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Abstract This paper considers plant–pollinator–ant systems in which the plant–
pollinator interaction is mutualistic but ants have both positive and negative effects
on plants. The ants also interfere with pollinators by preventing them from accessing
plants. While a Beddington–DeAngelis (BD) formula can describe the plant–pollinator
interaction, the formula is extended in this paper to characterize the pollination mutual-
ism under the ant interference. Then, a plant–pollinator–ant system with the extended
BD functional response is discussed, and global dynamics of the model demonstrate
the mechanisms by which pollination mutualism can persist in the presence of ants.
When the ant interference is strong, it can result in extinction of pollinators. More-
over, if the ants depend on pollination mutualism for survival, the strong interference
could drive pollinators into extinction, which consequently lead to extinction of the
ants themselves. When the ant interference is weak, a cooperation between plant–
ant and plant–pollinator mutualisms could occur, which promotes survival of both
ants and pollinators, especially in the case that ants (respectively, pollinators) can-
not survive in the absence of pollinators (respectively, ants). Even when the level of
ant interference remains invariant, varying ants’ negative effect on plants can result
in survival/extinction of both ants and pollinators. Therefore, our results provide an
explanation for the persistence of pollination mutualism when there exist ants.
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1 Introduction

When a new partner joins a mutualism association, it brings benefits to the association
while it may result in conflicts and consequently lead to mutualism breakdown. This
is the case for the emergence of ants in plant–pollinator mutualism.

In a plant–pollinator system, plants provide nectar, pollen, and other resources
for pollinators. The pollinators transport pollen for their host plant in return, which
enables the plant to outcross with other plants and produce offspring. Thus, the plant–
pollinator interaction is mutualistic, and plants share an interest in reproduction from
pollination mutualism (May 2001). Ants can provide a different benefit for plants.
When they emerge in the plant–pollinator system, ants protect plants from herbivores
such as beetles, while the plants provide the ants with several resources including
nectar, food bodies, and nesting sites (Rickson and Risch 1984). Thus, in plant–ant
mutualism, plants share an interest in growth but not in reproduction.

There exists a conflict between ants and plants, which is known as plant castration.
In the plant castration, ants attack and destroy floral buds and flowers of their host
plant (Janzen 1966). For example, the ant Crematogater nigrices destroys the axillary
shoots of the swollen-thorn acacia, which leads to an increase in the net rate of domatia
production (Young et al. 1997). However, the destruction prevents fruiting in the
host plant and subsequently reduces plant reproduction. Therefore, ants have both
positive and negative effects on plants by promoting plant growth but decreasing
plant reproduction. The relationship between ants and plants exhibits a unidirectional
consumer–resource (C–R) interaction, in which one species acts as a resource and the
other as both a resource and a consumer (Holland and DeAngelis 2009).

There exists another conflict between ants and plants. Since ants are only concerned
with the individual plant they live, they can prevent pollinators from accessing plants,
which is detrimental to plant reproduction. Since plant–pollinator–ant communities are
highly common and geographically widespread, an interesting question has puzzled
biologists for years that under which conditions pollination mutualism can persist in
the presence of ants (Oña and Lachmann 2011).

The three-species systems were characterized by May (2001) in a structure of clas-
sical models. The models were transformed into nondimensional differential equations
by Murray (2003), in which the functional responses are either linear or Holling type
II. In 2011, OÑA and Lachmann considered a plant–pollinator–ant system where
functional responses are linear. Both theoretical analysis and numerical simulations
demonstrate a novel threshold in ant aggressiveness against pollinators. When the
level of aggressiveness is less than the threshold, the three species coexist. Other-
wise, pollinators will be driven into extinction by ants. Oña and Lachmann (2011)
also analyzed a plant–pollinator–ant system where functional responses are Holling
type II. Numerical simulations demonstrate conditions under which the three species
could coexist. For more relative works, we refer to Jang (2002), Cantrell et al. (2004),
Cushing (2009), Hsu et al. (2013), Wang and Wu (2013), and Huang et al. (2014).

Fishman and Hadany (2010) demonstrated that the plant–pollinator interaction can
be described by a Beddington–DeAngelis (BD) functional response. In their study,
Fishman and Hadany considered interactions between a plant species and a social
insect (the honeybee), and derived an analytical expression for population-level plant–
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pollinator interactions. Furthermore, they showed that the analytical expression can
be approximated by a BD formula (Beddington 1975; DeAngelis et al. 1975). In
the BD formula, two traits in plant–pollinator interactions are characterized. One is
the time pollinators spend on plants in their individual interactions, and the other
is the exploitation competition between pollinators. When ants emerge in the plant–
pollinator system, they prevent pollinators from accessing plants by scaring them off.
Since the ants act as interferers but not as predators, the ant interference leads to a loss
in time but no loss in biomass to the pollinators. Therefore, the BD formula, which
characterizes plant–pollinator interactions, should be extended to describe the time
caused by ant interference when there exist ants. The plant–pollinator–ant systems
with the extended BD functional responses can demonstrate fundamentally different
properties from those with linear or Holling type II formulas.

In this paper, we consider plant–pollinator–ant systems in which the plant–
pollinator interaction is mutualistic but ants have both positive and negative effects
on plants. The ants also interfere with pollinators by preventing them from access-
ing plants. While a Beddington–DeAngelis formula can describe the plant–pollinator
interaction, the formula is extended in this paper to characterize the pollination mutual-
ism under the ant interference. Then, a plant–pollinator–ant system with the extended
BD functional response is discussed, and global dynamics of the model demonstrate
the mechanisms by which pollination mutualism can persist in the presence of ants.
When the ant interference is strong, it can result in extinction of pollinators. More-
over, if the ants depend on pollination mutualism for survival, the strong interfer-
ence could drive pollinators into extinction, which consequently lead to extinction
of the ants themselves. When the ant interference is weak, a cooperation between
plant–ant and plant–pollinator mutualisms could occur, which promotes the survival
of both ants and pollinators, especially in the case that ants (respectively, pollina-
tors) cannot survive in the absence of pollinators (respectively, ants). Even when the
level of ant interference remains invariant, varying ants’ negative effect on plants
can result in survival/extinction of both ants and pollinators. Therefore, our results
provide an explanation for the persistence of pollination mutualism when there exist
ants.

The paper is organized as follows. The three-species model is described in Sect. 2.
Section 3 exhibits the dynamics of subsystems. Section 4 demonstrates the persistence
of the whole system. Section 5 shows the stability and bifurcation of the interior
equilibrium. Discussions are in Sect. 6.

2 A Plant–Pollinator–Ant Model

The model derivation in this section is based on the work by Fishman and Hadany
(2010). In their work, Fishman and Hadany derived that the analytical expression
for plant–pollinator interactions can be approximated by a Beddington–DeAngelis
formula. We assume that plants can survive in the absence of pollinators (e.g., by
selfing) and pollinators depend on plants for survival (Jang 2002; Soberon and Rio
1981). Then, the plant–pollinator system can be described by
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dx1

dt
= x1

(
r1 − d1x1 + e12x2

1 + αx1 + βx2

)

dx2

dt
= x2

(
−r2 + e21x1

1 + αx1 + βx2

)
(1)

where x1 and x2 are population densities of plants and pollinators, respectively. The
parameter r1 is the intrinsic growth rate of plants and d1 the self-incompatible degree.
α represents the time pollinators spend on central place foraging and individual-level
plant–pollinator interactions (Fishman and Hadany 2010), while β is the intensity of
exploitation competition between pollinators (Pianka 1974). e12 denotes the plants’
efficiency in translating plant–pollinator interactions into fitness (Fishman and Hadany
2010), and e21 is the corresponding value for pollinators. r2 represents the per capita
death rate of pollinators.

When ants emerge in the plant–pollinator system, they interfere with pollinators
by scaring them off, which leads to a loss in time to the pollinators. Thus, the BD
formula describing plant–pollinator interactions should be extended to include the ant
interference. Meanwhile, the ants have both positive and negative effects on plants.
The plant–ant mutualism has the same traits as those of plant–pollinator mutualism,
so that it can be described by a BD functional response. In plant castration, ants only
destroy buds without eating them. Thus, there is no saturation in the destruction, and
the ants’ negative effect on plants should be proportional to their density.

We assume that ants depend on plants for survival (e.g., Oña and Lachmann (2011).
Then, the plant–pollinator–ant system can be depicted by

dx1

dt
= x1

(
r1 − d1x1 + e12x2

1 + αx1 + βx2 + γ x3
+ e13x3

1 + ᾱx1 + β̄x3
− γ̄ x3

)

dx2

dt
= x2

(
−r2 + e21x1

1 + αx1 + βx2 + γ x3

)

dx3

dt
= x3

(
−r3 + e31x1

1 + ᾱx1 + β̄x3

)
(2)

where x3 be the population density of ants. The parameter γ denotes the level of ant
interference, characterizing the loss in time to pollinators due to ants’ scaring. e13
represents the plants’ efficiency in translating plant–ant interactions into fitness, and
e31 is the corresponding value for ants. ᾱ represents the time ants spend on plants,
while β̄ is the intensity of exploitation competition between ants. γ̄ represents the
degree of plant castration by ants, which can be measured by the biomass of buds and
flowers destroyed by one ant. r3 is the per capita death rate of ants.

When there is no pollinator, system (2) becomes a plant–ant model

dx1

dt
= x1

(
r1 − d1x1 + e13x3

1 + ᾱx1 + β̄x3
− γ̄ x3

)

dx3

dt
= x3

(
−r3 + e31x1

1 + ᾱx1 + β̄x3

)
(3)
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Table 1 Summary of key model parameters

Parameter Meaning

r1 Rate constant for the plant’s intrinsic growth

r2 Rate constant for the pollinator’s mortality

r3 Rate constant for the ant’s mortality

d1 Rate coefficient for the plant’s density-dependent mortality

e12 The plant’s efficiency in translating plant–pollinator interactions into fitness

e13 The plant’s efficiency in translating plant–ant interactions into fitness

e21 The pollinator’s efficiency in translating plant–pollinator interactions into fitness

e31 The ant’s efficiency in translating plant–ant interactions into fitness

α α is the effective equilibrium constant for (un-depleted) flower versus pollinator interactions—
one that combines travel and unloading times involved in central place pollinator foraging with
individual-level plant–pollinator interactions. The dimension of α is density−1

β β is a dimensionless parameter that measures recovery time relative to handling time. β repre-
sents the intensity of exploitation competition among pollinators

γ γ denotes the level of ant interference, characterizing the loss in time to pollinators due to ants’
scaring. The dimension of γ is density−1

ᾱ ᾱ represents the time that an ant spends on plants. The dimension of ᾱ is density−1

β̄ β̄ is a dimensionless parameter that measures the intensity of exploitation competition between
ants

γ̄ γ̄ represents the degree of plant castration by ants, which can be measured by the biomass of
buds and flowers destroyed by one ant. The dimension of γ̄ is time−1× density−1

The dimensions of rate constants are time−1. The dimensions of efficiencies and rate coefficient are time−1×
density−1

where ants have both positive and negative effects on plants.
When e21 ≤ r2α, we have dx2/dt ≤ 0 by the second equation of (2), so that the

Liapunov Theorem (Hofbauer and Sigmund 1998) implies that limt→∞ x2(t) = 0.
Similarly, when e31 ≤ r3ᾱ, we obtain limt→∞ x3(t) = 0. Since we are concerned
with the coexistence of the three species, we assume e21 > r2α and e31 > r3ᾱ in this
paper.

Based on the description by Fishman and Hadany (2010) and Oña and Lachmann
(2011), the parameters with their dimensions are summarized in Table 1.

3 Three Subsystems

There are three subsystems of (2). In the pollinator–ant subsystem, we can see that both
species go to extinction since they cannot survive in the absence of plants. Dynamics
of the plant–pollinator and plant–ant subsystems have been studied by Wang et al.
(2012), which are cited as follows.

Let E(x1, x2) be an interior equilibrium of system (1). Then, E satisfies

x2 = 1

βx0
1

(
x1 − x0

1

)
, g1(x1) = l1(x1)
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where

x0
1 = r2

e21 − r2α
, g1(x1) = x1(r1 − d1x1), l1(x1) = − e12r2

e21βx0
1

(
x1 − x0

1

)
. (4)

Suppose r1/d1 < x0
1 . Let k1 be the slope of line l1, then lime12→+∞ k1 = −∞

while l1 passes through point (x0
1 , 0). Since the parabolic curve v = g1(x1) is convex

upward and passes through points (0, 0) and (r1/d1, 0), there exists e0
12 > 0 such that

the curves g1(x1) and l1(x1) are tangent in the region x1 > x0
1 when e12 = e0

12. Hence,
when e12 ≥ e0

12, there are two intersection points of g1(x1) and l1(x1) in the region
x1 > x0

1 , which correspond to two interior equilibria E+
12(x+

1 , x+
2 ) and E−

12(x−
1 , x−

2 )

of (1). When e12 < e0
12, there is no interior equilibrium of (1). The computation of e0

12
and E±

12 is shown in “Appendix 1.” Therefore, we have the following result.

Theorem 3.1 (Wang et al. 2012)

(i) System (1) admits no periodic orbit.
(ii) When r1/d1 > x0

1 , E+
12(x+

1 , x+
2 ) is the unique interior equilibrium of (1) and is

globally asymptotically stable in the interior of the (x1, x2)-plane.
(iii) When r1/d1 < x0

1 and e12 ≥ e0
12, E−

12(x−
1 , x−

2 ) and E+
12(x+

1 , x+
2 ) are interior

equilibrium of (1). E−
12 is a saddle point while E+

12 and E1(r1/d1, 0) are locally
asymptotically stable. The separatrices of E−

12 divide the interior of the (x1, x2)-
plane into two regions: one is the basin of attraction of E1 while the other is that
of E+

12.
(iv) When r1/d1 < x0

1 and e12 < e0
12, E1(r1/d1, 0) is globally asymptotically stable

in the interior of the (x1, x2)-plane.

Let Ē(x1, x3) be an interior equilibrium of (3). Then, Ē satisfies

x3 = 1

β̄ x̄0
1

(x1 − x̄0
1 ), g2(x1) = l2(x1),

where

x̄0
1 = r3

e31 − r3ᾱ
, g2(x1) = x1

[
r1 − d1x1 − γ̄

β̄ x̄0
1

(
x1 − x̄0

1

)]
, l2(x1)

= − e13r3

e31β̄ x̄0
1

(
x1 − x̄0

1

)
. (5)

Suppose r1/d1 < x̄0
1 . Then, the curve v = g2(x1) is a parabola and g2(0) = 0,

g2(x̄0
1 ) < 0. Thus, the roots of g2(x1) = 0 are in the region x1 < x̄0

1 . Let k2 be the
slope of line l2, then lime13→+∞ k2 = −∞ while l2 passes through point (x̄0

1 , 0). Since
the parabolic curve v = g2(x1) is convex upward and the roots of g2(x1) = 0 are in
the region x1 < x̄0

1 , there exists e0
13 > 0 such that the curves g2(x1) and l2(x1) are

tangent in the region x1 > x̄0
1 when e13 = e0

13. Hence, when e13 ≥ e0
13, there are two

intersection points of g2(x1) and l2(x1) in the region x1 > x̄0
1 , which correspond to

two interior equilibria E+
13(x̄+

1 , x+
3 ) and E−

13(x̄−
1 , x−

3 ) of (3). When e13 < e0
13, there is
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Dynamics of plant−ant subsystems

E
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13
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x
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3
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Fig. 1 Dynamics of subsystem (3) with two interior equilibria E−
13 and E+

13, as shown in Theorem 3.2.
Vector fields are displayed by gray arrows. Stable and unstable equilibria are represented by solid and open
circles, respectively. The separatrices (the black line) of E−

13 divide the plane into two regions: one is the

basin of attraction of Ē1(r1/d1, o) and the other is that of E+
13

no interior equilibrium of (3). The computation of e0
13 and E±

13 is shown in “Appendix
1.” Thus, dynamics of system (3) can be described as follows.

Theorem 3.2 (Wang et al. 2012)

(i) System (3) admits no periodic orbit.
(ii) When r1/d1 > x̄0

1 , E+
13(x̄+

1 , x+
3 ) is the unique interior equilibrium of (3) and is

globally asymptotically stable in the interior of the (x1, x3)-plane.
(iii) When r1/d1 < x̄0

1 and e13 ≥ e0
13, E−

13(x̄−
1 , x−

3 ) and E+
13(x̄+

1 , x+
3 ) are interior

equilibrium of (3) as shown in Fig. 1. E−
13 is a saddle point while E+

13 and
Ē1(r1/d1, 0) are locally asymptotically stable. The separatrices of E−

13 divide
the interior of the (x1, x3)-plane into two regions: one is the basin of attraction
of Ē1 while the other is that of E+

13.
(iv) When r1/d1 < x̄0

1 and e13 < e0
13, Ē1(r1/d1, 0) is globally asymptotically stable

in the interior of the (x1, x3)-plane.

4 Persistence

We show uniform persistence of system (2) by applying the acyclicity theorem by
Butler et al. (1986) and Butler and Waltman (1986). First, we demonstrate that system
(2) is dissipative. Then, we show the boundary equilibria of (2) cannot form a hete-
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γ =0.004, γ =0.2 −(a) γ =0.001, γ =0.2 −(b)

γ =0.001, γ =0.2 −(c) γ =0.001, γ =0.6 −(d)

Fig. 2 Variation in interaction outcomes in system (2) when degrees of plant castration γ̄ and ant inter-
ference γ change. Solutions of plants (x1), pollinators (x2), and ants (x3) are denoted by red, blue, and
black lines, respectively. a When the plant castration is strong (γ̄ = 0.004) but ant interference is weak
(γ = 0.2), both pollinators and ants go to extinction. b, c When both the plant castration and ant interference
are weak (γ̄ = 0.001, γ = 0.2), the three species coexist if their initial densities are large. Otherwise, both
pollinators and ants cannot survive. d When the plant castration is weak (γ̄ = 0.001) but ant interference
is strong (γ = 0.4), both pollinators and ants go to extinction (Color figure online)

roclinic cycle, which is the acyclicity condition in the uniform persistence theorem
(Butler et al. 1986; Butler and Waltman 1986) (Figs. 2, 3).

We are concerned with the solutions of (2) with initial values x(0) ≥ 0. It can
be verified that these solutions are nonnegative. The following result shows that the
solutions of system (2) are bounded, while the proof is in “Appendix 2.”

Lemma 4.1 System (2) is dissipative.

Stability of the boundary equilibria is shown by eigenvalues of Jacobian matrices
of (2) at the equilibria. Indeed, the equilibrium O(0, 0, 0) has eigenvalues r1,−r2 and
−r3, which implies that it is a saddle point and is stable in the x2- and x3-directions
but unstable in the x1-direction. The equilibrium P1(r1/d1, 0, 0) has eigenvalues

λ
(1)
1 = −r1, λ

(2)
1 = −r2 + e21r1

d1 + αr1
, λ

(3)
1 = −r3 + e31r1

d1 + ᾱr1
(6)

123



210 Y. Wang, S. Wang

L(x1)    
l(x1) 

g(x1)
b/a 1)               
       x1 x1

v (a) v (b)

v (c) v (d)

0

l(x1)
                   G(x1) 

0 b/a x1

G(x

L(x1) 

 g(x1)         

0

0                         x1

Fig. 3 a In Lemma 4.2, when b/a > ū+
1 > ū0

1, the parabola g(x1) and line l(x1) have intersections in the

region x1 > b/a if the slope kl is sufficiently small. b In Lemma 4.5, when G(0) > 0 and G(ū0
1) < 0,

the parabola G(x1) and line L(x1) have intersections in the region x1 > ū0
1 if the slope kL is sufficiently

small. c In Lemma 4.5, when b/a > ū0
1 > ū+

1 , the parabola g(x1) and line l(x1) have no intersection in
the region x1 > b/a. d In Lemma 4.9, when γ̄ < γ̄0 and γ ≤ γ0, the parabola G(x1) and line L(x1) have
intersections in the region x1 > ū0

1

where λ
( j)
i is the eigenvalue of equilibrium Pi in the x j -direction.

When P+
12(x+

1 , x+
2 , 0) and P−

12(x−
1 , x−

2 , 0) are boundary equilibria of (2), P+
12 is

locally asymptotically stable and P−
12 is a saddle point on the (x1, x2)-plane with

x+
1 > x−

1 > r1/d1. Their eigenvalues in the x3-direction are

λ+
12 = −r3 + e31x+

1

1 + ᾱx+
1

, λ−
12 = −r3 + e31x−

1

1 + ᾱx−
1

. (7)

When P+
13(x̄+

1 , 0, x+
3 ) and P−

13(x̄−
1 , 0, x−

3 ) are boundary equilibria of (2), P+
13 is

locally asymptotically stable and P−
13 is a saddle point on the (x1, x3)-plane with

x̄+
1 > x̄−

1 > r1/d1. Their eigenvalues in the x2-direction are

λ+
13 = −r2 + e21 x̄+

1

1 + α x̄+
1 + γ x+

3

, λ−
13 = −r2 + e21 x̄−

1

1 + α x̄−
1 + γ x−

3

. (8)

The acyclicity condition for the uniform persistence of system (2) is considered
in three cases such as: (1) λ

(3)
1 > 0; (2) λ

(3)
1 < 0 and e13 < e0

13; (3) λ
(3)
1 < 0 and

e13 ≥ e0
13;
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First, we consider the case of λ
(3)
1 > 0, which implies that ants can survive in the

absence of pollinators. The following Lemma 4.2 shows conditions under which sys-
tem (2) has interior equilibria, while the proof is in “Appendices 3 and 4” exhibits the
proof of e∗

12 and e∗
13 in “Appendix 3.”

Lemma 4.2 Assume λ+
13 < 0. There exists e∗

12 > 0 such that system (2) has interior
equilibria if and only if γ < γ ∗ and e12 ≥ e∗

12, where γ ∗ = β̄ x̄0
1/x0

1 .

When pollinators can persist in the plant–pollinator system, Theorem 4.3 shows
conditions under which pollinators can survive in the presence of ants, while the proof
is in “Appendix 5.”

Theorem 4.3 Let λ
(2)
1 > 0, λ

(3)
1 > 0.

(i) When λ+
13 > 0, system (2) is uniformly persistent.

(ii) When λ+
13 < 0, γ < γ ∗ and e12 ≥ e∗

12, P+
13 is locally asymptotically stable with

a basin of attraction ω13 and system (2) restricted on intR3+ − ω13 is uniformly
persistent.

(iii) When λ+
13 < 0, γ < γ ∗, e12 < e∗

12 or λ+
13 < 0, γ ≥ γ ∗, P+

13 is globally
asymptotically stable in intR3+.

A threshold γ ∗ in the ant interference is defined in Theorem 4.3. In this section,
we focus on the effect of ant interference on the persistence of (2), while the effect
of plant castration is discussed in Sect. 5 of this paper. In the situation considered
by Theorem 4.3, pollinators (respectively, ants) can survive in the absence of ants
(respectively, pollinators). The condition λ+

13 > 0 in Theorem 4.3(i) can be rewritten
as e21 > ē21 with ē21 = r2(1 + α x̄+

1 + βx+
3 )/x̄+

1 . Thus, if the pollinators’ efficiency
is high (i.e., e21 > ē21), Theorem 4.3(i) shows that they can persist in the presence of
ants.

Assume the pollinators’ efficiency is low (i.e., e21 < ē21). If the ant interference
is weak (i.e., γ < γ ∗), Theorem 4.3(ii) shows that pollinators can survive when the
plants’ efficiency is high (i.e., e12 ≥ e∗

12) and pollinators’ initial density is large.
However, if the ant interference is strong (i.e., γ ≥ γ ∗), Theorem 4.3(iii) shows
that pollinators will be driven into extinction. Since the pollinators can survive in
the absence of ants, it is the strong ant interference that leads to the extinction of
pollinators.

When pollinators with low initial densities cannot survive in the plant–pollinator
system, Theorem 4.4 shows the way by which pollinators can persist in the presence
of ants, while the proof is in “Appendix 6.”

Theorem 4.4 Let λ
(2)
1 < 0, λ

(3)
1 > 0.

(i) When λ+
13 > 0, system (2) is uniformly persistent.

(ii) Assume λ+
13 < 0. When γ < γ ∗ and e12 ≥ e∗

12, P+
13 is locally asymptotically

stable with a basin of attraction ω13 and system (2) restricted on R3+ − ω13 is
uniformly persistent. Otherwise, P+

13 is globally asymptotically stable in intR3+.

The threshold γ ∗ is crucial to the survival of pollinators in the situation of Theo-
rem 4.4, where the plant–ant system is persistent in the absence of pollinators, while
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pollinators cannot survive in the plant–pollinator system (e12 < e0
12) or their persis-

tence in the plant–pollinator system is density-dependent (e12 ≥ e0
12). If the pollina-

tors’ efficiency is high (e21 > ē21), Theorem 4.4(i) shows that pollinators can survive
in the presence of ants.

Assume the pollinators’ efficiency is low (e21 < ē21). When the ant interference is
weak (γ < γ ∗), Theorem 4.4(ii) shows that the pollinators can survive in the presence
of ants if the plants’ efficiency is high (e12 ≥ e∗

12) and pollinators’ initial density is
large. Otherwise, when the ant interference is strong (γ ≥ γ ∗), Theorem 4.4(ii) shows
that the pollinators will be driven into extinction. Since pollinators with large initial
densities can survive in the plant–pollinator systems as e12 ≥ e0

12, it is the strong ant
interference that leads to the extinction of pollinators.

On the other hand, Theorem 4.4(ii) shows that when the ant interference is weak
(γ < γ ∗), the pollinators, who cannot survive in the plant–pollinator system as
e12 < e0

12, can survive in the plant–pollinator–ant system if the plants’ efficiency
is high (e12 ≥ e∗

12) and pollinators’ initial density is large. This means that plant–
ant mutualisms could promote the survival of pollinators when the ant interference is
weak.
Second, we consider the case of λ

(3)
1 < 0 and e13 < e0

13, which implies that ants
cannot survive in the absence of pollination mutualisms. When pollinators can persist
in the plant–pollinator system, Lemma 4.5 shows conditions under which system (2)
has interior equilibria, while the proof is in “Appendix 7.”

Lemma 4.5 Let λ
(2)
1 > 0, λ

(3)
1 < 0, λ+

12 < 0 and e13 < e0
13. There exists e∗

13 > 0
such that (2) has interior equilibria if and only if e13 ≥ e∗

13.

Based on the Lemma 4.5, we obtain Theorem 4.6 by a proof similar to that of
Theorem 4.3, while we omit the proof.

Theorem 4.6 Let λ
(2)
1 > 0, λ

(3)
1 < 0 and e13 < e0

13.

(i) When λ+
12 > 0, system (2) is uniformly persistent.

(ii) Assume λ+
12 < 0. When e13 ≥ e∗

13, P+
12 is locally asymptotically stable with a

basin of attraction ω12 and system (2) restricted on intR3+ − ω12 is uniformly
persistent. Otherwise, P+

12 is globally asymptotically stable in intR3+.

When ants cannot survive in the absence of pollination mutualisms, Theorem 4.6
shows that the ants’ efficiency in translating plant–ant interactions into fitness is impor-
tant to their invasion in the plant–pollinator system. The condition λ+

12 > 0 in Theo-
rem 4.6(i) can be rewritten as e31 > ē31 with ē31 = r3(1 + αx+

1 )/x+
1 . Theorem 4.6(i)

demonstrates that when the ants’ efficiency is high (e31 > ē31), ants can invade the
plant–pollinator system and persist. When the ants’ efficiency is low but plants’ effi-
ciency is large (e13 ≥ e∗

13), Theorem 4.6(ii) shows that the ants with large initial
densities can survive. Otherwise, the ants will go to extinction.

When pollinators cannot survive in the plant–pollinator system, we have λ
(2)
1 < 0

and e12 < e0
12. When γ ∗ ≤ β̄, by a proof similar to that of Lemma 4.2, we conclude

that system (2) has interior equilibria if and only if γ < γ ∗ and e12 ≥ e∗
12. When

γ ∗ > β̄, by a proof similar to that of Lemma 4.5, we conclude that system (2) has
interior equilibria if and only if e13 ≥ e∗

13. Therefore, we have the following result.
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Lemma 4.7 Let λ
(2)
1 < 0, λ

(3)
1 < 0, e12 < e0

12, e13 < e0
13.

(i) When γ ∗ ≤ β̄, system (2) has interior equilibria if and only if γ < γ ∗ and
e12 ≥ e∗

12.
(ii) When γ ∗ > β̄, system (2) has interior equilibria if and only if e13 ≥ e∗

13.

Based on the Lemma 4.7, we obtain Theorem 4.8 by a proof similar to that of
Theorem 4.3, while we omit the proof.

Theorem 4.8 Let λ
(2)
1 < 0, λ

(3)
1 < 0, e12 < e0

12, e13 < e0
13.

(i) Assume γ ∗ ≤ β̄. If γ < γ ∗ and e12 ≥ e∗
12, P1 is locally asymptotically stable

with a basin of attraction ω1 and system (2) restricted on R3+ − ω1 is uniformly
persistent. Otherwise, P1 is globally asymptotically stable in intR3+.

(ii) Assume γ ∗ > β̄. If e13 ≥ e∗
13, P1 is locally asymptotically stable with a basin

of attraction ω1 and system (2) restricted on R3+ − ω1 is uniformly persistent.
Otherwise, P1 is globally asymptotically stable in intR3+.

When pollinators (respectively, ants) cannot survive in the absence of ants (respec-
tively, pollinators), Theorem 4.8 demonstrates that the plants’ efficiencies play a crucial
role in the survival of both pollinators and ants. By the expression of γ ∗ in Lemma 4.2,
the assumption γ ∗ ≤ β̄ in Theorem 4.8(i) is equivalent to the inequality x̄0

1 ≤ x0
1 ,

which implies that the pollinators’ efficiency is relatively low by the definition of x̄0
1

and x0
1 in (4) and (5). Thus, when the pollinators’ efficiency is relatively low (γ ∗ ≤ β̄),

Theorem 4.8(i) shows that the persistence of the three species is density-dependent
if the ant interference is weak (γ < γ ∗) and plants’ efficiency is high (e12 ≥ e∗

12).
Otherwise, both ants and pollinators will go to extinction. When the pollinators’ effi-
ciency is relatively high (γ ∗ > β̄), Theorem 4.8(ii) shows that persistence of the three
species is density-dependent if the plants’ efficiency is high (e13 ≥ e∗

13). Otherwise,
both ants and pollinators will go to extinction.

When pollinators’ persistence in the plant–pollinator system is density-dependent,
Lemma 4.9 shows conditions under which there are interior equilibria of system (2),
while the proof is in “Appendix 8.”

Lemma 4.9 Let λ
(2)
1 < 0, λ

(3)
1 < 0, λ−

12 > 0, e12 ≥ e0
12, e13 < e0

13.

(i) Assume γ ∗ ≤ β̄. There are interior equilibria of system (2) if and only if γ < γ ∗
and e12 ≥ e∗

12.
(ii) Assume γ ∗ > β̄. There exist γ̄0 > 0 and γ0 > 0 such that when γ̄ < γ̄0 and

γ ≤ γ0, system (2) has interior equilibria. When γ̄ ≥ γ̄0 or γ > γ0, system (2)
has interior equilibria if and only if e13 ≥ e∗

13.

Based on the Lemma 4.9, we obtain Theorem 4.10 by a proof similar to that of
Theorem 4.3, while we omit the proof.

Theorem 4.10 Let λ
(2)
1 < 0, λ

(3)
1 < 0, λ−

12 > 0, e12 ≥ e0
12, e13 < e0

13. Then, P1 is
locally asymptotically stable with a basin of attraction ω1.

(i) Assume γ ∗ ≤ β̄. If γ < γ ∗ and e12 ≥ e∗
12, then system (2) restricted on intR3+−ω1

is uniformly persistent. Otherwise, P1 is globally asymptotically stable in intR3+.
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(ii) Assume γ ∗ > β̄. If e13 ≥ e∗
13, or, γ̄ < γ̄0 and γ ≤ γ0, then system (2) restricted

on intR3+ − ω1 is uniformly persistent. Otherwise, P1 is globally asymptotically
stable in intR3+.

When ants cannot survive in the absence of pollinators, Theorem 4.10 shows
that sufficiently weak interference could lead to coexistence of the three species,
although pollinators’ persistence in the plant–pollinator system is density-dependent.
The condition λ−

12 > 0 in Theorem 4.10 can be rewritten as e31 > e−
31 with

e−
31 = r3(1 + ᾱx−

1 )/x−
1 . When the ant interference is sufficiently weak (γ < γ0),

Theorem 4.10(ii) shows that the three species could coexist if their initial densities
are in an appropriate region and plant castration is weak (γ̄ < γ̄0). The reason is that
under the sufficiently weak interference, plant–pollinator and plant–ant mutualisms
can benefit each other, which promotes ants’ survival. However, when the ant inter-
ference is not sufficiently weak (γ > γ0) but ants’ efficiency is small (e13 < e∗

13),
Theorem 4.10(ii) shows that the ants can invade the plant–pollinator system and drive
pollinators into extinction, which consequently results in the extinction of the ants
themselves. A similar discussion can be given for the situation in Theorem 4.10(i),
while more discussions are in Remark 4.17 at the end of this section.

When λ+
12 < 0, we have x0

1 < x+
1 < x̄0

1 and λ−
12 < 0. Then, γ ∗ > β̄ and P+

12 is
locally asymptotically stable with a basin of attraction ω12. By a proof similar to that
of Lemma 4.5 and Theorem 4.6, we have Lemma 4.11 and Theorem 4.12.

Lemma 4.11 Let λ
(2)
1 < 0, λ

(3)
1 < 0, λ+

12 < 0, e12 ≥ e0
12, e13 < e0

13. There are
interior equilibria of system (2) if and only if e13 ≥ e∗

13.

Theorem 4.12 Let λ
(2)
1 < 0, λ

(3)
1 < 0, λ+

12 < 0, e12 ≥ e0
12, e13 < e0

13. If e13 ≥ e∗
13,

then system (2) restricted on intR3+ − ω1 − ω12 is uniformly persistent. Otherwise,
solutions of (2) with x(0) > 0 converge to P1 ∪ P±

12.

When ants cannot survive in the absence of pollinators, Theorem 4.12 shows that
plants’ efficiency is crucial to ants’ survival if pollinators’ persistence in the plant–
pollinator system is density-dependent. When the plants’ efficiency is high (e13 ≥ e∗

13),
Theorem 4.12 shows that the three species could coexist if their initial densities are in
an appropriate region. Otherwise, ants will go to extinction.

Assume λ
(2)
1 < 0, e12 ≥ e0

12. If λ−
12 < 0 and λ+

12 > 0, then P−
12 has a two-

dimensional stable manifold in intR3+. Thus, there is a solution x(t) of (2) with
x(0) > 0 such that limt→∞ x2(t) = 0, which implies that system (2) is not persistent.
Therefore, we conclude the following result.

Theorem 4.13 Let λ
(2)
1 < 0, λ

(3)
1 < 0, e12 ≥ e0

12, e13 < e0
13. When λ−

12 · λ+
12 < 0,

system (2) is not persistent.

Third, we consider the case of λ
(3)
1 < 0 and e13 ≥ e0

13, which implies that ants’ persis-
tence in the plant–ant system is density-dependent. Thus, P+

13 and P−
13 are boundary

equilibria of (2). On the (x1, x3)-plane, the separatrices of P−
13 divide the interior of

the plane into two regions ω0
1 and ω0

13: ω0
1 is the basin of attraction of P1 and ω0

13 is
that of P+

13 as shown in Fig. 1.
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Let x(t) be a solution of (2) with (x1(0), x3(0)) ∈ ω0
13. Let x̄(t) be a solution of

(3) with x̄i (0) = xi (0), i = 1, 3. By (2), x(t) satisfies

dx1

dt
≥ x1(r1 − d1x1) + e13x1x3

1 + ᾱx1 + β̄x3
− γ̄ x1x3

dx3

dt
≥ x3

(
−r3 + e31x1

1 + ᾱx1 + β̄x3

)

so that the comparison theorem (Cosner 1996) implies xi (t) ≥ x̄i (t) as t > 0, i = 1, 3.

Since x̄(t) converges to P+
13, we have lim inf t→∞ xi (t) ≥ δ0 for some δ0 > 0. Thus,

ants can persist if x(0) satisfies (x1(0), x3(0)) ∈ ω0
13.

When λ
(2)
1 > 0, P+

12 is globally asymptotically stable in the interior of the (x1, x2)-
plane. By a proof similar to that of Theorem 4.3, we have the following result based
on Lemma 4.2.

Theorem 4.14 Let λ
(2)
1 > 0, λ

(3)
1 < 0, e13 ≥ e0

13.

(i) If λ+
13 > 0, λ−

13 > 0 and λ+
12 > 0, then system (2) is uniformly persistent.

(ii) If λ+
13 > 0, λ−

13 > 0 and λ+
12 < 0, then P+

12 is locally asymptotically stable
with a basin of attraction ω12. System (2) restricted on intR3+ − ω12 is uniformly
persistent.

(iii) If λ+
13 < 0, λ−

13 < 0 and λ+
12 < 0, then the equilibrium sets P+

12 and P+
13∪P−

13 have
basins of attraction ω12 and ω13 in R3+, respectively. If γ < γ ∗ and e12 ≥ e∗

12,

system (2) restricted on intR3+ − ω12 − ω13 is uniformly persistent. Otherwise,
solutions of (2) with x(0) > 0 converge to P+

12 ∪ P±
13.

(iv) If λ+
13 < 0, λ−

13 < 0, λ+
12 > 0, or, λ+

13 · λ−
13 < 0, then system (2) is not persistent.

When λ
(2)
1 < 0 and e12 < e0

12, there is no equilibrium of (2) in the interior of the
(x1, x2)-plane. By a proof similar to that of Theorem 4.3, we have the following result
based on Lemma 4.2.

Theorem 4.15 Let λ
(2)
1 < 0, λ

(3)
1 < 0, e12 < e0

12, e13 ≥ e0
13.

(i) If λ+
13 > 0 and λ−

13 > 0, then P1 has a basin of attraction ω1 in R3+ and system
(2) restricted on intR3+ − ω1 is uniformly persistent.

(ii) When λ+
13 < 0 and λ−

13 < 0, the equilibrium sets P1 and P+
13 ∪ P−

13 have basins of
attraction ω1 and ω13 in R3+, respectively. If γ < γ ∗ and e12 ≥ e∗

12, then system
(2) restricted on intR3+ − ω1 − ω13 is uniformly persistent. Otherwise, solutions
of (2) with x(0) > 0 converge to P1 ∪ P±

13.

(iii) If λ+
13 · λ−

13 < 0, then system (2) is not persistent.

When λ
(2)
1 < 0 and e12 ≥ e0

12, P+
12 and P−

12 are boundary equilibria of (2). By a
proof similar to that of Theorem 4.3, we have the following result based on Lemma 4.2.

Theorem 4.16 Let λ
(2)
1 < 0, λ

(3)
1 < 0, e12 ≥ e0

12, e13 ≥ e0
13.

(i) If λ±
12 > 0 and λ±

13 > 0, then system (2) restricted on intR3+ − ω1 is uniformly
persistent.
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(ii) If λ±
12 < 0 and λ±

13 > 0, then system (2) restricted on intR3+ − ω1 − ω12 is
uniformly persistent.

(iii) Assume λ±
12 > 0 and λ±

13 < 0. If γ < γ ∗ and e12 ≥ e∗
12, then system (2) restricted

on intR3+ − ω1 − ω13 is uniformly persistent. Otherwise, solutions of (2) with
x(0) > 0 converge to P1 ∪ P±

13.

(iv) Assume λ±
12 < 0 and λ±

13 < 0. If γ < γ ∗ and e12 ≥ e∗
12, then system (2) restricted

on intR3+ − ω1 − ω12 − ω13 is uniformly persistent. Otherwise, solutions of (2)
with x(0) > 0 converge to P1 ∪ P±

12 ∪ P±
13.

(v) If λ+
12 · λ−

12 < 0 or λ+
13 · λ−

13 < 0, then system (2) is not persistent.

When ants’ persistence in the plant–ant system is density-dependent, Theo-
rems 4.14–4.16 demonstrate that levels of the ant interference could determine the
persistence of the three-species system. In the situation considered by Theorem 4.14,
pollinators can survive in the plant–pollinator system. Assume both the pollinators’
and ants’ efficiencies are low (i.e., λ+

13 < 0, λ−
13 < 0, λ+

12 < 0 as discussed above in
this section). When the ant interference is weak (γ < γ ∗), Theorem 4.14(iii) shows
that the three species could coexist if their initial densities are in an appropriate region
and plants’ efficiency is high (e12 ≥ e∗

12). However, when the ant interference is strong
(γ ≥ γ ∗), Theorem 4.14(iii) demonstrates that either pollinators or ants will go to
extinction. Similar discussions can be given for other situations in Theorems 4.14–
4.16.

Remark 4.17 The critical values e∗
12 and e∗

13 can vary with the ant interference γ ,
which implies that the levels of ant interference could determine the survival of both
pollinators and ants. Indeed, the slope of F(x1) decreases monotonically with the
increase in γ as x1 > x̄0

1 : from Eq. (20), we have ∂ F/∂x1 < 0, ∂2 F/∂γ ∂x1 < 0 as
x1 > x̄0

1 , which implies

∂e∗
13

∂γ
> 0, lim

γ→∞ e∗
13 = +∞.

Similarly, from Eq. (19), we have

∂e∗
12

∂γ
> 0, lim

γ→1/x0
1−

e∗
12 = +∞.

As an example, we consider the situation in Theorem 4.8(i), while similar discussions
can be given for other situations in Theorems of this paper. Indeed, the condition
e12 < e0

12 and e13 < e0
13 in Theorem 4.8 implies that there exists γ̂ > 0 such that

when γ < γ̂ , we have e∗
12 < e0

12, e∗
13 < e0

13 and conditions in Theorem 4.8 can be
effective. Moreover, as shown in Theorem 4.8(i), when the ant interference is small
such that e∗

12 < e12, the three species with appropriate initial densities could coexist.
However, when the ant interference is large such that e∗

12 > e12, both pollinators and
ants will go to extinction.

Remark 4.18 The mathematical results of persistence are summarized in Table 2.
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Table 2 Results of uniform persistence

Situations Conditions Region

λ
(2)
1 > 0, λ

(3)
1 > 0 λ+

13 > 0 intR3+
λ+

13 < 0, γ < γ ∗, e12 ≥ e∗
12 intR3+ − ω13

λ
(2)
1 < 0, λ

(3)
1 > 0 λ+

13 > 0 intR3+
λ+

13 < 0, γ < γ ∗, e12 ≥ e∗
12 intR3+ − ω13

λ
(2)
1 > 0, λ

(3)
1 < 0 λ+

12 > 0, e13 < e0
13 intR3+

λ+
12 < 0, e∗

13 ≤ e13 < e0
13 intR3+ − ω12

λ+
12 > 0, λ±

13 > 0, e13 ≥ e0
13 intR3+

λ+
12 < 0, λ±

13 > 0, e13 ≥ e0
13 intR3+ − ω12

λ+
12 < 0, λ±

13 < 0, e12 ≥ e∗
12, e13 ≥ e0

13, γ < γ ∗ intR3+ − ω12 − ω13

λ
(2)
1 < 0, λ

(3)
1 < 0 e∗

12 ≤ e12 < e0
12, e13 < e0

13, γ < γ ∗ ≤ β̄ intR3+ − ω1

e12 < e0
12, e∗

13 ≤ e13 < e0
13, γ ∗ > β̄ intR3+ − ω1

λ−
12 > 0, e12 ≥ max{e0

12, e∗
12}, e13 < e0

13, γ <

γ ∗ ≤ β̄

intR3+ − ω1

λ−
12 > 0, e12 ≥ e0

12, e∗
13 ≤ e13 < e0

13, γ ∗ > β̄ intR3+ − ω1

λ−
12 > 0, e12 ≥ e0

12, e13 < e0
13, γ ∗ > β̄, γ̄ <

γ̄0, γ ≤ γ0

intR3+ − ω1

λ+
12 < 0, e12 ≥ e0

12, e∗
13 ≤ e13 < e0

13 intR3+ − ω1 − ω12

λ±
13 > 0, e12 < e0

12, e13 ≥ e0
13 intR3+ − ω1

λ±
13 < 0, e∗

12 ≤ e12 < e0
12, e13 ≥ e0

13, γ < γ ∗ intR3+ − ω1 − ω13

λ±
12 > 0, λ±

13 > 0, e12 ≥ e0
12, e13 ≥ e0

13 intR3+ − ω1

λ±
12 < 0, λ±

13 > 0, e12 ≥ e0
12, e13 ≥ e0

13 intR3+ − ω1 − ω12

λ±
12 > 0, λ±

13 < 0, e12 ≥ max{e0
12, e∗

12}, e13 ≥
e0

13, γ < γ ∗
intR3+ − ω1 − ω13

λ±
12 < 0, λ±

13 < 0, e12 ≥ max{e0
12, e∗

12}, e13 ≥
e0

13, γ < γ ∗
intR3+ − ω1 − ω12 −

ω13

5 Stability of the Interior Equilibrium

When the three-species system (2) is uniformly persistent, there exists an interior
equilibrium P∗(x∗

1 , x∗
2 , x∗

3 ) by the theorems of Butler et al. (1986), Butler and Waltman
(1986), Freedman et al. (1994). By the right-hand sides of (2), P∗ satisfies

A1x∗2
1 + B1x∗

1 + C1 = 0

x∗
2 =

[
e21 − r2α

r2β
− γ (e31 − r3ᾱ)

r3ββ̄

]
x∗

1 − 1

β
+ γ

ββ̄

x∗
3 = e31 − r3ᾱ

r3β̄
x∗

1 − 1

β̄
(9)
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where

A1 = −d1, C1 = e12r2γ

e21ββ̄
− e12r2

e21β
− e13r3 − e31γ̄

e31β̄

B1 = r1 + e12(e21 − r2α)

e21β
− e12r2γ (e31 − r3ᾱ)

e21r3ββ̄
+ (e13r3 − e31γ̄ )(e31 − r3ᾱ)

e31r3β̄
.

(10)

Since there exist at most two interior equilibria of (2), they are denoted by
P∗(x∗

1 , x∗
2 , x∗

3 ) and P̄∗(x̄∗
1 , x̄∗

2 , x̄∗
3 ) with

x∗
1 =

−B1 +
√

B2
1 − 4A1C1

2A1
, x∗

2 = x∗
2 (x∗

1 ), x∗
3 = x∗

3 (x∗
1 )

x̄∗
1 =

−B1 −
√

B2
1 − 4A1C1

2A1
, x̄∗

2 = x̄∗
2 (x̄∗

1 ), x̄∗
3 = x̄∗

3 (x̄∗
1 ).

Let f, g, h represent the right-hand sides of (2), respectively. In the following dis-
cussion, we focus on equilibrium P∗, while a similar discussion can be given for P̄∗.
The Jacobian matrix of system (2) at P∗ has the form

J (P∗) =
⎡
⎣ f ∗

1 f ∗
2 f ∗

3
g∗

1 g∗
2 g∗

3
h∗

1 0 h∗
3

⎤
⎦, (11)

where

f ∗
1 = x∗

1

[
−d1 − e12αx∗

2

(1 + αx∗
1 + βx∗

2 + γ x∗
3 )2 − e13ᾱx∗

3

(1 + ᾱx∗
1 + β̄x∗

3 )2

]
< 0

f ∗
2 = (1 + αx∗

1 + γ x∗
3 )e12x∗

1

(1 + αx∗
1 + βx∗

2 + γ x∗
3 )2 > 0

f ∗
3 = x∗

1

[
− e12γ x∗

2

(1 + αx∗
1 + βx∗

2 + γ x∗
3 )2 + e13(1 + ᾱx∗

1 )

(1 + ᾱx∗
1 + β̄x∗

3 )2
− γ̄

]

g∗
1 = x∗

2
e21(1 + βx∗

2 + γ x∗
3 )

(1 + αx∗
1 + βx∗

2 + γ x∗
3 )2 > 0, g∗

2 = − e21βx∗
1 x∗

2

(1 + αx∗
1 + βx∗

2 + γ x∗
3 )2 < 0

g∗
3 = − e21γ x∗

1 x∗
2

(1 + αx∗
1 + βx∗

2 + γ x∗
3 )2 < 0, h∗

1 = e31x∗
3 (1 + β̄x∗

3 )

(1 + ᾱx∗
1 + β̄x∗

3 )2
> 0

h∗
3 = − e31β̄x∗

1 x∗
3

(1 + ᾱx∗
1 + β̄x∗

3 )2
< 0.

The characteristic equation of J (P∗) is given by

λ3 + a1λ
2 + a2λ + a3 = 0 (12)
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where

a1 = −( f ∗
1 + g∗

2 + h∗
3) > 0, a2 = f ∗

1 (g∗
2 + h∗

3) + f ∗
2 g∗

1 + f ∗
3 h∗

1 + g∗
2h∗

3

a3 = − f ∗
1 g∗

2 h∗
3 + f ∗

2 (g∗
1 h∗

3 − g∗
3 h∗

1) + f ∗
3 g∗

2h∗
1.

Since a1 > 0, we conclude the following result by Routh–Hurwitz criterion and
the bifurcation criterion by Yu (2005).

Theorem 5.1 (i) If

a3 > 0, a1a2 − a3 > 0

, then the interior equilibrium P∗ is locally asymptotically stable.
(ii) If a1a2 − a3 = 0, then Hopf bifurcation occurs at P∗.

The Hopf bifurcation at P∗ by varying the parameter e31 is shown as follows, which
is an application of Proposition 3.5 by Ruan (2001). Indeed, when the condition in
Theorem 5.1(i) is violated (e.g., a1a2 − a3 < 0), stability of P∗ changes and the Hopf
bifurcation occurs. Assume that there is a critical value e0

31 which satisfies a3(e0
31) >

0, a1(e0
31)a2(e0

31) − a3(e0
31) = 0 and [a1(e31)a2(e31) − a3(e31)]′|e31=e0

31
< 0. When

e31 = e0
31, the characteristic equation (12) can be written as

(λ + a1)(λ
2 + a2) = 0

which has the roots of λ1(e0
31) = −a1(e0

31) < 0 and λ2,3(e0
31) = ±i

√
a2(e0

31).
Let λ2,3(e31) = μ(e31) ± iν(e31) be the pair of conjugate complex roots of (12).

In order to show Hopf bifurcation at e31 = e0
31 , we should verify the transversality

condition

dReλ2,3

de31
|e31=e0

31
= dμ(e31)

de31
|e31=e0

31

= 0. (13)

Replacing λ with λ2(e31) in equation (12) and calculating the derivatives on e31, we
obtain the following equations as e31 = e0

31

c0μ
′ − c1ν

′ + c2 = 0, c1μ
′ + c0ν

′ + c3 = 0 (14)

where

c0 = −2a2(e
0
31), c1 = 2a1(e

0
31)

√
a2(e0

31)

c2 = a′
3(e

0
31) − a′

1(e
0
31)a2(e

0
31), c3 = a′

2(e
0
31)

√
a2(e0

31).

From (14), we have

dReλ2,3

de31
|e31=e0

31
= μ′|e31=e0

31
= − (a1a2 − a3)

′

a2
1 + a2

|e31=e0
31

> 0.
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Thus, the real part of λ2,3 changes from a negative value to zero as e31 increases to e0
31,

while it becomes positive as e31 > e0
31. Similar to Proposition 3.5 by Ruan (2001), we

conclude the following result.

Proposition 5.2 Assume that there is a positive value e0
31 which satisfies

a3(e
0
31) > 0, a1a2 − a3|e31=e0

31
= 0,

d(a1a2 − a3)

de31
|e31=e0

31
< 0.

When e31 < e0
31, the interior equilibrium P∗ is asymptotically stable. When e31 = e0

31,
P∗ loses its stability and Hopf bifurcation occurs. When e31 > e0

31, P∗ becomes
unstable and a stable periodic orbit is bifurcated.

As an example, we fix r1 = r2 = r3 = 1, d1 = 0.01, e12 = e13 = 0.1, α = ᾱ =
β = β̄ = 0.1, e21 = 0.204, γ = 0.8, γ̄ = 0.5, and let e31 vary. A direct computation
shows that e0

31 ≈ 0.1328. When e31(= 0.10) is extremely small, there is no interior
equilibrium and all solutions converge to P+

12, as shown in Fig. 4a. When e31(= 0.13)

is less than e0
31, interior equilibrium P∗ is asymptotically stable, as shown in Fig. 4b.

When e31(=0.1452) is larger than e0
31, P∗ becomes unstable and a stable periodic orbit

is bifurcated, as shown in Fig. 4c. When e31(=0.18) is extremely large, there is no
interior equilibrium and all solutions converge to P+

13, as shown in Fig. 4d.

6 Discussion

This paper considers plant–pollinator–ant systems in which the plant–pollinator inter-
action is mutualistic, the plant–ant interaction is unidirectional, and ants interfere
with pollinators. Dynamics of the model demonstrate that the emergence of ants in
the plant–pollinator system play a role in the persistence of pollination mutualism.

Levels of the ant interference are crucial to the survival of pollinators. As shown
in Theorem 4.3, a strong interference could result in the extinction of pollinators.
When ants depend on pollination mutualism for survival, a strong interference could
drive pollinators into extinction, which consequently leads to the extinction of the ants
themselves as discussed in Theorem 4.10. On the other hand, when the ant interference
is weak, a cooperation between plant–ant and plant–pollinator mutualisms can occur,
which promotes the survival of both ants and pollinators as shown in Theorem 4.8.

The levels of ant interference with pollinators can vary in the evolution of ants.
As shown by Oña and Lachmann (2011), when ants can obtain a direct benefit from
pollination mutualism, they would reduce their attack against pollinators. For example,
epiphytic angiosperms are observed to grow in the arboreal nests of several species of
ants (Amazonasgebiet 1901), which implies that the ants benefit by taking elaiosomes
from seeds or fruits without damaging the seeds. Thus, the ants would ensure that
their host plant is cross-fertilized and then reduce their interference with pollinators
by discriminating them from herbivores. When the ant interference is sufficiently
weak, both plant–ant and plant–pollinator mutualisms can benefit each other, which
promotes the persistence of the whole system. Thus, our results related to the levels
of ant interference are biologically feasible.
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Fig. 4 Bifurcation in system (2) as shown in Theorem 5.1. Solutions of plants (x1), pollinators (x2), and
ants (x3) are denoted by red, blue, and black lines, respectively. Fix r1 = r2 = r3 = 1, d1 = 0.01, e12 =
e13 = 0.1, α = ᾱ = β = β̄ = 0.1, e21 = 0.204, γ = 0.8, γ̄ = 0.5, and let e31 vary. a When e31 = 0.10,
ants go to extinction while plants and pollinators coexist. b When e31 = 0.13, the three species coexist at a
stable equilibrium. c When e31 = 0.1452, Hopf bifurcation occurs and the three species coexist in periodic
oscillation. d When e31 = 0.18, pollinators go to extinction while plants and ants coexist (Color figure
online)

In the unidirectional interactions between plants and ants, although the plant–ant
mutualisms are beneficial to the coexistence of the three species, the degree of plant
castration by ants is important to the persistence of the whole system. As described in
(2), the degree of plant castration is represented by γ̄ . From (5), we have

dg2(x1)

dx1
= r1 − d1 − d1x1 − γ̄

β̄ x̄0
1

(x1 − x̄0
1 + 1)

so that ∂[dg2(x1)/dx1]/∂γ̄ < 0 as x1 > x̄0
1 . Since g2(x̄0

1 ) is irrelevant to γ̄ , we have

∂ x̄+
1

∂γ̄
< 0,

∂x+
3

∂γ̄
< 0,

∂ x̄−
1

∂γ̄
> 0,

∂x−
3

∂γ̄
> 0,

∂e0
13

∂γ̄
> 0.
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Fig. 5 Variation in the attraction basin of P∗ when parameter γ changes. Filled and open circles represent
the stable and unstable equilibria, respectively. Let r1 = 1.0, d1 = 0.01, e12 = 0.9, e13 = 0.1, α = ᾱ =
0.1, β = β̄ = 0.1, r2 = r3 = 0.1, e21 = 0.09, e31 = 0.1, γ̄ = 0.001, and let γ vary. When γ = 0.01,
there are two interior equilibria P̄∗ and P∗. P̄∗ is a saddle point with a two-dimensional stable manifold,
as shown by the upper surface. The surface divides intR3+ into two regions, one is the basin of attraction
of P∗ while the other is that of P13. When γ decreases from 0.01, 0.009 to 0.008, the surface lowers
monotonically, that is, the attraction basin of P∗ increases monotonically

Similarly, from (19) and (20), we have
∂e∗

12

∂γ̄
> 0,

∂e∗
13

∂γ̄
> 0.

Thus, the increase in γ̄ may lead to the extinction of ants and pollinators. For example,
(a) when γ̄ is large such that e0

13 > e13, Theorem 3.2 (iii) shows that ants cannot
survive in the plant–ant system if r1/d1 < x̄0

1 . (b) When γ̄ is large such that e∗
12 > e12,

Theorem 4.3 (iii) demonstrates that pollinators will be driven into extinction if λ+
13 < 0

and γ < γ ∗. (c) When γ̄ is large such that e∗
13 > e13, Theorem 4.6 (ii) shows that

ants cannot invade the plant–pollinator system and will go to extinction if λ+
12 < 0.

Similar discussions can be given for other situations in Theorems of this paper.
Conditions in theorems of this paper can be satisfied. We focus on the condi-

tion in Theorems 4.8 (ii), while similar simulations can be given for the others.
Let r1 = 1.0, d1 = 0.01, e12 = 0.2, e13 = 0.76, α = ᾱ = 0.2, β = β̄ = 0.2,

r2 = r3 = 0.5, e21 = 0.104, e31 = 0.102, and let γ̄ and γ vary. Then, we have
x0

1 = 125, x̄0
1 = 250, e0

12 = 0.69, λ
(2)
1 = −0.0044, λ

(3)
1 = −0.0046, γ ∗ = 0.4 and

γ ∗ > β̄. Let γ = 0.2, γ̄ = 0.001, we obtain e0
13 = 0.767, e∗

13 = 0.756. Thus, the

condition in Theorems 4.8(ii) holds. Since λ
(2)
1 < 0, λ

(3)
1 < 0, e12 < e0

12, e13 < e0
13,

pollinators (respectively, ants) cannot survive in the absence of ants (respectively, pol-
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linators). Numerical simulations in Fig. 2 show that when γ and γ̄ are small, the three
species could coexist if their initial densities are in an appropriate region. Otherwise,
both pollinators and ants will go to extinction.

The attraction basins of equilibria vary with key parameters in the model. We
focus on the parameter γ , while similar discussions can be given for the others.
Let r1 = 1.0, d1 = 0.01, e12 = 0.9, e13 = 0.1, α = ᾱ = 0.1, β = β̄ = 0.1,

r2 = r3 = 0.1, e21 = 0.09, e31 = 0.1, γ̄ = 0.001, and let γ vary. When γ = 0.01,
the condition in Theorem 4.3(ii) is satisfied. Thus, boundary equilibria O , P1, and
P12 are unstable while P13 is asymptotically stable. Numerical simulations show
that there are two interior equilibria P̄∗ and P∗. P̄∗ is a saddle point with a two-
dimensional stable manifold, as shown by the upper surface in Fig. 5. The surface
divides intR3+ into two regions, one is the basin of attraction of P∗ while the other is
that of P13. When γ decreases from 0.01, 0.009 to 0.008, the surface lowers monoton-
ically, as shown in Fig. 5, that is, the attraction basin of P∗ increases monotoni-
cally.

In this paper, the negative effect of ants on plants (plant castration) is described
by a Holling I functional response. When it is characterized by other forms such as
Holling II function, the plant–pollinator–ant coexistence can be analyzed in a similar
way. Although the model in this work is simple, it provides an explanation for the
persistence of pollination mutualism when there exist ants, which may be helpful for
understanding complexity in multiple-species mutualism association.
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Appendix 1: The Computation of e0
12, e0

13 and Interior Equilibria of (1) and (3)

Let g1(x1) = l1(x1). Then, we have Āx2
1 + B̄x1 + C̄ = 0 with

Ā = −d1, B̄ = r1 + e12r2

e21βx0
1

, C̄ = −e12r2

e21β
.

Let

B̄2 − 4 ĀC̄ = 0. (15)

We can obtain two roots e±
12 of (15) and have e0

12 := e+
12. When e12 ≥ e0

12, we obtain

x±
1 = −B̄ ±

√
B̄2 − 4 ĀC̄

2 Ā
, x±

2 = 1

βx0
1

(x±
1 − x0

1 ).

123



224 Y. Wang, S. Wang

Denote Let g2(x1) = l2(x1). Then, we have Âx2
1 + B̂x1 + Ĉ = 0 with

Â = −d1 − γ̄

β̄ x̄0
1

, B̂ = r1 + γ̄

β̄
+ e13r3

e31β̄ x̄0
1

, Ĉ = −e13r3

e31β̄
.

Let
B̂2 − 4 ÂĈ = 0. (16)

We can obtain two roots e±
13 of (16) and have e0

13 := e+
13. When e13 ≥ e0

13, we obtain

x̄±
1 = −B̂ ±

√
B̂2 − 4 ÂĈ

2 Â
, x±

3 = 1

β̄ x̄0
1

(x̄±
1 − x̄0

1 ).

Appendix 2: The Proof of Lemma 4.1

From the first equation of (2), we have

dx1

dt
≤ x1(r1 + e12

β
+ e13

β̄
− d1x1)

so that the comparison principle (Cosner 1996) implies that

lim sup
t→∞

x1(t) ≤ r1ββ̄ + e12β̄ + e13β

d1ββ̄
.

Then, for ε > 0 small, we have x1(t) ≤ ε + (r1ββ̄ + e12β̄ + e13β)/d1ββ̄ when t is
sufficiently large. Let r0 = min{r2, r3}. From the three equations in (2), we have

d

dt

(
x1 + e12

e21
x2 + e13

e31
x3

)

≤ x1(r1 − d1x1) + 2e12x1x2

1+αx1+βx2 + γ x3
+ 2e13x1x3

1 + ᾱx1 + β̄x3
− e12

e21
r2x2 − e13

e31
r3x3

< x1(r1 + 2e12

β
+ 2e13

β̄
) − r0(

e12

e21
x2 + e13

e31
x3)

≤
(

r1ββ̄ + e12β̄ + e13β

d1ββ̄
+ε

) (
r0 + r1 + 2e12

β
+ 2e13

β̄

)
− r0

(
x1+ e12

e21
x2 + e13

e31
x3

)
.

Using the comparison principle a second time, we have

lim sup
t→∞

(
x1+ e12

e21
x2+ e13

e31
x3

)
≤ 1

r0

(
r1ββ̄+e12β̄+e13β

d1ββ̄
+ε

)

×
(

r0+r1+ 2e12

β
+ 2e13

β̄

)

which implies that system (2) is dissipative.
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Appendix 3: Proof of Lemma 4.2

Let P∗(x1, x2, x3) be an interior equilibrium of (2). Then, P∗ satisfies

x3(x1) = 1

β̄ x̄0
1

(
x1 − x̄0

1

)
, x2(x1) = 1

βx0
1

(
x1 − x0

1 − γ x0
1 x3

)
= ax1 − b (17)

a = 1

ββ̄ x̄0
1

(
γ ∗ − γ

)
, b = 1

ββ̄

(
β̄ − γ

)
(18)

and g(x1) = l(x1) with

g(x1) = x1
[
r1 − d1x1 − γ̄ x3(x1)

] + e13r3

e31
x3(x1), l(x1) = −e12r2

e21
x2(x1) (19)

where the parabolic curve v = g(x1) satisfies g(x̄±
1 ) = 0 when x̄±

1 exists. The line
v = l(x1) passes through (b/a, 0) as shown in Fig. 3a. The equation g(x1) = l(x1)

can be rewritten as G(x1) = L(x1) with

G(x1) = x1[r1 − d1x1 − γ̄ x3(x1)] + e12r2

e21
x2(x1), L(x1) = −e13r3

e31
x3(x1) (20)

where v = G(x1) is a parabolic curve and the line v = L(x1) passes through (x̄0
1 , 0)

as shown in Fig. 3b. The slopes of lines v = l(x1) and v = L(x1) are, respectively,
denoted by

kl = −ae12r2

e21
, kL = − e13r3

e31β̄ x̄0
1

.

From λ+
13 < 0, we have l(x̄+

1 ) > 0. We also have γ ∗ < β̄. Indeed, if γ ∗ ≥ β̄, then
there is γ such that β̄ ≤ γ ≤ γ ∗, which implies a ≥ 0 and b ≤ 0. Since l(x̄+

1 ) > 0
and kl ≤ 0, we obtain l(0) > 0 as shown in Fig. 3a, which implies b > 0. This is a
contradiction. From γ ∗ < β̄ and (18), we obtain x̄0

1 < x0
1 .

If γ < γ ∗, then a > 0, b > 0 and kl < 0. From l(x̄+
1 ) > 0 and kl < 0, we

have b/a > x̄+
1 > x̄0

1 . Since lime12→+∞ kl = −∞, there is e∗
12 > 0 such that when

e12 = e∗
12, the curves v = g(x1) and v = l(x1) are tangent in the region x1 > b/a,

while the computation of e∗
12 is given in “Appendix 4.” Thus, if e12 > e∗

12, then g(x1)

and l(x1) have two intersection points in the region x1 > b/a as shown in Fig. 3a,
which correspond to two interior equilibria of (2). If e12 < e∗

12, then g(x1) and l(x1)

have no intersection point in the region x1 > b/a, which implies that there is no
interior equilibrium of (2).

If γ ∗ ≤ γ ≤ β̄, then a ≤ 0, b ≥ 0. From (17), we have x2 ≤ 0 and there is no
interior equilibrium of (2).

If γ > β̄, then a < 0, b < 0, kl > 0 and b/a < x̄0
1 . From (17), we have x2 < 0

as x1 > x̄0
1 . Thus, there is no interior equilibrium of (2). Therefore, Lemma 4.2 is

proved.
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Appendix 4: The computation of e∗
12 and e∗

13

Let g(x1) = l(x1). Then, we have Ãx2
1 + B̃x1 + C̃ = 0 with

Ã = −d1 − γ̄

β̄ x̄0
1

, B̃ = r1 + γ̄

β̄
+ e13r3

e31β̄ x̄0
1

+ e12r2

e21βx0
1

, C̃ = − e13r3

e31β̄
− e12r2

e21β
+ e12r2γ

e21ββ̄
.

Let

B̃2 − 4 ÃC̃ = 0. (21)

When γ < β̄, we can solve two roots e±
12 of (21) and obtain e∗

12 := e+
12.

Similarly, we can solve two roots e±
13 of (21) and obtain e∗

13 := e+
13.

Appendix 5: Proof of Theorem 4.3

It follows from λ
(2)
1 > 0 and λ

(3)
1 > 0 that P+

12 (respectively, P+
13) is globally asymp-

totically stable in the interior of the (x1, x2)-plane (respectively, the (x1, x3)-plane).
Since λ

(3)
1 > 0 and x+

1 > r1/d1, we have λ+
12 > 0 by the monotonicity of function

x1/(1 + ᾱx1).
(i) It follows from λ+

12 > 0 and λ+
13 > 0 that P+

12 (respectively, P+
13) is unsta-

ble in the x3-direction (respectively, the x2-direction). Thus, the boundary equilibria
O, P1, P+

12 and P+
13 are hyperbolic and can not form a heteroclinic cycle, which means

that hypotheses of (H-1) to (H-4) in the acyclicity theorem (Butler et al. 1986; Butler
and Waltman 1986) are satisfied. Therefore, system (2) is uniformly persistent.

(ii) It follows from λ+
13 < 0 that P+

13 is locally asymptotically stable in R3+. Since
ω13 is the basin of attraction of P+

13 in R3+, ω13 is open and forward invariant and
R3+ − ω13 is closed and forward invariant in R3+. From γ < γ ∗ and e12 ≥ e∗

12,
Lemma 4.2 shows that (2) has interior equilibria, so that the set intR3+ − ω13 is not
empty. Then, orbits of (2) in intR3+ − ω13 will not converge to P+

13 because they are
not in the basin of attraction of P+

13. Let (x1(t), x2(t), x3(t)) be a solution of (2) with
(x1(0), x2(0), x3(0)) ∈ intR3+ −ω13, then we have lim supt→∞ xi (t) > 0, i = 1, 2, 3.

Indeed, suppose limt→∞ x2(t) = 0, then the ω-limit set of the orbit lies on the
(x1, x3)-plane. On the (x1, x3)-plane, P+

13 is globally asymptotically stable while O
and P1 are hyperbolic saddle points. From the result of Thieme (1992) and Thieme
(1993), we conclude that this orbit converges to P+

13, which forms a contradiction.
Similar discussions could show that lim supt→∞ xi (t) > 0, i = 1, 3. Thus, system
(2) is weakly persistent on R3+ − ω13. Because the boundary equilibria are hyperbolic
and cannot form a heteroclinic cycle, hypotheses of (H-1) to (H-4) in the acyclicity
theorem (Butler et al. 1986; Butler and Waltman 1986) are satisfied on R3+ − ω13.
Thus, solutions of (2) with x(0) ∈ intR3+ − ω13 satisfy lim inf t→∞ xi (t) ≥ δ0 for
some δ0 > 0, i = 1, 2, 3.

(iii) It follows from λ+
13 < 0 that P+

13 is locally asymptotically stable in R3+ with
a basin of attraction ω13. If intR3+ − ω13 is not empty, a discussion similar to that
of (ii) could show that system (2) restricted on R3+ − ω13 is uniformly persistent. As
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a result of Butler et al. (1986), Butler and Waltman (1986), there exists an interior
equilibrium of (2) in R3+ − ω13. Since λ+

13 < 0, γ < γ ∗ and e12 < e∗
12 (or λ+

13 < 0,
γ ≥ γ ∗), Lemma 4.2 shows that (2) has no interior equilibrium, which forms a contra-
diction. Therefore, intR3+ − ω13 is empty and P+

13 is globally asymptotically stable in
intR3+.

Appendix 6: Proof of Theorem 4.4

When λ
(2)
1 < 0 and e12 ≥ e0

12, P−
12(x−

1 , x−
2 , 0) and P+

12(x+
1 , x+

2 , 0) are boundary

equilibria of (2). From λ
(3)
1 > 0 and x±

1 > r1/d1, we have λ+
12 > λ−

12 > 0. When

λ
(2)
1 < 0 and e12 < e0

12, system (1) has no interior equilibrium and P1 is globally
asymptotically stable in the interior of the (x1, x2)-plane. By a proof similar to that of
Theorem 4.3, we obtain the results in Theorem 4.4.

Appendix 7: Proof of Lemma 4.5

Since λ
(2)
1 > 0, P+

12(x+
1 , x+

2 , , 0) is globally asymptotically stable in the interior of the

(x1, x2)-plane. From λ
(2)
1 > 0, we have x+

1 > r1/d1 > x0
1 . Assume λ+

12 < 0. Then, we

have x̄0
1 > x+

1 , which implies g(x̄0
1 ) − l(x̄0

1 ) = G(x̄0
1 ) < 0. From λ

(3)
1 < 0, we have

x̄0
1 > r1/d1. Since x̄0

1 > r1/d1 > x0
1 , we have G(x0

1 ) > 0 by (20). From x̄0
1 > x0

1 , we
obtain γ ∗ > β̄ by (18).

If γ ≤ β̄, then a > 0, b ≥ 0 and b/a < x̄0
1 . Since G(x0

1 ) > 0 and G(x̄0
1 ) < 0, The

roots of G(x1) = 0 satisfy x1 < x̄0
1 as shown in Fig. 3b. Since lime13→+∞ |kL | = +∞,

there is e∗
13 > 0 such that when e13 = e∗

13, the curves G(x1) and L(x1) are tangent
in the region x1 > x̄0

1 , while the computation of e∗
13 is given in “Appendix 4.” Thus,

when e13 > e∗
13, G(x1) and L(x1) have two intersection points in the region x1 > x̄0

1 ,
which correspond to two interior equilibria of (2). When e13 < e∗

13, G(x1) and L(x1)

have no intersection point in the region x1 > x̄0
1 , which implies that there is no interior

equilibrium of (2).
If β̄ < γ ≤ γ ∗, then a ≥ 0, b < 0 and x2 > 0 by (17). Since G(0) > 0 and

G(x̄0
1 ) < 0, the roots of G(x1) = 0 satisfy x1 < x̄0

1 . By a proof similar to that in (a),
we conclude that system (2) has interior equilibria if and only if e13 ≥ e∗

13.
If γ > γ ∗, then a < 0, b < 0, kl > 0 and b/a > x̄0

1 by (18). Since G(x0
1 ) > 0

and G(x̄0
1 ) < 0, the roots of G(x1) = 0 satisfy x1 < x̄0

1 . By a proof similar to that
in (a), G(x1) and L(x1) have two intersection points in the region x1 > x̄0

1 when
e13 ≥ e∗

13. The two points are also in the region x1 < b/a. In fact, the equation
G(x1) = L(x1) can be rewritten as g(x1) = l(x1). Thus, g(x1) and l(x1) have two
intersection points in the region x1 > x̄0

1 when e13 ≥ e∗
13. Since g(x̄0

1 ) < l(x̄0
1 ),

g(x1) and l(x1) have intersection points in the region x1 > x̄0
1 only if the maximum

point (x#
1 , g(x#

1 )) of g(x1) satisfies x#
1 > x̄0

1 , as shown in Fig. 3c. Since kl > 0 and
l(x̄0

1 ) = −a12d2(γ
∗ − β̄)/a21ββ̄ < 0, the intersection points of g(x1) and l(x1) are in

the region x1 < b/a. Hence, there are two interior equilibrium of (2) when e13 ≥ e∗
13.

When e13 < e∗
13, G(x1) and L(x1) have no intersection point in the region x1 > x̄0

1 ,
which implies that there is no interior equilibrium of (2).
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Appendix 8: Proof of Lemma 4.9

Since λ
(2)
1 < 0 and e12 ≥ e0

12, P+
12(x+

1 , x+
2 , 0) and P−

12(x−
1 , x−

2 , 0) are boundary
equilibria of (2). From λ−

12 > 0, we have x−
1 > x̄0

1 and λ+
12 > 0. Denote

f1(x1) = x1(r1 − d1x1) + e12r2

e21βx0
1

(
x1 − x0

1

)
, f2(x1) = γ̄

β̄ x̄0
1

(
x1 − x̄0

1

)

then f1(x−
1 ) = f1(x+

1 ) = 0. Since x̄0
1 < x−

1 , there is γ̄0 > 0 such that when γ̄ < γ̄0,
the parabola f1(x1) and line f2(x1) have two intersection points in the region x1 > x̄0

1 .

Denote

g̃(x1) = f1(x1) − f2(x1), l̃(x1) = e12r2γ

e21ββ̄ x̄0
1

(
x1 − x̄0

1

)

then G(x1) = g̃(x1) − l̃(x1), and equation g̃(x1) = 0 have two roots in the region
x1 > x̄0

1 when γ̄ < γ̄0.
If γ ∗ > β̄, then x̄0

1 > x0
1 . Let kl̃ be the slope of l̃. Assume γ̄ < γ̄0. Since kl̃ > 0,

there exist γ0 > 0 such that when γ ≤ γ0, g̃(x1) and l̃(x1) have two intersection
points in the region x1 > x̄0

1 , which correspond to two roots of G(x1) = 0 in the
region x1 > x̄0

1 . Since kL < 0, G(x1) and L(x1) have two intersection points in the
region x1 > x̄0

1 as shown in Fig. 3d. Thus, there are interior equilibria of (2). When
γ̄ ≥ γ̄0 or γ > γ0, by a proof similar to that of Lemma 4.5, we conclude that system
(2) has interior equilibria if and only if e13 ≥ e∗

13.
If γ ∗ ≤ β̄, then x̄0

1 ≤ x0
1 and g(x̄0

1 ) < 0. By a proof similar to that of Lemma 4.7,
we conclude that there are interior equilibria of (2) if and only if γ < γ ∗ and e12 ≥ e∗

12.
Therefore, Lemma 4.9 is proved.
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