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Abstract This paper is an extension of a previous work which proposes a non-
phenomenological model of population growth that is based on the interactions among
the individuals of a population. In addition to what had already been studied—that
the individuals interact competitively—in the present work it is also considered that
the individuals interact cooperatively. As a consequence of this new consideration,
a richer dynamics is observed. For instance, besides getting the population models
already reached from the original version of the model (as the Malthus, Verhulst,
Gompertz, Richards, Bertalanffy and power-law growth models), the new formula-
tion also reaches the von Foerster growth model and also a regime of divergence of
the population at a finite time. An agent-based model is also presented in order to give
support to the analytical results. Moreover, this new approach of the model explains the
Allee effect as an emergent behavior of the cooperative and competitive interactions
among the individuals. The Allee effect is the characteristic of some populations of
increasing the population growth rate in a small-sized population. Whereas the models
presented in the literature explain the Allee effect with phenomenological ideas, the
model presented here explains this effect by the interactions between the individuals.
The model is tested with empirical data to justify its formulation. Another interest-
ing macroscopic emergent behavior from the model proposed is the observation of a
regime of population divergence at a finite time. It is interesting that this characteristic
is observed in humanity’s global population growth. It is shown that in a regime of
cooperation, the model fits very well to the human population growth data from 1000
AD to nowadays.
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1 Introduction

The study of population growth is applicable to many areas of knowledge, such as biol-
ogy, economics and sociology (Murray 2002; Solomon 1999; Strzalka 2009; Kohler
and Gumerman 2000). In recent years, this wide spectrum of applicability has moti-
vated a quest for universal growth patterns that could account for different types of
systems by means of the same idea (Chester 2011; Guiot et al. 2003; West et al. 2001;
Bettencourt et al. 2007). To model a more embracing context, generalized growth
models have been proposed to address different systems without specifying func-
tional forms (Kuehn et al. 2011). These generalized models have helped guide the
search for such universal growth patterns (Cabella et al. 2011, 2012; Ribeiro et al.
2014; Barberis and Condat 2011).

The first population growth models were proposed to describe a very simple con-
text or a specific empirical situation. For instance, the Malthus model (Malthus 1798;
Murray 2002) was proposed to explain populations whose growth is strictly dependent
on the number of individuals in the population, i.e., populations that have a constant
growth rate. The model yields an exponential growth of the population, and although
it fits very well to some empirical data when the population is sufficiently small, it
fails after a long period of time (Edelstein-Keshet 2005; Murray 2002). To describe
a more realistic population, Verhulst introduced (Verhulst 1845, 1847; Murray 2002)
a negative quadratic term in the Malthus equation to represent an environment with
limited resources. The Verhulst model yields the logistic growth curve, which fits
many empirical data very well; examples include bacterial growth and human popu-
lation growth (Edelstein-Keshet 2005; Murray 2002). Another important model is the
Gompertz model, which was introduced by Gompertz (1825) to describe the human
life span but has many others applications (Haybittle 1998). The model is a modifica-
tion of Malthus’s original model by the substitution of a constant growth rate with an
exponentially decaying growth rate (Ausloos 2012). The model yields an asymmetric
sigmoid growth curve.

In the last few decades, a search for theoretical models that describe as many sit-
uations as possible has been conducted; the idea is that the larger the applicability
of the model is, the better the theory is Chester (2011). For instance, the Richards
model, which was introduced to describe plants’ growth dynamics (Richards 1959;
Gregorczyk 1998), has the Verhulst and Gompertz growth models as particular cases.
Another model important in this context is the Bertalanffy model (von Bertalanffy
1957, 1960; Savageau 1980), which summarizes many classes of animal growth
using the same approach. An additional model, which was introduced by Strzalka
et al. (2008), presents a generalization of the Malthus and Verhust models based on
the generalized logarithm and exponential function. The generalized forms of the log-
arithm and exponential function are discussed in the “Appendix 1.” Other types of
models that deserve attention are the ones that use an expansion of the Verhulst term
in a power series and apply it to multiple-species systems (Kuehn et al. 2011; Solomon
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1999). Furthermore, there are models that use second-order differential equations to
describe growth, and these models have been strongly corroborated by empirical data
(Chester 2011; Ginzburg 1972).

All of the models cited above can be seen as phenomenological models, because
the only assumption that such models take into account in their formulation is the
population’s—macroscopic level—information. This information includes, for exam-
ple, the population’s size, density, and average quantities. The particularities of the
individuals—the microscopic level—are removed from the formulation of these mod-
els. It is the approach of most of the models presented in the literature. This approach
is very appropriate, as it is difficult to know in detail the particularities of all of the
components of the population. Indeed, taking these details into account complicates
the calculus and computations that are necessary to predict the population behavior
from the model. However, finding universal patterns of growth is extremely helpful
in observing how the components of the system behave. There would most likely be
some types of individual behaviors that are common even in different systems. If that is
the case, then one can justify the same pattern of growth being observed in completely
different type of systems as a consequence of similarities at the microscopic level.

It is observed in many fields of science that simple interaction rules of the compo-
nents of a system can result in complex macroscopic behavior. Moreover, some prop-
erties of such systems are universal, such as the same critical exponents in magnetic
and fluid systems; these properties are universal even in systems that are completely
different (Yeomans 1992; Kadanoff 2000). In the language of complex system theory,
it is said that the collective behavior (macroscopic level) emerges from the interactions
of the components of the system (microscopic level). Thus, the collective effects are
called emergent behavior (Boccara 2003; Mitchell 2011). The idea of Mombach et al.
(2002), which will hereafter be referred to as the MLBI model, was to apply the idea of
emergent behavior to population growth. Hence, in opposition to the common models
that present modeling from a phenomenological point of view, this model is based
on microscopic assumptions. As a result, the (non-phenomenological) MLBI model,
which was formulated in the context of inhibition patterns in cell populations, reca-
pitulates many well-known phenomenological growth models (such as the Malthus,
Verhulst, Gompertz, and Richards models) as an emergent behavior from individuals’
interactions. Recently, this model was analyzed by d’Onofrio (2009), Ribeiro et al.
(2014), and Cabella et al. (2011, 2012).

The model that is proposed here continues the main idea of the MLBI model. How-
ever, the proposal of the present work is to increase the scope of this model. It will
be considered that the individuals that constitute the population interact with each
other not only through competition, as was proposed in the original MLBI model, but
also through cooperation. This new formulation permits other models which were not
permitted in the previous formulation to be embraced. For instance, the new formu-
lation permits the Von Foerster growth model and the divergence of the population
at a finite time to be obtained. Another interesting property of this extended version
presented here is to get the Allee effect as an emergent behavior from cooperation
and competition at a microscopic interaction level. The Allee effect is the property of
some biological populations to increase their growth rate with increases in the pop-
ulation size for small population. This behavior cannot be deduced from the original
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MLBI model. Another interesting macroscopic emergent behavior from the model
proposed here includes the observation of a regime of population divergence after a
finite amount of time. It is interesting that this characteristic is observed in humanity’s
global population growth, as will be shown in the following sections of the paper.

The paper is organized as follows: In the Sect. 2, a model based on the interactions—
cooperation or competition—between the individuals of the population is presented.
In the Sect. 3, it will be shown that the model can explain the Allee effect in a non-
phenomenological way; that is, the Allee effect can be explained by the interactions
between the individuals of the population. The model is tested with empirical data
to justify its formulation. In the Sect. 4, it will be shown that some very important
models in the literature can be obtained by changing some variables of the present
model, such as the strength of the interaction, the geometry in which the population is
embedded, and the spatial distribution of the population. In the Sect. 5, an agent-based
model simulation is presented in order to give support to the analytical results.

2 The Model

The work presented here is an extension of the MLBI model, which was introduced
by Mombach et al. (2002) and reworked by d’Onofrio (2009). The MLBI model was
proposed to explain the population growth of cells considering the inhibitory interac-
tions between them. As a result, these researchers discovered that some well-known
phenomenological models present in the literature (such as Verhulst, Gompertz, and
Richard’s models) can be obtained as a consequence of the microscopic interactions
between individuals.

The present work follows the idea of the MLBI model and expands its applicability
to other ecological systems. In particular, cooperative interactions between individuals
are introduced. Then, one shows that the model can deal not only with populations
of cells (the context that inspired the original version of the model), but also with
the population growth of some mammals and even human populations. Moreover, the
expanded version of the model can explain the Allee effect, which is not possible by
regarding only its original version. These additional properties of the extended version
will be presented in the next section.

First, consider that the replication rate R of a single individual in a population is
given by

R = [Self-stimulated replication] − [competition from field] +
+ [cooperation from field]. (1)

This idea is identical to the one proposed by Mombach et al. (2002) [in the first
line of (1)], except for the cooperative stimulus term (the second line). Following the
MLBI model, suppose that the interaction field I (l)

i j between two individuals i and j
decays accordingly to the distance ri j between them in the form

I (l)
i j =

{
1

r
γl
i j

, if ri j > r0

1, otherwise
; (2)
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Fig. 1 A graph that represents the intensity of the interactions between two individuals (i and j)—see
Eq. (2)—as a function of the distance ri j , according to some values of γl . As γl (the exponent decay)
increases, the intensity of the interaction field decreases more rapidly with the distance. When γl = 0, the
interaction range is infinite; that is, the intensity of the interaction does not depend on the distance

where l = 1 is in respect of competitive interaction and l = 2 in respect of cooperative
interaction. This way it is assumed that the cooperative and competitive interaction
fields behave in the same qualitative way; γl is the exponent decay of the competitive
interaction (l = 1), or the cooperative interaction (l = 2); r0 can be, for instance, the
size of the individual or the minimal distance between two individuals1 (see Fig. 1).
As in MLBI, r0 = 1 is considered . Thus, the replication rate of the i th individual of
the population has the form

Ri = ki − J1

∑
j �=i

I (1)
i j + J2

∑
j �=i

I (2)
i j . (3)

This equation mathematically represents the idea introduced in Eq. (1), where ki is
the self-stimulated replication of the i th individual and Jl > 0 represents the strength
of the competitive (l = 1) or cooperative(l = 2) interaction.

The update of the population must obey the rule N (t + �t) = N (t)+ �t
∑N

i=1 Ri .
In the limit �t → 0, one has the differential equation dN/dt = ∑N

i=1 Ri . By the
Eq. (3), one has

d

dt
N =

N∑
i=1

(
ki − J1 I (1)

i + J2 I (2)
i

)
. (4)

where

1 This consideration of the interaction field when r < r0 differs from the MLBI model, but do not change
its qualitative aspect. Moreover, it brings more generality to the model.
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I (l)
i ≡

∑
j �=i

Ii j (5)

is the (cooperative or competitive) interaction field that individual i feels from its
neighbors.

In “Appendix 2” an extended version of the calculus of the sum in Eq. (5) done
by Mombach et al. (2002) is presented. One can prove (see the “Appendix”) that
the interaction field I (l)

i is mathematically identical for all individuals if considered
that the density ρ of individuals depends only on the distance r by ρ(r) ∝ r D f −D .
Here, D(= 1, 2, 3) is the Euclidian dimension of the space in which the population is
embedded and D f the dimension of the spatial structure formed by the population. If
D f = D, then the interaction field will be equal to all individuals of the population
if and only if the system presents a homogeneous distribution of the population. This
way the interaction field of any individual, that is I (l) = I (l)

i (regardless of i), will
have the form

I (l) = ωD

D f (1 − γl
D f

)

[(
D f

ωD
N

)1− γl
D f − 1

]
+ ωD

D f
. (6)

Here, ωD is a constant that depends exclusively on the euclidean dimension D. To
maintain the physical property that I (l) is positive (note that the sum in Eq. (5) is over
absolute terms), the model must be restricted to the case where ωD/D f < N . In fact,
it is demonstrated in the analysis around Eq. (47) (“Appendix 2”) that ωD/D f ∼ 1
(which is much smaller than the population size).

As presented by Cabella et al. (2011), one can write the term on the right-hand side
of expression (6) by means of the generalized logarithm (see “Appendix 1”):

I (l) = ωD

D f
lnq̃l

(
D f

ωD
N

)
+ ωD

D f
, (7)

where
q̃l ≡ 1 − γl/D f . (8)

The parameter q̃l gives information about the relation between the decay exponent
and the fractal dimension of the population.

By introducing the average of the intrinsic growth rate 〈k〉 ≡ (1/N )
∑N

i=1 ki ,
employing the definitions

J ′
l ≡ Jl

ωD

D f
(9)

and
k′ ≡ 〈k〉 + (J2 − J1)

ωD

D f
, (10)

and using the result (7), the Richard-like model

G(N ) = 1

N

d

dt
N = k′ − J ′

1 lnq̃1

(
D f

ωD
N

)
+ J ′

2 lnq̃2

(
D f

ωD
N

)
(11)
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is obtained from (4).
The per-capita growth rate G(N ) gives information about the type of interaction

that predominates in the population. For instance, dG(N )/dN > 0 means that coop-
eration predominates: The larger the population is, the larger the per-capita growth
rate is. However, dG(N )/dN < 0 means that competition predominates: the larger
the population is, the smaller the per-capita growth rate is.

2.1 Comments

The result (11) depends only on the macroscopic parameters of the system, although
it was deduced from microscopic (or individual level) premises; that is a remarkable
result, and it was first obtained by Mombach et al. (2002) in the context of inhibitory
interactions and is now expanded to cooperative interactions. This result represents a
significant advance in the knowledge of patterns in population growth. It is because
the model is not a phenomenological one; that is, it is not a model that is constructed
to fit macroscopic data. The MLBI model, which was extended here, is deduced from
individual interactions. Then, the macroscopic behavior emerges as a consequence of
the interactions between the individuals.

Moreover, the model presented in this work is more robust than its original version.
The original model is fully obtained by assuming that J ′

2 = 0 in (11). In this case,
the per- capita growth rate G(N ) is a monotonically decreasing function of the size of
the population (because if J ′

2 = 0, then dG/dN < 0 for any population size). Conse-
quently, the simpler form of expression (11), which does not present the cooperative
effects, cannot explain the Allee effect. However, if the cooperative term is considered
[J ′

2 �= 0 in (11)], the Allee effect can be predicted by the model. This effect will be
discussed in more detail in the next section.

3 The Allee Effect

The Allee effect is the property of some populations to increase their per-capita growth
rates with increasing population size when the population is small (Courchamp et al.
1999; Sibly et al. 2005). There are many situations that can cause such effect, for
instance, collective foraging, collective anti-predator behavior, reduction in inbreed-
ing, among others. However, all the biological systems which present such features
have two processes in common which have an opposing relationship to the population
size. There is a process which tends to increase the population, and it is evident when
the population is sufficiently small; there is another process which tends to decrease
the population size, and it is evident when the population is sufficiently large. For
instance, in Fig. 3, the experimental data of the per-capita growth rate of the muskox
and marmot population are presented as a function of the population size. For a small
population, the experimental data show an increasing trend of G(N ) with respect to
the population size increasing. Then, when the population is sufficiently large, G(N )

decreases.
The Allee effect can be seen in two forms: the weak and strong Allee effect (dos

Santos et al. 2014). In the weak Allee effect, G(N ) is always positive (for small N )
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with respect to the population size. In the strong Allee effect, G(N ) increases when
the population size is small, but it is negative for N smaller than a specific value:
the so-called Allee threshold. In this sense, when the population is smaller than the
Allee threshold, the population becomes extinct. When the population is larger than
the Allee threshold, the population converges to the carrying capacity.

The Allee effect has been studied in recent theoretical models (Sibly et al. 2005;
Courchamp et al. 1999; dos Santos et al. 2014). However, these models are restricted
to the macroscopic approach and do not consider the microscopic level of the system.
In the model proposed here, the Allee effect can not only be obtained, but also be
interpreted as a macroscopic behavior that is observed as a consequence of the inter-
actions of the individuals of the population. To show that model (11) can present the
Allee effect, Fig. 2 is included. In this figure, a case of strong Allee effect is presented.
The lower graph of this figure presents the form of G(N ) when J ′

2 > J ′
1 and q̃1 > q̃2.

In this specific case, the per-capita growth rate reaches its maximum at N = N∗. This
result can be explained by analyzing the two terms that composed G(N ) in Eq. (11).

The upper graph of this figure presents the curves k′ + J ′
2 lnq̃2

(
D f
ωD

N
)

(a constant

related to the intrinsic reproductive rate and the cooperative term) and J ′
1 lnq̃1

(
D f
ωD

N
)

(the competitive term) as a function of N . The two curves are monotonically increasing
functions of N , but they have different forms. The per-capita growth rate G(N ) is the
difference between these two functions. For small N , G(N ) is an increasing function
of the population size, that is, the Allee effect. Moreover, it is possible to see by the
figure that the signal of k′ dictates the kind of Allee effect (whether strong or weak).
In this specific case presented in the figure, k′ is negative, what implies a strong Allee
effect (note that G(N ) is negative for N < Nc and that G(N → 0) ≈ k′).

One can find the population size N∗ at which G is at its maximum by taking
dG(N )/dN = 0 in (11), which gives

N∗ = ωD

D f

(
J2

J1

) 1
q̃1−q̃2

. (12)

Note that if J2 = 0, which is the MLBI model, then N∗ is null or indeterminate; that
is, the MLBI model cannot explain Allee effect.

One can also find when G(N ) becomes null, which happens at the threshold value
N = Nc; that is, G(Nc) = 0. This threshold population value can be determined by
solving the transcendental equation

Nc = ωD

D f
eq1

[
k′

J ′
1

lnq2

(
D f

ωD
Nc

)]
, (13)

where eq(x) is the generalized exponential function (see “Appendix 1”). The equation
above presents a single solution (>0) when k′ > 0 (weak Allee effect); in this case
Nc = K , that is, the solution is the carrying capacity of the system. On the other hand,
when k′ < 0 (strong Allee effect), the equation above presents two distinct solutions:
Nc1 and Nc2, with Nc1 < Nc2. While Nc2 is the carrying capacity of the system, Nc1
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N

G(N)

<k> + J2’ lnq2
(DfN/wD)

J1’ lnq1
(DfN/wD)

Strong

0

0

0

0

Allee effect

Allee effect

Fig. 2 Upper graph presents separately the functions that compos G(N ) as a function of N , which conform

to Eq. (11): k′ + J ′
2 lnq̃2

( D f
ωD

N
)

(the constant related to the intrinsic replication rate and the cooperative

term); J ′
1 lnq̃1

( D f
ωD

N
)

(the competitive term). In this particular case, it was assumed J ′
2 > J ′

1, q1 > q2,

and k′ < 0 in order to get a strong Allee effect. The lower graph presents G(N ) (which is obtained by
the difference between the above two functions) as a function of N . The vertical dotted lines represent the
value of N in which G(N ) is maximum or null

is the Allee threshold. Note that the maximum value of G happens when the difference
between the two functions plotted in the upper graph of Fig. 2 is maximal, and the
threshold value Nc happens when these two functions are equal.

Model (11) fits very well to the muskox and marmot population data, which are
presented in Fig. 3. According to the model and result (12), the transition from coop-
eration to competition for the muskox and marmot data is N∗ ≈ 246 and N∗ ≈ 255,
respectively. Moreover, the muskox population presents a weak Allee effect, once k′ is
positive, and the marmot population presents a strong Allee effect, once k′ is negative.
The Allee threshold for the marmot population is Nc1 ≈ 185. The fit curve obtained
for muskox data is quite similar to the one obtained by a phenomenological model
presented by Santos et al. (2014).

3.1 Comments

One can interpret the Allee effect as cooperative and competitive interactions between
the individuals of the population. When the population is too small, cooperation pre-
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Fig. 3 Experimental data (points) of the per-capita growth rate G(N ) for populations of muskox (upper)
and marmot (down). The data were obtained directly from Gregory et al. (2009). Note that the muskox
population presents a weak Allee effect and the marmot population presents a strong Allee effect. The lines
are the fit from model (11) with the following parameters. For the muskox data: J ′

1 ≈ 1.0305; J ′
2 ≈ 1.0327;

q1 ≈ 0.9859; q2 ≈ 0.9855; and k′ ≈ 0.0683. For the marmot data: J ′
1 ≈ 1.33538; J ′

2 ≈ 1.33539;
q1 ≈ 2.485136; q2 ≈ 2.485135; and k′ ≈ −2.1. The term D f /ωD ≡ 1 was kept fixed. For muskox,
k′ > 0 (weak Allee effect); for marmot, k′ < 0 (strong Allee effect). The statistical analysis using the
Levenberg–Marquardt algorithm shows R2 = 0.10694 (for muskox) and R2 = 0.580802 (for marmot)
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dominates, which favors the increase of the per-capita growth rate as N increases.
However, when the population is sufficiently large, competition predominates, which
implies a decrease in the population growth rate as the population increases.

With respect to the spatial structure of the population and its representation by the
model presented here, a good example is pollination in plants. The smaller the inter-
individual distance is, the greater the efficiency of the pollination is Courchamp et al.
(1999), Ghazoul et al. (1998), Roll et al. (1997), Groom (1998). As result, there is a
cooperative effect (or facilitation, as argued by Allee 1949) that is strongly dependent
on the distance between the individuals. However, when the inter-individual distance
is small, competitive effects begin to appear in form of sunlight disputes, elimination
of inhibitory toxins, or competition for soil or other resources. In this way, there is a
trade-off between the individuals to stay close or more distant. The Allee effect is an
example of an emergent phenomenon that can emerge as a consequence of these types
of individual–individual mechanisms.

4 Analysis of a Special Case: γ ≡ γ1 = γ2

This section will be restricted to the special case in which the two decay exponents
(for competition and cooperation) have equal values; that is, γ ≡ γ1 = γ2, which is
equivalent to saying that q̃ ≡ q̃1 = q̃2. It shall also consider, by convenience only,
that k′ > 0. In this particular case, model (11) becomes

1

N

dN

dt
= k′ + J ′ lnq̃

(
D f

ωD
N

)
, (14)

where it is assumed
J ′ ≡ J ′

2 − J ′
1. (15)

The parameter J ′, which can assume both positive and negative values, determines
what type of interaction has more strength: cooperation (J ′ > 0) or competition
(J ′ < 0). When q̃ = 0, i.e., when γ = D f , the generalized logarithm function
becomes the usual logarithm, and then, Eq. (14) is the Gompertz growth model.

Using the properties of the generalized logarithm, one can show that Eq. (14) can
be rewritten as

d

dt
N = aN 1+q̃ − bN . (16)

with solution

N (t) =
[a

b
+

(
N−q̃

0 − a

b

)
ebq̃t

]− 1
q̃

. (17)

In the last two equations, the parameters a and b are given by

a ≡ J ′

q̃

(
D f

ωD

)q̃

, (18)

and

123



420 F. L. Ribeiro

b ≡ J ′

q̃
− k′, (19)

respectively. Model (16) is the Richards model (Richards 1959), which is utilized by
von Bertalanffy (1960), Savageau (1980), and West et al. (2001) to describe animal
growth. Recently, this model was studied by Bettencourt et al. (2007) in the context
of the growth of cities. Thus, the Richards model is the same model that was deduced
here from the individuals’ interactions. In the Sect. 5, an agent-based model simulation
in the particular case D = D f = 2 is presented. As will be seen, the solution (17)
describes quite well the results of the simulations.

The sign of the argument of the exponential in (17) is important, as it determines
the convergence (or divergence) of the population. When bq̃ < 0, the exponential
term goes to zero at t → ∞, and then, the population has a saturation. However, when
bq̃ > 0 the exponential diverges. Thus, there is a change in the population growth
behavior when bq̃ = 0, which happens when γ = γ ∗, where

γ ∗ ≡ D f

(
1 − J ′

k′

)
(20)

[according to the definitions (19) and (8)].
The term γ ∗ plays an important role in the analysis of the population growth behav-

ior, and it will be discussed in more detail in the next section. The sign of the exponent
(that is, −1/q̃) in (17) is also important in the analysis of the dynamics. Transition
behavior happens when 1/q̃ = 0, that is, when γ = D f [according to (8)].

Let us analyze the particular case in which the system described by model (14)
presents cooperation predominance, that is, when J ′ > 0. In this case, given k′ positive,
the population always grows, without saturation. However, the way the population
grows depends on the value of the exponent decay.

For instance, when γ > D f , then b < 0,−1/q̃ > 0 and bq̃ > 0. The solution for
this case [see (17)] can be written as

N (t 
 1) ∼
[
ebq̃t

]− 1
q̃ = e

(
k′− J ′

q̃

)
t
. (21)

That is, γ > D f implies exponential growth of the population, which is the Malthus

model with growth rate −b = k′ − J ′
q̃ [see Eq. (19)]. When γ = D f (the Gompertz

model), the population diverges asymptotically as N (t 
 1) ∼ ee
J ′ ωD

D f
t

. When γ <

D f , the population diverges at a finite time tc given by

tc ≡ −1

bq̃
ln

(
1 − b

a
N−q̃

0

)
. (22)

In the same way that the Malthus model fails to describe biological systems after a
long period of time, when γ < D f the present model only makes some biological
sense for t � tc (Bettencourt et al. 2007). These results are summarized in Fig. 4.
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Fig. 4 A schema of the population growth according to the exponent decay γ when cooperation predomi-
nates (J ′ > 0). The upper graph is the phase diagram corresponding to γ -x-D f ; the lower graph presents
the population growth behavior as a function of γ , where D f is fixed. The exponent decay represents the
following models: γ = 0 implies that one has the Verhulst model; γ = γ ∗ implies one has Von Foerster
model; γ = D f implies one has the Gompertz model. When γ < D f , one has the Richards model, and
hence, the population diverges at a finite time tc given by (22). When γ = D f (the Gompertz model), the
population diverges as t → ∞. Lastly, when γ > D f , the population grows exponentially (the Malthus
model), as in Eq. (21)

When competition predominates, that is, when J ′ < 0, the model described here is
exactly the MLBI model. Thus, the analysis of the convergence or divergence of the
population is identical to the analysis discussed and presented by d’Onofrio (2009).
When γ < γ ∗, which implies −1/q > 0 and bq < 0, solution (17) implies that the
population converges to a finite size—which is the carrying capacity—and is given by
K = (a/b)−1/q . When γ > γ ∗ (which implies q̃ < 0), at t 
 1 solution (17) becomes

N (t) ∼ e

(
k′− J ′

q̃

)
t = e

(
k′−| J ′

q̃ |
)

t
, i.e., one has exponential growth (the Malthus model).

Figure 5 summarizes the conclusion for J ′ < 0. In the Sect. 5, these analytical results
are verified using an agent-based simulation.

4.1 Comments about γ → γ ∗ and the Human Population Growth

The particular case that γ → γ ∗ ≡ D f (1 − J ′/k′) must receive more attention. In
this case, the parameter b goes to zero [according to Eq. (20) and (19)], and then, the
model (17) becomes

d

dt
N = aN 1+q̃ . (23)
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Fig. 5 A schema of the population growth according to the exponent decay γ , when competition predom-
inates (J ′ < 0). The graph presents the population growth behavior as a function of γ , where D f is fixed.
The exponent decay represents the following models: γ = 0 implies one has the Verhulst model; γ = γ ∗
implies power-law growth; γ = D f implies one has the Gompertz model. When γ < γ ∗, the population
converges to a finite size (the carrying capacity K ). When γ > γ ∗, the population presents exponential
growth

This is the von Foerster growth model, which was studied by von Foerster et al.
(1960) and more recently by Strzalka (2009) to describe human population growth.
The solution of model (23) is

N (t) = N0eq̃

(
a

N q̃
0

t

)
, (24)

which was presented by Cabella et al. (2012, 2011), where eq(x) is the generalized
exponential function (see “Appendix 1”). The result (24) is exactly the model proposed
by Strzalka et al. (2008). In this reference, the model was introduced by a modification
of the exponential term of the Malthus model solution without any justification. How-
ever, with the formulation of the microscopic model proposed here, all of the involved
quantities have a physical interpretation, and the growth behavior described by (24)
is a consequence of the of interactions of the individuals.

Given that ωD, D f , and k′ are positive parameters, the manner in which the pop-
ulation grows for large t is totally dependent on J ′. For instance, when J ′ = 0,
the population grows exponentially because the competitive and cooperative strength
completely cancel each other out, and then, the population grows without individual
interactions.

When J ′ < 0, solution (24) behaves asymptomatically as a power law:

N (t 
 1) ∼ t−
k′
J ′ . (25)

In this way, if J ′ < 0, then the population diverges only when t → ∞. The concavity
of N (t) is also determined by J ′: if J ′ > −k′, then N (t) is a convex function, and it
is concave otherwise. Whereas J ′ < 0 the population diverges only when t → ∞, for
J ′ > 0 the population diverges at a finite time tc, which is given by

tc = 1

J ′

(
N0 D f

ωD

)− J ′
k′

. (26)

This equation is the particular case of the Eq. (22) when b → 0 (because γ → γ ∗).
Figure 6 summarizes these conclusions. In the next section, the divergent behavior
at finite time and the power-law growth behavior are presented using an agent-based
model simulation.
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Fig. 6 Time evolution of the population according to the strength of the interaction J ′ for γ → γ ∗. When
J ′ > 0, that is, when one has cooperation, the population diverges at a finite time tc (von Foerster model).
When J ′ = 0, the population has exponential growth. In this case, the interaction effect is fully nullified
and the growth rate is given only by the intrinsic growth rate k′. When J ′ < 0, that is, when one has
competition, the population diverges only as t → ∞. The special cases are: J ′ = −k′, linear growth;
J ′ < −k′, logarithmic growth. N (t) is a convex function when J ′ > −k′, and it is a concave function
otherwise

When J ′ > 0, it is interesting to write solution (23) in terms of the critical time tc
in which the population diverges. Thus, solution (24) behaves as

N (t) ∼ (tc − t)−
k′
J ′ (27)

when cooperation predominates. An interesting application of this result is in human
population growth, as represented in Fig. 7. Note that Eq. (27) applies very well to
human population growth, as the data from 1000 AD until 2014 according to what was
presented by Strzalka (2009), von Foerster et al. (1960). However, with the presentation
of the microscopic point of view of the interactions between the individuals, one
can argue that the “divergent behavior” of the human population can be seen as a
result of cooperative effects, as the parameter J ′ must be positive (i.e., cooperation
predominates) to fit the data.

5 A Two-Dimensional (D = D f = 2) Agent-Based Model Simulation

In this section, a two-dimensional agent-based model (ABM) simulation of the model
proposed will be presented. It will be shown that the ABM simulations give plausibility
to the analytical results presented in previous sections.

The simulations that will be presented here were performed considering that both
the medium and the structure formed by the population are two-dimensional, that is
D = D f = 2. In this case, following the consideration (40), the population must
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Fig. 7 Human population as a function of time since the Middle Ages. The data were obtained from
Strzalka (2009) and from the US Census Bureau http://www.census.gov/population/international/index.
html. The curve is a plot of the equation N (t) = 65, 6(2026 − t)−0,78 [from Eq. (27)], whose parameters
values were obtained via a data fit
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Fig. 8 Dynamics of the agent-based model in three consecutive times (generations). The points represent
the individuals of the population in a specific time step, randomly positioned in the square of size L . Every
two individuals interact with each other with interaction strength given by the rule (2). The lattice, of size
L and area L2, increases or decreases in order to maintain the individual surface density ρ0 constant over
the time steps
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Fig. 9 Log–log graph of the population size dynamics in a competitive kind of interaction (J < 0) for
different values of γ . The points represent the agent-based model simulations and the lines the analytical
solution. The simulations attest the results presented in the diagram of Fig. 5; that is, convergence to
carrying capacity when γ < γ ∗, and exponential growth when γ > γ ∗. The inner graphic presents the
analytical solution plot for N large in order to show the asymptoptic power-law growth behavior for γ = γ ∗.
The dashed straight line of the inner graphic is a power law with exponent 6.63942 computed from the
expression (25). The parameters used were: N0 = 100, 〈k〉 = 1.2, ρ0 = 1, and J = −0.05

grow maintaining a constant superficial density ρ0 of individuals. Let us consider that
in each time step—a generation—the individuals are randomly positioned in a square
of area L × L . The distance L is not fixed, but it increases or decreases in order to
maintain the superficial density ρ0 constant. In fact, L = L(N ) = √

N/ρ0. Figure 8
illustrates the dynamics of the ABM. The strength of the interaction between every
two individuals, which depends only on the distance between them, is given by the
rule (2). A periodic boundary condition is also considered; that is, the individuals in
the extreme right region are neighbors of the individuals of the extreme left region.
The same is applied for individuals in the upper and lower regions.

This ABM is a particular case of the general model proposed in the Sect. 4, where
γ ≡ γ1 = γ2, which has the solution (17)— with parameters [from Eq. (8), (9), (10),
(15), (18), and (19)]:

q̃ = 1 − γ

2
, (28)
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Fig. 10 Log–normal graph of the population size dynamics in a cooperative kind of interaction (J > 0)
for different values of γ . The points represent the agent-based model simulations and the line the analytical
solution. In some cases, the points overlap the lines. The simulations attest the results presented in the
diagram of Fig. 4; that is, when γ < D f = 2, then the population diverges at finite time; when γ > D f = 2,
then the population grows exponentially (straight line in a log–normal graph). The dashed lines represent
the critical time [by Eq. (22)], as a function of γ , in which the population diverges. The parameters used
were: N0 = 1, 000, 〈k〉 = 1.2, ρ0 = 1, and J = +0.01

a = π
γ
2 Jρ

γ
2

0

1 − γ
2

, (29)

and

b = Jπρ0γ

2 − γ
− 〈k〉, (30)

where
J ≡ J2 − J1. (31)

Figure 9 presents the result of the ABM simulation for a competitive kind of inter-
action (J < 0). The ABM simulation and the analytical solution agree quite well,
showing three different population growth behaviors: exponential growth, power-law
growth, and convergence to carrying capacity (as showed by the diagram of Fig. 5.
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The value of the exponent decay γ which conducts to the power law growth is

γ ∗ = 2〈k〉
Jπρ0 + 〈k〉 (32)

a particular case of the Eq. (20). The graph was built in a log–log scale in order to
highlight the power-law behavior of the population growth when γ = γ ∗. This specific
value of γ also represents a change of the dynamic behavior, from a convergence
growth dynamics (γ < γ ∗) to a divergent growth dynamics (γ > γ ∗) (see diagram
of Fig. 5).

The assimptopic power-law growth behavior exhibited by the model when γ =
γ ∗ is quite similar to the behavior of the tumor spheroids growth, according to the
empirical data presented by Drasdo and Hohme (2003) and Freyer and Sutherland
(1985). This fact suggests that the microscopic model presented here can give some
insight about the way that the cancer cells interact in order to promote the emergence
of macroscopic patterns of growth.

Figure 10 presents the result of the ABM simulation for a cooperative kind of
interaction (J > 0). As in the competitive case, the results of the simulations agree
with the theoretical prediction present in previous sections. As presented in the diagram
of Fig. 4, when γ < D = 2 the population diverges at finite time tc [given by (22)].
When γ > D = 2, the population presents an exponential growth, characterized by
the straight line in the log–normal plot.

6 Conclusion

In the present work, an extension of the MLBI model was proposed. This previous
work reaches some well-known phenomenological models present in the literature as a
consequence of the interaction of the individuals that constitute the population. While
this original version considers only a competitive interaction among the individuals,
the present paper considers both competitive and cooperative interactions among the
individuals. As a consequence of this new consideration, a richer dynamics of the
model was observed by analytical and simulation approaches, for instance, presenting
divergence of the population at finite time and reaching the von Foerster population
growth model, in addition to reaching the other models already verified from the
original version (as Malthus, Verhulst, Gompertz, Richards, Bertalanffy, and power-
law growth models). Moreover, it was verified that the introduction of cooperation
between the individuals allows us to explain the Allee effect as an emergent behavior
from the individual–individual interactions. This approach differs from the common
phenomenological explanation presented in the literature. It is important to stress that
the MLBI model, which considers only competitive interactions, cannot explain this
effect.

It was observed that the relation between the decay exponent (γ ), the fractal dimen-
sion (D f ) of the population, and the interaction strength (J ) determines the behavior of
the population growth. For instance, one has presented a phase diagram in which one
related diverse types of growth as consequences of the distance dependent interactions
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(by the exponent decay γ ) and the fractal dimension of the population. Moreover, one
has shown how the strength of the interaction gives both the concavity of the growth
(as a function of time) and the saturation or divergence of the population.

In conclusion, the model proposed here incorporates many types of macroscopic
ecological patterns by focusing on the balance of cooperative and competitive inter-
actions at the individual level. In this way, the model presents a new direction in
the search for universal patterns, which could shed more light on population growth
behavior.
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(151057/2009-5).

Appendix 1: The Generalized Logarithm and Exponential Function

In this appendix, one presents the generalizations of the logarithmic and exponential
functions and some of their properties. The introduction of the functions is shown
to be very useful for dealing with the mathematical representation of the population
growth model that is presented in this work.

The q̃-logarithm function is defined as

lnq̃(x) = lim
q̃ ′→q̃

x q̃ ′ − 1

q̃ ′ =
∫ x

1

dt

t1−q̃
, (33)

which is the area of the crooked hyperbole and is controlled by q̃ . This equation is a
generalization of the natural logarithm function, which is reproduced when q̃ = 0. This
function was introduced in the context of nonextensive statistical mechanics Tsallis
(1988; 1994) and was studied recently by Arruda et al. (2008), Martinez et al. (2008)
and Martinez et al. (2009). Some of the properties of this function are as follows:
for q̃ < 0, lnq̃(∞) = −1/q̃; for q̃ > 0, lnq̃(0) = −1/q̃; for all q̃, lnq̃(1) = 0;
lnq̃(x−1) = − ln−q̃(x); d lnq̃(x)/dx = xq̃−1. Moreover, the q̃-logarithm is a function:
convex for q̃ > 1, linear for q̃ = 1, and concave for q̃ < 1.

The inverse of the q̃-logarithm function is the q̃-exponential function, which is by

eq̃(x) =
{

limq̃ ′→q̃(1 + q̃
′
x)

1
q̃
′

, if q̃x > −1
0, otherwise

. (34)

Some properties of this function are as follows: eq̃(0) = 1, for all q̃;
[
eq̃(x)

]a =
eq̃/a(ax), where a is a constant; for a = −1, one has 1/eq̃(x) = e−q̃(−x). Moreover,
the q̃-exponential is a function: convex for q̃ < 1; linear for q̃ = 1; concave for q̃ > 1.
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Appendix 2: A Detailed Calculus of I (l)
i

In this appendix, one presents a detailed calculus for the intensity of the interaction
felt by a single individual i from the other individuals of the population, which is
represented by I (l)

i (see Sect. 2). One follows Mombach et al. (2002) to show that this
intensity is independent of the individual; that is, it is the same for all individuals of
the population and depends only on the size of the population. More specifically, one
shows that I (l)

i = I (l)(N ) regardless of i .
First, from the Sect. 2 one has

I (l)
i =

∑
j∈ri j ≥r0

(
1 − δi j

)
|ri − r j |γl

+
∑

j∈ri j <r0

(
1 − δi j

)
, (35)

where δi j , which is the Kronecker’s delta, was introduced to avoid the restriction
in the sum. Moreover, ri and r j represent the position vectors of the individuals i
and j , respectively, and consequently ri j = |ri − r j | is the distance between them.
Introducing the property

f (r0) =
∫

VD

dDrδ(r − r0) f (r), (36)

where δ(· · · ) is the Dirac’s delta, the expression (35) becomes

I (l)
i =

N∑
j=1

(1 − δi j )
[ ∫

VD∈r≥r0

dDrδ
(

r − (r j − ri )
)
|r|−γl

+
∫

VD∈r<r0

dDrδ
(

r − (r j − ri )
)]

. (37)

In the last two expressions, was introduced: D(= 1, 2, 3), which is the Euclidean
dimension in which the population is embedded, and VD , which is the total (hyper)
volume (in D dimensions) that contains the population. The form represented in (37)
was obtained by the variable substitution r j − ri by r, using Dirac’s delta.

Some algebraic manipulation and the introduction of r ≡ |r| allows to write

I (l)
i =

∫
VD∈r≥r0

dDr
rγl

∑
j �=i

δ
(

r − (r j − ri )
)

+
∫

VD∈r<r0

dDr
∑
j �=i

δ
(

r − (r j − ri )
)
. (38)

Note that d N (r) ≡ dDr
∑

j �=i δ
(

r − (r j − ri )
)

is the number of individuals

which is at the element of (hipper)volume d Dr at the distance r from the individual
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i , localized at ri . In this way, the density of individuals at ri + r (neighbors of i), that
is ρ(ri + r) = dN (r)/dDr, can be written as

ρ(ri + r) =
∑
j �=i

δ
(

r − (r j − ri )
)
. (39)

The density of individuals can also be thought of in terms of the scale of the
system (in conformity with Falconer 1990). The volume of the system grows in the
form VD ∼ L D , where L is the typical size of the system. However, the number of
individuals grows as the form N ∼ L D f , where D f is the fractal dimension formed by
the spatial structure of the population. By considering r , which is the absolute distance
from i , as a typical distance of the system, one can say that the density of individuals
(VD/N ) has the form

ρ(ri + r) ≡ ρ(r) = ρ0
r D f

r D
, (40)

where ρ0 is a constant which is related to the density of individuals. In fact, if D =
D f and the population is homogeneously distributed, then ρ0 is the usual density of
individuals.

Using results (40) and (39) in (38), one obtains

I (l)
i = ρ0

∫
VD∈r≥r0

d Drr D f −D−γl + ρ0

∫
VD∈r<r0

d Drr D f −D. (41)

Note that the integration argument does not depend on the angular coordinates. Thus,
one can write dDr = r D−1drd�D , where d�D is the solid angle, which implies

I (l)
i = ρ0

�D

D f

∫ r0=1

0
drr D f −1 + ρ0�D

∫ Rmax

r0=1
drr D f −1−γl , (42)

where �D = ∫
d�D . Note that the only term that depends on the Euclidean dimen-

sion is the solid angle, and �D assumes the following values according to these tree
possibilities: �1 = 2; �2 = 2π ; �3 = 4π . By introducing the constant ωD = ρ0�D ,
which depends only on D, one obtains

I (l) ≡ I (l)
i = ωD

(
R

D f −γl
max − 1

D f − γl

)
+ ωD

D f
(43)

Thus, I (l)
i does not depend on the label i anymore. As a result, one can say that

I (l)
i = I (l) regardless of i .

Furthermore, one can introduce the total number of individuals in the relation above
by the following thinking. The total number of individuals in the population can be
determined by the integral

N =
∫

dN (r) =
∫

VD

dDrρ(r). (44)
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Using Eq. (40) and integrating the solid angle, one obtains

N = ωD

∫ Rmax

0
r D f −1dr (45)

= ωD

∫ r0

0
r D f −1 + ωD

∫ Rmax

r0

r D f −1 (46)

= ωD
r

D f
0

D f
+ ωD

R
D f
max
D f

− ωD
r

D f
0

D f
. (47)

Note that the first term on the right in (46) and (47) can be zero (indicating the absence
of individuals) or 1 (indicating the presence of a single individual). These values are
possible because the ratio of the individual is r0, and hence, there can be at most one
individual inside the region that consists of the length between 0 and r0. Thus, for
r0 = 1, ωd/D f ∼ 1. Rmax can be obtained from (47), which is a function of N
according to

Rmax =
(

D f

ωD
N

) 1
D f

. (48)

Returning to relation (43), one finds

I (l) = I (l)(N ) = ωD

D f (1 − γl
D f

)

[(
D f

ωD
N

)1− γl
D f − 1

]
+ ωD

D f
. (49)

By introducing q̃l = 1 − γl/D f and the properties of the generalized logarithm
(Appendix 1), one obtains

I (l) = I (l)(N |D, q̃l) = ωD

D f
lnq̃l

(
D f

ωD
N

)
+ ωD

D f
. (50)
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