failure rates of the artesunate (a class of artemisinins) and mefloquine combi-
nation therapy began (Denis et al. 2006). A study conducted in 2009, to investigate
the efficacy of artemisinin-based combination therapy and artesunate monotherapy in
western Cambodia compared to northwestern Thailand (Dondorp et al. 2009), found
that in western Cambodian P. falciparum parasites had significantly reduced suscep-
tibility to artesunate, an indication that the parasites were surviving longer against the
effects of the drug. A more recent study Phyo et al. (2012), examining over 3,000
patients in Thailand–Myanmar border, which is on the western border of Cambodia,
found that it took significantly longer for malaria parasites to be killed in the course of
treatment with artemisinin therapies than it had in 2001. These new instances of drug
resistance were found 800 km away from the 2009 cases of anti-malarial resistance,
indicating that movement of people plays a role in the spread of drug resistance malaria.

Chloroquine resistance in P. falciparum was first observed among Thai gem work-
ers returning from nearby Cambodia in 1957 (Carrara et al. 2006). Following a 13
year study in which artemisinin combination treatments (ACT) of mefloquine and
artesunate regimen were deployed continuously as first-line treatment in camps for
displaced persons and in clinics for migrant population along the Thai–Myanmar bor-
der, a modest increase in resistance was observed Carrara et al. (2009). Thus, imported
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malaria to areas with low malaria transmission or movement into areas aiming for elim-
ination serves as another challenge against the public health bid at reducing the local
malaria transmission. The movement of people between areas with different malaria
transmission rates will impact the effectiveness of control interventions. For instance,
frequent movement of infected individuals into an area that had eliminated malaria
through extensive interventions could increase the time over which the intervention
will have to be held in place in order to prevent resurgence of the disease.

A number of studies have been carried out following the pioneering work of Ross
(1911), in order to understand the transmission and spread of malaria (Ross 1911;
Chitnis et al. 2006; Dietz 1988; Feng et al. 2004; Smith et al. 2006). Using sim-
ple probabilistic models, Hastings (1997) and Mackinnon (2005) studied the factors
influencing the appearance of mutations that confer resistance to malaria drugs. Aneke
(2002) and Koella and Antia (2003) captured the epidemiological effects of drug treat-
ment and resistance development via population dynamics models; the models used
inoculation rate to model the vector dynamics at steady-state vector population with
respect to changes in the human population. Bacaer and Sokna (2005) used a reac-
tion diffusion system to model the spatial spread of resistance; modeling resistance
development in terms of primary infection with the resistant strain. Esteva and Gumel
(2009) used a deterministic model to monitor the epidemiological impact of the anti-
malarial drug and how this impact is influenced by the evolution of resistance as well
as the fitness of the resistant strain in a given population. Pongtavornpinyo et al. (2008)
constructed a model which incorporated the epidemiological and biological factors of
human, mosquito, parasite, and treatment in order to evaluate different anti-malarial
policy options focusing on ACT deployment.

Various studies incorporating human movement between spatially heterogeneous
regions have been carried out with the aim of quantifying the potential burden of
malaria infection in humans. Rodrguez and Torres-Sorando (2001) considered mod-
els with hosts distributed in subpopulations as a consequence of spatial partitioning
using two types of models with direct and indirect transmission. Considering two
types of visit: one in which the visit time is independent of the distance traveled,
and the other in which visit time decreases with distance. Ariey et al. (2003) used a
patch occupancy discrete-time metapopulation model to study the spread of resistance
to chloroquine in the pathogen. Menach and Ellis Mckenzie (2005) gave a detailed
description of mosquito oviposition behavior in metapopulation setting. Smith and
Dushoff (2005) used metapopulations to model malaria transmission assuming only
migration of mosquitoes. Auger et al. (2008) generalize the Ross–Macdonald malaria
model to n patches and incorporated the fact that some patches can be vector free.
They assume that the hosts can migrate between patches, but not the vectors. Adams
and Kapan (2009) numerically investigated the effect of short-term human movement.
Cosner et al. (2009) developed spatial models of vector-borne disease dynamics on a
network of patches to examine how the movement of humans in heterogeneous envi-
ronments affects transmission. They constructed two classes of models using different
approaches: one that mimic human commuting behavior using Lagrangian models
and the other that mimic human migration using Eulerian models. A metapopulation
malaria model was proposed by Arino et al. (2012) using SI and SIRS models for
the vectors and hosts. The model was then applied to study the spread of malaria to
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non-endemic areas, and the interaction between rural and urban areas are given. Using
type reproduction numbers, the reservoirs of infection was identified, and the effect of
control measures evaluated. To address the role of human movement and spatial hetero-
geneity in malaria transmission and malaria control, (Prosper et al. 2012) considered
a two patch metapopulation model connected by human movement and with different
degrees of malaria transmission in each patch. Sensitivity analysis of the reproduction
number and the endemic equilibrium to various parameters in the two patch was per-
formed in order to determine which patch will be the better target for control measures
and what type of control measure should be implemented within the patch.

Understanding the dynamics of the spread of both drug-sensitive and drug-
resistance malaria with mobility of individuals between regions is crucial to the efforts
of controlling or eradicating the disease burden. The existing studies of transmission
dynamics of malaria with mobility in spatially homogeneous regions (Adams and
Kapan 2009; Ariey et al. 2003; Arino et al. 2012; Auger et al. 2008; Cosner et al.
2009; Menach and Ellis Mckenzie 2005; Rodrguez and Torres-Sorando 2001; Smith
and Dushoff 2005) focused only on the transmission dynamics of drug sensitive malaria
between the spatial locations. This current work (to the best of my knowledge) is the
first to attempt to consider the dynamics of drug-sensitive and drug-resistance malaria
with mobility of individuals between regions. Hence, this current study presents a
deterministic model for the transmission dynamics of drug resistance malaria with
mobility of individuals between different spatial locations. The aim of this study is to
determine the impact of human movement on the prevalence of drug resistance malaria
in the population and the role of human movement on the persistence or extinction of
the malaria drug sensitive and drug resistance strains. The study extend the aforemen-
tioned studies particularly those in Auger et al. (2008), Prosper et al. (2012), Smith and
Dushoff (2005), and the model in Cosner et al. (2009) with Lagrangian movement, by
incorporating the development of drug resistance malaria transmission. Furthermore,
the study will present a rigorous analysis of the resulting model.

2 Formulation of the Basic Malaria Model

The model is formulated with human and mosquito groups (see Fig. 1). The model
sub-divides the total human population in patch i at time t , denoted by Nhi (t), into the
following sub-populations of susceptible individuals (Si (t)), infected individuals with
drug sensitive malaria (Ii (t)), and infected individuals with drug resistance malaria
(Ji (t)), where i = 1 . . . n. So that

Nhi (t) = Si (t)+ Ii (t)+ Ji (t).

The rates at which the proportion of susceptible humans (Si ) changes over time in
patch i is given by

d Si

dt
= �i + γi Ii + τi Ji − αhiβhi Ivi

Nhi
Si − αhiθhi Jvi

Nhi
Si − μh Si . (1)
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Fig. 1 Systematic flow diagram of the Malaria Model (7) without movement

The parameter �i is the recruitment rate into the susceptible human class. The
parameter αhi is the rate at which susceptible humans in patch i receive mosquitoes
bite. The parameter βhi is the probability that a susceptible human becomes infected
with drug sensitive malaria having been bitten by an infectious mosquito with the
drug sensitive strain. The parameter θhi correspond to the probability that a suscep-
tible human becomes infected with drug resistance malaria having been bitten by an
infectious mosquito with the drug resistance strain, it is assumed that θhi < βhi . The
natural death rate is denoted by μh .

The rate at which the proportion of infected humans (Ii ) with drug sensitive malaria
changes over time in patch i is given by

d Ii

dt
= αhiβhi Ivi

Nhi
Si − (γi + ξi + μh + δIi )Ii . (2)

The parameter γi denotes the drug sensitive malaria recovery rate, while ξi is the
rate at which humans develop resistance to malaria treatment drugs as a result of non-
compliant to treatment regiment. The disease-induced death rate due to drug sensitive
malaria in patch i is denoted by δIi .

Similarly, the rate at which the proportion of infected humans (Ji ) with drug resis-
tance malaria changes over time in patch i is given by

d Ji

dt
= αhiθhi Jvi

Nhi
Si + ξi Ii − (τi + μh + δJi )Ji . (3)

The parameter τi is the parameter indicating recovery rate with drug resistance
malaria. It is assumed that once a human recovers from malaria infection, they do
not gain immunity, but instead are susceptible to re-infection, this is a simplifying
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assumption since humans develop immunity against malaria with repeated exposure
(Niger and Gumel 2008). The disease-induced death rate due to drug resistance malaria
in patch i is denoted by δJi .

The mosquito population in patch i at time t has three classes representing sus-
ceptible mosquitoes, Svi (t), infected mosquitoes with drug sensitive malaria, Ivi (t),
and infected mosquitoes with drug resistance malaria, Jvi (t). Thus, the total mosquito
population is

Nvi (t) = Svi (t)+ Ivi (t)+ Jvi (t).

The rates at which the proportion of susceptible mosquitoes (Svi ) changes over time
in patch i is given by

d Svi

dt
= �vi − αviβvi Ii

Nhi
Svi − αviθvi Ji

Nhi
Svi − μvSvi . (4)

The parameter �vi is the recruitment rate into the susceptible mosquito class. The
parameter αvi is the rate at which mosquitoes bite humans in patch i . The parameter
βvi is the probability that a susceptible mosquito becomes infected with drug sensitive
malaria having bitten an infectious human with the drug sensitive strain. The parameter
θvi corresponds to the probability that a susceptible mosquito becomes infected with
drug resistance malaria having bitten an infectious human with the drug resistance
strain. The mosquito natural death rate is denoted by μv .

The rate at which the proportion of infected mosquitoes (Ivi ) with drug sensitive
malaria changes over time in patch i is given by

d Ivi

dt
= αviβvi Ii

Nhi
Svi − μv Ivi . (5)

Similarly, the rate at which the proportion of infected mosquitoes (Jvi ) with drug
resistance malaria changes over time in patch i is given by

d Jvi

dt
= αviθvi Ji

Nhi
Svi − μv Jvi , (6)

We assume here that only humans move between the patches and so, we include
migration in Eqs. (1)–(3) above and also assuming that disease transmission occurs
only between individuals that are in the same patch at the same time. Now adding the
equations for the mosquitoes, we have the following system of ordinary differential
equations

d Si

dt
= �i + γi Ii + τi Ji − αhiβhi Ivi

Nhi
Si − αhiθhi Jvi

Nhi
Si − μh Si −

n∑

i=1,i �= j

ψ j i Si

+
n∑

j=1, j �=i

ψi j S j
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d Ii

dt
= αhiβhi Ivi

Nhi
Si − (γi + ξi + μh + δIi )Ii −

n∑

i=1,i �= j

ψ j i Ii +
n∑

j=1, j �=i

ψi j I j

d Ji

dt
= αhiθhi Jvi

Nhi
Si + ξi Ii − (τi + μh + δJi )Ji −

n∑

i=1,i �= j

ψ j i Ji +
n∑

j=1, j �=i

ψi j J j

d Svi

dt
= �vi − αviβvi Ii

Nhi
Svi − αviθvi Ji

Nhi
Svi − μvSvi

d Ivi

dt
= αviβvi Ii

Nhi
Svi − μv Ivi

d Jvi

dt
= αviθvi Ji

Nhi
Svi − μv Jvi (7)

The model (7) extends the model in Auger et al. (2008), Cosner et al. (2009), Pros-
per et al. (2012), Smith and Dushoff (2005) by incorporating the development and
transmission of drug resistance malaria and the inclusion of human migration. The
models in Auger et al. (2008), Cosner et al. (2009), Prosper et al. (2012), Smith
and Dushoff (2005) only considered the transmission dynamics of drug sensitive
malaria.

Since the model (7) represents human and mosquito populations, all parameters
in the model are non-negative and one can show that the solutions of the system
are non-negative, given non-negative initial values. The model (7) will be analyzed
in a biologically feasible region as follows. The system (7) is split into two parts,
namely the human population and the mosquitoes population. Consider the feasible
region

� = �i ⊂ R
6n+

with,

�i =
{
(Si (t), Ii (t), Ji (t), Svi (t), Ivi (t), Jvi (t)) ∈ R

6n+ : 0 ≤ Nhi (t) ≤ Kh and 0

≤ Nvi (t) ≤ Kv

}
,

The following steps are followed to establish the positive invariance of� (i.e., solutions
in � remain in � for all t > 0). The rate of change of the total human populations is
obtained by adding the 3n equations for humans in the model (7) to give

d Nhi (t)

dt
= �i − μh Ni − δIi Ii − δJi Ji −

n∑

i=1,i �= j

ψ j i Nhi (t) +
n∑

j=1, j �=i

ψi j Nhj (t),

(8)
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Now, summing (8) from i = 1 . . . n gives

n∑

i=1

d Nhi (t)

dt
=

n∑

i=1

(�i − μh Ni − δIi Ii − δJi Ji )

+
n∑

i=1

(
−

n∑

i=1,i �= j

ψ j i Nhi (t) +
n∑

j=1, j �=i

ψi j Nhj (t)

)
. (9)

The double sum in (9) sums up to zero, i.e.

n∑

i=1

(
−

n∑

i=1,i �= j

ψ j i Nhi (t) +
n∑

j=1, j �=i

ψi j Nhj (t)

)
= 0

Hence,
n∑

i=1

d Nhi (t)

dt
=

n∑

i=1

(�i − μh Ni − δIi Ii − δJi Ji )

≤
n∑

i=1

(�i − μh Ni ).

(10)

Similarly for the mosquito population

n∑

i=1

d Nvi (t)

dt
=

n∑

i=1

�vi −
n∑

i=1

μvNvi (t). (11)

A standard comparison theorem (Lakshmikantham et al. 1989) can then be used to
show that

Nhi (t) ≤ Nhi (0)e
−∑n

i=1 μh t +
∑n

j=1�i∑n
i=1 μh

(1 − e−∑n
i=1 μh t ),

and

Nvi (t) = Nvi (0)e
−∑n

i=1 μv t +
∑n

i=1�vi∑n
i=1 μv

(1 − e−∑n
i=1 μv t ).

In particular, Nhi (t) ≤
∑n

j=1 �i∑n
i=1 μh

and Nvi (t) =
∑n

i=1 �vi∑n
i=1 μv

, if Nhi (0) ≤
∑n

j=1 �i∑n
i=1 μh

and

Nvi (0) =
∑n

i=1 �vi∑n
i=1 μv

. Thus, the region � is positively invariant. Hence, it is sufficient

to consider the dynamics of the flow generated by (7) in �. In this region, the model
is epidemiologically and mathematically well-posed (Hethcote 2000). Thus, every
solution of the basic model (7) with initial conditions in � remains in � for all t >
0. Therefore, the ω-limit sets of the system (7) are contained in �. This result is
summarized below.
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Lemma 1 The region � = �i ⊂ R
6n+ is positively invariant for the basic malaria

model (7) with non-negative initial conditions in R
6n+

2.1 Stability of the Disease-Free Equilibrium (DFE)

The malaria model (7) has a disease free equilibrium (DFE), obtained by setting the
right hand sides of the equations in the model to zero, given by

E0 = (S∗
i , I ∗

i , J ∗
i , S∗

vi , I ∗
vi , J ∗

vi )

=

⎡

⎢⎢⎣

∑n
i=1�hi(∑n

i=1 μh + ∑n
i=1,i �= j ψ j i − ∑n

j=1, j �=i ψi j

) , 0, 0,

∑n
i=1�vi∑n
i=1 μv

, 0, 0

⎤

⎥⎥⎦ .

The linear stability of E0 can be established using the next generation operator method
on the system (7). We take, Ii , Ji , Ivi , Jvi , i = 1, . . . , n, as our infected compart-
ments, then using the notation in Driessche and Watmough (2002), the Jacobian matri-
ces F and V for the new infection terms and the remaining transfer terms are, respec-
tively, given by,

F =
⎛

⎝
0 F11

F22 0

⎞

⎠

where

F11 = diag

(
αh1βh1, αh2βh2, . . . , αhnθhn, αh1θh1, αh2θh2, . . . , αhnθhn

)

and

F22 = diag

(
αv1βv1 N∗

v1

N∗
h1

,
αv2βh2 N∗

v2

N∗
h2

, . . . ,
αvnβvn N∗

vn

N∗
h1

,

αv1θv1 N∗
v1

N∗
h1

,
αv2θh2 N∗

v2

N∗
h2

, . . . ,
αvnθvn N∗

vn

N∗
h1

)
.

And

V =
⎛

⎝
V11 0

0 V22

⎞

⎠
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where

V11 =
⎛

⎝
V1 0

V3 V4

⎞

⎠

with

V1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1 + ∑n
i=1,i �= j ψ j1 −ψ12 · · · −ψ1n

−ψ21 k3 + ∑n
i=1,i �= j ψ j2 · · · ...

...
...

...
...

0 0

−ψ21 − ψn1 · · · kn−1 + ∑n
i=1,i �= j ψ jn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and k1 = γ1+ξ1+μh+δI1 , k2 = τ1+μh+δJ1 , k3 = γ2+ξ2+μh+δI2 , · · · , kn−1 =
γn + ξn + μh + δIn , kn = τn + μh + δJn .

V3 = −diag[ξ1, ξ2, . . . , ξn].

V4 =

⎛

⎜⎜⎜⎜⎝

k2 + ∑n
i=1,i �= j ψ j1 −ψ12 · · · −ψ1n

−ψ21 k4 + ∑n
i=1,i �= j ψ j2 · · · ...

...
... · · · ...

−ψn1 · · · kn + ∑n
i=1,i �= j ψ jn

⎞

⎟⎟⎟⎟⎠
.

V22 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μv 0 · · · 0

0 μv · · · ...

...
... · · · ...

0 · · · μv

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows that the basic reproduction number of the system (7), denoted by R0DS R
,

is given by
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R0DS R
=ρ(FV −1)

=ρ
{

diag

(
αh1βh1, αh2βh2, . . . , αhnθhn, αh1θh1, αh2θh2, . . . , αhnθhn

)
V −1

11 ,

diag

(
αv1βv1 N∗

v1

N∗
h1

,
αv2βh2 N∗

v2

N∗
h2

, . . . ,
αvnβvn N∗

vn

N∗
h1

,

αv1θv1 N∗
v1

N∗
h1

,
αv2θh2 N∗

v2

N∗
h2

, . . . ,
αvnθvn N∗

vn

N∗
h1

)
V −1

22

}
, (12)

where ρ is the spectral radius.
Further, using Theorem 2 in Driessche and Watmough (2002), the following result

is established.

Lemma 2 The DFE of the malaria model (7), given by E0, is locally asymptotically
stable (LAS) if R0DS R

< 1, and unstable if R0DS R
> 1.

The basic reproduction number (R0DS R
) measures the average number of new infec-

tions generated by a single infected individual in a completely susceptible population
(Anderson and May 1991; Diekmann et al. 1990; Hethcote 2000; Driessche and Wat-
mough 2002). Thus, Lemma 2 implies that malaria can be eliminated from human
population (when R0DS R

< 1) if the initial sizes of the sub-populations are in the
basin of attraction of the DFE, E0. To ensure the elimination of disease regardless
of initial population sizes, a global stability proof for the disease-free equilibrium is
needed. This is done below, using a comparison theorem.

Theorem 1 The DFE of the basic malaria model (7), given by E0, is globally asymp-
totically stable (GAS) in � whenever R0DS R

< 1.

Proof The equations for the infected components of the model (7) with the order
Ii , Ji , Ivi , Jvi , i = 1, . . . , n can be re-written as:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d Ii

dt
d Ji

dt
d Ivi

dt
d Jvi

dt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (F − V )

⎛

⎜⎜⎝

Ii

Ji

Ivi

Jvi

⎞

⎟⎟⎠ − M1 Q1

⎛

⎜⎜⎝

Ii

Ji

Ivi

Jvi

⎞

⎟⎟⎠ − M2 Q2

⎛

⎜⎜⎝

Ii

Ji

Ivi

Jvi

⎞

⎟⎟⎠

where the matrices F and V are as defined above, M1 = 1−Si/Nhi , M2 = 1−Svi/Nhi ,
and Q1, Q2 are non-negative matrix, where

Q1 = diag

(
αh1βh1, αh2βh2, · · · , αhnθhn, αh1θh1, αh2θh2, · · · , αhnθhn

)
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and

Q2 = diag

(
αv1βv1 N∗

v1

N∗
h1

,
αv2βh2 N∗

v2

N∗
h2

, · · · , αvnβvn N∗
vn

N∗
h1

,
αv1θv1 N∗

v1

N∗
h1

,

αv2θh2 N∗
v2

N∗
h2

, · · · , αvnθvn N∗
vn

N∗
h1

)
.

Thus, ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d Ii

dt

d Ji

dt

d Ivi

dt

d Jvi

dt

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ (F − V )

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ii

Ji

Ivi

Jvi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

Using the fact that the eigenvalues of the matrix F − V all have negative real parts by
the local stability result given in Lemma 2, where ρ(FV −1) < 1 if R0DS R

< 1, which
is equivalent to F − V having eigenvalues with negative real parts when R0DS R

< 1
(Driessche and Watmough 2002). It follows that the linearized differential inequality
system (13) is stable whenever R0DS R

< 1. Consequently, (Ii (t), Ji (t), Ivi , Jvi (t)) →
(0, · · · , 0, · · · , 0, · · · , 0), i = 1, · · · , n as t → ∞ for the linear ODE. Thus,
by comparison theorem (Lakshmikantham et al. 1989; Smith and Waltman 1995),
(Ii (t), Ji (t), Ivi , Jvi (t)) → (0, · · · , 0, · · · , 0, · · · , 0) as t → ∞ as well for the
nonlinear system (7) for R0DS R

< 1. Hence, the DFE E0 is GAS in � if R0DS R
< 1. 	


In the next section, we consider a two patch malaria transmission model with drug
resistance.

2.2 Two Patch Malaria Drug Resistance Model

The two patch malaria transmission model with drug resistance model is stated below;
and in this model, we have drug resistance malaria developing and circulating in both
patches.

d S1

dt
= �1+γ1 I1+τ1 J1 − αh1βh1 Iv1

Nh1
S1− αh1θh1 Jv1

Nh1
S1−μh S1−ψ21 S1+ψ12 S2

d I1

dt
= αh1βh1 Iv1

Nh1
S1 − (γ1 + ξ1 + μh + δI1)I1 − ψ21 I1 + ψ12 I2

d J1

dt
= αh1θh1 Jv1

Nh1
S1 + ξ1 I1 − (τ1 + μh + δJ1)J1 − ψ21 J1 + ψ12 J2

d Sv1

dt
= �v1 − αv1βv1 I1

Nh1
Sv1 − αv1θv1 J1

Nh1
Sv1 − μvSv1
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d Iv1

dt
= αv1βv1 I1

Nh1
Sv1 − μv Iv1

d Jv1

dt
= αv1θv1 J1

Nh1
Sv1 − μv Jv1 (14)

d S2

dt
= �2+γ2 I2+τ2 J2 − αh2βh2 Iv2

Nh2
S2 − αh2θh2 Jv2

Nh2
S2 − μh S2 − ψ12 S2+ψ21 S1

d I2

dt
= αh2βh2 Iv2

Nh2
S2 − (γ2 + ξ2 + μh + δI2)I2 − ψ12 I2 + ψ21 I1

d J2

dt
= αh2θh2 Jv2

Nh2
S2 + ξ2 I2 − (τ2 + μh + δJ2)J2 − ψ12 J2 + ψ21 J1

d Sv2

dt
= �v2 − αv2βv2 I2

Nh2
Sv2 − αv2θv2 J2

Nh2
Sv2 − μvSv2

d Iv2

dt
= αv2βv2 I2

Nh2
Sv2 − μv Iv2

d Jv2

dt
= αv2θv2 J2

Nh2
Sv2 − μv Jv2.

It follows that the basic reproduction number of the model (14) with movement
between the patches, denoted by R2

0DS R
(ψ21 , ψ12), is given by

R2
0DS R

(ψ21 , ψ12) = ρ(FV −1) = max{R2
0DS
(ψ21 , ψ12),R2

0DR
(ψ21 , ψ12)},

where

R2
0DS
(ψ21 , ψ12) = 1

2σ1

[
u1v2 + u2v1 +

√
(u1v2 − u2v1)2 + 4u1u2ψ12ψ21

]

R2
0DR

(ψ21 , ψ12) = 1

2σ2

[
p1q2 + p2q1 +

√
(p1q2 − p2q1)2 + 4p1 p2ψ12ψ21

]
. (15)

R2
0DR

(ψ21 , ψ12) is the drug sensitive reproduction number while R2
0DR

(ψ21 , ψ12) is
the drug resistance reproduction number and

u1 = βh1αh1βv1αv1 N∗
v1

μvN∗
h1

= k1R2
0DS1

(0, 0),

u2 = βh2αh2βv2αv2 N∗
v2

μvN∗
h2

= k2R2
0DS1

(0, 0),

p1 = θh1αh1θv1αv1 N∗
v1

μvN∗
h1

= k3R2
0DR1

(0, 0),

p2 = θh2αh2θv2αv2 N∗
v2

μvN∗
h2

= k4R2
0DR2

(0, 0),

v1 = k1 + ψ21 , v2 = k3 + ψ12 , q1 = k2 + ψ21 , q2 = k4 + ψ12

σ1 = k1k3 + k1ψ12 + k3ψ21 , σ2 = k2k4 + k2ψ12 + k4ψ21 . (16)
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1620 F. B. Agusto

where k1 = γ1 + ξ1 +μh + δI1, k2 = τ1 +μh + δJ1 , k3 = γ2 + ξ2 +μh + δI2 , k4 =
τ2 + μh + δJ2 .

In the absence of movement between the patches, the drug sensitive and resistance
reproduction numbers are given as

R2
0DS1

(0, 0) = αv1βv1αh1βh1 N∗
v1

k1μvN∗
h1

, R2
0DR1

(0, 0) = θv1αv1θh1αh1 N∗
v1

k2μvN∗
h1

,

R2
0DS2

(0, 0) = αv2βv2αh2βh2 N∗
v2

k3μvN∗
h2

, R2
0DR2

(0, 0) = αv2θv2αh2θh2 N∗
v2

k4μvN∗
h2

.

Theorem 2 The drug resistance basic reproduction number, R2
0DR

(ψ12 , ψ21), for the

two patch malaria-drug resistance model (14) satisfies the following inequality,

min{R2
0DR1

(0, 0),R2
0DR2

(0, 0)}≤R2
0DR

(ψ12 , ψ21)≤max{R2
0DR1

(0, 0),R2
0DR2

(0, 0)}

Theorem 2 can be proved using the approaches in Arino and Driessche (2003),
Arino and Driessche (2003), Hsieh et al. (2007), Salmani and Driessche (2006).

Similar result was obtained for the drug sensitive malaria.

Theorem 3 The drug sensitive basic reproduction number, R2
0DS
(ψ12 , ψ21), for the

two patch malaria-drug resistance model (14) satisfies the following inequality,

min{R2
0DS1

(0, 0),R2
0DS2

(0, 0)} ≤ R2
0DS
(ψ12 , ψ21) ≤ max{R2

0DS1
(0, 0),R2

0DS2
(0, 0)}.

Theorem 3 can be proved using the approaches in Arino and Driessche (2003),
Arino and Driessche (2003), Hsieh et al. (2007), and Salmani and Driessche (2006).

Theorem 2 indicates that in the absence of movement between the patches, the global
drug resistance reproduction number, R2

0DR
(ψ12 , ψ21), is the larger of the two isolated

patch reproductive numbers (R2
0DR1

,R2
0DR2

); similar indication holds for Theorem 3

in the case of the global drug sensitive reproduction number, R2
0DS
(ψ12 , ψ21).

Theorem 4 If R2
0DR1

> R2
0DR2

, then for the migration rates (ψ12 , ψ21) ∈ [0,∞) ×

[0,∞), max

{R2
0DR1

1+ψ21
k2

,R2
0DR2

}
≤ R2

0DR
≤ R2

0DR1
.

The proof is given in Appendix 1. Similar result was obtained for the drug sensitive
malaria.

Theorem 5 If R2
0DS1

> R2
0DS2

, then for the migration rates (ψ12 , ψ21) ∈ [0,∞) ×

[0,∞), max

{R2
0DS1

1+ψ21
k1

,R2
0DS2

}
≤ R2

0DS
≤ R0DS1

.
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This result show that in the presence of migration between the two patches, the
global drug resistance reproduction number, R2

0DR
, is always between the two isolated-

patch reproductive numbers (R2
0DR1

and R2
0DR2

), and similarly for the global drug

sensitive reproduction number, R2
0DS

as observed in Arino and Driessche (2003),
Arino and Driessche (2003), Hsieh et al. (2007), Prosper et al. (2012), and Salmani
and Driessche (2006). This is contrary to the result observed by Cosner et al. (2009)
(in their model with Lagrangian movement) in which the reproduction number is less
than unity in each isolated patch, yet the global reproduction number is larger than
one. This indicates that it may be possible to have a system where without migration,
the disease goes extinct in both patches, but once with certain level of migration, the
disease becomes endemic. However, Theorem 4 (similarly Theorem 5) indicate that
the global drug resistance reproduction number, R2

0DR
will always be bounded by the

isolated patch reproduction numbers.

Theorem 6 Suppose R0DR1
(0, 0) > R0DR2

(0, 0). If R0DR
(ψ12 , ψ21) is a function of

the migration rates ψ12 and ψ21, where ψ12, ψ21 ∈ [0,∞). Then for a fixed ψ in the
interval [0,∞), R0DR

(ψ12 , ψ) is an increasing function of ψ12 and R0DR
(ψ,ψ21) is

a decreasing function of ψ21 .

The proof is given in Appendix 2. Similarly for drug sensitive malaria.

Theorem 7 Suppose R0DS1
(0, 0) > R0DS2

(0, 0). If R0DS
(ψ12 , ψ21) is a function of

the migration rates ψ12 and ψ21, where ψ12, ψ21 ∈ [0,∞). Then, for a fixed ψ in the
interval [0,∞), R0DS

(ψ12 , ψ) is an increasing function of ψ12 , and R0DS
(ψ,ψ21) is

a decreasing function of ψ21 .

Remark 1 The proof of Theorem 4, indicates that the minimum value of R2
0DR

(ψ12,

ψ21) on the domain [0,∞)×[0, ψ) is max

{R2
0DR1

(0,0)

1+ψ21
k2

,R2
0DR2

(0, 0)

}
, and the maxi-

mum value is R2
0DR1

(0, 0), for some migration rateψ > 0. Hence, if R2
0DR2

(0, 0) < 1

and
R2

0DR1
(0,0)

1+ψ21
k2

> 1 for someψ > 0 (thus, R2
0DR1

(0, 0) > 1), then R2
0DR

(ψ12 , ψ21) >

1 for all migration pairs (ψ12 , ψ21) in [0,∞)×[0, ψ). This shows that it is possible to
have a case in which the strain dies out in one patch but not the other without migra-
tion, yet the strain persists with migration in both patches for all ψ12 ≥ 0 and for 0 ≤
ψ21 ≤ ψ . If R2

0DR2
(0, 0),

R2
0DR1

(0,0)

1+ψ21
k2

< 1 (but R2
0DR1

(0, 0) > 1), then for some migra-

tion pairs (ψ12 , ψ21), R2
0DR

(ψ12 , ψ21) > 1 and for other pairs, R2
0DR

(ψ12 , ψ21) < 1.

Furthermore,there exists a value ψ∗ < ψ such that R2
0DR

(ψ12 , ψ21) > 1 for all

(ψ12 , ψ21) in [0,∞)×[0, ψ∗). Finally, if R2
0DR2

(0, 0, ) and R2
0DR1

(0, 0) are both less

than one, then R2
0DR

(ψ12 , ψ21)will always be less than one, regardless of the migration
rates between patches.
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3 Existence and Stability of Endemic Equilibrium

In this Section, the conditions for the existence and stability of endemic equilibrium
of the two patch model (14) will be explored for the special case where the disease-
induced mortality is negligible (so that, δI1 = δJ1 = δI2 = δJ2 = 0). Although this
assumption may not be biologically realistic, it allows for the ensuing mathematical
analyses to be tractable (considering the non-linearity of the differential equation
system (14)). In the absence of disease-induced death (δI1 = δJ1 = δI2 = δJ2 = 0),
the total human population (Nh1(t) and Nh2(t)) in both patches are asymptotically
constant. That is, N∗∗

h1 = �2/μh and N∗∗
h2 = �2/μh . Using these definitions in

the model (14), noting that S1(t) = N∗∗
h1 (t) − I1(t) − J1(t), S2(t) = N∗∗

h2 (t) −
I2(t)− J2(t), Sv1(t) = N∗∗

v1
(t)− Iv1(t)− Jv1, and Sv2 = N∗∗

v2 (t)− I2(t)− Jv2(t),
gives the following reduced model for the dynamics of the drug resistance malaria
system:

d I1

dt
= αh1βh1 Iv1

Nh1
(N∗∗

h1 − I1 − J1)− (γ1 + ξ1 + μh)I1 − ψ21 I1 + ψ12 I2

d J1

dt
= αh1θh1 Jv1

Nh1
(N∗∗

h1 − I1 − J1)+ ξ1 I1 − (τ1 + μh)J1 − ψ21 J1 + ψ12 J2

d Iv1

dt
= αv1βv1 I1

Nh1
(N∗∗

v1 − Iv1 − Jv1)− μv Iv1

d Jv1

dt
= αv1θv1 J1

Nh1
(N∗∗

v1 − Iv1 − Jv1)− μv Jv1

(17)

d I2

dt
= αh2βh2 Iv2

Nh2
(N∗∗

h2 − I2 − J2)− (γ2 + ξ2)I2 − ψ12 I2 + ψ21 I1

d J2

dt
= αh2θh2 Jv2

Nh2
(N∗∗

h2 − I2 − J2)+ ξ2 I2 − (τ2 + μh)J2 − ψ12 J2 + ψ21 J1

d Iv2

dt
= αv2βv2 I2

Nh2
(N∗∗

hv2 − Iv2 − Jv2)− μv Iv2

d Jv2

dt
= αv2θv2 J2

Nh2
(N∗∗

v2 − Iv2 − Jv2)− μv Jv2.

Let

E1 = (I ∗∗
1 , J ∗∗

1 , I ∗∗
v1 , J ∗∗

v1 , I ∗∗
2 , J ∗∗

2 , I ∗∗
v2 , J ∗∗

v2 )

be an arbitrary endemic equilibrium of model (17). The existence and stability of
endemic equilibrium involving only one of the disease strain (boundary equilibria) are
now investigated by considering the special case of the model where the two patches
are in isolation (i.e., ψ12 = ψ21 = 0). Since the patches are in isolation, the boundary
equilibria is studied for only patch one, similar results can be obtained for patch
two.
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3.1 Drug Sensitive-Only Boundary Equilibrium

This is the equilibrium where only the drug sensitive strain is present. It should be noted
that with the development and transmission of the drug resistant strain is due to the
use of anti-malaria treatment, hence, there will always be inflow from the population
of infected individuals with drug sensitive strain into the class of individuals infected
with the drug resistant strain. To investigate the existence of a drug sensitive strain-only
equilibrium, we consider the special case of the model where there is no development
of drug resistance (i.e., ξ1 = 0) due to treatment failure or non-compliant to treatment
regime.

Let R2
0DR1

< 1 and R2
0DS1

> 1 (i.e., the drug resistance-only strain are eliminated).

Thus,
(J1(t), Jv1(t)) → (0, 0) as t → ∞. (18)

Substituting (18) into the model (17) gives the following reduced system

d I1

dt
= α1β1 I1

Nh1
(Nh1 − I1 − J1)− k1 I1

d Iv1

dt
= αv1βv1 I1(Nv1 − Iv1 − Jv1)

Nh1
− μv Iv1.

(19)

The drug sensitive-only equilibrium of system (19) is given by the following after
some algebraic manipulations

E1S = (I ∗∗
1 , 0, I ∗∗

v1 , 0),

where

I ∗∗
1 =

μvk1(N∗∗
h1 )

2(R2
0DS1

− 1)

αv1βv1(N∗∗
v1βh1αh1 + k1 N∗∗

h1 )

I ∗∗
v1 =

μvk1 N∗∗
h1 (R2

0DS1
− 1)

βh1αh1(αv1βv1 + μv)

The drug sensitive-only boundary equilibrium, E1S , is biologically feasible if and
only if R2

0DS1
> 1. This result is summarized below.

Lemma 3 The model (19) has a drug sensitive-only boundary equilibrium, given by
E1S, whenever R2

0DS1
> 1.

Theorem 8 If R2
0DS1

> 1, the drug sensitive-only boundary equilibrium of model

(19) is LAS whenever R2
0DS1

> R2
0DR1

.

The proof is given in Appendix 3.
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3.2 Drug Resistance-Only Boundary Equilibrium

The drug resistance-only reduced system is given by

d J1

dt
= αh1θh1 Jv1

Nh1
(N∗∗

h1 − I1 − J1)− k2 J1

d Jv1

dt
= αv1θv1 J1

Nh1
(N∗∗

v1 − Iv1 − Jv1)− μv Jv1.

(20)

The equilibrium of system (20) is given by the following after some algebraic
manipulations

E1R = (0, J ∗∗
1 , 0, J ∗∗

v1 ),

where

J ∗∗
1 =

k2μv(N∗∗
h1 )

2(R2
0DR1

− 1)

N∗∗
v1 θh1αh1 + k2 N∗∗

h1αv1θv1
,

J ∗∗
v1 =

k2μvN∗∗
h1 (R2

0DR1
− 1)

θh1αh1(θv1αv1 + μv)
.

The drug resistance-only boundary equilibrium, E1R , is biologically feasible if and
only if R2

0DR1
> 1. This result is summarized below.

Lemma 4 The model (20) has a drug resistance-only boundary equilibrium, given by
E1R, whenever R2

0DR1
> 1.

Theorem 9 If R2
0DR1

> 1, the drug resistance-only boundary equilibrium of model

(20) is LAS whenever R2
0DR1

> R2
0DS1

.

The proof is given in Appendix 4. The theoretical results given in Theorems 8 and
9 are illustrated numerically in Fig. 2a, b using parameter values in Table 1, in the
isolated case when ψ12 = ψ21 = 0 with no development of resistance ξ1 = 0 and
when R0DS1

> R0DR1
.

3.3 Co-existence Equilibrium

Let

Ẽ1 = (I ∗∗
1 , J ∗∗

1 , I ∗∗
v1 , J ∗∗

v1 )

be an arbitrary co-existence equilibrium of the system (17) for the caseψ12 = ψ21 = 0.
Thus, Ẽ1 is given by the solution of the right hand side of system (17) set to zero. Solving
for Iv1, Jv1 in the equations of I1, J1 in the right hand system (17) set to zero gives
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(a) (b)

Fig. 2 Simulations of the model (14) as a function of time for the total number of infected human population.
(a) R0DR1

< R0DS1
(R0DS1

= 5.4964, R0DR1
= 5.1995 with θh = 0.011, μh = 0.047, γ = 0.6, η =

0.65, v = 0.67, kh = 1/20, κ = 0.65, σv = 1/9, bh = 0.5, bv = 0.5, βh = 0.75, βv = 0.5258, other
parameter values used are as given in Table 1). (b) R0DS1

< R0DR1
(R0DR1

= 18.0713, R0DS1
=

13.7385, with θh = 0.011, μh = 0.047, γ = 0.6, η = 0.65, v = 0.67, kh = 1/20, κ = 0.65, σv =
1/9, bh = 0.5, bv = 0.5, βh = 0.75, βv = 0.5258, other parameter values used are as given in Table 1)

I ∗∗
v1 = αv1βv1 I1

μvR2
0DS1

(Nh1 − I1 − J1)
,

J ∗∗
v1 = θv1αv1(J1 − ξ1 I1)

μvR0DR1
(Nh1 − I1 − J1)

,

Substituting these expressions into the equations of Iv1, Jv1 in the right hand side
of system (17) set to zero, shows that, after some manipulations, I ∗∗

1 , J ∗∗
1 are the

solutions of the following system of equations:

αv1βv1 I1

Nh1

[
Nv1 − αv1βv1 I1

μvR2
0DS1

(Nh1 − I1 − J1)
− θv1αv1(J1 − ξ1 I1)

μvR0DR1
(Nh1 − I1 − J1)

]

− αv1βv1 I1

R2
0DS1

(Nh1 − I1 − J1)
= 0,

θv1αv1 J1

Nh1

[
Nv1 − αv1βv1 I1

μvR2
0DS1

(Nh1 − I1 − J1)
− θv1αv1(J1 − ξ1 I1)

μvR0DR1
(Nh1 − I1 − J1)

]

− θv1αv1(J1 − ξ1 I1)

R0DR1
(Nh1 − I1 − J1)

= 0. (21)

Substituting the first equation of (21) into the second equation of (17) with ψ12 =
ψ21 = 0 and solving for J ∗∗

1 , J ∗∗
2 gives

J ∗∗
1 =

ξ1 I1R2
0DS1

αv1βv1(R2
0DS1

− R2
0DR1

)
. (22)
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Table 1 Description of the Variables and Parameters of the Malaria Model (7)

Variable Description

Si (t), i = 1, 2 Susceptible humans in patch i

Ii (t) Infected humans with drug sensitive malaria in patch i

Ji (t) Super Infected humans with drug resistance malaria in patch i

Svi (t) Susceptible vector in patch i

Ivi (t) Infected vectors with drug sensitive malaria in patch i

Jvi (t) Infected vectors with drug resistance malaria in patch i

Parameter Description Baseline value Reference

�i Recruitment rate of humans 0.00011 U.S. Census (2010)

�vi Recruitment rate of vectors 0.071 Anderson and May (1991)
and Flahault et al. (2005)

αhi Human biting rate in patch i 0.2–0.5 0.071 Ariey and Robert (2003),
Anderson and May (1991)
and Flahault et al. (2005)

αvi Biting rate of vectors 0.2–0.5 Ariey and Robert (2003)
Mbogob et al. (2003) and
Snow and Omumbo (2006)

βhi Transmission probabilities for
drug sensitive malaria per
contact for humans in patch i

0.1–0.5 Flahault et al. (2005) and
Smith and Mckenzie (2004)

βvi Transmission probabilities for
drug sensitive malaria per
contact for vectors

0.2 Flahault et al. (2005) and
Smith and Mckenzie (2004)

θhi Transmission probabilities for
drug resistance malaria per
contact for humans in patch i

0.1–0.5 Flahault et al. (2005) and
Smith and Mckenzie (2004)

θvi Transmission probabilities for
drug resistance malaria per
contact for vectors

0.2 Flahault et al. (2005) and
Smith and Mckenzie (2004)

γi Recovery rate from drug sensitive
malaria in patch i

0.7 Chiyaka et al. (2008)

τi Recovery rate for drug resistance
malaria in patch i

0.41 Chiyaka et al. (2008)

μh Natural mortality rate for humans 0.0000391 U.S. Census (2010)

μv Natural mortality rate for vectors 0.071 Bowman et al. (2005)

δIi , δJi Disease-induced mortality rate in
humans

0.00000426 Breman and Holloway (2007)

ψi j Migration rate from patch j to
patch i

1
10 Anderson and May (1991)

and Molineaux and
Gramiccia (1980)

The rates are given per day

Finally, substituting (22) into the first equation of (17) gives

I ∗∗
1 = αv1βv1μvR2

0DR1
Nh1(R2

0DS1
− R0DR1

)(R2
0DS1

− 1)

\{(R2
0DS1

−R2
0DR1

)αv1βv1[R2
0DR1

(αv1βv1+Nv1μvR2
0DS1

)−R2
0DR1

θv1αv1ξ1]
+ξ1(R2

0DS1
)2(θv1αv1 + Nv1μvR0DR1

)},
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Fig. 3 Simulation of the model (14) as a function of time for the total number of infected human
population with R0DSi

> R0DRi
, i = 1, 2, (R0DSi

= 11.9196, R0DRi
= 9.5471), using

θh1 = θh2 = 0.53, θv1 = θv2 = 2.50, ξ1 = ξ2 = 0.000126, ψ21 = 0.08, ψ12 = 0.04, other
parameter values used are as given in Table 1

J ∗∗
1 = ξ1μvR2

0DR1
Nh1(R2

0DS1
− 1)R2

0DS1

\{(R2
0DS1

−R2
0DR1

)αv1βv1[R0DR1
(αv1βv1+Nv1μvR2

0DS1
)−R2

0DR1
θv1αv1ξ1]

+ξ1(R2
0DS1

)2(θv1αv1 + Nv1μvR2
0DR1

)}.

Thus, the co-existence equilibrium, E1, is biologically feasible if and only if
R2

0DS1
> 1, and R2

0DS1
> R2

0DR1
> 1. This result is summarized below.

Lemma 5 The model (17) has a co-existence equilibrium, given by E1, whenever
R2

0DS1
> 1, and R2

0DS1
> R2

0DR1
> 1.

The asymptotic stability of the co-existence equilibrium is established by the fol-
lowing theorem,

Theorem 10 The co-existence equilibrium of model (17) is locally asymptotically
stable (LAS) whenever R2

0DS1
> 1, R2

0DR1
> 1 and R2

0DS1
> R2

0DR1
.

The proof is given in Appendix 5.
It is worth mentioning that extensive numerical simulations of the model (14), using

the parameter values given in Table 1 for the case with movement between the two
patches (ψ12 �= 0, ψ21 �= 0) and R0DSi

> R0DRi
> 1, i = 1, 2, show that the two

strains co-exist, with the drug sensitive strain dominating (but does not drive out the
drug resistance strain) in both patches as can be seen from Fig. 3a, b. Furthermore,
if R0DRi

> R0DSi
and with movement between the two patches, the model exhibits

competitive exclusion (where the drug resistance strain drives to extinction the drug
sensitive strain), as depicted in Fig. 4a, b. These simulations suggest the following
conjectures.
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Fig. 4 Simulation of the model (14) as a function of time using ξ1 = 0.00126, ξ2 =
0.000126, ψ21 = ψ12 = 0.04, other parameter values used are as given in Table 1. (a) Total number
of infected human population with R0DR1

> R0DS1
(R0DR1

= 9.5471, R0DS1
= 5.4389). (b) Total

number of infected human population with R0DR2
> R0DS2

(R0DS2
= 13.7385, R0DR2

= 9.5471)

Conjecture 1 Consider the model (14). The drug sensitive strain dominates the drug
resistance strain (but does not drive it to extinction) whenever ψ12 �= 0, ψ21 �= 0 and
R0DSi

> R0DRi
> 1, i = 1, 2.

Conjecture 2 Consider the model (14). The drug resistance strain drives out the drug
sensitive strain to extinction if ψ12 �= 0, ψ21 �= 0, and R0DRi

> R0DSi
> 1, i = 1, 2.

3.4 Two Patch Malaria Drug Resistance Model: Special Case

In this scenario, it is assumed that drug resistance malaria develops and circulates
among individuals in patch 1 only. And in patch 2, drug resistance malaria is as the
result of movement of infected individuals from patch 1. The model stated below
depicts this scenario

d S1

dt
= �1+γ1 I1+τ1 J1 − αh1βh1 Iv1

Nh1
S1 − αh1θh1 Jv1

Nh2
S1 − μh S1 − ψ21 S1+ψ12 S2

d I1

dt
= αh1βh1 Iv1

Nh1
S1 − (γ1 + ξ1 + μh + δI1)I1 − ψ21 I1 + ψ12 I2

d J1

dt
= αh1θh1 Jv1

Nh1
S1 + ξ1 I1 − (τ1 + μh + δJ1)J1 − ψ21 J1 + ψ12 J2

d Sv1

dt
= �v1 − αv1βv1 I1

Nh1
Sv1 − αv1θv1 J1

Nh1
Sv1 − μvSv1

d Iv1

dt
= αv1βv1 I1

Nh1
Sv1 − μv Iv1

d Jv1

dt
= αv1θv1 J1

Nh1
Sv1 − μv Jv1
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d S2

dt
= �2 + γ2 I2 + τ2 J2 − αh2βh2 Iv2

Nh2
S2 − μh S2 − ψ12 S2 + ψ21 S1

d I2

dt
= αh2βh2 Iv2

Nh2
S2 − (γ2 + μh + δI2)I2 − ψ12 I2 + ψ21 I1

d J2

dt
= −(τ2 + μh + δJ2)J2 − ψ12 J2 + ψ21 J1

d Sv2

dt
= �v2 − αv2βv2 I2

Nh2
Sv2Sv2 − μvSv2

d Iv2

dt
= αv2βv2 I2

Nh2
Sv2 − μv Iv2. (23)

It follows that the basic reproduction number of the model (23) with movement
between the patches, denoted by R2

0DS R
(ψ21 , ψ12), is given by

R2
0DS R

(ψ21 , ψ12) = max{R2
0DS
(ψ21 , ψ12),R2

0DR
(ψ21 , ψ12)},

where the drug sensitive and resistance reproduction numbers are given as

R2
0DS
(ψ12 , ψ21) = 1

2σ1

[
u1v2 + u2v1 +

√
(u1v2 − u2v1)2 + 4u1u2ψ12ψ21

]
, (24)

R2
0DR

(ψ12 , ψ21) = p1q2

σ2
. (25)

Without movement between the patches, the drug sensitive and resistance repro-
duction number is given as

R2
0DS1

(0, 0) = βh1αh1βv1αv1 N∗
v1

k1μvN∗
h1

, R2
0DR1

(0, 0) = θh1αh1θv1αv1 N∗
v1

k2μvN∗
h1

,

R2
0DS2

(0, 0) = βh2αh2βv2αv2 N∗
v2

k3μvN∗
h2

.

Theorem 11 The drug resistance basic reproduction number for the two patch
malaria-drug resistance model (23) satisfies the following,

R2
0DR1

(0, 0) = R2
0DR

(ψ12 , ψ21).

Similarly,

Theorem 12 The drug sensitive basic reproduction number, R2
0DS
(ψ12 , ψ21), for the

two patch malaria-drug resistance model (23) satisfies the following inequality,

min{R2
0DS1

(0, 0),R2
0DS2

(0, 0)}≤R2
0DS
(ψ12 , ψ21)≤max{R2

0DS1
(0, 0),R2

0DS2
(0, 0)}.

Theorem 12 can be proved using the approaches in Sect. 2.2.
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Fig. 5 Simulation of the model (23) as a function of time. (a) Total number of infected human population
with R0DR1

< R0DS1
(R0DS1

= 11.9196, R0DR1
= 9.5471), using ξ1 = 0.0001260, ξ2 = 0.0, other

parameter values used are as given in Table 1. (b) Total number of infected human population with R0DS2
>

R0DR2
(R0DS2

= 13.7385, R0DR2
= 0), using ξ1 = 0.000126, ξ2 = 0, ψ21 = 0.00033, ψ12 =

0.00033, other parameter values used are as given in Table 1
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Fig. 6 Simulation of the model (23) as a function of time. (a) Total infected human population with
R0DR1

> R0DS1
(R0DR1

= 9.5471, R0DS1
= 5.4389), using ξ1 = 0.001260, ξ2 = 0.0, ψ12 =

0.00033, ψ21 = 0.00033, other parameter values used are as given in Table 1. (b) Total infected human
population with R0DS2

> R0DR2
( R0DS2

= 13.7385, R0DR2
= 0), using ξ1 = 0.00126, ξ2 =

0, ψ21 = 0.00033, ψ12 = 0.00033, other parameter values used are as given in Table 1

Simulation of model (23), using the parameter values given in Table 1 for the case
with slow movement rates between the two patches (ψ12 = ψ21 = 0.00033) and
slow treatment failure rates (ξ1 = 0.000126, ξ2 = 0) with R0DS1

> R0DR1
> 1

and R0DS2
> 1, shows that the two strains co-exist, with the drug sensitive strain

dominating (but does not drive out the drug resistance strain) in both patches as can
be seen in Figures 5a and 5b. With R0DR1

> R0DS1
> 1 and a slightly higher

treatment failure rate in patch 1 (ξ1 = 0.00126), the two strains co-exist in both
patches; however, the drug resistance strain dominates in patch 1, while the drug
sensitive strain dominates in patch 2, as depicted in Figures 6a and 6b. Furthermore,
with a faster movement between the patches (ψ12 = 0.04, ψ21 = 0.04) and a higher

123



Malaria Drug Resistance 1631

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

to
ta

l n
um

be
r 

of
 in

fe
ct

ed
 h

um
an

 p
op

ul
at

io
n

Time (days)

Patch 1

Sensitive strain
Resistance strain

0 0.5 1 1.5 2 2.5
x 10

4

0

100

200

300

400

500

600

700

800

900

to
ta

l n
um

be
r 

of
 in

fe
ct

ed
 h

um
an

 p
op

ul
at

io
n

Time (days)

Patch 2

Sensitive strain
Resistance strain

(a) (b)

Fig. 7 Simulation o the model (23) as a function of time. (a) Total number of infected human population
with R0DR1

> R0DS1
(R0DR1

= 9.5471, R0DS1
= 5.4389), using ξ1 = 0.001260, ξ2 = 0.0, other

parameter values used are as given in Table 1. (b) Total number of infected human population with R0DS2
>

R0DR2
( R0DS2

= 13.7385, R0DR2
= 0), using ξ1 = 0.00126, ξ2 = 0, ψ21 = 0.04, ψ12 = 0.04,

other parameter values used are as given in Table 1

treatment failure rate in patch 1 (ξ1 = 0.0126) the drug resistance strain dominates in
both patches, as depicted in Figures 7a and 7b.

4 Conclusions

A deterministic model for the transmission dynamics of drug sensitive and drug resis-
tance malaria incorporating human migration was designed and rigorously analyzed.
Some of the main theoretical and epidemiological findings of this study are summa-
rized below:

(i) The DFE of the model is globally asymptotically stable whenever the associated
reproduction number is less than unity;

(ii) For the two patch model (14) when the patches are isolated (i.e., there is no
movement between the patches)
(a) The drug sensitive-only and drug resistance-only boundary equilibria of the

model are shown to be locally asymptotically stable when they exist;
(b) The co-existence equilibrium is locally asymptotically stable whenever the

reproduction number for the drug sensitive malaria is greater than the repro-
duction number for the resistance malaria;

(iii) For the two patch model (14) when the patches are connected (i.e., there is
movement between the patches), the disease persist in the two patches;

(iv) Numerical simulations of the model (14) show that:
(a) When R0DSi

> R0DRi
> 1, i = 1, 2 the drug sensitive strain dominates the

drug resistance strain;
(b) When R0DRi

> R0DSi
> 1 the drug resistance strain drives out the drug

sensitive strain to extinction.
(v) Numerical simulations of the model (23) show that the strains co-exist:
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1632 F. B. Agusto

(a) with the drug sensitive strain dominating the drug resistance strain with a
slow movement (or low migration) between the patches;

(b) with the drug resistance strain dominating the drug sensitive strain with a
fast movement (or high migration) between the patches.

In the present study, we have theoretically gained insight into the asymptotic behav-
ior of the transmission dynamics of malaria drug resistance with human mobility and
spatial heterogeneity. However, there are still more work to be done. As further work
along these lines, it will be interesting to address the issue of control of possible
expansion of resistance parasites by applying optimal control; an interesting question
therefore will be: given n connected patches how do we optimally control malaria
prevalence; could we by controlling malaria in one patch reduce its prevalence in the
other patches? What should we do to prevent expansion of the resistant strain?

Acknowledgments The author likes to thank the anonymous reviewers for the constructive comments.

Appendix 1: Proof of Theorem 4

Proof To prove Theorem 4, we follow the method given in Prosper et al. (2012).
Assume R2

0DR1
> R2

0DR2
, by this assumption and from Eq. (16) it follows that

p1k4 > p2k2. Evaluating the reproduction number R2
0DR

at the boundary of the

domain (ψ12 , ψ21) ∈ [0,∞)× [0,∞). We have,

R2
0DR

(ψ12 , 0) = 1

2k2q2
(p1q2 + p2k2 + |p1q2 − p2k2|). (26)

Since by assumption p1k4 > p2k2, and because q2 = k4 + ψ12 ≥ k4, we know that
p1q2 − p2k2 > 0, and so |p1q2 − p2k2| = p1q2 − p2k2. Thus, Eq. (26) simplifies to
R2

0DR
(ψ12 , 0) = R2

0DR1
(0, 0) for all ψ12 ∈ [0,∞). Similarly,

R2
0DR

(0, ψ21) = 1

2k4q1
(p1k4 + p2q1 + |p1k4 − p2q1|)

= 1

k4q1
max{p1k4, p2q1}

= max

{
p1

q1
,

p2

k4

}

= max

( R2
0DR1

1 + ψ21
k2

,R2
0DR2

)
.

Hence, R2
0DR2

(0, 0) ≤ R2
0DR

(0, ψ21) ≤ R2
0DR1

(0, 0), for all ψ21 ∈ [0,∞).
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Now, evaluating the reproduction number R2
0DR

in the interior of the domain

(ψ12 , ψ21) ∈ [0,∞)× [0,∞). Consider the function

f (x) = σ2 y2 − (p1q2 + p2q1)y + p1 p2. (27)

f is the characteristic polynomial of the next-generation matrix used to derive
R2

0DR
(ψ12 , ψ21) in Eq. (15). R2

0DR
is the larger of the two roots of f (x). Conse-

quently, f (R2
0DR

) = 0 and f ′(R2
0DR

) > 0. Thus, for any real number y for which

the inequality f (y) < 0 holds, implies that y < R2
0DR

. However, if f (y) > 0 and

f ′(y) > 0, then y > R2
0DR

. Now, suppose ψ12 and ψ21 are positive, then it follows
that

f

(
R2

0DR1

)
= f

(
p1

k2

)
= σ2

(
p1

k2

)2

− (p1q2 + p2q1)
p1

k2
+ p1 p2

= p1

k2

[
(ψ21 k2 + ψ21 k4 + k2k4)

p1

k2
− (p1q2 + p2q1)+ p2k2

]

= p1

k2

[
p1ψ21 + p1

ψ21 k4

k2
+ p1k4 − (p1q2 + p2q1)+ p2k2

]

= p1

k2

[
p1q2 + p1

ψ21 k4

k2
− (p1q2 + p2q1)+ p2k2

]

= p1

k2

(
p1k4

k2
ψ21 − p2ψ21

)

= p1ψ21

k2
2

(p1k4 − p2k2).

We can similarly show that

f

(
R2

0DR2

)
= f

(
p2

k4

)
= p2ψ12

k4
2

(p2k2 − p1k4)

f

( R2
0DR1

1 + ψ21
k2

)
= −

(
p1

k2 + ψ21

)2

ψ12ψ21 .

Thus, since (p1k4 − p2k2) > 0 by assumption, we have that f (R2
0DR1

) > 0,

f (R2
0DR2

) < 0 and f

(R2
0DR1

1+ψ21
k2

)
< 0.

Differentiating f (y) we have f ′(y) = 2σ2 y − (p1q2 + p2q1). Thus,

f ′
(

R2
0DR1

)
= f ′

(
p1

k2

)
= 2σ

(
p1

k2

)
− (p1q2 + p2q1)

= 2(ψ21 k2 + ψ21 k4 + k2k4)
p1

k2
− p1k4 − p1ψ12 − p2k2 − p2ψ21
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= (p1k4 − p2k2)+ (k2ψ12 + k4ψ21)p1

k2
+ (p1k4 − p2k2)ψ21

k2
.

Since (p1k4 − p2k2) > 0, it follows that f ′(R2
0DR1

) > 0. Hence, it follows

that, for ψ12 and ψ21 positive, f (R2
0DR2

) < 0 and f

(R2
0DR1

1+ψ21
k2

)
< 0 implies that

R2
0DR

> max

{R2
0DR1

1+ψ21
k2

,R2
0DR2

}
. Since f (R2

0DS1
) > 0 and f ′(R2

0DS1
) > 0 we have

that R2
0DR

< R2
0DS1

.

Hence, for all ψ12 and ψ21 positive, max

{R2
0DR1

(0,0)

1+ψ21
k2

,R2
0DS2

(0, 0)

}
< R2

0DS
(ψ12 ,

ψ21) < R2
0DR1

(0, 0). 	


Appendix 2: Proof of Theorem 6

Proof In the proof of Theorem 4 we have that R0DR
(0, ψ) = max

{R0DR1
(0,0)

1+ψ21
k2

,

R0DR2
(0, 0)

}
and R0DR

(ψ12 , ψ) > max

{R0DR1
(0,0)

1+ψ21
k2

,R0DR2
(0, 0)

}
for ψ12 > 0.

Thus R0DR
(ψ12 , ψ) ≥ R0DR

(0, ψ) for all ψ12 ≥ 0. Thus, for R0DR
(ψ12 , ψ) to be an

increasing function in ψ12 we need to show that R0DR
(ψ12 , ψ) is monotone in ψ12 .

Also, from Theorem 4 we also know that R0DR
(ψ, 0) = R0DR1

(0, 0, ) ≥
R0DR

(ψ,ψ21) for all non-negativeψ21 . Again, we only need to show thatR0DR
(ψ,ψ21)

is monotone in ψ21 in order to show that it is a decreasing function in ψ12 .
To show that R0DR

(ψ12 , ψ21) is monotone, we first show that R0DR
(ψ12 , ψ) is

monotone inψ12 . Since R0DR
(ψ12 , ψ) is continuous inψ12 , it is monotone with respect

to ψ12 if for every B ∈ (0,∞) such that R0DR
(ψ12, ψ) = B has a non-negative

solutionψ12 ∈ [0,∞), then this solution is unique. Suppose R0DR
(ψ12 , ψ) = B. The

reproduction number R0DR
(ψ12 , ψ) can be written as

1

2σ2

(
s +

√
s2 − 4p1 p2σ2

)
,

where s = p1q2 + p2q1 = p1(k4 +ψ12)+ p2(k2 +ψ) and σ2 = k2k2 + k2ψ12 + τ2ψ.

Hence,
1

2σ2

(
s +

√
s2 − 4p1 p2σ2

)
= B, (28)

Equation (28) implies that

σ2 B2 − s B + p1 p2 = 0. (29)

123



Malaria Drug Resistance 1635

Note that both σ2 and s are linear in ψ12 . Thus, Eq. (29) is linear in ψ12 , implying
that if there exists a ψ12 ∈ [0,∞) that is, a solution to Eq. (29), then this solution
is unique. Hence, R0DR

(ψ12 , ψ) is monotone for each ψ ∈ [0,∞). By the same
argument, R0DR

(ψ,ψ21) is monotone for each ψ ∈ [0,∞)). Since R0DR
(ψ12 , ψ)

is monotone for non-negative ψ12 and R0DR
(0, ψ) ≤ R0DR

(ψ12, ψ), for each fixed
ψ21 = ψ ∈ [0,∞), R0DR

(ψ12, ψ21) is an increasing function of ψ12. Likewise, since
R0DR

(ψ, 0) ≥ R0DR
(ψ,ψ21) for non-negativeψ21 , for each fixedψ12 = ψ ∈ [0,∞),

R0DS
(ψ12, ψ21) is a decreasing function of ψ21. 	


Appendix 3: Proof of Theorem 8

Proof The stability of the drug sensitive-only boundary equilibrium is explored by
evaluating the Jacobian of system (19) at the boundary equilibrium E1S , taking the
following order of the coordinates I1, Iv1, J1, Jv1.

The Jacobian is given as

JS(E1S) =
⎛

⎝
JS1 JS2

0 JS4

⎞

⎠

where

JS1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−αh1βh1 I ∗∗
v1

N∗∗
h1

− k1
αh1βh1(N∗∗

h1 − I ∗∗
1 )

N∗∗
h1

αv1βv1(N∗∗
v1 − I ∗∗

v1 )

N∗∗
h1

−αv1βv1 I ∗∗
1

N∗∗
h1

− μv

⎞

⎟⎟⎟⎟⎟⎟⎠
,

JS2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−αh1βh1 I ∗∗
v1

N∗∗
h1

0

0 −αv1βv1 I ∗∗
1

N∗∗
h1

⎞

⎟⎟⎟⎟⎟⎟⎠

JS4 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−k2
θh1αh1(N∗∗

h1 − I ∗∗
1 )

N∗∗
h1

θv1αv1(N∗∗
v1 − I ∗∗

v1 )

N∗∗
h1

−μv

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of JS(E1S) are given by the eigenvalues of JS1 and JS4 . The eigen-
values of JS1 are determined from the roots of the characteristics equations obtained
by substituting in JS1 , I ∗∗

1 , I ∗∗
v1
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PS11 = λ2 +
[

N∗∗
v1 (αv1βv1 + μv)βh1αh1

N∗∗
v1αh1βh1 + k1 N∗∗

h1
+ αv1βv1(N∗∗

v1αh1βh1 + k1 N∗∗
h1 )

(αv1βv1 + μv)N∗∗
h1

]
λ

+μvk1(R2
0DS1

− 1) = 0. (30)

It follows that for R2
0DS1

> 1, the coefficients of the characteristics equation PS11

is positive. And thus, satisfies the Routh–Hurwitz criteria, for stability.
For the matrix JS4 , the eigenvalues are given by the roots of the characteristics

equations obtained by substituting in JS4, I ∗∗
1 , I ∗∗

v1

PS41 = λ2 + (μv + k2)λ+ μvk2

(
1 −

R2
0DR1

R2
0DS1

)
= 0. (31)

The roots of the characteristics equation PS41 have negative real parts if and only if
R2

0DS1
> R2

0DR1
. 	


Appendix 4: Proof of Theorem 9

Proof The stability of the drug resistance-only boundary equilibrium is explored by
evaluating the Jacobian of system (20) at the boundary equilibrium E1R , using the
following order of coordinates, I1, Iv1, J1, Jv1.

The Jacobian is given as

JR(E1R) =
⎛

⎝
JR1 0

JR3 JR4

⎞

⎠ ,

where

JR1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−k1
αh1βh1(N∗∗

h1 − J ∗∗
1 )

N∗∗
h1

αv1βv1(N∗∗
v1 − J ∗∗

v1 )

N∗∗
h1

−μv

⎞

⎟⎟⎟⎟⎟⎟⎠
,

JR3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−θh1αh1 J ∗∗
v1

N∗∗
h1

0

0 −θv1αv1 J ∗∗
1

N∗∗
h1

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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and

JR4 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−θh1αh1 J ∗∗
v1

N∗∗
h1

− k2
θh1αh1(N∗∗

h1 − J ∗∗
1 )

N∗∗
h1

θv1αv1(N∗∗
v1 − J ∗∗

v1 )

N∗∗
h1

−θv1αv1 J ∗∗
1

N∗∗
h1

− μv

⎞

⎟⎟⎟⎟⎟⎟⎠
.

substituting J ∗∗
1 and J ∗∗

v1 into JR1 and JR4 gives the following characteristics equations,

PR11 = λ2 + (μv + k1)λ+ μvk1

(
1 −

R2
0DS1

R2
0DR1

)
= 0. (32)

and

PR41 = λ2 +
[

N∗∗
v1 (θv1αv1 + μv)θh1αh1

N∗∗
v1 θh1αh1 + k2 N∗∗

h1
+ θv1αv1(N∗∗

v1 θh1αh1 + k2 N∗∗
h1 )

(θv1αv1 + μv)N∗∗
h1

]
λ

+μvk1(R2
0DR1

− 1) = 0. (33)

By Routh–Hurwitz criteria for stability, it follows that the roots of the characteristics
equations PR1 and PR4 have negative real parts if and only if R2

0DR1
> R2

0DS1
. 	


Appendix 5: Proof of Theorem 10

Proof To prove Theorem 10, we follow the method given in Esteva and Gumel (2009)
and Esteva and Vargas (2000). The method essentially entails proving that the lin-
earization of the model system (14), around the co-existence equilibrium E1, has no
solutions of the form

Z̃(t) = Z̃0eωt , (34)

with Z̃ = {Z1, Z2, Z3, Z4}, Zi ∈ C, ω ∈ C , and Re ω ≥ 0 (the implication of this
is that the eigenvalues of the characteristic polynomial associated with the linearized
model will have negative real part; in which case, the equilibrium E1 is LAS).
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Let I ∗∗
1 , J ∗∗

1 , I ∗∗
v1 , J ∗∗

v1 denote the coordinates of the co-existence equilibrium, E1.
Substituting a solution of the form (34) into the linearized system of (17) around E1
gives the following system of linear equations

ωZ1 = −
(
αh1βh1 I ∗∗

v1

N∗∗
h1

+ p1

)
Z1 − αh1βh1 I ∗∗

v1

N∗∗
h1

Z2 + αh1βh1

N∗∗
h1

(N∗∗
h1 − I ∗∗

1 − J ∗∗
1 )Z3

ωZ2 = −αh1θh1 J ∗∗
v1

N∗∗
h1

Z1+ξ1 Z1−
(
αh1θh1 J ∗∗

v1

N∗∗
h2

+ p2

)
Z2+ αh1θh1

N∗∗
h1

(N∗∗
h1 − I ∗∗

1 − J ∗∗
1 )Z4

ωZ3 = αv1βv1

N∗∗
h1

(N∗∗
v1 − I ∗∗

v1 − J ∗∗
v1 )Z1 −

(
αv1βv1 I ∗∗

1

N∗∗
h1

+ μv

)
Z3 − αv1βv1 I ∗∗

1

N∗∗
h1

Z4

ωZ4 = αv1θv1

N∗∗
h1

(N∗∗
v1 − I ∗∗

v1 − J ∗∗
v1 )Z2 − αv1θv1 J ∗∗

1

N∗∗
h1

Z3 −
(
αv1θv1 J ∗∗

1

N∗∗
h1

+ μv

)
Z4,

(35)
where p1 = γ1 + ξ1 + μh + δI1 , p2 = τ1 + μh + δJ1 . Simplifying (35), gives the
equivalent system
[

1 + 1

p1

(
ω + αh1βh1 I∗∗

v1
N∗∗

h1

)]
Z1 = −αh1βh1 I∗∗

v1
p1 N∗∗

h1
Z2+ αh1βh1

p1 N∗∗
h1
(N∗∗

h1 − I∗∗
1 − J∗∗

1 )Z3 (36)

[
1 + 1

p2

(
ω + αh1θh1 J∗∗

v1
N∗∗

h1

)]
Z2 =−αh1θh1 J∗∗

v1
p2 N∗∗

h1
Z1+ ξ1 Z1

p2
+ αh1θh1

p2 N∗∗
h1
(N∗∗

h1 − I∗∗
1 − J∗∗

1 )Z4

(37)
[

1 + 1

μv

(
ω + αv1βv1 I∗∗

1
N∗∗

h1

)]
Z3 = αv1βv1

μvN∗∗
h1
(N∗∗
v1 − I∗∗

v1 − J∗∗
v1 )Z1 − αv1βv1 I∗∗

1
μvN∗∗

h1
Z4 (38)

[
1 + 1

μv

(
ω + αv1θv1 J∗∗

1
N∗∗

h1

)]
Z4 = αv1θv1

μvN∗∗
h1
(N∗∗
v1 − I∗∗

v1 − J∗∗
v1 )Z2 − αv1θv1 J∗∗

1
μvN∗∗

h1
Z3 (39)

Adding Eqs. (36) and (37), (38) and (39) gives the system

(1 + G1(ω))Z1 + [1 + G2(ω)]Z2 = (H Z̃)1 + (H Z̃)2
(1 + G3(ω))Z3 + [1 + G4(ω)]Z4 = (H Z̃)3 + (H Z̃)4

(40)

where

G1(ω) =
[

1 + 1

p1

(
ω + αh1βh1 I ∗∗

v1

N∗∗
h1

+ p1αh1θh1 J ∗∗
v1

N∗∗
h1

)]
Z1

G2(ω) =
[

1 + 1

p2

(
ω + αh1θh1 J ∗∗

v1

N∗∗
h1

+ p2αh1βh1 I ∗∗
v1

N∗∗
h1

)]
Z2

G3(ω) =
[

1 + 1

μv

(
ω + αv1βv1 I ∗∗

1

N∗∗
h1

+ αv1θv1 J ∗∗
1

N∗∗
h1

)]
Z3

G4(ω) =
[

1 + 1

μv

(
ω + αv1θv1 J ∗∗

1

N∗∗
h1

+ αv1βv1 I ∗∗
1

N∗∗
h1

)]
Z4
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and

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
αh1βh1S∗∗

1

p1 N∗∗
h1

0

ξ1

p2
0 0

αh1θh1S∗∗
1

p2 N∗∗
h1

αv1βv1S∗∗
v1

μvN∗∗
h1

0 0 0

0
αv1θv1S∗∗

v1

μvN∗∗
h1

0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that S∗∗
1 = (N∗∗

h1 − I ∗∗
1 − J ∗∗

1 ), S∗∗
v1 = (N∗∗

v1 − I ∗∗
v1 − J ∗∗

v1 ) above. It should
further be noted that the matrix H has non-negative entries, and the equilibrium E1 =
(I ∗∗

1 , J ∗∗
1 , I ∗∗

v1 , J ∗∗
v1 ) satisfies E1 = HE1. Furthermore, since the coordinates of E1 are

all positive, it follows then that if Z̃ is a solution of (34), then it is possible to find a
minimal positive real number r such that

∣∣∣Z̃
∣∣∣ ≤ rE1. (41)

Observe that r is also the minimal positive r such that |Z1|+ |Z2| ≤ r(I ∗∗
1 + J ∗∗

1 ) and
|Z3| + |Z4| ≤ r(I ∗∗

v1 + J ∗∗
v1 ). We want to show that Re ω < 0. Assume the contrary

(i.e., Re ω ≥ 0), we consider two cases: ω = 0 and ω �= 0. Assume the first case
ω = 0. Then, (35) is a homogeneous linear system in the variables Zi (i = 1, . . . , 4).
The determinant of this system corresponds to that of the Jacobian of system (17)
evaluated at E1, which is given by

� =
(

p2μv − θh1αh1S∗∗
1

N∗∗
h1

θv1αv1S∗∗
v1

N∗∗
h1

)(
p1μv − αv1βv1S∗∗

v1

N∗∗
h1

αh1βh1S∗∗
1

N∗∗
h1

)
> 0.

Consequently, the system (35) can only have the trivial solution Z̃ = 0̄.
The case ω �= 0, is considered next. In this case, Re Gi (ω) ≥ 0, i = 1, . . . , 4,

since, by assumption, Re ω > 0. It is easy to see that this implies |1 + G(ω)| > 1
for all i . Now, define G(ω) = min |1 + Gi (ω)|, i = 1, . . . , 4. Then, G(ω) > 1, and
therefore r

G(ω) < r . The minimality of r implies that |Z̃ | > r
G(ω)E1. But, on the other

hand, taking norms on both sides of the second equation of (40), and using the fact
that H is non-negative, we obtain

G(ω)|Z | ≤ H |Z | ≤ rE1. (42)

Then, it follows from the above inequality that |Z | ≤ r
G(ω)E1 which is a contradiction.

Hence, Re ω < 0, which implies that E1 is locally asymptotically stable. 	
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