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Abstract Human habitat connectivity, movement rates, and spatial heterogeneity have
tremendous impact on malaria transmission. In this paper, a deterministic system of
differential equations for malaria transmission incorporating human movements and
the development of drug resistance malaria in an n patch system is presented. The
disease-free equilibrium of the model is globally asymptotically stable when the asso-
ciated reproduction number is less than unity. For a two patch case, the boundary
equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when
there is no movement between the patches are shown to be locally asymptotically
stable when they exist; the co-existence equilibrium is locally asymptotically sta-
ble whenever the reproduction number for the drug sensitive malaria is greater than
the reproduction number for the resistance malaria. Furthermore, numerical simu-
lations of the connected two patch model (when there is movement between the
patches) suggest that co-existence or competitive exclusion of the two strains can
occur when the respective reproduction numbers of the two strains exceed unity. With
slow movement (or low migration) between the patches, the drug sensitive strain
dominates the drug resistance strain. However, with fast movement (or high migra-
tion) between the patches, the drug resistance strain dominates the drug sensitive
strain.
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1 Introduction

Malaria is caused by parasites (species plasmodium) transmitted to people through the
bites of infected female mosquitoes. Plasmodium falciparum and Plasmodium vivax
are the two most common species, and plasmodium falciparum is the most deadly
(World Health Organization 2010). In the tropical and subtropical areas of the globe,
plasmodium falciparum malaria is a major cause of mortality and morbidity. Accord-
ing to the 2009 Malaria World Report (World Health Organization 2009), half of the
world’s population is at risk of malaria, with an estimated 243 million cases that led
to about 863, 000 deaths in 2008, a slight drop from the 2006 statistics. This decrease
can be attributed to a number of improved policies, including increases in interna-
tional funding, research, the use of insectide-treated bednets and artemisinin-based
combination therapy, and a revival of support for indoor residential insectide spraying
(World Health Organization 2009). Despite this slight drop, there are still challenges
that may lead to significant increase in the malaria burden. These include the global
financial slow down and the changing climatic conditions, both of which affect the
endemic malaria regions (Lindsay and Martens 1998; Zhou et al. 2004). The number
and severity of malaria cases are also being exacerbated by high levels of HIV infection
that weaken the immune system rendering people with HIV more susceptible to con-
tracting the disease (Bush et al. 2001) and also enhancing mortality in advanced HIV
patients by a factor of about 25 % in non-stable malaria areas (Grimwade et al. 2004).

Drug resistance malaria is caused by drug misused or non-compliance to drug reg-
imens, and this development is feared will thwart the malaria control efforts and will
significantly increase the disease burden. This concern is fueled by the emergence of
resistance to artemisinin-based combination therapy in western Cambodia and west-
ern Thailand (Cheeseman et al. 2012; Phyo et al. 2012). Artemisinin resistance is
marked by reduced parasite clearance upon treatment (Cheeseman et al. 2012; Phyo et
al. 2012). In 2002, an indication pointing to artemisinin resistance arose in Cambodia
when failure rates of the artesunate (a class of artemisinins) and mefloquine combi-
nation therapy began (Denis et al. 2006). A study conducted in 2009, to investigate
the efficacy of artemisinin-based combination therapy and artesunate monotherapy in
western Cambodia compared to northwestern Thailand (Dondorp et al. 2009), found
that in western Cambodian P. falciparum parasites had significantly reduced suscep-
tibility to artesunate, an indication that the parasites were surviving longer against the
effects of the drug. A more recent study Phyo et al. (2012), examining over 3,000
patients in Thailand—Myanmar border, which is on the western border of Cambodia,
found that it took significantly longer for malaria parasites to be killed in the course of
treatment with artemisinin therapies than it had in 2001. These new instances of drug
resistance were found 800 km away from the 2009 cases of anti-malarial resistance,
indicating that movement of people plays arole in the spread of drug resistance malaria.

Chloroquine resistance in P. falciparum was first observed among Thai gem work-
ers returning from nearby Cambodia in 1957 (Carrara et al. 2006). Following a 13
year study in which artemisinin combination treatments (ACT) of mefloquine and
artesunate regimen were deployed continuously as first-line treatment in camps for
displaced persons and in clinics for migrant population along the Thai-Myanmar bor-
der, a modest increase in resistance was observed Carrara et al. (2009). Thus, imported
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malaria to areas with low malaria transmission or movement into areas aiming for elim-
ination serves as another challenge against the public health bid at reducing the local
malaria transmission. The movement of people between areas with different malaria
transmission rates will impact the effectiveness of control interventions. For instance,
frequent movement of infected individuals into an area that had eliminated malaria
through extensive interventions could increase the time over which the intervention
will have to be held in place in order to prevent resurgence of the disease.

A number of studies have been carried out following the pioneering work of Ross
(1911), in order to understand the transmission and spread of malaria (Ross 1911;
Chitnis et al. 2006; Dietz 1988; Feng et al. 2004; Smith et al. 2006). Using sim-
ple probabilistic models, Hastings (1997) and Mackinnon (2005) studied the factors
influencing the appearance of mutations that confer resistance to malaria drugs. Aneke
(2002) and Koella and Antia (2003) captured the epidemiological effects of drug treat-
ment and resistance development via population dynamics models; the models used
inoculation rate to model the vector dynamics at steady-state vector population with
respect to changes in the human population. Bacaer and Sokna (2005) used a reac-
tion diffusion system to model the spatial spread of resistance; modeling resistance
development in terms of primary infection with the resistant strain. Esteva and Gumel
(2009) used a deterministic model to monitor the epidemiological impact of the anti-
malarial drug and how this impact is influenced by the evolution of resistance as well
as the fitness of the resistant strain in a given population. Pongtavornpinyo et al. (2008)
constructed a model which incorporated the epidemiological and biological factors of
human, mosquito, parasite, and treatment in order to evaluate different anti-malarial
policy options focusing on ACT deployment.

Various studies incorporating human movement between spatially heterogeneous
regions have been carried out with the aim of quantifying the potential burden of
malaria infection in humans. Rodrguez and Torres-Sorando (2001) considered mod-
els with hosts distributed in subpopulations as a consequence of spatial partitioning
using two types of models with direct and indirect transmission. Considering two
types of visit: one in which the visit time is independent of the distance traveled,
and the other in which visit time decreases with distance. Ariey et al. (2003) used a
patch occupancy discrete-time metapopulation model to study the spread of resistance
to chloroquine in the pathogen. Menach and Ellis Mckenzie (2005) gave a detailed
description of mosquito oviposition behavior in metapopulation setting. Smith and
Dushoff (2005) used metapopulations to model malaria transmission assuming only
migration of mosquitoes. Auger et al. (2008) generalize the Ross—Macdonald malaria
model to n patches and incorporated the fact that some patches can be vector free.
They assume that the hosts can migrate between patches, but not the vectors. Adams
and Kapan (2009) numerically investigated the effect of short-term human movement.
Cosner et al. (2009) developed spatial models of vector-borne disease dynamics on a
network of patches to examine how the movement of humans in heterogeneous envi-
ronments affects transmission. They constructed two classes of models using different
approaches: one that mimic human commuting behavior using Lagrangian models
and the other that mimic human migration using Eulerian models. A metapopulation
malaria model was proposed by Arino et al. (2012) using SI and SIRS models for
the vectors and hosts. The model was then applied to study the spread of malaria to
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non-endemic areas, and the interaction between rural and urban areas are given. Using
type reproduction numbers, the reservoirs of infection was identified, and the effect of
control measures evaluated. To address the role of human movement and spatial hetero-
geneity in malaria transmission and malaria control, (Prosper et al. 2012) considered
a two patch metapopulation model connected by human movement and with different
degrees of malaria transmission in each patch. Sensitivity analysis of the reproduction
number and the endemic equilibrium to various parameters in the two patch was per-
formed in order to determine which patch will be the better target for control measures
and what type of control measure should be implemented within the patch.

Understanding the dynamics of the spread of both drug-sensitive and drug-
resistance malaria with mobility of individuals between regions is crucial to the efforts
of controlling or eradicating the disease burden. The existing studies of transmission
dynamics of malaria with mobility in spatially homogeneous regions (Adams and
Kapan 2009; Ariey et al. 2003; Arino et al. 2012; Auger et al. 2008; Cosner et al.
2009; Menach and Ellis Mckenzie 2005; Rodrguez and Torres-Sorando 2001; Smith
and Dushoff 2005) focused only on the transmission dynamics of drug sensitive malaria
between the spatial locations. This current work (to the best of my knowledge) is the
first to attempt to consider the dynamics of drug-sensitive and drug-resistance malaria
with mobility of individuals between regions. Hence, this current study presents a
deterministic model for the transmission dynamics of drug resistance malaria with
mobility of individuals between different spatial locations. The aim of this study is to
determine the impact of human movement on the prevalence of drug resistance malaria
in the population and the role of human movement on the persistence or extinction of
the malaria drug sensitive and drug resistance strains. The study extend the aforemen-
tioned studies particularly those in Auger et al. (2008), Prosper et al. (2012), Smith and
Dushoff (2005), and the model in Cosner et al. (2009) with Lagrangian movement, by
incorporating the development of drug resistance malaria transmission. Furthermore,
the study will present a rigorous analysis of the resulting model.

2 Formulation of the Basic Malaria Model

The model is formulated with human and mosquito groups (see Fig. 1). The model
sub-divides the total human population in patch i at time ¢, denoted by Nj; (¢), into the
following sub-populations of susceptible individuals (S; (¢)), infected individuals with
drug sensitive malaria (/;(¢)), and infected individuals with drug resistance malaria
(Ji(t)), wherei = 1...n. So that

Npi (1) = Si (1) + 1; (1) + Ji(2).

The rates at which the proportion of susceptible humans (S;) changes over time in
patch i is given by

aoi m; + Vi I+ 1J; — l’lllBhl vi S; — thhl vi
hi

S, — S;. 1
di Ny i — Mhoi (1)
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Fig. 1 Systematic flow diagram of the Malaria Model (7) without movement

The parameter IT; is the recruitment rate into the susceptible human class. The
parameter «,; is the rate at which susceptible humans in patch i receive mosquitoes
bite. The parameter fj; is the probability that a susceptible human becomes infected
with drug sensitive malaria having been bitten by an infectious mosquito with the
drug sensitive strain. The parameter 6j; correspond to the probability that a suscep-
tible human becomes infected with drug resistance malaria having been bitten by an
infectious mosquito with the drug resistance strain, it is assumed that 6,; < Bp;. The
natural death rate is denoted by .

The rate at which the proportion of infected humans (/;) with drug sensitive malaria
changes over time in patch i is given by

= N, it &+ s 3 @
The parameter y; denotes the drug sensitive malaria recovery rate, while &; is the
rate at which humans develop resistance to malaria treatment drugs as a result of non-
compliant to treatment regiment. The disease-induced death rate due to drug sensitive
malaria in patch i is denoted by §y,.
Similarly, the rate at which the proportion of infected humans (J;) with drug resis-
tance malaria changes over time in patch i is given by

dJ; oniOni Jui
S M G L E T — (ti 4+ 85) i 3)
dt Npi

The parameter t; is the parameter indicating recovery rate with drug resistance

malaria. It is assumed that once a human recovers from malaria infection, they do
not gain immunity, but instead are susceptible to re-infection, this is a simplifying
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assumption since humans develop immunity against malaria with repeated exposure
(Niger and Gumel 2008). The disease-induced death rate due to drug resistance malaria
in patch i is denoted by 4.

The mosquito population in patch i at time ¢ has three classes representing sus-
ceptible mosquitoes, Sy; (¢), infected mosquitoes with drug sensitive malaria, 1,;(?),
and infected mosquitoes with drug resistance malaria, Jy; (¢). Thus, the total mosquito
population is

Nyi (1) = Svi (1) + Li (1) + Jui (7).

The rates at which the proportion of susceptible mosquitoes (S,;) changes over time
in patch i is given by

dSvi _ o wibuili S oyibhi Ji
dt Npi Nii

Svi — MySyi- “4)

= 1lyi

The parameter I1,; is the recruitment rate into the susceptible mosquito class. The
parameter «,,; is the rate at which mosquitoes bite humans in patch i. The parameter
Bui is the probability that a susceptible mosquito becomes infected with drug sensitive
malaria having bitten an infectious human with the drug sensitive strain. The parameter
6yi corresponds to the probability that a susceptible mosquito becomes infected with
drug resistance malaria having bitten an infectious human with the drug resistance
strain. The mosquito natural death rate is denoted by 1ty

The rate at which the proportion of infected mosquitoes (/,;) with drug sensitive
malaria changes over time in patch i is given by

dly oyl
—d:l = —U;thil lSvi — Mo lyi. o)

Similarly, the rate at which the proportion of infected mosquitoes (J,;) with drug
resistance malaria changes over time in patch i is given by

dJvi oy Ji
dt Nypi

Svi — My Jvis (6)

We assume here that only humans move between the patches and so, we include
migration in Egs. (1)—(3) above and also assuming that disease transmission occurs
only between individuals that are in the same patch at the same time. Now adding the
equations for the mosquitoes, we have the following system of ordinary differential
equations

ds: i Bri lyi i Oni Jvi -
d_tl = +yli+tJi — lNhi' . Si = lNhli - Si = #nSi = i_z .I//'”Si
=Li#j
n
+ Z 1#,,5]
J=1j#
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dl: ah'ﬂh'l' n n

= S i E Sl D Vit D Uyl
hi i=Li%j j=Lj#i

dJ; hiOni Jvi " "

d_tl B %Si FEL — (i + 85— D Yl D v
hi i=1i%] j=1j#i

ds,: oty Bui I aniOi I

d;l =I1,; — U;thil lSvi - v}v:ll lSvi - MvSvi

dly  oiPoil;

—d:’ = —”’N: “Sui — ol

dlyi  ayibyiJ;

d;l = v;\];:: lSvi — Wy Jui @)

The model (7) extends the model in Auger et al. (2008), Cosner et al. (2009), Pros-
per et al. (2012), Smith and Dushoff (2005) by incorporating the development and
transmission of drug resistance malaria and the inclusion of human migration. The
models in Auger et al. (2008), Cosner et al. (2009), Prosper et al. (2012), Smith
and Dushoff (2005) only considered the transmission dynamics of drug sensitive
malaria.

Since the model (7) represents human and mosquito populations, all parameters
in the model are non-negative and one can show that the solutions of the system
are non-negative, given non-negative initial values. The model (7) will be analyzed
in a biologically feasible region as follows. The system (7) is split into two parts,
namely the human population and the mosquitoes population. Consider the feasible
region

[ =r; cRY

with,

I = I(Si(t), I (1), Ji(£), Sui (1), i (1), Jui (1)) € RY" : 0 < Ny (1) < Kjp and 0

=< Nvi(t) = KU}»

The following steps are followed to establish the positive invariance of I (i.e., solutions
in [ remain in T for all # > 0). The rate of change of the total human populations is
obtained by adding the 3n equations for humans in the model (7) to give

dNp;(t)
dt

n n
=TI, — upN; = 05,1 — 85, Ji — Z Vi Nhi (1) + Z Y, Nij (1),
i=li#j j=1j#i

®)
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Now, summing (8) fromi = 1...n gives

th ()
Z — = Z(H mnN; —8p,1; — 84, J;)

i=1
+Z(— D vNk + D I/fi,Nhj(r>). ©)

i=1 i=1,i#j j=1,j#i
The double sum in (9) sums up to zero, i.e.

n

Z(— DN + D w,-,-Nh,-m):o

i=1 i=1,i#j Jj=1j#

Hence,

n n
dNp; (1)
> d_; - ;—1 (T — unNi = 81,1; — 85,J;)

=

n (10)
< D (M — i Ny).

Similarly for the mosquito population

Zdet(t) _vat ;MUNvi(t)' (11)

i=1

A standard comparison theorem (Lakshmikantham et al. 1989) can then be used to
show that

Nui () < Npi (0)e™ Zi=t it (1 — ¢~ Zimi it

>
n
i=1HMh
and

n
n P H [ n
Nyi (t) = Ny (0)e™ Zi=t ol 4 #(1 — o™ Zi=1 ol

i=1 Hv
In particular, Ny, (f) < Zi, 11 and Nyi(t) = %n A Npi (0) = ZJ 1,1;[ and
l*l

Nyi (0) = Z’ 11;’” Thus, the region I' is positively invariant. Hence, it is sufficient

to consider the dynamlcs of the flow generated by (7) in I'. In this region, the model
is epidemiologically and mathematically well-posed (Hethcote 2000). Thus, every
solution of the basic model (7) with initial conditions in I" remains in I" for all r >
0. Therefore, the w-limit sets of the system (7) are contained in I'. This result is
summarized below.
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Lemma 1 The region I’ = T'; C Ri” is positively invariant for the basic malaria
model (7) with non-negative initial conditions in Ri"

2.1 Stability of the Disease-Free Equilibrium (DFE)

The malaria model (7) has a disease free equilibrium (DFE), obtained by setting the
right hand sides of the equations in the model to zero, given by

Eo = (S5 I, JF, S, 1%, T

vi? fvi? vi)

_ Z?:l I 0,0, Z?:] Iy 0,0

Dl K
(Z?:l M+ 20y Y — 2 I//ij) =

The linear stability of & can be established using the next generation operator method
on the system (7). We take, I;, J;, I,;, Jvi, i = 1,...,n, as our infected compart-
ments, then using the notation in Driessche and Watmough (2002), the Jacobian matri-
ces F' and V for the new infection terms and the remaining transfer terms are, respec-
tively, given by,

where

Fii = diag(“hlﬂhl, an2Br2, -, Wpnbpn, op16p1, Oth29h2,~.,06hn9hn)

and
F>y = diag (QUI%:N;H . msz;Z, - a”"'i;:N;k",
hl h2 hl
avlele:fl OleQhZN:Q O‘vngvnN:n
Ny N T Ng '
And
Vii O
V =
0 Vxp
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where
Vi O
Vii =
Vi Vu
with
ki + 200 i =12
—V21 ks + 20 1 izj V2
Vi = : : :
0 0
=21 — Va1

andk; = y1+&1+un+ér,, ko = ti+up+8y,, k3 = yo+&+un+én,, -

Yo+ &0 + 1n +81,,’ kp = 1, +Mh+8J,,-

V3 = _dlag[élv 521 ceey E}’l]

ko + 200y iz Wi —V12
V= —Y21 k4+z;’:1’,‘¢j sz
—¥n1
Hy 0O 0
0wy
Voo =
0 Ky

It follows that the basic reproduction number of the system (7), denoted by R

is given by
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Ro . =p(FV™h

DSR

. —1
ZP’dlag(OlhlﬂhI, an2Bn2s - O, p10p1, 0th29h2,-~-,06hn9hn)V11 ,

diag((xvlﬁlejl ’ avZ,BhZsz . avnﬂvnN:n 7
Ny N Nii

avlgle,T] av20h2N:2 o avnevnN;kn)V_l] (12)
/- S 2]

where p is the spectral radius.
Further, using Theorem 2 in Driessche and Watmough (2002), the following result
is established.

Lemma 2 The DFE of the malaria model (7), given by &, is locally asymptotically
stable (LAS) ifRoDSR < 1, and unstable ifR()DSR > 1.

The basic reproduction number (Ro . ) measures the average number of new infec-
tions generated by a single infected individual in a completely susceptible population
(Anderson and May 1991; Diekmann et al. 1990; Hethcote 2000; Driessche and Wat-
mough 2002). Thus, Lemma 2 implies that malaria can be eliminated from human
population (when RODSR < 1) if the initial sizes of the sub-populations are in the
basin of attraction of the DFE, &. To ensure the elimination of disease regardless
of initial population sizes, a global stability proof for the disease-free equilibrium is
needed. This is done below, using a comparison theorem.

Theorem 1 The DFE of the basic malaria model (7), given by &, is globally asymp-

totically stable (GAS) in T whenever RODSR < 1.

Proof The equations for the infected components of the model (7) with the order

LI, Ji, Iy, Jyi, i =1,...,n can be re-written as:
dl;
dt
dJ; I; I; I;
dr Ji Ji Ji
=(F-V - M — M
dl, ( ) L; 101 L; 202 L;
dt ]vi Jui Jvi
d-]vi
dt

where the matrices F and V are as defined above, M| = 1—S;/Npi, My = 1—Syi /Npi,
and Q1, Q> are non-negative matrix, where

01 = diag(ahlﬁm, an2Bn2s - s b, p16n1, ap2bpo, - v“hnghn)
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and
0, = dia Olvl,Ble:] av2,3h2N:2 avnlgvnN;kn avlele;kl
SR N R VA VA VA
auZGhZsz Ofvngvnl\’jn
Ny 0 Ny )
Thus,
dl;
dt 7
dJ;
dt Ji
<(F-V) (13)
dly; Ly
dt
I
d,; vi
dt

Using the fact that the eigenvalues of the matrix F — V all have negative real parts by
the local stability result given in Lemma 2, where p(FV~") < 1if Ro, < 1, which
is equivalent to F' — V having eigenvalues with negative real parts when RODSR <1
(Driessche and Watmough 2002). It follows that the linearized differential inequality
system (13) is stable whenever RODSR < 1.Consequently, (1; (1), J; (t), Lyi, Jvi (1)) =
©,---,0,---,0,---,0), i =1,---,nast — oo for the linear ODE. Thus,
by comparison theorem (Lakshmikantham et al. 1989; Smith and Waltman 1995),
; (1), J; (1), Ly, Jpi(®)) — (O,---,0,---,0,---,0) as t — oo as well for the

nonlinear system (7) for R < 1. Hence, the DFE &) is GAS in I" if R < 1.0

DSR DSR

In the next section, we consider a two patch malaria transmission model with drug
resistance.

2.2 Two Patch Malaria Drug Resistance Model

The two patch malaria transmission model with drug resistance model is stated below;
and in this model, we have drug resistance malaria developing and circulating in both
patches.

ds, ap1Brilv ap10p1Jv1
— =11 Li+7J — S1—
pT 1+vili+tJ; Nt 1 Nt

dly  apiBnilyi

Sl _,u'hsl_wn Sl"H”lez

Si—n+& +wn+d)h =Y, L +¥,h0

dr — Npy
dJi  apbh e
—=——81+&0h - (1 +pup + )Nt =Yy 1 + Y, D2
dt N
dSy aytBurli ay160y1J1
=TI1,; — Svl — Sv1 — Uy S
dr vl Nt vl Nt vl HyOvl
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dly ay1 Bl

S T
dr Nit vl Mylyl
dJyi  ap16u1Ji
—l o T S — o d 14
dt Nt vl My Il (14)
ds, ap2Braly2 ap26n2Jv2
— =Ih+wmh+nl — ! Sy — - S2 — upS2 — ¥, S92+, 81
dt Np N2
dly  apPraly2
—— =S — (st w8 b — Vb + Yy, 1
dt Npo
dly a2
—= = S 6 h — (i +85) 2 — Yy Ja + Y,
dt N>
dSy a2 B2l a2
2 My, - Swr — Su2 — oS
di v2 N v2 N v2 — M2
dly av2,3v212
= R —
dt th v2 My ly2
dJyy by
= —— = =65 — Ju.
dr N v2 — My Jv2

It follows that the basic reproduction number of the model (14) with movement
between the patches, denoted by R S (Y, ¥y,), 1s given by
DSR

R W) = p(FV™) = max{RY (. ¥, RE (0, ),

where

1
s Wars ¥in) = |:M1U2 + uzv1 + \/(MIUZ —upv1)? + 4M1M21/f.21ﬂ2.}

1
R% Vo V) = [qu + p2q1 + \/(p1qz - p2q1)* + 4p1pzw.21/f2]} 15)

R%DR (¥,,, ¥,,) is the drug sensitive reproduction number while RgDR Wy, ¥yy) 18
the drug resistance reproduction number and

a ay N*
_ Bm hllgvl*vl M R (0,0),
Mo Ny, bsy
o ayp N
_ Bn2 h2,3v2* Ny LRE (0, 0),
Mthg DS
0 0 N*
_ h1h1 Uli‘vl vl _ k3R% 0. 0),
l/«thl DR,
0 0 N*
_ h20h2 v2‘3:v2 2o k4R% 0,0),
:U«thz DRy
v1=k1+%1, V2 = k3+1ﬁ12, q1 = k2+1ﬁ219 q2 = k4+¢12
o1 = kiks + kllﬂlz + k31ﬁ21 , 0o = koksg + kzlﬁlz + k41//21. (16)
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where ki = y1 +&1 +un +65, ko =t +pun+8s, ks =y2+& +pun+90n, ka =
T+ ph + 8.

In the absence of movement between the patches, the drug sensitive and resistance
reproduction numbers are given as

o o N* Op1ay1Op10p N*
R(Z)DS 0,0) = v1Bul hlﬁ:l vlﬁ R(Q) 0,0) = vI®v1Yh1 :1 vl’
1 kl,quhl DRy kZILthl
o o NZ¥ 2By 20po N-
R2 (0,0) = v2 B2 h2ﬂ::2 2 R2(0,0) = 2002002 zz o
DSy k3Mth2 DRy k4H«th2

Theorem 2 The drug resistance basic reproduction number, Rg (W15, ¥y)), for the
DR
two patch malaria-drug resistance model (14) satisfies the following inequality,

: 2 2 2 2 2
min(R3 (0.0, 75 0.0)<R5 (Y. ¥) <max(RG(0.0). R (0.0))

Theorem 2 can be proved using the approaches in Arino and Driessche (2003),
Arino and Driessche (2003), Hsieh et al. (2007), Salmani and Driessche (2006).
Similar result was obtained for the drug sensitive malaria.

Theorem 3 The drug sensitive basic reproduction number, R% (Yryp» ¥y, for the
DS
two patch malaria-drug resistance model (14) satisfies the following inequality,

min{R(z)DSl (0, 0), R(%Dsz 0,0)} < R%DS (Wpoa ¥y,) < max{RgDS1 (0, 0), R%DSZ (0, 0)}.

Theorem 3 can be proved using the approaches in Arino and Driessche (2003),
Arino and Driessche (2003), Hsieh et al. (2007), and Salmani and Driessche (2006).

Theorem 2 indicates that in the absence of movement between the patches, the global
drug resistance reproduction number, R%DR (Y15, ¥5,), 1s the larger of the two isolated

patch reproductive numbers (R%DR , R(Z)DR ); similar indication holds for Theorem 3
1 2

in the case of the global drug sensitive reproduction number, R%DS (V1ips V)

Theorem 4 IfR% > 7'\’,(2) , then for the migration rates (V,, ¥,,) € [0, 00) x
DR; DRy
2

R,

0

[0, 00), max | —o-L, R2 <R} <R}
1+T221 DRy DR

DRy

The proof is given in Appendix 1. Similar result was obtained for the drug sensitive
malaria.

Theorem 5 IfR(z) o > R% o then for the migration rates (Y,,, V,,) € [0, 00) x
DS$ DS
RZ

[0, o0), max Ubs, R2 <R: <R
T 1+ 2L Oy | 7 T 0ps = Ops;
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This result show that in the presence of migration between the two patches, the
global drug resistance reproduction number, ’R% ,1s always between the two isolated-
DR

patch reproductive numbers (R% and R% ), and similarly for the global drug
DRy DRy

sensitive reproduction number, ’R%DS as observed in Arino and Driessche (2003),
Arino and Driessche (2003), Hsieh et al. (2007), Prosper et al. (2012), and Salmani
and Driessche (2006). This is contrary to the result observed by Cosner et al. (2009)
(in their model with Lagrangian movement) in which the reproduction number is less
than unity in each isolated patch, yet the global reproduction number is larger than
one. This indicates that it may be possible to have a system where without migration,
the disease goes extinct in both patches, but once with certain level of migration, the
disease becomes endemic. However, Theorem 4 (similarly Theorem 5) indicate that
the global drug resistance reproduction number, R%DR will always be bounded by the

isolated patch reproduction numbers.

Theorem 6 Suppose Ro, . (0,0) > Ro,  (0,0). If Ro_ (¥,, ¥,,) is a function of
1 2

the migration rates Y12 and a1, where Y12, Y21 € [0, 00). Then for a fixed  in the

interval [0, 00), ’RODR (Y,, ¥) is an increasing function of ¥, and RQDR W, ¥, is

a decreasing function of y,,.

The proof is given in Appendix 2. Similarly for drug sensitive malaria.

Theorem 7 Suppose RODS 0,0) > R()DS 0, 0). IfRom (Y15, ¥y, is a function of
1 2 R

the migration rates 1> and ¥, where Y12, Y21 € [0, 00). Then, for a fixed r in the

interval [0, 00), RODS (Yo, ¥) is an increasing function of ¥ ,, and RODS W, Y,y is

a decreasing function of \r,,.

Remark 1 The proof of Theorem 4, indicates that the minimum value of R% W12,
DR

R3  (0,0)
Y¥r21) on the domain [0, 00) X [0, ¥) is max ]DR#, R(Z) (0, 0) t, and the maxi-
DRy
kp

mum value is R(Z)DR (0, 0), for some migration rate ¥ > 0. Hence, if R%DR 0,0 <1
1 2

R3 (0,00
DR 2 2
and W > 1 for some ¥ > 0 (thus, RODRI (0,0) > 1), then RODR W, ¥y >
1 for all migration pairs (¥,,, ¥,,) in [0, 00) x [0, ¥). This shows that it is possible to
have a case in which the strain dies out in one patch but not the other without migra-

tion, yet the strain persists with migration in both patches for all ¥, > 0 and for 0 <
RZ (0,0)
2 DR 2 .
Y, < 1//.If720DR2 0, 0), 1+—1“’2' < l(butRoDR1 (0, 0) > 1), then for some migra-

)
tion pairs (¥,,, ¥y,), R%DR(I/IIZ, ¥,,) > 1 and for other pairs, RgDR (V> ¥yy) < L.
Furthermore,there exists a value ¥* < v such that R3 (¥, ¥,) > 1 for all
DR
(Y150 ¥)) in [0, 00) x [0, ¥*). Finally, if RZ  (0,0,)and R (0, 0) are both less
DRy DR,
than one, then R3  (/,,, ¥,,) will always be less than one, regardless of the migration
DR
rates between patches.
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3 Existence and Stability of Endemic Equilibrium

In this Section, the conditions for the existence and stability of endemic equilibrium
of the two patch model (14) will be explored for the special case where the disease-
induced mortality is negligible (so that, §;; = 85, = 65, = §;, = 0). Although this
assumption may not be biologically realistic, it allows for the ensuing mathematical
analyses to be tractable (considering the non-linearity of the differential equation
system (14)). In the absence of disease-induced death (6;, = §;, = 65, = 85, = 0),
the total human population (Np1(¢) and Nj»(f)) in both patches are asymptotically
constant. That is, N;T = Tlp/u, and N5 = TIl2/puy. Using these definitions in
the model (14), noting that Sy(t) = N;{(t) — Ii(t) — Ji(1), S$2(t) = N;5(t) —
L(t) = (1), Sy (1) = Ny () — L1 (t) — Jy1, and Syp = N5 (1) — L2(t) — Jua (1),
gives the following reduced model for the dynamics of the drug resistance malaria
system:

dli  _ apiBniln

P :T( f—h—J)—Wm+&+puh —v,L+v,b
dJq ap1n1Jv1
& = m RN =L =)+ &L — (i )L — Yy, 1+ Y,
17
dl avlﬁvlll 1n
dr = T(N — Ly — Jv1) — oIyt
d]l o 19 1]1
= N e = ) =

dl an2 B2l
E = f] Y ( —12—J2)_(V2+$2)12_w1212+1ﬂ2111

dJ> ap26p2Jv2
= (N = Db — D)+ &b — (ot un)a — Yo+ ¥, i

A T e

dézz - avi\fjvﬂz( oy — Iy — Jy2) — po

‘1;_:2 - avz]\? 2J2( 3 = Lo — Ju2) — o 2.
Let

Ev= (P I L I B I 1505
be an arbitrary endemic equilibrium of model (17). The existence and stability of
endemic equilibrium involving only one of the disease strain (boundary equilibria) are
now investigated by considering the special case of the model where the two patches
are in isolation (i.e., ¥,, = v,, = 0). Since the patches are in isolation, the boundary
equilibria is studied for only patch one, similar results can be obtained for patch
two.
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3.1 Drug Sensitive-Only Boundary Equilibrium

This is the equilibrium where only the drug sensitive strain is present. It should be noted
that with the development and transmission of the drug resistant strain is due to the
use of anti-malaria treatment, hence, there will always be inflow from the population
of infected individuals with drug sensitive strain into the class of individuals infected
with the drug resistant strain. To investigate the existence of a drug sensitive strain-only
equilibrium, we consider the special case of the model where there is no development
of drug resistance (i.e., £, = 0) due to treatment failure or non-compliant to treatment
regime.
Let R%DR < land R%DS > 1 (i.e., the drug resistance-only strain are eliminated).
Thus, I I
(J1(®), Jp1(2)) — (0,0) as t — oo. (18)

Substituting (18) into the model (17) gives the following reduced system

dl a1 Bl
d _ b (Npy — I = J1) — ki
dt Npi (19)
dly a1 Bot 1 (Ny1 — Iy1 — Ju1)
= — plyr.
dt Nni

The drug sensitive-only equilibrium of system (19) is given by the following after
some algebraic manipulations

s =U[,0,17,0),
where

moki (NFDAHRG = 1)
1
a1 But (N Briant + ki N;Y)
ok 2 _
/’kalNhl (RODSI D

*k
vl —

Briapi (vt But + o)

The drug sensitive-only boundary equilibrium, &g, is biologically feasible if and
only if R(z) > 1. This result is summarized below.
DSy

Lemma 3 The model (19) has a drug sensitive-only boundary equilibrium, given by
E1s, whenever R%DS > 1.
1

Theorem 8 If R%DSI > 1, the drug sensitive-only boundary equilibrium of model
(19) is LAS whenever R(z) > R%
DS, D

Ry

The proof is given in Appendix 3.
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3.2 Drug Resistance-Only Boundary Equilibrium

The drug resistance-only reduced system is given by

dJi ap1n1 1
S TRIRLL e ) — k)
o Nt (Nyy — I 1) — kaJq

dJyi oyt Ji
di = N—hl( :]* — Ly — Ju1) — woJur.

(20)

The equilibrium of system (20) is given by the following after some algebraic
manipulations

glR = (01 Jl**s 07 1:1*)7
where
kopy (NFH2(RE = 1)
DR;

© NOnant 4+ ko N o101
2
k2MvNZT(R0DRI -1

sk
]1

kek

vl —

Oniant Opropt + fy)

The drug resistance-only boundary equilibrium, £z, is biologically feasible if and
only if R(z) > 1. This result is summarized below.
DRy

Lemma 4 The model (20) has a drug resistance-only boundary equilibrium, given by
E1R, whenever Rg > 1.
DR,

Theorem 9 If R(z) > 1, the drug resistance-only boundary equilibrium of model
DRy

(20) is LAS whenever Rgm > R3
1

Ds;

The proof is given in Appendix 4. The theoretical results given in Theorems 8 and
9 are illustrated numerically in Fig. 2a, b using parameter values in Table 1, in the
isolated case when V,, = v,, = 0 with no development of resistance £ = 0 and

when RODS > RODR .
1 1

3.3 Co-existence Equilibrium
Let
E = (I P LT )

be an arbitrary co-existence equilibrium of the system (17) for the case v, = ¥,, = 0.
Thus, £ is given by the solution of the right hand side of system (17) set to zero. Solving
for 11, Jy1 in the equations of /1, J; in the right hand system (17) set to zero gives
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5
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Fig.2 Simulations of the model (14) as a function of time for the total number of infected human population.
(a)Ro <Ro (720 = 5.4964, Ro =5.1995 with 6, = 0.011, up = 0.047,y =0.6,n =
1
0.65, v _067 kh = 1/20 Kk =065, 0y = 1/9 by = 0.5,by = 0.5, B = 0.75, B, = 0.5258, other
parameter values used are as given in Table 1). (b) Ry < Ro (Ro = 18.0713, Ry
DS| DR; DRy DS

13.7385, with 6, = 0.011, uj, = 0.047,y = 0.6,n = 0.65,v = 0.67,k;, = 1/20,x = 0.65,0yp =
1/9,b, =0.5,by = 0.5, B, = 0.75, By = 0.5258, other parameter values used are as given in Table 1)

I*ik — avlﬁvlll ;
° mRE  (Npi— 1 = 1)
DSy
w Ot (J1 = &11)

v Ry, (Nut =11 = J0)

Substituting these expressions into the equations of 7,1, Jy1 in the right hand side
of system (17) set to zero, shows that, after some manipulations, /], J** are the
solutions of the following system of equations:

ay1Buil [ L ay1 Bl _ Buan(J1 — &) }
Noo L7 wRE (Nm—Ii—J1) mRoy, (Ni— 11— Ji)
DS, 1
_ ay1Buli _
R (Np—Ii — ) ’
DS,

Ov1ay1J1 [ . ay1 ot o (1 — &) }
N U wRE (Nm—Ii— ) Roy, (Nu— 1= J1)
DS, 1
Oviay1 (J1 —&11)

- —o. 1)
Ropp, Nnt = 11 = J1)

Substituting the first equation of (21) into the second equation of (17) with ¢, =
¥,, = 0 and solving for J{™*, J;* gives

2
";:IIIR()DS

I = ! . (22)
L enBu Ry —RG )
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Table 1 Description of the Variables and Parameters of the Malaria Model (7)

Variable

Description

Si(t), i =1,2 Susceptible humans in patch i

I; (t) Infected humans with drug sensitive malaria in patch i
Ji (1) Super Infected humans with drug resistance malaria in patch i
Syi (1) Susceptible vector in patch i
Ly (1) Infected vectors with drug sensitive malaria in patch i
Jyi (1) Infected vectors with drug resistance malaria in patch i
Parameter Description Baseline value Reference
I1; Recruitment rate of humans 0.00011 U.S. Census (2010)
ITy; Recruitment rate of vectors 0.071 Anderson and May (1991)
and Flahault et al. (2005)
api Human biting rate in patch i 0.2-0.5 0.071 Ariey and Robert (2003),
Anderson and May (1991)
and Flahault et al. (2005)
yj Biting rate of vectors 0.2-0.5 Ariey and Robert (2003)
Mbogob et al. (2003) and
Snow and Omumbo (2006)
Bhi Transmission probabilities for 0.1-0.5 Flahault et al. (2005) and
drug sensitive malaria per Smith and Mckenzie (2004)
contact for humans in patch i
Bui Transmission probabilities for 0.2 Flahault et al. (2005) and
drug sensitive malaria per Smith and Mckenzie (2004)
contact for vectors
Oni Transmission probabilities for 0.1-0.5 Flahault et al. (2005) and
drug resistance malaria per Smith and Mckenzie (2004)
contact for humans in patch i
Oyi Transmission probabilities for 0.2 Flahault et al. (2005) and
drug resistance malaria per Smith and Mckenzie (2004)
contact for vectors
Vi Recovery rate from drug sensitive 0.7 Chiyaka et al. (2008)
malaria in patch i
Ti Recovery rate for drug resistance ~ 0.41 Chiyaka et al. (2008)
malaria in patch i
Wh Natural mortality rate for humans 0.0000391 U.S. Census (2010)
) Natural mortality rate for vectors  0.071 Bowman et al. (2005)
31, 8, Disease-induced mortality rate in ~ 0.00000426 Breman and Holloway (2007)
humans
Vij Migration rate from patch j to 11—0 Anderson and May (1991)

patch i

and Molineaux and
Gramiccia (1980)

The rates are given per day

Finally, substituting (22) into the first equation of (17) gives

11** = Otvl,gvlIJLUR(Z)DR1 ]\,/“I(R(Z)Ds1 o RODRl )(R(Z)Dsl -

MRS —RG,, Yo ButlRG (@t Bor+ Nt RG )=Rj, Oureuiéil

H1(RG ) O + NoraRo,,, ),
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Patch 1 Patch 2
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.
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Fig. 3 Simulation of the model (14) as a function of time for the total number of infected human
population with RQDS_ > RODR- , 0= 1,2, (Ro = 11.9196, Ro = 9.5471), using
U

Op1 = Oy = 0.53, 0,1 = O = 2.50, & = & = 0000126 Yo = 008 Y12 = 0.04, other
parameter values used are as given in Table 1

. _ 2 2 vp2
= EleRoDRl Nhl(RoDSl 1)730DSl
\{(Rgusl _R%DRI )avllgvl[RODRl (ap1Bu1 ‘|’Nv1,U«vR%DS| )_R(Z)DRI Ov1ay1&1]

+E1(RG ) Ourernr + NotptRG )

Thus, the co-existence equilibrium, &, is biologically feasible if and only if
R} >l,andR} >R3> L This result is summarized below.

DS DSy DRy
Lemma 5 The model (17) has a co-existence equilibrium, given by £, whenever
R >1landR} >RZ >1L

DS DSy DRy

The asymptotic stability of the co-existence equilibrium is established by the fol-
lowing theorem,

Theorem 10 The co-existence equilibrium of model (17) is locally asymptotically
stable (LAS) whenever R% > 1, R% > 1 and Rg > R%
DS DR DS; DR

The proof is given in Appendix 5.

Itis worth mentioning that extensive numerical simulations of the model (14), using
the parameter values given in Table 1 for the case with movement between the two
patches (¥, # 0, ¥, # 0)and Ro, . > Ro,, > 1,i = 1,2, show that the two
strains co-exist, with the drug sensmvelstraln dommatlng (but does not drive out the
drug resistance strain) in both patches as can be seen from Fig. 3a, b. Furthermore,
if Ro > Ro 5 and with movement between the two patches, the model exhibits

competmve exclusmn (where the drug resistance strain drives to extinction the drug
sensitive strain), as depicted in Fig. 4a, b. These simulations suggest the following
conjectures.
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Patch 2

= = =Sensitive strain
= Resistance strain |

Sensitive strain
Resistance strain|]

-
haCT
" L LY Yo

0 0.5 1 1.5 2 25

total number of infected human population
total number of infected human population

1.5 2 25
Time (days) x 10" Time (days) x10*
Fig. 4 Simulation of the model (14) as a function of time using & = 0.00126, & =
0.000126, 1 = Y12 = 0.04, other parameter values used are as given in Table 1. (a) Total number

of infected human population with RODR > RODS (Ro = 9.5471, RODS = 5.4389). (b) Total
1 1 1

1
number of infected human population with RODR > RODS ('RODS = 13.7385, RODR = 9.5471)
2 2 2 2

Conjecture 1 Consider the model (14). The drug sensitive strain dominates the drug
resistance strain (but does not drive it to extinction) whenever vy, # 0, ¥,, # 0 and
Ro.. >Ro >1,i=1,2.

DS; DR;
Conjecture 2 Consider the model (14). The drug resistance strain drives out the drug
sensitive strain to extinction if ¥, # 0, ¥,, # 0, and RODR,« > R()Dsi >1,i=1,2

3.4 Two Patch Malaria Drug Resistance Model: Special Case

In this scenario, it is assumed that drug resistance malaria develops and circulates
among individuals in patch 1 only. And in patch 2, drug resistance malaria is as the
result of movement of infected individuals from patch 1. The model stated below
depicts this scenario

dsSi ap1 Bl ap10n1 v
— =Ihi+yh+nuJ - =8 — 281 — unS1 — Yy S+, S
dt Nni Np2

dli  apn Pl
= L S~ E 80—y L+ Y, D

dr Npi
dJi  op1Op1 v
—— = RS EL = (A 8T = Y i+ Y,
dt Nni
dSy1 ay1 Bl ay16v1Ji
=111, — Svl — Sv1 — Mo S
di vl Nt vl Nt vl Mvdvl
dly Olvl,Blel
L e R
di Nii vl Mylyl
dJy o101 1
_”_LSUI_MUJUI

dr Ny
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ds, an2Bn2ly2
—— =Th+nh+nh— —8 — ;S — ¥,,8 + ¥, 51
dt Np2
dl  apPraly2
— =S — (A w3 b — Vb + Yy 1
dt Npo
dJ
W =—(nn+ un + 8]2)J2 - w|2J2 + 1//21.]]
dSy» ay2Pualz
d_: =TIl — %SUZSU2 — Wy Su2
dlvz 011)2,311212
= —"8 — Uyly. 23
di N v2 — Muly2 (23)

It follows that the basic reproduction number of the model (23) with movement
between the patches, denoted by R%DSR (¥,,, ¥,,), 1s given by

R(Z) Sk Wy V) = max{R%DS (V1> Y1), R%DR (Yo, Y1)}

where the drug sensitive and resistance reproduction numbers are given as

1
(llflz, Y,) = |:M102 + upvy + \/(ulvz —upv1)? + 4u1u21ﬂ121ﬁ21} 24

W) = ”1—:” 25)

Without movement between the patches, the drug sensitive and resistance repro-
duction number is given as

o oy N* On1op10p1001 N*
R (0,0) = Brion1Bo :1 R (0,0) = n1an10v1 :1 iy
DSy lethl DRy k2Mth1
o ay N
R (0,0)= Br2atn2 B2 :2 )
52 k3Mth2

Theorem 11 The drug resistance basic reproduction number for the two patch
malaria-drug resistance model (23) satisfies the following,

Ripe, 00 =R Wz, ¥

Similarly,

Theorem 12 The drug sensitive basic reproduction number, Rg s (U1, Wy,), for the
D
two patch malaria-drug resistance model (23) satisfies the following inequality,

2 2 2 2 2
min(RE(0.0). R (0.0} <R (. ) <max(RF (0.0).RG(0.0))
Theorem 12 can be proved using the approaches in Sect. 2.2.
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Fig. 5 Simulation of the model (23) as a function of time. (a) Total number of infected human population
with RODR] < Roos] (RODS| = 11.9196, RODRI = 9.5471), using &] = 0.0001260, & = 0.0, other
parameter values used are as given in Table 1. (b) Total number of infected human population with RODS >
2
Ro (Ro = 13.7385, Ry = 0), using &1 = 0.000126, & = 0, 1 = 0.00033, Yo =
DRy DS, DRy
0.00033, other parameter values used are as given in Table 1
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Fig. 6 Simulation of the model (23) as a function of time. (a) Total infected human population with

Ropg, > Rops (Roy, = 95471 Ro = 5.4389), using &1 = 0001260, & = 0.0, Y, =

0.00033, W21 = 0.00033, other parameter values used are as given in Table 1. (b) Total infected human
population with Rq > Ry (Rp,.. = 13.7385, Ry = 0), using &1 = 0.00126, &
DS, DRy DS DRy

2
0, ¥p1 = 0.00033, 12 = 0.00033, other parameter values used are as given in Table 1

Simulation of model (23), using the parameter values given in Table 1 for the case
with slow movement rates between the two patches (,, = ¥,, = 0.00033) and
slow treatment failure rates (§; = 0.000126, & = 0) with Rousl > RODR| > 1
and RODS > 1, shows that the two strains co-exist, with the drug sensitive strain

dominatinzg (but does not drive out the drug resistance strain) in both patches as can
be seen in Figures 5a and 5b. With RODRI > Ronsl > 1 and a slightly higher
treatment failure rate in patch 1 (§; = 0.00126), the two strains co-exist in both
patches; however, the drug resistance strain dominates in patch 1, while the drug
sensitive strain dominates in patch 2, as depicted in Figures 6a and 6b. Furthermore,
with a faster movement between the patches (y,, = 0.04, v,, = 0.04) and a higher

@ Springer



Malaria Drug Resistance 1631

j c

S S

= Patch 1 = Patch 2

S 1800 S 900

& & 40| (B)

8 1600 a8 800

G 1400  joffomecn . E 700| e eaas .
g """""""""""" 1S s

= 1200 = = =Sensitive strain -g 600 :
g 1000 - Resistance strain g 500 : = Resistance strain
© 5 H

Q2 800 QD 400+

£ £ H

5 600 5 300 :

o 400 @ 200

E g

S 200 S 100

c c

s 0 1 15 2 25 8 % 0.5 1 15 2 25
o . o .

= Time (days) x10* = Time (days) x10"

Fig. 7 Simulation o the model (23) as a function of time. (a) Total number of infected human population
with RO > 720 (720 = 9.5471, RO = 5.4389), using &1 = 0.001260, & = 0.0, other
S
parameter values u%ed are as glven in Table 1. (b) Total number of infected human population with RO >
Ro (RODS = 13.7385, RODR = 0), using &1 = 0.00126, & =0, Yo = 0.04, ¥p = 004

2 2

DRy
other parameter values used are as given in Table 1

treatment failure rate in patch 1 (§; = 0.0126) the drug resistance strain dominates in
both patches, as depicted in Figures 7a and 7b.

4 Conclusions

A deterministic model for the transmission dynamics of drug sensitive and drug resis-
tance malaria incorporating human migration was designed and rigorously analyzed.
Some of the main theoretical and epidemiological findings of this study are summa-
rized below:

(i) The DFE of the model is globally asymptotically stable whenever the associated
reproduction number is less than unity;

(i) For the two patch model (14) when the patches are isolated (i.e., there is no
movement between the patches)

(a) The drug sensitive-only and drug resistance-only boundary equilibria of the
model are shown to be locally asymptotically stable when they exist;

(b) The co-existence equilibrium is locally asymptotically stable whenever the
reproduction number for the drug sensitive malaria is greater than the repro-
duction number for the resistance malaria;

(iii) For the two patch model (14) when the patches are connected (i.e., there is
movement between the patches), the disease persist in the two patches;
(iv) Numerical simulations of the model (14) show that:

(@) WhenRo, . > Ro,, > 1,i =1,2 the drug sensitive strain dominates the
drug resistance strain;l

(b) When RODR_ > RQDS_ > 1 the drug resistance strain drives out the drug
sensitive strain to extinction.

(v) Numerical simulations of the model (23) show that the strains co-exist:
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(a) with the drug sensitive strain dominating the drug resistance strain with a
slow movement (or low migration) between the patches;

(b) with the drug resistance strain dominating the drug sensitive strain with a
fast movement (or high migration) between the patches.

In the present study, we have theoretically gained insight into the asymptotic behav-
ior of the transmission dynamics of malaria drug resistance with human mobility and
spatial heterogeneity. However, there are still more work to be done. As further work
along these lines, it will be interesting to address the issue of control of possible
expansion of resistance parasites by applying optimal control; an interesting question
therefore will be: given n connected patches how do we optimally control malaria
prevalence; could we by controlling malaria in one patch reduce its prevalence in the
other patches? What should we do to prevent expansion of the resistant strain?

Acknowledgments The author likes to thank the anonymous reviewers for the constructive comments.

Appendix 1: Proof of Theorem 4

Proof To prove Theorem 4, we follow the method given in Prosper et al. (2012).
Assume R% > R% , by this assumption and from Eq. (16) it follows that
DR DRy
pi1ka > pok. Evaluating the reproduction number Rg at the boundary of the
DR
domain (Y, ¥,,) € [0, 00) x [0, o). We have,

1
R2 0)= —— k — pakal). 26
Opr (¥1,,0) o (P12 + p2ko + | p1g2 — paka|) (26)

Since by assumption piks > poko, and because go = k4 + V,, > k4, we know that
P1q2 — p2kz > 0, and so |p1g2 — p2ka| = p1g2 — p2ka. Thus, Eq. (26) simplifies to
RgDR (Y, 0) = RgDR (0, 0) for all ¥,, € [0, o). Similarly,

1

1
R3O ¥) = 5p ik paqi + [piks = p2gi)

1
= —— max{piks, p2q1}
kaqi

[Pl pz]
=max { —, —

Hence, R3  (0,0) <R3 (0,v,) <R3 (0,0, forall ¥, € [0, 00).
DRy DR DRy
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Now, evaluating the reproduction number R% in the interior of the domain
(Y1, ¥yy) €10, 00) x [0, 00). Consider the function

f@) = 02y® = (p1g2 + p2q1)y + p1p2. 27)
f is the characteristic polynomial of the next-generation matrix used to derive
R%DR (¥y,, ¥,,) in Eq. (15). R%DR is the larger of the two roots of f(x). Conse-
quently, f (R%DR) = 0and [’ (R%DR) > (. Thus, for any real number y for which
the inequality f(y) < O holds, implies that y < R%DR. However, if f(y) > 0 and
f'(y) > 0, then y > R%DR. Now, suppose V,, and ,, are positive, then it follows

that
P1 P1 2 P1
R2 = flZ2) = L Z1
f( ODR,) f(kz) Gz(kz) (p1q2+pzq1)k2+p1pz

[ 1
= 5:—2 (Y k2 + ¥y ka + k2k4)i—2 — (192 + p2q1) + szz]
1 k4
= Z—z[m%l + pi 1//22 + pika — (p1q2 + p2q1) + pzkz]
1 ka
=0 Pig2 + Pl%; — (p192 + p2q1) + p2k2
k2 ky
Dika
= kz( k> 1//1 _p21/f21)
1
= p—fz'(mkzt — paky).
k3

We can similarly show that

(...
R(Z)DRI P1
f(l—i—‘/’ZI) B (k2+¢’21) ViV

Thus, since (p1ks — p2kz) > 0 by assumption, we have that f(R%DR ) > 0,
1

P2 prlz
Z) = =22 (poky — pik
f(k4) K (p2ka — p1ks)

RZ
f(R2 )<0andf( ﬁjfll) <0
Differentiating f(y) we have f'(y) =202y — (p1g2 + p2q1). Thus,

f/(R%DRI) f(zzl) 20 (kz)—(P1€I2+qul)

P1
= 2(Yy k2 + ¥y kg + kzh)g — piksa — p1v¥,, — p2ko — p2,,
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— (prks — paka) + (kory, + katry)) p1 n (piks — p2 2)%].
ky o
Since (piks — paka) > 0, it follows that f'(R§ ) > 0. Hence, it follows
1
2

R
that, for ¥, and v,, positive, f (R%DR ) < 0 and f(1 O?/Zell) < 0 implies that
2 +2

kp
R§

R(z) > max< ZR‘ ,Rg } Since f(R(z) ) > 0 and f/(R% ) > 0 we have

DR H‘% DRy DS| DS|

2 2
that RODR < RODSI
N R%DR (0,0) ) )

Hence, for all ¥, and ,, positive, max [W, RODSZ (0, O)] < RODS (Vs

V) <R (0,0). o
DRy
Appendix 2: Proof of Theorem 6
Rop g, 0.0)
Proof In the proof of Theorem 4 we have that RODR 0,¢¥) = max 1—‘%,
T
Ro,, & 0.0

R0y, (O, 0)] and Ro, (¥, ¥) > max [W’RODM (0, 0)] for ¢, > 0.
2

Thus RODR W, ¥) > RODR (0, ) for all ¥, > 0. Thus, for RODR (Y,,, ¥) to be an
increasing function in ,, we need to show that Ro (4, ¥) is monotone in ¥,,.
Also, from Theorem 4 we also know that RODR (¥,0) = RODRI 0,0,) >

Ro,, . (U, ¥,,) forall non-negative v,, . Again, we only need to show that Ro | (¥, ¥,,)
is monotone in v¥,, in order to show that it is a decreasing function in ¥, .

To show that Ro, (¥/,,, ¥,,) is monotone, we first show that Ro,_ (¥,,, V) is
monotonein y,,. Since Ro, . (¥,, ¥) is continuous in 1, it is monotone with respect
to ¥, if for every B € (0, 0o) such that ’RODR (Y12, ¥) = B has a non-negative
solution ¥r1> € [0, 00), then this solution is unique. Suppose RODR (Y,, ¥) = B.The
reproduction number R (¥,,, ¥) can be written as

1
—(s +4/s2 — 419117202),
20n
where s = p1g2 + p2q1 = p1(ka+,) + patka + V) and 02 = koky + ko, + T2

Hence,
1
—(s+,/s2—4p1p202) = B, (28)
207

Equation (28) implies that
02B* —sB+ pipy =0. (29)
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Note that both 07 and s are linear in v ,. Thus, Eq. (29) is linear in ¥,,, implying
that if there exists a y,, € [0, oo) that is, a solution to Eq. (29), then this solution
is unique. Hence, RODR (¥,,, ¥) is monotone for each ¢ € [0, co). By the same
argument, RODR (¥, ¥,,) is monotone for each ¢ € [0, o0)). Since RQDR (Vs V)
is monotone for non-negative v, and RODR ©O,¥) < RODR (Y12, ¥), for each fixed
v, =¥ € [0, 00), RODR (W12, ¥21) is an increasing function of ¥1. Likewise, since
RODR (Y, 0) > RODR (¥, ¥21) for non-negative ¥, , for each fixed 12 = ¢ € [0, 00),
R()DS (Y12, ¥21) is a decreasing function of ;. O

Appendix 3: Proof of Theorem 8

Proof The stability of the drug sensitive-only boundary equilibrium is explored by
evaluating the Jacobian of system (19) at the boundary equilibrium &5, taking the
following order of the coordinates Iy, 11, Ji, Jy1.

The Jacobian is given as

Js, Js,
Js(&rs) =
0 Js,
where
an By : an1 But (N7 — 1)
L
Js, = ,
S Olvllgvl(N;Tﬁ - I,;kl* O(111,311111**
- - Mv
Nt Nt
_am Bl 0
Nt
Is, = 0 (3‘5111:31)111*>x<
N
nl
' Onron (N7 — 1)
—R2 N
hl
I8 = bpan (NI — 17
Nii o

The eigenvalues of Jg(&15) are given by the eigenvalues of Jg, and Jg,. The eigen-
values of Jg, are determined from the roots of the characteristics equations obtained
by substituting in Jg,, I;*, I}
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p 224 [N,ff‘(aulﬂul + ) Buront o1 But (NJTon1 By + ki Npy }\
S ey
B N:ikahllghl +k1N}Tik (a1 Bu1 +/~'LU)N}TT
+ 1ok (72305l —1)=0. (30)

It follows that for R(z) > 1, the coefficients of the characteristics equation Py,
DS

1
is positive. And thus, satisfies the Routh—-Hurwitz criteria, for stability.
For the matrix Jg,, the eigenvalues are given by the roots of the characteristics
equations obtained by substituting in Js,, I;*, If

R§
PS4| =A2+(P«v +k2))‘+ﬂvk2(1 - ,RQDRI ) =0. 31

ODSI

The roots of the characteristics equation Ps,, have negative real parts if and only if

R >TRZ . O
ODSI ODRI

Appendix 4: Proof of Theorem 9

Proof The stability of the drug resistance-only boundary equilibrium is explored by
evaluating the Jacobian of system (20) at the boundary equilibrium &g, using the
following order of coordinates, Iy, I1, J1, Jy1-

The Jacobian is given as

Jr, O
Jr(&1R) = .
Jry Jr,
where
an1 Bt (N7 — 1)
—ki NF*
hl
JR] = kk PRk )
Olvl,Bvl(NU] I 1
—Hvu
Nt
_ Oman I 0
Nt
]R3 - Qvlavl-]]**
.
hl
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and

Omant I ' Onant (N;T — Ji*

2
o ok
Nhl Nhl
Jp, =
Ra evlavl(N:ik - J:fk _Qvlavljl** _
Hok ok v
Nhl Nhl

substituting J;** and J{" into Jg, and Jg, gives the following characteristics equations,

2

2 ODS1
Pryy =274 (o + kDA + poki{ 1= =0. (32)

ODR]

and
Pe. — 321 |:N,Tf(9u10£u1 + po)Ohiont Oy (N1 Op1o + ko N ]A
Y N0 + ko Njt Guior + L) NJT
+uoki(Rg =1 =0. (33)
DRy

By Routh—Hurwitz criteria for stability, it follows that the roots of the characteristics

equations Pg, and Pg, have negative real parts if and only if 7?,(2) > R% . O
DRy Ds;

Appendix 5: Proof of Theorem 10

Proof To prove Theorem 10, we follow the method given in Esteva and Gumel (2009)
and Esteva and Vargas (2000). The method essentially entails proving that the lin-
earization of the model system (14), around the co-existence equilibrium &, has no
solutions of the form

Z(1) = Zoe™, (34)

with Z = {Z1,2>,23, 724}, Z; € C,w € C, and Re w > 0 (the implication of this
is that the eigenvalues of the characteristic polynomial associated with the linearized
model will have negative real part; in which case, the equilibrium &; is LAS).
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Let 17, Ji™*, I}, J| denote the coordinates of the co-existence equilibrium, &.
Subst1tut1ng a solutlon of the form (34) into the linearized system of (17) around &;
gives the following system of linear equations

ap Bl apt Bl an1 Pl
wZ| = (N;lkiﬁ +p1 )21 — N;Hkv Zr + N;:ik (N;T—If*—.]l**)Z3
anp1Op JT a0 JT an10n1
wZy= ——— L 7 45 2~ o po ) Zo b — (NS = I =T 24
Ny Nyy Ny

o o I o I
wZ; = vlﬂvl( **—I** . :1*)21 _( vlﬁvl 1 +MU)ZS _ vlﬁvl 1 Z4

N Nii Nii
ay16y1 ok % *% ‘XUIGUI-]{‘<>k 0(111911111*)‘<
wZy = ( - Jo1) 22 — - + uo )24
Hk vl vl vl % *% v ’
Nhl Nhl Nhl

(35)
where p1 = y1 + &1 + un + 81, p2 = 11 + up + 8y,. Simplifying (35), gives the
equivalent system

1 Olhlﬂhlf** a1 B Iy on1Bni
1oL 71— ol NFEE I Ze (36
[ +p1( N** 1 PIN;TT 2+ N**( n — 14 1 )23 (36)
1 ap10p1 ap1On I E1Z1 | ap1Op1
|:1+7( ARk Zy= **Ul Z1+ + **(N;lkik_lik*_]l**)z“
P2 Ny 2N P2 P2N,;
37
1 avlﬁvlll ay1Bul avlﬂvlll**
14+ — 73 = N**—I**—J*)‘< 1 ————Z 38
[+uu( N 3 /LUN**( 01)Z1 N 4 (38)

1 avlevl‘ll )j| ay10y1 avleul‘ll**
1+—(a)+7 Zy = (N**—I*”< J**)Z2—7Z3 (39)
[ o Niit Nt moNiT

Adding Eqgs. (36) and (37), (38) and (39) gives the system

(1+G(@)Z) + 1+ Ga(@))Zy = (HZ), + (HZ)»

- - 40
(1 +G3(w)Z3 +[1 + Ga(w)Zs = (HZ)3 + (HZ)4 0

where

+

1 an B L)y pranOnJ)y
G — 1 _ v % Z
1(w) + (a) N;lkl* + N;;ik 1

+

i 1 op1On1 I opt B I
Galw) = |14 _(w 1 *1* oo P2 1/2*1 o) 2,
Nhl Nhl

i 1 avlﬁvlll** avlgvl-]l**
Gi(w)=|1+—|ow+ + Z
s =1 (o S 25 |
[ 1 Olvlevl-]l*>k Olvlﬁv1[1*>k
G =14+ — Z
4(w) ] +Mv (a)+ N + N 4

@ Springer



Malaria Drug Resistance 1639

and
o S**
0 0 hlﬂhl**l 0
plNhl
& 0 0 op16p1 ST
D2 2Ny
H =
avlﬁv]i:T 0 0 0
I’LUNhl
Qy10y1 S*F
0 vl vl**vl 0 0
Mthl

Note that ST* = (N7 — I — J[™), Si7 = (N)T — L} — J) above. It should
further be noted that the matrix H has non-negative entries, and the equilibrium & =
(I, T I, T satisfies £ = HE). Furthermore, since the coordinates of £ are
all positive, it follows then that if Z is a solution of (34), then it is possible to find a
minimal positive real number r such that

‘Z‘ < r&,. (41)

Observe that r is also the minimal positive r such that | Z| +|Z2| < r(I]* 4 J{*) and
|Z3] + | Z4| < (L7 + J)7). We want to show that Re @ < 0. Assume the contrary
(i.e., Re w > 0), we consider two cases: @ = 0 and w 7# 0. Assume the first case
o = 0. Then, (35) is a homogeneous linear system in the variables Z; (i = 1, ..., 4).
The determinant of this system corresponds to that of the Jacobian of system (17)
evaluated at £, which is given by

= (- ST S, b nS)
hl hl hl i
Consequently, the system (35) can only have the trivial solution Z = 0.

The case w # 0, is considered next. In this case, Re G;j(w) >0, i =1,...,4,
since, by assumption, Re w > 0. It is easy to see that this implies |1 + G(w)| > 1
for all i. Now, define G(w) = min|1 + G;(w)|, i = 1,...,4. Then, G(w) > 1, and
therefore ﬁ < r. The minimality of r implies that |Z| > @5 1. But, on the other
hand, taking norms on both sides of the second equation of (40), and using the fact
that H is non-negative, we obtain

G)|Z| = H|Z| = ré&. (42)

Then, it follows from the above inequality that | Z| < ﬁé’ 1 which is a contradiction.
Hence, Re w < 0, which implies that & is locally asymptotically stable. O
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