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Abstract Uterine myomas or fibroids are common, benign smooth muscle tumours
that can grow to 10 cm or more in diameter and are routinely removed surgically. They
are typically slow- growing, well-vascularised, spherical tumours that, on a macro-
scale, are a structurally uniform, hard elastic material. We present a multi-phase math-
ematical model of a fully vascularised myoma growing within a surrounding elastic
tissue. Adopting a continuum approach, the model assumes the conservation of mass
and momentum of four phases, namely cells/collagen, extracellular fluid, arterial and
venous phases. The cell/collagen phase is treated as a poro-elastic material, based on a
linear stress–strain relationship, and Darcy’s law is applied to describe flow in the extra-
cellular fluid and the two vascular phases. The supply of extracellular fluid is dependent
on the capillary flow rate and mean capillary pressure expressed in terms of the arterial
and venous pressures. Cell growth and division is limited to the myoma domain and
dependent on the local stress in the material. The resulting model consists of a system of
nonlinear partial differential equations with two moving boundaries. Numerical solu-
tions of the model successfully reproduce qualitatively the clinically observed three-
phase “fast–slow–fast” growth profile that is typical for myomas. The results suggest
that this growth profile requires stress-induced resistance to growth by the surrounding
tissue and a switch-like cell growth response to stress. Analysis of large-time solutions
reveal that while there is a functioning vasculature throughout the myoma, exponen-
tial growth results, otherwise power-law growth is predicted. An extensive survey of
the effect of parameters on model solutions is also presented, and in particular, the
enhanced growth caused by factors such as oestrogen is predicted by the model.
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1 Introduction

Uterine leiomyomata, also known as fibroids or myomas, are the most common smooth
muscle tumours that develop in 20–40 % of women of reproductive age. Their growth
depends greatly on sex hormones and this is exploited as a pre-surgery treatment,
where administering a hormone agonist often leads to myoma shrinkage, aiding surgi-
cal removal. For most women, they are asymptomatic, but they can cause painful men-
struation (with excessive bleeding), abnormal urinary function and infertility. In the
worst cases, hysterectomy is the main treatment. The estimated total cost of myomas
in the USA during 2010 is between around $6–35 billion (Cardozo et al. 2012). In this
paper, we present, to our knowledge, the first mathematical model of uterine myoma
growth. This is a first step into a theoretical investigation on myoma growth, ultimately
aimed at obtaining a better understanding of the interplay of hormones and uterine
environment on myoma growth, to provide new insights that could lead to improved
therapies.

Myomas originate from the smooth muscle cells of the uterus. They generally grow
in a spherical shape and, on the macroscopic scale, the cells appear to be distributed
uniformly throughout. In addition to the smooth muscle component, they also possess
a significant extracellular matrix consisting of fibroblasts (Moore et al. 2010). They are
therefore highly fibrous with the collagen fibrils randomly oriented, a characteristic
different from the adjacent myometrium in which the collagen fibrils are aligned
in an orderly fashion (Leppert et al. 2004; Rogers et al. 2008). Clinically relevant
myomas can be several centimetres in diameter and are usually fully vascularised,
with angiogenesis continuously taking place; the absence of necrotic regions in most
myomas Crow (1998) distinguishes them from other large solid tumours, where poorly
vascularised necrotic zones are a prominent feature in vivo (Jain et al. 2011). The
study by Walocha et al. (2003) demonstrated that while small myomas (∼2 mm in
diameter) appear to be avascular, at 4 mm in diameter, blood vessels begin to invade
from the periphery, leading to a chaotic, but functioning, network of blood vessels in
large myomas (>10 mm). Various distinctive stages of growth have been reported by
Mavrelos et al. (2010) in their study on the history of fibroids, in which small (<20 mm)
and large (>50 mm) fibroids demonstrated fast growth while intermediate size fibroids
grew at a slower rate. Our aim here is to construct a mathematical model incorporating
the key factors and processes, particularly the vasculature, that is capable of describing
the growth and development of large-size myomas which are clinically relevant and
exhibiting the distinct stages of growth as reported by observations above. We first
give a short account below of the current understanding of the processes governing
the growth dynamics and a brief overview on related modelling literature.

The growth of a tumours in general involves complex chemical and mechanical
interactions. In case of myomas, the presence of oestrogen and progesterone up-
regulates expression of a plethora of growth factors both within myocytes and fibrob-
lasts, enhancing cell proliferation and collagen deposit (Moore et al. 2010), while at
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the same time, the change in homeostasis in myomas accompanied by altered mechan-
ical stresses suggests the interplay between the chemical and mechanical effects and
the role of stress in cell growth and fibroid development (Leppert et al. 2004). In vitro
studies on tumour spheroids have also demonstrated resistance to tumour growth as
a result of stress accumulated both within the tumour as well as in the surrounding
medium. For example, by culturing spheroids in gels of different agarose concentra-
tions, and hence stiffness, Helmlinger et al. (1997) showed that increasing the stiffness
of the gel, and thus the stress generated by growth, reduces the tumour growth rate
and its final size.

Various mathematical models have been proposed to model the dynamics of tumour
growth; see, for example, the review article by Lowengrub et al. (2010) and references
therein. While most of these models have focussed on the chemical factors, more
recently, a number of models involved the concept of stress have been developed.
Jones et al. (2000) considered a single-phase model, evaluating the residual stress
as the tumour developed (in free suspension) but did not considered the feedback of
the stress generated. A two-phase model proposed by Roose et al. (2003) studied the
effect of stress on the development of small-size tumours in which nutrient supply
is a limiting factor for growth with both the tumour and the surrounding agarose gel
assumed poro-elastic. Constitutively, a thermo-elastic model was adopted by these
models to describe the stress response to tumour expansion while the stress build-up
is evaluated using a stress rate equation. The model by Chen et al. (2001) employed
a hyper-elastic strain energy function for the description of the surrounding gel and
its subsequent evaluation of stresses induced by the continuous growth of tumour.
These models while adopting different approaches demonstrated similar results that
the feedback of stress ultimately results in a reduction of the tumour size. Mathematical
models describing vascular flow in tumours have been investigated by a number of
authors mainly using hybrid discrete-continuum models, in which the vascular network
is described as connected discrete elements in the solution domain, e.g. Byrne et al.
(2006), Lowengrub et al. (2010), Macklin et al. (2009). Byrne and coworkers (Breward
et al. 2003; Hubbard and Byrne 2013) used multi-phase, continuum models to study
vascular tumour growth, in which all phases behave as fluids, except for an additional
pressure term for the cellular phase that forces cells to move in order to alleviate stress
under high compression. However, these continuum models are aimed at describing
soft tissue solid tumours and the assumption that all phases are fluid-like are not suited
for the fibrous material in myomas.

We propose a mathematical model to investigate the roles of stress and vasculature
on myoma development. While the presence of sex hormones is necessary to stimulate
myoma growth, we will as a first approximation assume that they are present at uniform
representative concentration levels; this approximation seems reasonable as our model
will describe growth over 10–20 years, and we assume in the current study that the
monthly variations even out in the long term. The explicit treatment of these hormones,
extending current and previous work (Chen and Ward 2014), will be the subject of a
future publication. We employ a continuum approach and focus our attention on the
growth of larger myomas (>4 mm in diameter) and will thus assume angiogenesis is
continuously occurring throughout the myoma in a uniform manner such that nutrient
is able to reach all parts of the myoma simultaneously, and at the same time, the fluid
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seepage from the vasculature will make up for the main extracellular fluid supply that
sustains the new cell growth. We thus propose a multi-phase model with a fluid phase
for the extracellular water, a solid phase consisting mainly of myocytes, fibroblasts,
collagen fibrils and two vascular phases, an arterial phase and a venous phase; this is a
novel approach that explicitly considers vasculature in a solid-stress based continuum
model of tumours. Furthermore, assuming two vascular phases, the reason for which is
discussed in the next section, is also a novel feature for a continuum model of tumours,
though a similar approach was proposed in a model of liver lobules (Bonfiglio et al.
2010). Although most biological tissues are anisotropic in nature, the randomness in
the orientation of collagen fibrils within myomas and the observed spherical shape
lend us the description of the tumour as an isotropic material; similar assumption will
also be adopted for the surrounding tissues assuming that anisotropy in the material
property of the surrounding tissue does not play a significant role in regulating myoma
development. Further details of the assumptions will be given in the next section
when we present the mathematical model. The sections of this paper is thus organised
as follows. In Sect. 2, detailed formulation of the model is presented and spherical
symmetry is assumed for further analysis. Results of numerical simulations of the
model are presented in Sect. 3 and a conclusion with a summary and a brief discussion
is given in Sect. 4.

2 Mathematical Model

The mathematical model we proposed here considers the growth of a myoma embed-
ded in a surrounding tissue. The spatial domain x ∈ �(t), bounded by a closed curve
�∞(x, t) = 0 (which could represent infinity), consists of a region occupied by the
myoma x ∈ �M (t) and a surrounding tissue region x ∈ �T (t) = �(t)/�M (t),
separated by a closed curve �(x, t) = 0. These regions are illustrated in Fig. 1. In the
absence of the myoma, � = �T will be a fixed space, but the growth of the myoma
within may deform it. We will assume that the myoma has developed sufficiently to
have its own blood supply and that adequate nutrients for growth are present through-

Fig. 1 Schematic of the model system. The domain is restricted by a closed (possibly infinite) surface
consisting of the myoma �M (t) and surrounding tissue �T (t), separated by a closed interface given by

�(x, t) = 0 (with outward normal n). Each region consist of cells (volume fraction φ(i)s , i = 1, 2),

extracellular space (φ(i)w ), arteries/arterioles (φa ) and veins/venules (φv). The volume fractions of the
vasculature are assumed to be constant throughout, but that of cells and extracellular space may differ
between the myoma and surrounding tissue indicated by the superscripts “(1)” and “(2)”, respectively
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Table 1 List of model variables
Variable Representation Dimension

vs(x, t) Solid phase velocity field Length/time

vw(x, t) Water velocity field Length/time

va(x, t) Artery blood flow velocity field Length/time

vv(x, t) Vein blood flow velocity field Length/time

pa(x, t) Arterial fluid pressure Force/area

pv(x, t) Venous fluid pressure Force/area

pw(x, t) Extracellular fluid pressure Force/area

prs (x, t) Reaction stress Force/area

ε(x, t) Strain tensor in solid phase None

σ(x, t) Stress tensor in solid phase Force/area

S(x, t) Volume growth rate per unit volume Time−1

out. In this respect, myoma tissue is taken to be similar to normal tissue and we assume
in the modelling that there is no significant difference between the blood supplies of
the two. The continuum approach requires that each control unit volume contains a
sufficient number of cells and that the average properties immediately surrounding a
point are taken to be the elastic properties of that point. The stress generated is there-
fore the average force per unit area between these adjacent ’particles’ each consisting a
number of cells. Note that in addition to the description given in the text, the variables
are also listed in Table 1.

All space in both regions are assumed to be occupied by cells and collagen (com-
bined volume fraction φs), extracellular space (principally water, φw) and vasculature
(arteries φa and veins φv). The separate treatment of arteries and veins distinguishes
the current model to that of related vascular tumour models, which consider only a
single vasculature phase (Breward et al. 2003; Hubbard and Byrne 2013); the benefits
of doing this will be made clear after Eq. (5). There being no other material in the
regions means that the sum of these fractions is equal to unity, i.e.

φs + φw + φa + φv = 1. (1)

In general, the volume fractions will not be the same throughout the domain. In our
assumption of the blood supply being similar in the two tissue types, we assume that
φa and φv are constant throughout; in the absence of detailed histological data to
suggest otherwise, this is a reasonable starting point. Implicit in this assumption is
that as the myoma grows, new vasculature is being generated to maintain the constant
volume fraction. However, the cellular densities may be different between the two
tissues, but constrained by Eq. (1). As with the vascular volume fractions, we will
assume, as a first approximation, that the volume fractions φs and φw are constant
within the two tissues (but not necessarily equal), denoting them as φ(1)s and φ(1)w
for myomas and φ(2)s and φ(2)w for the surrounding tissue. We note that φs accounts
for both living cells and collagen fibre and we assume that as cells grow collagen
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is being laid down at the same time, in such a way that the proportion of cells and
collagen remains constant (we will henceforth refer to this phase as the “solid phase”).
Under these assumptions, both the myoma and the surrounding tissue are therefore
incompressible. We note that the superscript notation applies to all variables listed
in Table 1 and parameters to distinguish between quantities inside and outside the
myoma; however, in the discussion prior to Sect. 2.2, they will not be present in the
formulation on the understanding that the same equations apply to all variables in both
regions.

Blood flow in the model is driven by the pressure difference between the arteries and
veins on the boundary, namely pa∞ and pv∞ , respectively. These generate a flow with
mean velocities va in the arteries and vv in the veins. We assume volume transfer from
the arteries to the veins is proportional to the difference in pressure between arteries,
pa , and veins, pv , to represent flow in the capillaries connecting them. We assume
that fluid from the capillaries leaks into the extracellular space at a rate mutually
proportional to the capillary flow rate (∝ (pa − pv)) and the difference between
capillary blood pressure, ψ(pa, pv) (assumed equal to the mean blood pressure, i.e.
ψ(pa, pv) = (φa pa + φv pv)/(φa + φv)) and extracellular fluid pressure, pw, in
accordance with Starling’s law (assuming negligible osmotic pressure). The volume
conservation equations for blood flow are thus

φa ∇ · va = −α (pa − pv), (2)

φv ∇ · vv = α (pa − pv) − α1(pa − pv) (ψ((pa, pv) − pw) , (3)

where α is the hydraulic conductivity coefficient and α1 the leakage rate constant,
recalling that φa and φv are assumed constant.

In order for tissue to grow, fluid is taken in from the environment to be converted
into new cellular material. Let S be the volumetric cell growth rate per unit volume,
then conservation of volume of the solid phase means that

φs ∇ · vs = S, (4)

where vs is the velocity of the solid phase. The function S will in general depend
on many factors and is discussed further below. The absorption of extracellular fluid
by the growing cells and the volume gained from blood vessel leakage lead to the
following volume conservation equation for the extracellular fluid phase,

φw ∇ · vw = −S + α1 (pa − pv) (ψ(pa, pv) − pw) . (5)

The separate treatment of the arterial and venous phases means that the capillary flow
rate (α(pa − pv)) and mean capillary pressure (ψ(pa, pv)) can be deduced naturally
from the model. Furthermore, the nonlinearity in the vascular leakage term in Eq.
(5) ensures that the proposed model is not invariant to changes in vascular pressure
difference on the outer boundary, i.e. pa∞ − pv∞ ; consequently, the effect of factors,
such as oestrogen, that alters the blood flow can potentially be predicted by the model
(see Sect. 3.3).

123



3094 C. Y. Chen, J. P. Ward

For simplicity we assume that growth, and hence new volume, occurs only in
the myoma part of the domain, so that S = 0 in the surrounding tissue. Within
the myoma, we assume that S is a bounded, non-negative function such that S ∈
[0, Smax], where Smax is the maximum growth rate of the solid phase material. In many
models describing tissue or tumour growth, it is assumed that the growth division of
cells is dependent on a nutrient source; however, in myomas, it seems reasonable to
assume that they are well vascularised and nutrient limitation is not an issue, even in
large myomas; features such as necrotic cores are absent in benign myomas (Crow
1998). Furthermore, S will in general be dependent on the availability of extracellular
fluid to create new volume, but this is not a concern in the current model due to the
assumption that φw is constant. However, the colonies are dense and it is well known
from experimental studies that cell proliferation may be influenced by the feedback of
the growth-induced stress (see, for example, Helmlinger et al. (1997)). The feedback
processes involved are complex (e.g. mechanotransduction within the cells) and a
detailed description is beyond the scope of the present study. We will therefore adopt
a simple, but representative, form in this study, namely,

S =

⎧
⎪⎪⎨

⎪⎪⎩

Smax x ∈ �M , Tr(σs)/3 + pw∞ > 0,
Smax

1 + |Tr(σs)/3 + pw∞|m/σm
c
, x ∈ �M , Tr(σs)/3 + pw∞ ≤ 0,

0 x ∈ �T ,

(6)

where σs is the Cauchy stress tensor for the solid phase, Tr(σs)/3 is the mean normal
stress, −pw∞ is the mean normal background environmental stress (discussed in Sect.
2.1) such that Tr(σs)/3 + pw∞ is the effective mean stress for material deformation.
The modelling assumes that under normal conditions cells experience stress according
to Tr(σs)/3 = −pw∞ , such that if Tr(σs)/3 < −pw∞ then cells are under compression
and if Tr(σs)/3 > −pw∞ then they are under tension. In broad agreement with (Helm-
linger et al. 1997), the function S is chosen so that the growth rate will drop significantly
under high compression, i.e. below a threshold stress Tr(σs)/3 + pw∞ < −σc, where
σc is some critical stress level. Under tension, i.e. Tr(σs)/3+ pw∞ > 0, Tomasek et
al. (2002) noted that mechanical tension is a signal for tissue generation; however, it
turns out that since the myoma is always growing (as S ≥ 0), the myoma cells are
never under tension, so we have assumed S = Smax for simplicity.

To describe the stress within myomas and the surrounding tissue, we use ideas
stemming from mixture theory. This approach has been widely used to describe multi-
phase interactions including that of tumour growth; see, for example, Araujo and
McElwain (2005) and Byrne et al. (2003) and the references therein. We assume that
the relaxation timescales of the myoma constituents are much shorter than that of
growth and we thus neglect inertia in our system. Hence, conservation of momentum
leads to the following force balance equations for each of the four phases

0 = ∇ · (φiσi ) + Fi , (7)
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where σi is the stress tensor for phase i , with i = a, v, s, w, and Fi is a body force.
The system being in equilibrium implies that

Fa + Fv + Fw + Fs = 0, (8)

see, for example, Araujo and McElwain (2005) and Hubbard and Byrne (2013). For
the fluid phases, we adopt the usual assumptions for (Darcy) flow in a porous media,
whereby the stress tensors reduce to

σa = −pa I, σv = −pv I, σw = −pw I, (9)

and the corresponding body forces account for the drag between the solid-fluid phases,
hence

Fa = pa∇φa − φa

ka
va, (10)

Fv = pv∇φv − φv

kv
vv, (11)

Fw = pw∇φw − φw

kw
(vw − vs), (12)

where the first term on each of the right-hand sides ensures that flow is generated
only by pressure gradients; however, with the assumption that the φi s are piecewise
constant in �, these terms are zero. The constants ki s are permeability coefficients
that are in general dependent on the fluid properties, the permeability of the porous
media and inversely related to the drag coefficients between the fluid-solid phases.
Combining (7) and (9–12), leads to

va = − ka∇ pa, vv = − kv∇ pv, vw − vs = − kw∇ pw, (13)

which are the Darcy’s law formulations for flow in a porous media.
Using (7–9) we have the force balance for the solid phase

∇ · (φsσs) = ∇ (φw pw + φa pa + φv pv) . (14)

The solid phase is viewed as an isotropic elastic solid that over a small time interval, the
elastic response is assumed to be locally linear. The proposed stress–strain relationship
takes into account the stress generated by deformation and growth of the tissue. We
assume that the stress generated in the vasculature is contained by the vessel walls
and the environmental stress experienced by the solid phase is that of extracellular
pressure, pw. The linear stress–strain relation is

σs = − pw I + 2μ ε + λ eI − Kη I − prs I, (15)

where I is the identity matrix. The first term on the right-hand side is the contribution
to the stress from environmental pressure. The second and third are the stress generated
by deformation, where ε is the strain tensor and e is the dilatation, defined as
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ε = 1

2

(
∇u + (∇u)T

)
and e = ∇ · u,

where u is the displacement of the solid phase and μ and λ are Lamé constants. The
fourth term describes stress induced by volumetric cell growth, in which η is the strain
induced per unit volume and K = 2μ/3+λ is the bulk modulus; this term is analogous
to modelling the thermal expansion of materials (see Landau and Lifshitz (1986)) and
assumed in the tumour models of Jones et al. (2000) and Roose et al. (2003). The final
term, prs , is an arbitrary pressure that describes the reaction stress resulting from the
incompressibility assumption, i.e. the volume fraction of the solid phase, φs , being
piecewise constant. In general, prs cannot be prescribed and consequently tissue stress
can only be determined using the force balance Eq. (14); see, for example, Spencer
(1980). The stress–strain relation (15) is only valid for small strain over a small time
interval and cannot be used to describe stress build-up over a prolonged period of
continuous growth. As with related studies (Jones et al. 2000; Roose et al. 2003),
we evaluate this accumulated stress by differentiating the constitutive Eq. (15) with
respect to time, noting, in particular, vs = ∂u/∂t (Spencer 1980). The principal of
material invariance requires the objectivity of the quantities in the resulting stress
rate equation to be observed. There are many definitions for the time derivative that
preserves objectivity, of which the Jaumann derivative is commonly used for the stress
rate Dσs/Dt , defined as

Dσs

Dt
= Dσs

Dt
+ ω σs − σs ω, (16)

where D/Dt = ∂/∂t +vs ·∇ is the material derivative and ω = −(∇vs − (∇vs)
T )/2

is the second-order vorticity tensor (see, for example, Roose et al. (2003) and Fowler
and Noon (1999)). We thus derive the stress rate equation from (15) as

D σs

D t
= − D pw

D t
I + μ

(
∇vs+(∇vs)

T
)

+ λ∇ · vs I − K
S

φs
I − D prs

D t
I,

(17)

where it is assumed that Dη/Dt = S/φs . The function η defined in this way ensures
that in the absence of any reaction stress, as in unrestricted tissue growth, the total
normal stress σkk is not affected by tissue growth by virtue of equation (4); this is
equivalent to thermal expansion of materials not leading to additional stress (Landau
and Lifshitz 1986).

In the full three-dimensional problem, there are twenty-two variables for each
region, listed in Table 1, consisting of four velocities each with three components,
four pressures and six components of the symmetric stress tensor σs, and there are
twenty-two independent equations, namely (2–5), (13), (14) and (17), so that given
appropriate boundary conditions (discussed in Sect. 2.2) the system of partial differen-
tial equations form a well-posed system. The fact that myomas tend to grow spherically
will enable a substantial reduction of the system to be made, this being discussed in
Sect. 2.3.
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2.1 Non-dimensionalisation

Before we proceed to analyse the equations, it is convenient to write the equations
in dimensionless form. The spatial variable x is scaled with a representative initial
length-scale L , and time is scaled with maximum myoma cell growth rate Smax, hence

x = L x̂, t = t̂

Smax
,

where the quantities with hats are dimensionless. For the simulations of Sect. 3, |x̂| = 1
and t = 1 represent about 2.5 mm and 1.5 years, respectively. The dependent variables
are scaled as follows

va = L α p0 v̂a, vv = L α p0 v̂v, vs = L Smax v̂s, vw = L Smax v̂w,

p∗ = p0 p̂∗ + pw∞ , σi j = − pw∞δi j + p0 σ̂i j , S = Smax Ŝ,

where, ∗ = a, v, w and

p0 = pa∞ − pv∞, pw∞ = φa pa∞ + φv pv∞
φa + φv

= ψ(pa∞, pv∞).

Here, pa∞ and pv∞ are the far-field arterial and venous pressures respectively; hence,
p0 is the far-field pressure difference, and pw∞ is the mean far-field fluid pressure
in tissues (i.e. the weighted average of the arterial and venous pressures there). The
constant p0 can be approximated by the mean arterial pressure of about 104 Pa. The
parameters are rescaled accordingly,

α̂1 = α1 p2
0

Smax
, μ̂ = μ

p0
, λ̂ = λ

p0
, K̂ = K

p0
, σ̂c = σc

p0
,

k̂a = ka

α L2 , k̂v = kv
α L2 , k̂w = kw p0

L2 Smax
, ξ = Smax

α p0
,

where the last dimensionless parameter is the ratio of volume rate of water intake by
growing cells and the volume rate of water flow in the blood; as cellular intake of water
represents a very small fraction of the water flowing through the tissues it follows that
ξ 
 1. The hats of the rescaled variables and parameters are dropped in the following
analysis for brevity. The dimensionless mass conservation equations are as follows

φa ∇ · va = −(pa − pv), (18)

φv ∇ · vv = (pa − pv) − ξ α1(pa − pv) (ψ(pa, pv)− pw) , (19)

φw ∇ · vw = α1(pa − pv) (ψ(pa, pv)− pw) − S, (20)

φs ∇ · vs = S. (21)

In the remainder of the paper, we will use ξ 
 1 and simplify Eq. (19) assuming that
ξ = 0. The remaining equations take the same form as before and are included here
for completeness. The equations describing Darcy’s Law are
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va = −ka∇ pa, (22)

vv = −kv∇ pv, (23)

vw − vs = −kw∇ pw, (24)

the force balance equation is

∇ · φsσs = ∇(φa pa + φv pv + φw pw), (25)

and the stress-strain rate equation is

Dσs

Dt
= − Dpw

Dt
I + μ

(
∇vs + (∇vs)

T
)

+ λ∇ · vs I − K
S

φs
I − Dprs

Dt
I . (26)

The dimensionless form for the growth rate functions is

S =
⎧
⎨

⎩

1 x ∈ �M , Tr(σs) > 0,
(
1 + (−Tr(σs)/3)

m/σm
c

)−1 x ∈ �M , Tr(σs) < 0,
0 x ∈ �T .

(27)

2.2 Boundary Conditions: General Case

Let the surfaces �(x, t) = 0 and �∞(x, t) = 0, shown in Fig. 1, have outward unit
normals n and n∞ respectively. These boundaries move with the local cellular velocity
leading to the kinematic conditions,

∂ �

∂ t
+ vs|�=0 · ∇� = 0,

∂ �∞
∂ t

+ vs|�∞=0 · ∇�∞ = 0.

At the interface, the cellular material inside and outside the myoma must be moving at
the same velocity, i.e. vs is continuous across the boundary. We also assume continuity
of the pressures pa, pv and pw, extracellular fluid flux φwvw and the force normal to
the interface; hence,

� = 0 : vs
(1) = vs

(2), φ
(1)
w vw

(1) = φ
(2)
w vw

(2), va
(1) = va

(2), vv
(1) = vv

(2),

p(1)w = p(2)w , p(1)a = p(2)a , p(1)v = p(2)v , n · (
�(1) − �(2)

) · n = 0,

where �(i) = φ
(i)
s σs

(i) − (φ
(i)
w p(i)w + φa p(i)a + φv p(i)v )I, recalling that the volume

fractions of arteries and veins are taken to be equal in both tumour and surrounding
tissue regions. On the outer boundary given by �∞ = 0 (which could be at infinity),
with outward normal n∞, we impose

�∞ = 0 : p(2)w = 0, p(2)a = φv

φa + φv
, p(2)v = − φa

φa + φv
, n∞ · �(2) · n∞ = 0,
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where the conditions on pa and pv are derived following non-dimensionalisation
and the latter conditions represent zero normal force on the outer boundary. Further
boundary conditions depend on the specific set-up, e.g. the location of origin.

Initially, the regions will be contained within boundaries according to

t = 0 : �(x, 0) = �(0)(x), �∞(x, 0) = �(0)∞ (x),

and initial conditions on the stresses to close Eqs. (26).

2.3 Spherical Geometry

By exploiting the spherical properties of myoma, the model can be significantly
reduced. We assume the entire domain � is a sphere centred at the origin r = 0,
where r ≥ 0 is the radial coordinate. The part of the domain occupied by the myoma
(i.e. �M ) is assumed to be 0 ≤ r < R(t) and that for the surrounding tissue (�T )
is R(t) < r < R∞(t), where the radii R(t) and R∞(t) (in the finite-sized domain
case) are moving boundaries. Assuming radial symmetry implies that displacement
only occurs in the r direction, the angular velocities are all zero and the stress tensor
σs reduces to the diagonal matrix

σs =
⎛

⎝
σrr 0 0
0 σθθ 0
0 0 σφφ

⎞

⎠,

where θ ∈ [0, π ] is the polar angle and φ ∈ [0, 2π) is the azimuthal angle. Moreover,
radial symmetry implies that the angular stresses are equal, i.e. σθθ = σφφ (Chen et
al. 2001), and that the second-order vorticity tensor, w, in the Jaumann derivative in
Eq. (16), is zero (i.e. D/Dt = D/Dt).

The radially symmetric forms of (2–5), (13) and (14) in spherical geometry are
straightforward to derive using standard results. Explicit treatment of the arbitrary
reaction stress, prs , can be avoided by subtracting the evolution Eqs. (17) of σrr and
σθθ , namely

(
∂

∂t
+ vs

∂

∂r

)

σrr = −
(
∂

∂t
+ vs

∂

∂r

)

(pw + prs)+ 2μ
∂vs

∂r

+ λ
(
∂vs

∂r
+ 2

vs

r

)

− K
S

φs
,

(
∂

∂t
+ vs

∂

∂r

)

σθθ = −
(
∂

∂t
+ vs

∂

∂r

)

(pw + prs)+ 2μ
vs

r

+ λ
(
∂vs

∂r
+ 2

vs

r

)

− K
S

φs
,

where vs is the solid phase velocity in the radial direction, to obtain a single equation
for a new variable σ̄ = σrr −σθθ , see Eq. (32). Let v∗ be the other radial velocities for
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∗ = w, a, v, then the full system of equations for the myoma and surrounding tissue,
with the superscripts (1) and (2) absent for clarity, are

φs

r2

∂(r2vs)

∂r
= S, (28)

φw

r2

∂(r2vw)

∂r
= −S + α1 (pa − pv) (ψ(pa, pv)− pw) , (29)

vw − vs = −kw
∂pw
∂r

, (30)

φs

(
∂σrr

∂r
+ 2

r
σ̄

)

= φw
∂pw
∂r

+ φa
∂pa

∂r
+ φv

∂pv
∂r
, (31)

∂σ̄

∂t
+ vs

∂σ̄

∂r
= 2μ

(
∂vs

∂r
− vs

r

)

, (32)

with S = 0 when r > R(t), and for the vasculature

φa

r2

∂(r2va)

∂r
= −(pa − pv), (33)

φv

r2

∂(r2vv)

∂r
= pa − pv, (34)

va = −ka
∂pa

∂r
, (35)

vv = −kv
∂pv
∂r
, (36)

where we have imposed ξ = 0, as discussed above, in Eq. (34). Combining
Eqs. (28–30) leads to the useful equation

1

r2

∂

∂r

(

r2 ∂pw
∂r

)

− γ 2 (pa − pv) pw = S

kw

(
1

φw
+ 1

φs

)

− γ 2 (pa − pv) ψ(pa, pv), (37)

where γ 2 = α1/kwφw. We assume that the length-scale L in the non-dimensionalisa-
tion section is the initial radius of the myoma (we assume L ≈ 2.5 mm). The full set
of initial and boundary conditions are as follows

t = 0 : R = 1, R∞ = R0∞, σ̄ (1) = σ̄ (2) = 0,
r = 0 : v

(1)
s = v

(1)
w = v

(1)
a = v

(1)
v = 0,

r = R(t) : v
(1)
s = v

(2)
s , φ

(1)
w v

(1)
w = φ

(2)
w v

(2)
w , v

(1)
a = v

(2)
a , v

(1)
v =v(2)v ,

p(1)w = p(2)w , p(1)a = p(2)a , p(1)v = p(2)v ,

φ
(1)
s σ

(1)
rr − φ

(2)
s σ

(2)
rr = (φ

(1)
w − φ

(2)
w ) pw,

r = R∞(t) (or ∞) : p(2)w = 0, p(2)a = φv

φa + φv
, p(2)v =− φa

φa + φv
, σ

(2)
rr =0,

(38)
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and the moving boundaries satisfy

d R

dt
= v(1)s (R(t), t),

d R∞
dt

= v(2)s (R∞(t), t), (39)

the latter being relevant for R∞ < ∞. We note that in the last condition imposed on
the r = R(t) interface, we have used continuity of pi and φ j , for i = w, a, v and
j = a, v, to derive the force balance. The initial condition σ̄ = 0 implies that at the
initial state the material is evenly stressed in all directions. The growth rate is given
by

S =
⎧
⎨

⎩

1 r < R(t), σkk > 0,
(
1 + (−σkk/3)

m/σm
c

)−1
r < R(t), σkk < 0,

0 r > R(t),
(40)

where σkk = Tr(σs) = 3 σrr − 2 σ̄ .
We note that a positive right-hand side to (29) means that the fluid is seeping out

of the vasculature at a faster rate than that being used in the growth of cells. In the
limit of zero blood pressure difference, i.e. pa − pv = 0, then using (28), (29) and
(38), we have vw = −φsvs/φw < 0 (since S ≥ 0); here, the extracellular fluid is
being “passively” drawn in from the surrounding tissue. This is the situation in all
avascular growth models in which extracellular fluid transport is explicitly considered
and mass is conserved, e.g. Byrne et al. (2003), Chen et al. (2001), Roose et al. (2003).
The balance between vascular and passively sourced extracellular fluid is discussed
in Sect. 3.

The reduced system consists of nine variables for each region and two more in R(t)
and R∞(t); there are altogether twenty boundary and initial conditions in (38), and
hence, we expect the system (28–40) to be well posed.

2.3.1 Analytical Solution of Vascular Equations

The vascular Eqs. (33–36) and boundary conditions (38) form a closed system. For
the finite-sized domain case, R∞ < ∞, we can deduce the conserved quantity

φa ka pa + φv kv pv = φa φv

φa + φv
(ka − kv) , (41)

and the differential equation for p̄ = pa − pv ,

1

r2

∂

∂r

(

r2 ∂ p̄

∂r

)

− δ 2 p̄ = 0,

where δ 2 = (φaka+φvkv)/(φaφvkakv), subject to ∂ p̄/∂r |r=0 = 0 and p̄(R∞, t) = 1;
which on solution gives

p = pa − pv = R∞ sinh(δ r)

r sinh(δ R∞)
, (42)
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leading to

pa = β +
(

φv

φa + φv
− β

)
R∞ sinh(δ r)

r sinh(δ R∞)
, (43)

pv = β −
(

φa

φa + φv
+ β

)
R∞ sinh(δ r)

r sinh(δ R∞)
, (44)

va =
(

β − φv

φa + φv

)
R∞ (sinh(δr)− δr cosh(δ r))

r2 sinh(δ R∞)
, (45)

vv =
(

β + φa

φa + φv

)
R∞ (sinh(δr)− δr cosh(δ r))

r2 sinh(δ R∞)
, (46)

where

β = φaφv(ka − kv)

(φa + φv)(kaφa + kvφv)
,

recalling that φa and φv are taken to be identical for both tumour and surrounding
tissue regions and similarly are ka and kv .

On an infinite domain, i.e. R∞ = ∞, bounded solutions are not possible. The limits
ka → ∞ and kv → ∞, i.e. negligible drag in the vessels, lead to uniform presure
distribution pa ≡ pa(∞) and pv ≡ pv(∞), but with va → −∞ and vv → ∞ as
r → ∞. For this case, we will neglect the flow velocities and assume

pa ≡ φv

φa + φv
, pv ≡ − φa

φa + φv
, (47)

which represents a situation in which the entire domain has a uniform capillary network
with an even blood supply throughout. We note for this case, Eq. (29) reduces to

φw

r2

∂(r2vw)

∂r
= −S − α1 pw, (48)

and (37) reduces to

1

r2

∂

∂r

(

r2 ∂pw
∂r

)

− γ 2 pw = S

kw

(
1

φw
+ 1

φs

)

, (49)

recalling that γ 2 = α1/kwφw.

2.3.2 Analytical Solutions for r > R(t)

In this region S ≡ 0, so Eq. (28) integrates to give

v(2)s =
.

R R 2

r 2 , (50)
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where
.

R = d R/dt . In the finite domain case,
.

R∞ = .

R R 2/R 2∞, hence

R 3∞ − R 0∞
3 = R 3 − 1, (51)

which states that the change in volume of the entire domain volume is equal to the
volume change in the myoma, as expected.

Equation (32) becomes

∂σ̄ (2)

∂t
+

.

R R 2

r 2

∂σ̄ (2)

∂r
= − 6μ(2)

.

R R 2

r 3 ,

subject to σ̄ (2)(r, 0) = 0 and R(0) = 1, which, using the method of characteristics,
solves to give

σ̄ (2) = 2μ(2) ln

(

1 − R 3 − 1

r 3

)

. (52)

Integrating Eq. (31), using (52), leads to

σ (2)rr = φ
(2)
w

φ
(2)
s

p(2)w + φa

φ
(2)
s

pa + φv

φ
(2)
s

pv

+ 4μ(2)

3

(
dilog((R 3−1)/R 3∞)− dilog((R 3−1)/r 3)

)
, (53)

where dilog(x) = −∫ x
0 ln(1−w)/w dw is the dilogarithm (or Spence’s function),

such that dilog(0) = 0 (relevant for R∞ → ∞) and dilog(1) = π2/6.

3 Numerical Simulations

The simulations to follow are the combination of the numerical solution of Eqs. (28–
32) and (38) and the analytical solutions (43), (44) and (52). For ease of computation,
the myoma and surrounding tissue regions were mapped onto the unit interval using
r = R(t)ρ and r = R(t) + (1 − ρ)(R∞(t) − R(t)), respectively, so that in both
regions the coordinate r = R(t) is mapped to ρ = 1. We rescale all the variables and
boundary conditions accordingly, where we note, in particular, the stress rate Eq. (32)
for r < R(t) becomes

∂σ̄ (1)

∂t
+

(
v
(1)
s

R
− Ṙ

R
ρ

)
∂σ̄

∂ρ
= 2μ

R

(
∂v
(1)
s

∂ρ
− v

(1)
s

ρ

)

, (54)

where Ṙ = d R/dt . The equations were solved using a time-step adaptive, predictor–
corrector scheme incorporating the Numerical Algorithms Group (NAG) routine
D02RAF (a boundary value solver) to solve simultaneously Eqs. (28–31), an implicit
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Table 2 Table showing the standard values of the dimensionless parameters used in the simulations

Parameter Interpretation Values

R0∞ Initial coordinate of outer boundary 30

μ(1), μ(2) Lamé constant 10

m Exponent of the growth function 60

σc Critical stress threshold 21.1

ka Permeability constant for the arteries 104

kv Permeability constant for the veins 104

k(1)w , k(2)w Permeability constant for extracellular fluid 0.05

α1 Transport coefficient between vasculature and fluid 0.1

φa Arterial volume fraction 0.05

φv Venous volume fraction 0.05

φ
(1)
w , φ

(2)
w Extracellular fluid fraction 0.05

φ
(1)
s , φ

(2)
s Cell volume fraction 0.85

The derived parameters are δ ≈ 0.0632, β = 0 and γ ≈ 2.282 and since ka = kv then the mean capillary
pressure is given by ψ(pa , pv) = 0 from Eq. (41). See Sect. 3.1 for a discussion on these parameters. In
the simulations presented, t = 1 represents about 1.5 years, r = 1 about 2.5 mm and 1 unit of stress or
pressure is about 104 Pa

second-order accurate hybrid scheme (the same as that used in Ward and King (1997))
for Eq. (54) and the trapezium rule for R(t). The dilog function was approximated
using NAG routine D01AJF (an integration routine that is able to handle logarithmic
singularities). To simulate the infinite-sized domain case, the surrounding tissue region
was truncated, at r = RT say, where the analytical solutions of Sect. 2.3.2 were used
to the generate boundary conditions there and, by solving (49) (with S = 0 and using
p(2)w (∞, t) = 0), closure of the numerical problem was achieved via the relationship
p(2)w (RT , t) = p(1)w (R, t) e−γ RT /RT . The solutions of the equations often evolve to
form a boundary layer at ρ = 1 and a contracting spatial mesh was used such that
ρi+1 − ρi = ν(ρi − ρi−1), where ν < 1, which enabled the simulations to run for
large time using fewer mesh points. For shorter simulations, 200 points were sufficient,
while for the longer runs, up to 3,000 points were used. The values of the parameters
used in the simulations below are listed in Table 2, unless stated otherwise, and are
discussed in Sect. 3.1.

An important factor concerning myoma growth as predicted by the model are the
two ways in which extracellular fluid is supplied to the tissue. These two ways are:

(1) Seepage from vasculature into the extracellular fluid. This will be referred to as
“vascular-influx”.

(2) Extracellular fluid drawn in “passively” from the surrounding tissue. This will be
referred to as “passive-influx”.

We will first present the standard simulation of the non-dimensionalised system and
then discuss the effects of the surrounding tissue, vascular efficiency and sources of
extracellular fluid on growth.
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Fig. 2 Evolution of the myoma radius R(t) and the growth rate d R/dt for the “standard simulation”,
noting that t = 1 is approximately 1.5 years and R = 1 represents a radius of about 2.5 mm. Parameters
listed in Table 2

3.1 Standard Simulation

Very small myomas (of size 1–3 mm in diameter) are usually avascular and, by about
4 mm in diameter, blood vessels begin to invade from the periphery and infiltrate
deep into the myoma (see, for example, Walocha et al. 2003). We assume in the
simulations to follow that the myoma is fully vascularised from the start and that
the initial radius of R(0) = 1 represents about 2.5 mm, within a surrounding tissue
of about 75 mm (R∞(0) = 30). As discussed in the introduction, Mavrelos et al.
(2010) used clinical data to show that small (< 20 mm in diameter) and large myomas
(>50 mm in diameter) develop at a faster rate (volume growth of 51.3 and 40 % in a
year, respectively) than those in between (volume growth of 16.8 % in a year). These
data suggest that growth between 4–20 mm will be about 12 years and between 20–
50 mm will be about 18 years, whereby the combined total of about 30 years covers
nearly the entire reproductive period in women. There is considerable variation in this
data and our aim in selecting the parameters in Table 2 is to produce results that (1)
reproduce qualitatively the fast–slow–fast growth pattern in myoma, (2) ensure water
in the core of the myoma is mostly sourced from the vasculature (i.e. the right-hand
side of (29) is positive at r = 0) and (3) are sensitive to blood pressure variations
(reflecting the effect of sex hormones on blood supply). On account of the variability
of data in Mavrelos et al. (2010) and the simplifying assumptions used in the model,
we do not expect the parameters to be definitive. The value μ = 10 corresponds
to an elastic modulus of about 105 Pa, which is 3–4 times that of the hardest (soft
tissue) solid tumour listed in Netti et al. (2000). As necrotic regions are not usually
observed in myomas, the vasculature parameters are chosen to make δ 
 1, so that,
while the myoma is of a biological relevant size, the vascular pressure difference
pa − pv = O(1) over the whole of the region. We note that we have prescribed a
large value to the exponent m in Eq. (40), reflecting a consistent level of growth while
−σkk/3 < σc and negligible growth when experiencing high compressive stress, i.e.
−σkk/3 > σc.

In Fig. 2, we show the evolution of the radius R and growth rate d R/dt using the
standard parameter set of Table 2. As desired, we obtain qualitatively the fast–slow–
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Fig. 3 Dimensionless stress profiles at time t = 2 (solid curve), 5 (dashed curve), 10 (dotted curve) for
the standard simulation. See Table 2 for parameter values and its caption for the scale in dimensional terms

Fig. 4 Dimensionless extracellular fluid pressure distribution pw (left) and the distributions of arterial and
venous pressures pa and pv (right) at times t = 2 (solid curve), 5 (dashed curve), 10 (dotted curve) from
the standard simulation. See Table 2 for parameter values and caption for scale. Note that the arterial and
venous pressures at the various time shown are almost identical but the interface between the myoma and
the surrounding tissue, marked out by the diamonds, move outwards as time increases

fast phases of growth as observed in Mavrelos et al. (2010), where the second fast
phase commences when R ≈ 10, corresponding to a myoma of diameter of about
50 mm. We will refer to these three growth phases as Phase 1, 2 and 3, respectively. In
the early stages (Phase 1), the stress levels, σkk , are sufficiently small (Fig. 3) so that it
has negligible impact on growth and hence the volume growth rate S ∼ 1 throughout
the myoma region; this continues to be the case until −σkk/3 ≈ σc due to the exponent
m in (40) being large. This low initial stress is due to small myomas causing only a
small displacement, and hence stress, in the surrounding tissue. However, as can be
observed from Fig. 3, the resistance by the surrounding tissue to growth of a “medium-
sized” myoma leads to stress building up to the threshold level σc, causing retardation
of growth (Phase 2). Eventually, the myoma reaches such a size that the surrounding
tissue becomes sufficiently thin so that it is no longer able to impart adequate resistance
to restrict growth, consequently in time the magnitude of the stress in the myoma will
drop significantly and the growth rate will return to an unconstrained level (Phase 3),
where S ∼ 1. We note from the right-hand plot of Fig. 4 that throughout the time
period of the simulation the vascular pressure difference drops from pa − pv = 1 to
about 0.6 over the domain, and consistently about 0.6 in the myoma. The effects of
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Fig. 5 Distribution of dimensionless cell (left) and fluid velocity (right) at time t = 2 (solid curve), 5
(dashed curve), 10 (dotted curve) for the standard simulation. See Table 2 for parameter values and caption
for the scale

the vasculature will be discussed further in Sects. 3.3 and 3.4. If growth was allowed
to continue, the model predicts a further growth phase when myomas reach sizes well
beyond that which is relevant biologically, where pa − pv drops to negligible levels
(this is discussed in Sect. 3.5).

The stress being negative within the myoma, as can be seen in Fig. 3, is to be
expected as growth continuously causes compressive stress between cells. We note
in this simulation that within the myoma σ (1) ≈ 0 (not shown) so that σ (1)rr ≈ σ

(1)
θθ ,

i.e. cells within the myoma are experiencing uniform stress from all directions. In
contrast, the non-growing surrounding tissue is compressed in the r direction by the
growing myoma, but is stretched (hence, experiencing tensile stress) in the angular
directions. The tensile force will in fact continue to build up, and from (52) and (53),
we see that σ (2)θθ (R, t) → ∞ as R → ∞. The distribution of σ (1)rr attains its minimum
around t = 11, before the rapid growth resumes as the stress subsides.

The plots in Fig. 4 show the distribution of extracellular pressure (left) and vascular
pressure (right) at various time points. Initially, rapid growth leads to high consumption
of extracellular fluid to produce new cells, that generates high negative pressure in the
myoma core. As growth slows in Phase 2, the pressure subsides as growth slows (t = 5
and t = 10 curves in the figure), which then builds up again as rapid growth resumes
in Phase 3. The sources of extracellular fluid, i.e. from the vasculature or being drawn
in from surrounding tissue, are investigated in Sect. 3.4.

Figure 5 shows the distribution of cell velocity (left) and extracellular fluid velocity
(right) at times t = 2, 5 and 10. As shown in Fig. 3, the stress distribution, and
consequently the growth rate S (not shown), is fairly uniform throughout the myoma,
so the cell velocity vs is approximately linear for r < R (which makes the right-hand
side of (32) small, leading to σ ≈ 0) and decays according to (50) for r > R. All of the
profiles of vw are qualitatively similar and show, except in the vicinity of the interface
at r = R, that extracellular fluid is generally flowing away from the myoma centre. In
the core of the moyoma at t = 2, the demand for fluid for cell growth volume is met
by the vasculature (i.e. vascular-influx dominated, we note vw ≥ 0 there); however, in
the interface region, extracellular fluid is being drawn in from the surrounding tissue
(passive-influx) at a sufficient rate to dominate that from blood flow (hence vw < 0).
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Fig. 6 Evolution of myoma
radii, R(t), for various initial
surrounding tissue sizes, namely
R∞(0) = R0∞ = 20, 30, 40 and
100. The standard simulation
corresponds to R0∞ = 30, and
all other parameters are listed in
Table 2

As r increases into the surrounding tissue, the effect of myoma growth subsides, and
since in this region pw ∼ 0 then from (30) vw ≈ vs .

3.2 Effect of Surrounding Tissue on Growth

In the standard simulation, the surrounding tissue imparts a resistive stress that reduces
the rate of growth during Phase 2. This continues until the surrounding tissue becomes
sufficiently thin and its ability to impart stress subsides and growth moves into Phase 3.
We thus expect thickness of this tissue to have a significant effect on growth after Phase
1. This turns out to be the case as is illustrated in Fig. 6. We note that R∞(0) = 30
corresponds to a diameter of 15 cm, which is approximately the dimension of the
pelvic cavity. The figure shows that increasing R∞(0) has the effect of reducing the
duration of Phase 1, and slowing the growth and extending the duration of Phase 2.
We note that the vascular pressure difference will be higher in myomas surrounded
by a thinner tissue, which contributes partly to the enhancement of growth rate. By
allowing growth to continue beyond biologically relevant constraints, the solutions
will eventually settle to the Phase 4 profile discussed in Sect. 3.5. Note that larger
surrounding tissues result in higher stress levels leading to smaller tumour sizes; this
is in good qualitative agreement with the predictions of other tumour growth models
(Chen et al. 2001; Roose et al. 2003) (albeit avascular growth) as well as experimental
observations (Helmlinger et al. 1997).

3.3 Effect of Blood Flow on Growth

Sex hormones, such as oestrogen, are believed to play a major role in the growth
of myomas (Flake et al. (2003); Maruo et al. (2004); Parker (2007); Resnik et al.
(1974)). The presence of oestrogen induces vesodilation leading to an increase in
blood flow maintaining nutrient supply to the myoma cells (Resnik et al. 1974). In
menopause, without the sustained oestrogen production, myomas cease to grow and
often shrink in sizes (Flake et al. 2003). This is exploited in the treatment of myomas,
where gonadotropin-releasing hormone (GnRH) agonists are used to reduce oestrogen
production, thereby causing myoma shrinkage and facilitating their surgical removal.
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Fig. 7 Dependence on parameters governing vascular flow and efficiency on the evolution of myoma radii,
R(t). On the left, the effect of the far-field vascular pressure difference is shown for the given factors �.
Shown on the right, the effect of vascular permeability ka = kv on growth. All the other parameters are
listed in Table 2 and those adjusted by the factor � are listed in Table 3

Table 3 Adjusted parameter values corresponding to vascular pressure difference factor �

Parameter Values (� = 1) values (� = 3) Values (� = 0.3)

μ(1), μ(2) 10 3.3 33.3

σc 21.1 7.03 70.3

k(1)w , k(2)w 0.05 0.15 0.015

α1 0.1 0.9 0.009

Although, oestrogen is not considered in the current model, we can simulate its effects
by altering flow characteristics of the blood. We will investigate two ways in which
this can be done, firstly effecting the far-field pressure difference (p0 = pa∞ − pv∞ in
dimensional terms), reflecting a change in flow into the uterus, and secondly effecting
the extent of permeability of the vessels in the uterus (parameters ka and kv).

Due to the way the system was non-dimensionalised, an adjustment of p0 affects
the dimensionless values of a number of parameters. More specifically, if we set p0 �→
�p0, where � is a dimensionless factor, then the relevant dimensionless parameters
are affected as follows, μ �→ μ/�, α1 �→ �2α1, kw �→ �kw and σc �→ σc/�. The
modified values used in the simulations shown in Fig. 7 are listed in Table 3. It would
be expected that decreasing � would slow myoma growth, and this is observed in
the figure. The Phase 1 of growth is relatively unaffected by �, but the timescale of
Phase 2 is extended as � decreases. The similarities in Phase 1 is due to the choice
of the growth function S being a function of stress only, which is constant until Phase
2 begins. The reason for the differences in results here is due to the nonlinearity of
Eq. (29) leading to the nonlinear scaling of α1 in terms of �. We note that the role
of nutrients is not considered in the current model and a reduced blood supply will
mean a reduction in nutrients and probably the growth rate as well (though the lack of
necrosis in most myomas suggests that they are seldom nutrient limited).

An increase in the vascular permeability constants ka and kv would have the
expected effect of enhancing growth, and this is indeed shown to be the case in the
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Fig. 8 Bifurcation diagrams in parameter-R space, showing regions in which the source of water in the
myoma is vascular-influx dominated (labelled V) and passive-influx dominated (labelled P), for myomas
growing at a maximum rate (i.e. S ≡ 1 in the myoma region). The lines mark the path ∂vw/∂r = 0 at r = 0
in kw− R (left), α1 − R (middle) and δ− R (right) space, where in each case all other parameters are fixed.
The biologically relevant regions correspond to R � 20. The � symbols indicate the points corresponding
to the values presented in Table 2

right of Fig. 7. Over a biologically relevant timescale, the most dramatic effects are
observed for values of ka = kv ∈ (102, 106). Growth using permeability values of
ka = kv = 102 or less (or equivalently δ � 2) is indistinguishable from the avascular
case (corresponds to ka = kv = 0); here, the pressure difference drops down to near-
zero close to the edge of the surrounding tissue, resulting in pa − pv ∼ 0 throughout
the myoma. For ka = kv = 106 or more (equivalently δ � 0.0063), the growth follows
more-or-less that of ka = kv = ∞; however, the solutions will eventually diverge as
R increases and the pressure difference drops to zero in the core.

3.4 Vascular Versus Passive-Influx in Myomas

The right-hand side of Eq. (29), namely F = −S + α1(pa − pv)(ψ(pa, pv)− pw),
describes the local rate of change of fluid volume. If the predominant extracellular fluid
source is via vascular-influx, then this function will be positive, while negativity would
suggest that passive-influx is the dominant source. We are not aware of any detailed
quantitative experimental study of the source of extracellular fluid in tissues, but under
normal circumstances, it is likely that in vascularised myomas, fluid would mostly be
sourced via vascular-influx, which was assumed in the choice of standard parameters
in Table 2. In this section, we investigate the effect of some of the parameters on the
dominant source of extracellular fluid. To simplify the analysis, we focus on the case
when S ∼ 1, which means that the analysis is directly relevant for growth Phases 1
and 3 and we also assume φ(1)w = φ

(2)
w and k(1)w = k(2)w , as is the case of the parameters

in Table 2. In avascular myomas and tumours, extracellular fluid transport is entirely
through passive-influx, and a simple definition to describe the transition point between
passive- and vascular-influx-dominated flow is when F = 0 at r = 0. The reduced
system and the method of solution used is presented in “Appendix 1”.

The plots in Fig. 8 show the bifurcation curves that separate the regions in
parameter-R space between vascular-influx- and passive-influx-dominated flow (as
defined above) sources of extracellular fluid at r = 0. We recall that the constant kw
is the permeability coefficient, which encompasses porosity of media and is inversely
related to the drag between fluid-solid phases. In the region of R � 20, the resistance
to passive-influx is reduced as kw increases, meaning that fluid is able to penetrate
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deeper (hence k′
w(R) > 0 on the bifurcation curve). However, as R increases beyond

20, the vascular pressure difference decreases becoming exponentially small at r = 0;
so along the bifurcation, the reduced effectiveness of blood supply is compensated by
a reduction in permeability. For small myomas, it is easy for fluid to be transported
throughout via passive-influx, so the vessels need to be very leaky (i.e. large α1) in
order for vascular-influx to dominate, however, as R increases (up R � 20) the pas-
sive transport is effected more by drag and so the leakage rate can be reduced. Once
again, for R � 20, the decrease in blood flow means that to compensate the vessels
must be increasingly leaky as r increases. In fact, the first two curves are directly
related since the system derived in “Appendix 1” is invariant under the transformation
pw �→ ϒ−1 pw, α1 �→ ϒα1 and kw �→ ϒkw, for any ϒ ∈ R/{0}. It follows that
along the bifurcation curve F(α1/kw) = R, where F is some function, and is the
reason for the apparent horizontal symmetry in the shape of the first two curves. The �
symbols denote the points on the bifurcation curve corresponding to the data in Table
2, the left-hand one being of biological relevance (i.e. R � 15 − 20); we note that the
initial condition of R = 1 lies in the region V.

The parameter δ is inversely related to the permeability of the myoma’s vasculature.
The data values of Table 2 give δ ≈ 0.06 so that for R = 10 the vascular pressure
difference at r = 0 is about 57 % of the maximum at the r = R∞ boundary, reducing
to 10 % when R ≈ 69. For R � 0.73, fluid transport is dominated by passive-influx,
while in 0.73 � R � 10 the reduction of extracellular fluid permeability means that,
for small enough δ, vascular-influx will dominate. For R � 10, the efficiency of blood
flow must increase in order to compensate for increase in myoma size, hence the
descent of the bifurcation curve.

3.5 Long Time Behaviour

Further insights into the behaviour of the model solutions can be gleaned from exam-
ining them in large time. Such solutions perhaps have no direct relevance biologically,
as myomas will not be permitted to grow for so long, but they do indicate which par-
ticular mechanisms are most important in each of the growth phases discussed above.
The plot of the growth rate in Fig. 2 is extended in the left of Fig. 9 to t = 100. The
circled numbers in the figure are labels for the growth phases, the first three of which
already discussed in Sect. 3.1. Phases 1 and 3 are characterised by low levels of stress

within the myoma so growth is given by R ≈ R[∗]e t/3φ(1)s where R[∗] is a constant
(R[∗] = 1 in Phase 1). Phases 2 and 4 are more interesting.

The intermediate growth phase, Phase 2, is a period in which the surrounding mate-
rial becomes stretched and stressed by the growing myoma, but being considerably
larger than the myoma at this stage, it is able to impart stress that has the effect of
reducing S(σkk) in the growing region. In “Appendix 2”, we analyse the model in an
extreme version of this scenario, in which the surrounding tissue is extended to infin-
ity, i.e. R∞ = ∞, the vascular pressure difference is set to pa − pv = 1 throughout
the domain (see Sect. 2.3.1) and we seek solutions in the limit R(t) → ∞. This limit
of the model is a reasonable approximation to the full one provided R/R∞ 
 1 and
pa − pv is approximately constant in the myoma. For large R, the analysis shows that
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Fig. 9 Results of long time simulations. The left-hand figure is the same as that in Fig. 2 with time extended
up to t = 100; the four phases as discussed in the text are indicated by the circled numbers. The right-hand
plots show the evolution of � = Ṙ/R for the infinite-sized domain case (solid) and the leading order
large-time estimate (dash) as determined in the “Appendix 2”

the stresses imparted by the surrounding material are constant at leading order over
most of the myoma, namely σkk ∼ σ ∗

rr , where σ ∗
rr is the solution to Eq. (71). Conse-

quently, S is constant at leading order, and therefore, growth is exponential, such that
Ṙ/R = � ∼ S(σ ∗

rr )/3φ
(1)
s as R → ∞. The right plot in Fig. 9 shows the evolution

of � in time, where the predicted large-time value is indicated by the dashed line.
In Phase 4, the vasculature pressure difference in pa − pv is exponentially small

across most of the myoma as R → ∞, and it is only in the rim region, where R − r =
O(1/δ), is the difference of O(1) size. In the absence of vasculature, the only source
of fluid in the core of the myoma is via passive-influx, and in large myomas that leads
to an ever increasing build-up in extracellular fluid pressure and consequently stress
from the force balance Eq. (31). In “Appendix 3”, term balancing arguments is used
to show that growth evolves according to

R ∼ R[4] t (m+1)/2m,

as t → ∞, where R[4] is a constant. In case of Phase 4 growth shown in the left of
Fig. 9, we obtain R ∼ R[4] t 61/120; however, this large-time solution takes a very long
time to emerge in the simulation (see “Appendix 3”).

4 Conclusion

The relatively simple structure and geometry of myomas are desirable properties for
mathematical modelling, since the simplifying assumptions that are commonly used
to reduce the more complex tumour models (e.g. spherical symmetry and isotropy)
are well suited to myomas in vivo. The absence of necrosis (Crow 1998), even when
they are large, suggests that the vasculature functions well in myomas, unlike most
other large solid tumours. This is most likely due to the slow growth of myomas (over
15–25 years), allowing for a more robust vascular system to develop. On account of the
hard, elastic nature of myomas, we modelled this using a solid mechanics approach
to describe the effects of stress on myoma growth within a surrounding tissue. As
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a first approximation, we have assumed isotropy of the material and that the volume
fractions of all components are constant within the myoma and the surrounding tissue.
We proposed a simple linear stress–strain relationship, which, on differentiation with
respect to time, was made applicable to an evolution problem with accumulated stress.
Coupled to this, we modelled fluid flow in the blood and extracellular space using
standard approaches for modelling flow in a porous media; in particularly, we treated
separately arterial and venous flow, which distinguishes this model to those studied in
Breward et al. (2003) and Hubbard and Byrne (2013). Since the growth of myomas
requires the conversion of extracellular fluid into cellular material, the fluid transport
within myomas plays a major role in their growth; the current model considers two
fluid sources, which we termed “vascular-influx” and “passive-influx”.

The fast–slow–fast growth pattern of myoma growth, as described by Mavrelos
et al. (2010), was captured by the model (described as growth Phases 1, 2 and 3).
Nutrient limitation is unlikely to be the only cause of this, as necrosis is largely absent
in myomas. Our model suggests that this growth pattern can be explained by the
combination of (1) stress build-up through myoma growth and resistance by the outer
tissue and (2) the near-cessation of cell growth in high compressive stress conditions.
Initially, stress is low and hence growth is unhindered due to negligible displacement in
the surrounding tissue (Phase 1), but when the displacement becomes non-negligible,
it imparts stress that builds up in the myoma causing the slowing of growth (Phase
2), until the surrounding tissue is stretched sufficiently thin so that its ability to resist
growth subsides and growth is able to accelerate once again (Phase 3). We note that
in order for these growth phases to be visibly distinct as they appear to be clinically,
there needed to be a sharp transition around a critical stress level σc in the growth
function S.

The explicit treatment of vascular transport in the model provides a number of
insights into the extracellular fluid flow in myomas. When myomas are small and
avascular (<2 − 3 mm in diameter), flow is dominated by passive-influx of fluid from
the surrounding tissue. However, the balance shifts to dominance via vascular-influx
for larger myomas (> 5 mm in diameter). While vascular-influx is effective, the analy-
sis of Sect. 3.5 showed that growth will be exponential, maximally fast in Phases 1 and
3 (due to S ∼ 1 in the myoma) and much slower in Phase 2. Although not relevant for
myomas in clinical terms, but would be the case for most other large solid tumours, a
collapse in blood flow in the core of the myomas leads to power-law growth (Phase 4).
Of course, the collapse in blood flow means that the delivery of nutrients and oxygen
ceases and necrosis will develop, a feature the current model is not set up to predict.

The parameters used in the simulations were chosen to produce results that resemble
the observed characteristic growth pattern of myomas. We made informed guesses for
the volume fraction parameters, but there is very little data available to improve our
estimates of the other parameters. The surgical removal of myomas is very common and
there is potentially no shortage of samples that could be used for ex vivo experiments;
for example, to determine more precisely the volume fractions, the permeability of
the blood vessels (e.g. obtain estimates for vascular porosity and tortuosity), hydraulic
conductivity of the non-vascular phases and the material properties of a myoma (e.g.
estimates for the Lamé constants μ and λ). From our numerical experiments, we
found that the model results are qualitatively robust to parameter changes, and only
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quantitatively sensitive to changes in μ, σc and m (not shown). This sensitivity is due
to the term −σkk/3σc in S being raised to a large power m (being necessarily large
to induce near-cessation of growth under sufficient compressive stress), so that the
effects of small changes in the stress-related parameter values are somewhat magnified.
We note that our choice of function S was to agree in simple terms the qualitative
description of stress-inhibited growth in Helmlinger et al. (1997) and there is scope
for refinement in our future work (see below).

Described in this paper is a first attempt to model uterine myoma growth. This model
forms the foundation of future work investigating the interplay of factors, such as hor-
mones and environment, on myoma growth and how these factors can be manipulated
to best control it. As a pre-surgical treatment, the size of myomas are reduced using
gonadotropin-releasing hormone (GnRH) agonists, which has the effect of reducing
oestrogen production and, in turn, reduces blood flow into the uterus. Typically, the
myoma shrinks to about half in size over a 3-month period (Cheng et al. 2008; Gut-
mann and Corson 2005). Interestingly, following the termination of treatment, if the
shrunken myomas are not removed, they will grow back to the original size within
about 6 months, i.e. in a much shorter time than it took to grow the same volume before
treatment. Though the model qualitatively predicts the action of oestrogen (Sect. 3.3),
it will not be able to predict volume reduction by this treatment due to the constraint
S ≥ 0, meaning that the myoma can only increase in size. What causes the initial
shrinkage and relatively rapid regrowth is unclear, but the absence of necrosis sug-
gests that cell death is not likely to be the only cause. We will be investigating plausible
mechanisms for this. Further modelling extensions will be to relax the fixed volume
fraction assumption and allow for inhomogeneities in the material. This will enable the
consideration of other plausible growth effecting mechanisms, such as contact inhibi-
tion, that will lead to a refinement of growth function S. Many, but not all, myomas
are enclosed in fibrous capsules, which will undoubtedly effect growth and the stress
within; this may require the separation of the cellular and collagen components of
the solid phase to realistically describe this process. Incorporating these additional
features will hopefully provide a modelling framework by which realistic predictions
can be made for hormone therapies. Nevertheless, the results presented in this paper
are encouraging and provide a number of predictions that would benefit considerably
from experimental verification.
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Appendix 1: Vascular Versus Passive-Influx in Myomas

By setting S = 1, the bifurcation plots in Fig. 8 are generated by solving

1

r2

∂

∂r

(

r2 ∂pw
∂r

)

− α1

φw kw

R∞ sinh(δ r)

r sinh(δ R∞)
pw =

⎧
⎨

⎩

1

kw

(
1

φw
+ 1

φs

)

r< R,

0 R<r< R∞,

123



A Mathematical Model of the Growth of Uterine Myomas 3115

using (37) (with ψ(pa, pv) = 0 using the values in Table 2) and (42) for pa − pv , and
the boundary conditions

r = 0
∂p(1)w
∂r

= 0, p(1)w = − sinh(δ R∞)
α1 δ R∞

,

r = R p(1)w = p(2)w ,
∂p(1)w
∂r

= ∂p(2)w
∂r

,

r = R∞ p(2)w = 0,

where the second condition at r = 0 results from pw = 1/(α1(pa − pv)) and (42) in
the limit r → 0 and the second condition at r = R follows from (30) and (38) with
uniform φw and kw. This is a fourth-order ODE system with five boundary conditions,
and hence, there is a free parameter to be determined as part of the solution. This system
was solved using the MATLAB boundary value solver bvp4c and the Newton-Raphson
method was used to iteratively determine the free parameter. A simple continuation
procedure was employed to complete the curves shown in Fig. 8.

Appendix 2: Large-Time Analysis of Intermediate Growth Phase

The numerical results show that up to t = 25, there are three apparently distinct phases
of growth, an initial accelerating phase in which the small myoma grows with little
resistance from the outer tissue, an intermediate phase of near linear growth in which
the stiffness of outer material slows growth, and a final (transitory) acceleration phase
in which the outer tissue becomes thin (due to volume conservation) and resistance to
growth becomes negligible. Throughout these phases, the vascular pressure difference,
pa − pv , is O(1); when the myoma becomes large, pa − pv → 0 over most of the
myoma causing growth to eventually slow down.

To analyse the second, intermediate growth phase, we assume that pa − pv ≡ 1
throughout the domain and we assume that the outer tissue extends to infinity. The
latter assumption reflects the relative large volume difference between the relatively
small myoma and the outer tissue during this growth phase. With these assumptions,
the large-time solutions (equivalently, as R → ∞) are exponential and we write

Ṙ

R
∼ �, (55)

as R → ∞; typically � 
 1 in the biologically relevant case. It will be shown in
Appendix Sect. “Outer Region, ρ = O(1)” that

� ∼ S(σ ∗
rr )

3φ(1)s

, (56)
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where σ ∗
rr is the solution to the implicit Eq. (71). To facilitate the analysis we rescale

the variables as follows

r = R ρ, vs = Ṙ v̂s, vw = Ṙ v̂w, pw = p̂w, σrr = σ̂rr , σ = σ̂ ,

so that the equations become

1

ρ2

∂(ρ2v̂s)

∂ρ
= Ŝ

�φs
, (57)

1

ρ2

∂(ρ2v̂w)

∂ρ
= − Ŝ

�φw
− α1

�φw
p̂w, (58)

v̂w − v̂s = − kw
� R2

∂ p̂w
∂ρ

, (59)

∂σ̂rr

∂ρ
+ 2

ρ
σ̂ = φw

φs

∂ p̂w
∂ρ

, (60)

1

�

∂σ̂

∂t
+ (v̂s − ρ)

∂σ̂

∂ρ
= 2μ

(
∂v̂s

∂ρ
− v̂s

ρ

)

, (61)

where Ŝ = S(σ̂kk/3) and σ̂kk = 3σ̂rr − 2σ̂ . From the numerical simulations, it turns
out that within the myoma σ 
 1 over the entire region except in a boundary layer
region at ρ = 1; in fact this is true when non-zero initial conditions are imposed on
σ(ρ, 0) as long as σ(0, 0) = 0 (a demonstration of this is given by the linear stability
analysis of Appendix Sect. “Linear Stability Analysis of Outer Region Solution”). It
is useful to combine Eqs. (57–59) to obtain

1

R2

1

ρ2

∂

∂ρ

(

ρ2 ∂ p̂w
∂ρ

)

− γ 2 p̂w = Ŝ

kw

(
1

φs
+ 1

φw

)

, (62)

where γ 2 = α1/kwφw. For simplicity, we assume φ(1)w = φ
(2)
w = φw as was adopted

in the simulations, and we subject these equations to the following

ρ = 0 v̂
(1)
s = 0, v̂(1)w = 0,

ρ = 1 v̂
(1)
s = v̂

(2)
s = 1, v̂(1)w = v̂

(2)
w , p̂(1)w = p̂(2)w , φ

(1)
s σ̂

(1)
rr = φ

(2)
s σ̂

(2)
rr ,

ρ = ∞ p̂(2)w = 0, σ̂ (2)rr = 0.

⎫
⎪⎬

⎪⎭

(63)

The analysis for φ(1)w �= φ
(2)
w follows the same lines, but the water pressure pw scales

with R, as opposed to being O(1) when φ(1)w = φ
(2)
w , where it can be shown that

pw(1, t) ∼ R(t)�(φ(1)w − φ
(2)
w )/kwγ (φ

(1)
w + φ

(2)
w ) as R(t) → ∞.
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ρ > 1

With Ŝ = 0, the equations can be solved for the tissue region, giving

v̂(2)s = 1

ρ2 ,

v̂(2)w = 1

ρ2 + P0 kw (γ Rρ + 1)

R2�ρ2 e−γ R(ρ−1),

p̂(2)w = P0

ρ
e−γ R(ρ−1),

σ̂ (2)rr = −4μ(2)

3
dilog

(
1

ρ3 − 1

R3ρ3

)

+ P0 φw

ρ φ
(2)
s

e−γ R(ρ−1),

and σ̂ = 2μ ln
(
1−1/ρ3+1/(ρ3 R3)

)
and recalling dilog(x) = − ∫ x

0 ln(1−w)/w dw,
and, in particular,

ρ = 1 v̂(2)s = 1, v̂w = 1 + P0 kw (γ R + 1)

R2�
, p̂(2)w = P0,

σ̂ (2)rr = −4μ(2)

3
dilog

(

1 − 1

R3

)

+ P0 φw

φ
(2)
s

,

⎫
⎪⎪⎬

⎪⎪⎭

(64)

where P0 is a constant of integration.

ρ < 1

There are two layers in the limit R → ∞, an outer layer where ρ = O(1) and an
inner layer where 1 − ρ = O(1/R).

Inner Region, 1 − ρ = O(1/R)

Writing ρ = 1 − ρ̂/R, where ρ̂ = O(1) as R → ∞, the inner equations become

R
∂v̂s

∂ρ̂
− 2 v̂s

1−ρ̂/R
= − Ŝ

φ
(1)
s

, (65)

v̂w − v̂s = kw
� R

∂pw
∂ρ̂

, (66)

∂2 p̂w
∂ρ̂2 − 1

R

2

(1−ρ̂/R)

∂pw
∂ρ̂

− γ 2 p̂w = Ŝ

kw

(
1

φ
(1)
s

+ 1

φw

)

, (67)

R
∂σ̂rr

∂ρ̂
− 2

1−ρ̂/R
σ̂ = R

φw

φ
(1)
s

∂ p̂w
∂ρ̂

, (68)
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and we adopt the following expansions

v̂(1)s ∼ v̂[i]
s0
, v̂(1)w ∼ v̂[i]

w0
, p̂(1)w ∼ p̂[i]

w0
, σ̂ (1)rr ∼ σ̂ [i]

rr0
, σ̂ ∼ σ̂

[i]
0 , � ∼ �0.

Imposing the boundary conditions (64) we obtain v̂[i]
s0 = 1, v̂[i]

w0 = 1 and

σ̂ [i]
rr0

= −2φ(2)s μ(2) π2

9φ(1)s

+ φw

φ
(1)
s

p̂[i]
w0
, (69)

using the fact dilog(1) = π2/6, where

∂2 p̂[i]
w0

∂ρ̂2 − γ 2 p̂[i]
w0

=
S

(
σ̂

[i]
kk0
/3

)

kw

(
1

φ
(1)
s

+ 1

φw

)

,

which cannot be solved analytically for general S(.), but we can deduce that

p̂[i]
w0

∼ −
S

(
σ̂

[i]
kk0
/3

)

γ 2 kw

(
1

φ
(1)
s

+ 1

φw

)

,

as ρ̂ → ∞, where σ̂ [i]
kk0

= 3σ̂ [i]
rr0 − 2σ̂

[i]
0 .

Outer Region, ρ = O(1)

We assume the following expansions

v̂(1)s ∼ v̂[o]
s0
, v̂(1)w ∼ v̂[o]

w0
, p̂(1)w ∼ p̂[o]

w0
, σ̂ (1)rr ∼ σ̂ [o]

rr0
, � ∼ �0,

and adopting the assumption that σ̂ 
 1 (in fact σ = O(1/R) is sufficient, see
Appendix Sect. “Linear Stability Analysis of Outer Region Solution”), then σ̂ [o]

kk0
/3

= σ̂
[o]
rr0 . At leading order (62) leads to

p̂[o]
w0

∼ − φw S(σ̂ [o]
rr0 )

α1

(
1

φ
(1)
s

+ 1

φw

)

, (70)

whereby matching implies σ̂ [o]
rr0 = σ̂

[i]
kk0
/3 as ρ → 1− and ρ̂ → ∞, respectively.

Integrating (60), with σ̂ 
 1, and using (69) and (70) leads to the fixed point problem

σ ∗
rr = − 2φ(2)s μ(2) π2

9φ(1)s

− S(σ ∗
rr ) φw

α1 φ
(1)
s

(

1 + φw

φ
(1)
s

)

, (71)
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where we have defined σ ∗
rr = σ̂

[o]
rr0 which is a constant; note that since Ŝ is a

monotonically decreasing, continuous function, then this constant is unique. With
Ŝ being constant to leading order, then integrating (57) and from (59) we have
v̂

[o]
s0 = v̂

[o]
w0 = Ŝ(σ ∗

rr )ρ/3φ
(1)
s �0, where in order to match with v̂[i]

s0 = v̂
[i]
w0 = 1

as ρ → 1 we determine the leading order growth constant as �0 = Ŝ(σ ∗
rr )/3φ

(1)
s ,

confirming the approximation (56).
A complete analysis requires additional correction terms in powers of 1/R and

explicit consideration of σ .

Linear Stability Analysis of Outer Region Solution

To strengthen the claim σ 
 1 in the outer region, we undertake a linear stability
analysis of a reduced system relevant to the problem of Appendix Sect. “Outer Region,
ρ = O(1)”, under a perturbation of σ of the form

σ ∼ ε �(ρ) eω t ,

where ε = ||σ(ρ, 0)||∞ 
 1 (such that 1/R 
 ε is assumed), �(ρ) is a differ-
entiable, initial distribution function (with �(0) = 0 assumed) and exponent ω is
such that, in general, stability of the unperturbed state requires �(ω) < 0 for all its
solutions. The reduced system is given by (57–62) with R → ∞, and we expand the
other variables as follows

v̂s ∼ ρ + ε Vs(ρ) eω t , p̂w ∼ −φwS(σ ∗
rr0
)

α1

(
1

φ
(1)
s

+ 1

φw

)

+ ε Pw(ρ) eω t ,

σ̂rr ∼ σ ∗
rr + ε �rr (ρ) eω t ,

Ṙ

R
∼ �0 + ε �1 eω t ,

with v̂w = v̂s to this order and noting that σ̂kk ∼ 3σ ∗
rr +ε (3�rr −2�) eω t . Substituting

these expansions into (61) yields on integration at O(ε),

Vs(ρ) = − ρ
3ω φ(1)s

2 S(σ ∗
rr ) μ

(1)

∫ 1

ρ

�(ρ̂)

ρ̂
dρ̂,

using Vs(1) = 0 (as v̂s(1, t) = 1); we note that the integral is bounded ∀ρ ∈ [0, 1]
because �(0) = 0. The function �rr (ρ) can now be determined from (57), that leads
from (60) and (62) to two formulations for Pw(ρ), which, due to�(ρ) being arbitrary,
supplies a consistency condition requiring that ω takes a unique value, namely

ω = − 4 S′(σ ∗
rr ) α1 φ

(1)
s μ(1)

3
(
α1φ

(1)
s + φw S′(σ ∗

rr )(φ
(1)
s + φw)

) .
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Since S′(σ ∗
rr ) > 0, it follows thatω < 0; hence, any small perturbation to σ , satisfying

1/R(t) 
 ||σ(ρ, 0)||∞ = O(ε) 
 1, decays exponentially to at least O(1/R) or
smaller.

Appendix 3: Phase 4 Growth Analysis

The leading order growth behaviour during Phase 4 as t → ∞ can be determined
using term balancing arguments. Except for the relatively thin outer rim, growth is
approximately described by Eqs. (57–62) with α1 = 0 (i.e. vascular-influx switched
off). We suppose R ∼ R[4] tχ , where R[4] is a constant and χ > 0 is the power-law
growth constant to be determined. It immediately follows that Ṙ/R = � = O(1/t)
and, since the scalings prescribed in Appendix 2 imply v̂s = O(1), Eq. (57) implies
S = O(1/t) and hence σkk = O(t1/m) from (40). Using (59) it follows that pw =
O(t2χ−1) leading to σrr = O(t2χ−1) from (60). Assuming σkk = O(σrr ), as is
supported numerically, then we can deduce 2χ − 1 = 1/m and hence,

R ∼ R[4] t (m+1)/2m,

as t → ∞.
Using the parameters in Table 2, we expect in the simulations that R ∼ R[4] t 61/120

in large time. This is indeed the case, but it took t ≈ 50,000 and R ≈ 1,300 for the
exponent (m + 1)/2m to be within 5 % of the final theoretical value, and t ≈ 90,000
and R ≈ 1,550 to be within 1 %. Faster convergence was observed with larger values
of kw.
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