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Abstract Turing patterns can be observed in reaction-diffusion systems where chem-
ical species have different diffusion constants. In recent years, several studies investi-
gated the effects of noise on Turing patterns and showed that the parameter regimes,
for which stochastic Turing patterns are observed, can be larger than the parameter
regimes predicted by deterministic models, which are written in terms of partial dif-
ferential equations (PDEs) for species concentrations. A common stochastic reaction-
diffusion approach is written in terms of compartment-based (lattice-based) models,
where the domain of interest is divided into artificial compartments and the number
of molecules in each compartment is simulated. In this paper, the dependence of sto-
chastic Turing patterns on the compartment size is investigated. It has previously been
shown (for relatively simpler systems) that a modeler should not choose compart-
ment sizes which are too small or too large, and that the optimal compartment size
depends on the diffusion constant. Taking these results into account, we propose and
study a compartment-based model of Turing patterns where each chemical species is
described using a different set of compartments. It is shown that the parameter regions
where spatial patterns form are different from the regions obtained by classical deter-
ministic PDE-based models, but they are also different from the results obtained for
the stochastic reaction-diffusion models which use a single set of compartments for
all chemical species. In particular, it is argued that some previously reported results on
the effect of noise on Turing patterns in biological systems need to be reinterpreted.
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1 Introduction

In his pioneering work, Turing (1952) showed that stable spatial patterns can develop
in reaction-diffusion systems which include chemical species (morphogens) with dif-
ferent diffusion constants. Considering a system of two chemical species with concen-
trations u(x, t) and v(x, t) in a one-dimensional interval x ∈ [0, L], the underlying
deterministic model of Turing patterns can be written as a system of two reaction-
diffusion partial differential equations (PDEs)

∂u

∂t
= Du

∂2u

∂x2 + f1(u, v), (1)

∂v

∂t
= Dv

∂2v

∂x2 + f2(u, v), (2)

where Du and Dv are diffusion constants of morphogens u and v, respectively, and
f1(u, v) and f2(u, v) describe chemical reactions. Then, the standard analysis pro-
ceeds as follows (Murray 2002; Satnoianu et al. 2000): a homogeneous steady state
u(x, t) ≡ us, v(x, t) ≡ vs is found by solving f1(us, vs) = 0 and f2(us, vs) = 0. It is
shown that the homogenous steady state is stable when Du = Dv , and conditions on
f1, f2, Du and Dv are obtained which guarantee that the homogeneous steady state will
become unstable for Du �= Dv . Then, Turing patterns are observed at the steady state.

The above argument was extensively analyzed in the mathematical biology litera-
ture, and conditions for Turing patterns have been determined (Murray 2002; Satnoianu
et al. 2000). Experimental studies with chemical systems (chlorite-iodide-malonic acid
reaction) demonstrated Turing type patterns (Kepper et al. 1991; Quyang and Swin-
ney 1991). There has also been experimental evidence that a simple Turing patterning
mechanism can appear in developmental biology, for example, in the regulation of
hair follicle patterning in developing murine skin (Sick et al. 2006). One of the crit-
icisms of Turing patterns is their lack of robustness (Maini et al. 2012). The PDE
system (1)–(2) can have several stable non-homogeneous solutions which the system
can achieve with relatively small perturbations to the initial condition. Considering
PDEs in a suitably growing domain, one can obtain an additional constraint on the
system which restricts the set of accessible patterns, increasing the robustness of pat-
tern generation with respect to the initial conditions (Crampin et al. 1999; Barrass et
al. 2006). However, to assess the sensitivity of patterns with respect to fluctuations,
stochastic models have to be considered (Maini et al. 2012; Black and McKane 2012).

One of the most common approaches to stochastic reaction-diffusion modeling is
formulated in the compartment-based (lattice-based) framework (Erban et al. 2007).
In the one-dimensional setting, the compartment-based analogue of the PDE model
(1)–(2) can be formulated as follows: The computational domain [0, L] is divided
into K compartments of length h = L/K . We denote the number of molecules of
chemical species U (resp. V ) in the i-th compartment ((i − 1)h, ih) by Ui (resp. Vi ),
i = 1, 2, . . . , K . Then, the diffusion of U and V is described by the following chains
of “chemical reactions” (Erban et al. 2007):
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Fig. 1 Turing patterns for the stochastic reaction-diffusion system (3), (4) and (6). a Numbers of molecules
of chemical species U in each compartment at time 18; b the same plot for chemical species V . The initial
condition was the homogeneous steady state Ust = 200 and Vst = 75 for the parameters given in the text.
The values of Ust and Vst are denoted by dashed lines. Adapted from Erban et al. (2007) with permission

U1

du−→←−
du

U2

du−→←−
du

U3

du−→←−
du

. . .

du−→←−
du

UK , (3)

V1

dv−→←−
dv

V2

dv−→←−
dv

V3

dv−→←−
dv

. . .

dv−→←−
dv

VK (4)

where

du = Du

h2 and dv = Dv

h2 . (5)

Reactions are localized to each compartment. For example, considering the commonly
studied Schnakenberg reaction system (Schnakenberg 1979), chemical reactions in the
i-th compartment are described by (Qiao et al. 2006):

∅
k1−→←−
k2

Ui , ∅ k3−→ Vi , 2Ui + Vi
k4−→ 3Ui . (6)

The above formulation (3), (4) and (6) describes the stochastic reaction-diffusion
model as a system of (8K − 4) chemical reactions: We have (K − 1) diffusive jumps
of U molecules to the left (resp. right), (K − 1) diffusive jumps of V molecules to the
left (resp. right) and 4K reactions (6). This system can be simulated using the Gillespie
algorithm (Gillespie 1977), or its equivalent formulations (Cao et al. 2004; Gibson and
Bruck 2000). In Fig. 1, we present an illustrative simulation of the reaction-diffusion
system (3), (4) and (6). We clearly see that Turing patterns can be observed for the
chosen set of dimensionless parameters: k1 = 4 × 103, k2 = 2, k3 = 1.2 × 103,
k4 = 6.25 × 10−8, Du = 10−3 and Dv = 10−1. Compartment values above (resp.
below) the homogeneous steady-state values Ust = 200 and Vst = 75 are colored
black (resp. light gray) to visualize stochastic Turing patterns. Let us note that the rate
constants k1 and k3 are production rates per unit of area. The stochastic model uses the
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Fig. 2 a Schematic of the uniform discretization. b Schematic of different meshes used for U and V where
γ defined by (12) is equal to 5

production rates per one compartment which are given as k1h and k3h, respectively.
More details of this stochastic simulation are given in Sect. 2 where we introduce the
corresponding propensity functions (10)–(11).

The compartment-based approach has been used for both theoretical analysis and
computational modeling (Scott et al. 2011; Hattne et al. 2005). The regions where sto-
chastic Turing patterns can be expected were calculated using the linear noise analysis
(Biancalani et al. 2010; McKane et al. 2014; Butler and Goldenfeld 2011). These stud-
ies were also generalized to growing domains (Woolley et al. 2011a, b), to stochastic
reaction-diffusion models with delays (Woolley et al. 2012), to non-local trimolecu-
lar reactions (Biancalani et al. 2011) and to stochastic Turing patterns on a network
(Asslani et al. 2012). Compartment-based software packages were developed (Hattne
et al. 2005) and applied to modeling biological systems (Fange and Elf 2006). Com-
putational approaches were also generalized to non-regular compartments (lattices)
and complex geometries (Engblom et al. 2009; Isaacson and Peskin 2006). Stochastic
simulations of Turing patterns (Twomey 2007; Fu et al. 2008; Hori and Hara 2012)
and excitable media (Vigelius and Meyer 2012) were also presented in the literature.
However, these theoretical and computational studies use the same discretization for
each chemical species. In this paper, we will demonstrate that, in the case of Turing
patterns, this simplifying assumption can undesirably bias the obtained theoretical and
computational results.

One of the assumption of the compartment-based modeling is that compartments
are small enough so that they can be assumed well-mixed. In particular, the relative size
of diffusion and reaction constants determine the appropriate size of the compartment
(Erban and Chapman 2009; Isaacson 2009; Hellander et al. 2012). It can be shown that
there exists a limitation on the compartment size from below whenever the reaction-
diffusion system includes a bimolecular reaction (Erban and Chapman 2009; Isaacson
2009; Hellander et al. 2012). There are also bounds on the compartment size from
above (Kang et al. 2012; Hu et al. 2014), again the diffusion constant plays an impor-
tant role in these estimates. In the case of Turing patterns, we have chemical species
with different diffusion constants. For example, in the illustrative simulation in Fig. 1,
we have Dv/Du = 100, i.e., the diffusion constant of V is 100-times larger than the
diffusion constant of U . However, we used the same discretization for both U and V
which is schematically denoted in Fig. 2a. If we take into account that V diffuses much
faster, then one could also consider the discretization in Fig. 2b where one compart-
ment in the V variable corresponds to several compartments in the U variable. In this
paper, we will study differences between discretizations in Fig. 2a, b. We will show that
these discretizations lead to different parameter regimes for stochastic Turing patterns.
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The paper is organized as follows. In Sect. 2, we introduce and analyze a simple test
problem which will be used to illustrate our results. It will be based on the above model
(3), (4) and (6). In Sect. 3, we analyze both types of discretizations, considering a simple
two-compartment discretization in U . Illustrative numerical results are presented in
Sect. 4. We conclude this paper with the discussion of our results in Sect. 5.

2 Deterministic and Stochastic Models of an Illustrative Reaction-Diffusion
System

We will consider a simple one-dimensional Schnakenberg model (6) where the reaction
rate constants are given by (Qiao et al. 2006)

k1 = ω, k2 = 2, k3 = 3ω, k4 = 1

ω2 (7)

and ω is a scale factor. We used ω = 4 × 103 in the illustrative simulation in Fig. 1.
When there is no diffusion involved, the dynamics of this system can be represented
as the system of reaction rate ordinary differential equations (ODEs)

du

dt
= k1 − k2u + k4u2v,

dv

dt
= k3 − k4u2v,

which has a unique stable steady state at us = 2ω and vs = 3ω/4. When we consider
diffusion, the reaction-diffusion PDEs (1)–(2) are given by

∂u

∂t
= Du

∂2u

∂x2 + k1 − k2u + k4u2v, (8)

∂v

∂t
= Dv

∂2v

∂x2 + k3 − k4u2v. (9)

We are implicitly assuming homogeneous Neumann boundary conditions (zero-flux)
in the whole paper, but both the PDE model (8)–(9) and its stochastic counterparts could
also be generalized to different types of boundary conditions (Erban and Chapman
2007). Using standard analysis of Turing instabilities (Qiao et al. 2006; Murray 2002),
one can show that the Turing patterns are obtained for Dv > 39.6Du for the parameter
values (7). This condition is independent of ω. The illustrative simulation in Fig. 1
was computed for Dv/Du = 100, i.e., the condition for (deterministic, mean-field)
Turing patterns was satisfied.

When we are concerned with the stochastic effects, the reaction-diffusion
system can be simulated by the Gillespie stochastic simulation algorithm with the
one-dimensional computational domain [0, L] discretized. Considering uniform dis-
cretization in Fig. 2a, the stochastic model is given as a set of “chemical reactions” (3),
(4) and (6). Denoting the compartment length by h, we have the following propensity
functions in the i-th compartment (Gillespie 1977; Qiao et al. 2006):

123



3056 Y. Cao, R. Erban

α1 = k1h, α2 = k2Ui , α3 = k3h, α4 = k4

h2 Ui (Ui − 1)Vi , (10)

α5 = α6 = duUi , α7 = α8 = dvVi , (11)

where du and dv are given by (5). The first four propensities (10) are for the four
chemical reactions in (6). The propensities (11) are for the diffusive jumps (left and
right) for U (indices 5 and 6) and V (indices 7 and 8) which correspond to (3) and
(4), respectively. In the illustrative simulation in Fig. 1, we divided interval [0, 1]
into K = 40 compartments, i.e., h = 1/40 = 0.025. In particular, the production
rate of U molecules in one compartment was equal to α1 = k1h = ωh = 100. The
homogeneous steady state in compartments corresponded to values Ust = ush =
2ωh = 200 and Vst = vsh = 3hω/4 = 75.

2.1 Formulation of the Generalized Compartment-Based Model

The compartmentalization in Fig. 2b generalizes (3) and (4) to the case where different
discretizations are used for U and V . We will denote by Ku (resp. Kv) the number of
compartments in the U (resp. V ) variable. We define the compartment lengths by

hu = L

Ku
, hv = L

Kv

, and γ = Ku

Kv

= hv

hu
, (12)

where γ is the ratio of compartment sizes in the V and U variable. In what follows,
we will consider that γ is an integer. For example, the schematic diagram in Fig. 2b
used γ = 5. Then, the diffusion model is formulated as follows

U1

du−→←−
du

U2

du−→←−
du

U3

du−→←−
du

. . .

du−→←−
du

UKu , (13)

V1

dv−→←−
dv

V2

dv−→←−
dv

V3

dv−→←−
dv

. . .

dv−→←−
dv

VKv , (14)

where

du = Du

h2
u

, dv = Dv

h2
v

= Dv

Duγ 2 du . (15)

In the standard compartment-based model (3) and (4), we have γ = 1. One option
to choose γ in the generalized model (13) and (14) is to ensure that du = dv which
implies

γ =
√

Dv

Du
. (16)

Then, the jump rates du and dv from the corresponding compartments are equal for
molecules of U and V . However, we will not restrict to the case (16) and consider
general choices of γ in this paper. The generalization of the first three propensities in
(10) is straightforward. Propensities α1 and α2 in (10) correspond to chemical species
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Fig. 3 Turing patterns computed by the generalized compartment-based model (13)–(17). a Numbers of
molecules of chemical species U in each compartment at time 18; b the same plot for chemical species V .
The initial condition was the homogeneous steady state Ust = 200 and Vst = 750 for the parameters given
in the text. The values of Ust and Vst are denoted by dashed lines

U , and we have the following propensities in the i-th compartment, i = 1, 2, . . . , Ku :
α1 = k1hu and α2 = k2Ui . The propensity α3 in (10) is considered in the j-th
compartment corresponding to the V species, i.e., in the compartment

(
( j−1)hv, jhv

)
.

It is given as α3 = k3hv . To generalize α4, we have to consider the occurrences of the
trimolecular reaction

2U + V
k4−→ 3U

in every small compartment used for the discretization of the U variable. In the i-th
compartment, the propensity function α4 is:

α4 = k4

h2
u

Ui (Ui − 1)
Vj

γ
, (17)

where Vj corresponds to the j-th compartment in the V variable to which the i-th
compartment belongs, i.e.,

(
(i − 1)hu, ihu

) ⊂ (
( j − 1)hv, jhv

)
.

The main idea of the compartment-based model is that the molecules of V are con-
sidered to be well-mixed in the compartments of the size hv . Thus, the propensity
function (17) correctly generalizes the propensity of trimolecular reaction α4 in the
smaller compartment of length hu .

In Fig. 3, we present an illustrative simulation of the generalized compartment-
based model (13)–(17). We use the same parameters as in Fig. 1 to enable direct
comparisons, i.e., k1, k2, k3, k4 are given by (7) where the scale factor ω = 4× 103.
We use (16) to select the value of γ . Since Du = 10−3 and Dv = 10−1, the formula
(16) implies γ = 10. We use the same number of compartments for U variable as in
Fig. 1: Ku = 40. Using γ = 10, we obtain that V is discretized into Kv = 4 com-
partments. In Fig. 3, we see that the Turing pattern can still be clearly observed. As in
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Fig. 1, compartment values above (resp. below) the homogeneous steady-state values
Ust = 200 and Vst = 75γ = 750 are colored black (resp. light gray) to visualize
stochastic Turing patterns.

Since the compartments for the V variable are 10-times larger in Fig. 3b than in Fig.
1b, it is not surprising that the numbers of molecules of V (per compartment) increased
by the factor of 10. However, we can also notice that the numbers of molecules of U per
compartment quantitatively differ in Figs. 1a and 3a (black peaks are twice as tall). An
open question is to quantify these differences. In this paper, we show that even quali-
tative differences can be observed in some parameter regimes, where the generalized
compartment-based model exhibits Turing patterns, while the original model does not.

The generalized compartment-based model (13) and (14) can be used to construct
computational approaches to speed-up simulations of the standard compartment-based
model, because it does not simulate all diffusion events for chemical species with large
diffusion constants (Li and Cao 2012, 2014). For example, the illustrative simulation
in Fig. 3 simulates ten times less compartments for V and is less computationally inten-
sive than the original simulation in Fig. 1. However, in this work, we are interested
in a different question than discussing numerical errors with different discretization
strategies. We will investigate the Turing pattern formation under different discretiza-
tions. We will argue that the classical compartment-based approach is not the best
starting point to analyze noise in systems which have chemical species with different
diffusion constants. This conclusion can be already demonstrated if we consider a
simple two-compartment model as we will see in the next section.

3 Analysis of Compartment-Based Models for Ku = 2

We will consider that the domain [0, L] is divided into two compartments in the U
variable, i.e., Ku = 2. Then, we have two possible options for the discretization of
the quickly diffusing chemical species V :

(i) γ =1 which corresponds to the classical compartment-based model where Kv=2;
(ii) γ = 2 which corresponds to the generalized compartment-based model where

Kv = 1.

We will start with the latter case which includes three variables U1, U2 and V1 and is
easier to analyze. In Sect. 3.2, we compare our results with the classical compartment-
based approach.

3.1 Generalized Compartment-Based Model: Ku = 2 and Kv = 1

We consider the case where the whole interval [0, L] is divided into two compartments
for U and one compartment for V . The discretization is illustrated in Fig. 4a. We will
denote by u1, u2 and v1 the average numbers of molecules of U1, U2 and V1 as
predicted by the corresponding mean-field model. They satisfy the following system
of three ODEs (Erban et al. 2007)
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Fig. 4 a Generalized compartment-based model for Ku = 2 and Kv = 1: The interval is divided into two
compartments for U and remains as one compartment for V . b Classical compartment-based model: The
interval is divided into two compartments for both U and V

du1

dt
= du(u2 − u1)+ k1hu − k2u1 + k4

huhv

u2
1v1, (18)

du2

dt
= du(u1 − u2)+ k1hu − k2u2 + k4

huhv

u2
2v1, (19)

dv1

dt
= k3hv − k4

huhv

(
u2

1 + u2
2

)
v1. (20)

We will study the stability of its steady states. In order to find the steady state, we let
the left-hand side terms be zero. The corresponding algebraic equations can be written
in the following form:

du(u2 − u1)+ k1L

2
− k2u1 + 2k4

L2 u2
1v1 = 0, (21)

du(u1 − u2)+ k1L

2
− k2u2 + 2k4

L2 u2
2v1 = 0, (22)

k3L − 2k4

L2 (u2
1 + u2

2)v1 = 0, (23)

where we used hu = L/Ku = L/2 and hv = L/Kv = L . Adding all three equations,
we have

u1 + u2 = (k1 + k3)L

k2
= 2ωL , (24)

where we used the parameter choice (7). Let u1 = (1 + r)ωL and u2 = (1 − r)ωL .
Solving (23) for v1, we obtain

v1 = k3L3

2k4(u2
1 + u2

2)
= 3ωL

4(1+ r2)
. (25)

Substituting (25) back to (21), we have

−2du r ωL + k1L

2
− k2(1+ r)ωL + 2k4(1+ r)2ω2 3ωL

4(1+ r2)
= 0.

Using the parameter choice (7), we can simplify it to

r
[
(1− 2du)− 2(1+ du)r2

]
= 0. (26)
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Fig. 5 a The time evolution of U1 computed for the generalized compartment-based model with Ku = 2
and Kv = 1. The homogeneous steady state u2

s = 500 is plotted using the dashed line. b The time-dependent
pattern given by the values of U1 and U2 computed for the same realization of the Gillespie algorithm as
in the panel (a)

The system will have a non-homogeneous solution u1 �= u2 if and only if the equation
(26) has a nonzero solution, and that requires 2du < 1. Using (15) and hu = L/2, we
obtain

Du <
L2

8
. (27)

If this condition is satisfied, then the system has two non-nonhomogeneous steady-
state solutions

u1 = (1± r)ωL , u2 = (1∓ r)ωL , v1 = 3ωL

4(1+ r2)
, (28)

where

r =
√

L2 − 8Du

2L2 + 8Du
. (29)

In Fig. 5, we illustrate this result. We use L = 1, Du = 0.1 and ω = 500. Then,
r = 0.27 and the steady-state values of u1 (resp. u2 are):

u1
s

.= 366, u2
s

.= 500, u3
s

.= 634.

In Fig. 5a, we present the time evolution of U1 computed by the Gillespie algorithm.
We initialize the system at the steady state [U1(0), U2(0), V1(0)] = [634, 366, 350].
We clearly see that the system is capable of switching between this state and the second
non-homogeneous state. In Fig. 5b, we visualize the corresponding time-dependent
pattern. As in Figs. 1 and 3, we plot the values which are larger than the homogeneous
steady state u2

s = 500 in black. Light gray color denotes the values which are lower
than u2

s = 500. We plot both U1 and U2 values in Fig. 5b to visualize the resulting
pattern.
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3.2 Classical Compartment-Based Model: Ku = 2 and Kv = 2

Next, we consider the case where the whole interval [0, L] is divided into two com-
partments for both U and V . The discretization is illustrated in Fig. 4b. Denoting
u1, u2, v1 and v2 the average numbers of molecules obtained by the corresponding
mean-field model, they satisfy the following system of four ODEs (Erban et al. 2007)

du1

dt
= du(u2 − u1)+ k1hu − k2u1 + k4

huhv

u2
1v1,

du2

dt
= du(u1 − u2)+ k1hu − k2u2 + k4

huhv

u2
2v2,

dv1

dt
= dv(v2 − v1)+ k3hv − k4

h2
u

u2
1v1,

dv2

dt
= dv(v1 − v2)+ k3hv − k4

h2
u

u2
2v2.

Again letting the left-hand side terms be zero and using hu = hv = L/2, we obtain
the following system of algebraic equations

2du(u2 − u1)+ k1L − 2k2u1 + 8k4

L2 u2
1v1 = 0, (30)

2du(u1 − u2)+ k1L − 2k2u2 + 8k4

L2 u2
2v2 = 0, (31)

2dv(v2 − v1)+ k3L − 8k4

L2 u2
1v1 = 0, (32)

2dv(v1 − v2)+ k3L − 8k4

L2 u2
2v2 = 0. (33)

Adding all equations together, we have

u1 + u2 = (k1 + k3)L

k2
= 2ωL . (34)

Adding (32) and (33), we also have

u2
1v1 + u2

2v2 = k3L3

4k4
= 3ω3L3

4
. (35)

Adding (30) and (32), we obtain

(k1 + k3)L − 2k2u1 + 2du(u2 − u1)+ 2dv(v2 − v1) = 0. (36)

Using (34), we have u1 = (1+ r)ωL and u2 = (1− r)ωL for a suitable r . Thus, (36)
can be rewritten as

v2 − v1 = 2r(1+ du)ωL

dv

= 2r RωL , (37)
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where we denoted R = (1 + du)/dv . Substituting (37) into (32) and denoting
S = 1+ du = dv R, we have

v1 = (3+ 4Sr)ωL

8(1+ r)2 . (38)

Similarly from (33), we have

v2 = (3− 4Sr)Lω

8(1− r)2 . (39)

Substituting both (38) and (39) to (37), we obtain

3− 4Sr

8(1− r)2 −
3+ 4Sr

8(1+ r)2 = 2Rr.

which can be simplified to the equation

r

(
4R

(
1− r2

)2 + 2S
(

1+ r2
)
− 3

)
= 0.

We are looking for the non-homogeneous solution where r �= 0. Denoting y = r2 > 0,
we have a quadratic equation

4Ry2 + (2S − 8R)y + (4R + 2S − 3) = 0. (40)

We will look for conditions such that the equation (40) has a solution 0 < y < 1
(since −1 < r < 1). Let

f (y) = 4Ry2 + (2S − 8R)y + (4R + 2S − 3). (41)

Then, we have f (1) = 4S − 3 = 1 + 4du > 0. One can verify that if f (0) > 0, it
is impossible for the equation f (y) = 0 to have a solution between 0 and 1. On the
other hand, if f (0) < 0, we will definitely have a solution between 0 and 1. Thus, we
have a necessary and sufficient condition

f (0) = 4R + 2S − 3 < 0, (42)

which corresponds to the condition for du and dv:

4

dv

+ 2 <
3

1+ du
.

We note that du = Du/h2 and dv = Dv/h2, where h = hu = hv = L/2. Thus, the
necessary and sufficient condition for patterns becomes

L2

Dv

+ 2 <
3L2

L2 + 4Du
. (43)
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Fig. 6 The regions of patterning
in Du -Dv plane. The shaded
area is the region where the
standard compartment-based
model does not yield patterns
and the generalized
compartment-based model has
patterns. The (blue) circle is the
parameter regime used in Fig.
7a, and the (red) square is the
parameter regime used in Fig. 7b
(Color figure online)
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If Dv → ∞, then the condition (43) becomes the condition (27) which was derived
for the case of the generalized compartment-based model. The condition (27) is a
necessary condition for (43) but not sufficient. We illustrate it in Fig. 6 for L = 1.
The condition (27) corresponds to all parameter values to the left of the dashed line
in Fig. 6. The condition (43) corresponds to the values of Du and Dv which are above
the (blue) solid line. The shaded area corresponds to parameter values for which
the generalized compartment-based model yields non-homogeneous patterns and the
standard compartment-based model does not. Next, we will use the same value of Du

as in Fig. 5, namely Du = 0.1. We choose two values of Dv which are denoted as
the (blue) circle and (red) square in Fig. 6. We use the Gillespie algorithm to simulate
the standard compartment-based model for Ku = Kv = 2. The results are shown
in Fig. 7. The top panels show the time evolution of U1 and U2. We clearly see the
switching between two patterns for Dv = 10, but there is no bistability for Dv = 0.4.

The resulting patterns are visualized in the bottom panels. As in Figs. 1, 3 and 5, we
plot the values which are larger than the homogeneous steady state u2

s = 500 in black.
Light gray color denotes the values which are lower than u2

s = 500.
Let us note that we are comparing the generalized compartment-based model with

Ku = 2 and Kv = 1 with the classical compartment-based model. In particular, the
generalized compartment-based model uses γ = 2. If we substitute γ = 2 in formula
(16), we obtain Dv = 4Du . In particular, the parameter values Du = 0.1 and Dv = 0.4.

are compatible with the choice (16). However, the standard compartment-based model
does not exhibit patterns for this parameter choice as we observed in Fig. 7a.
Remark Let z = L2. Then, the inequality (43) becomes

z2 + (4Du − Dv)z + 8Du Dv < 0, (44)

which is possible for some values of L if and only if

4Du < Dv and (4Du − Dv)
2 − 32Du Dv > 0. (45)
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Fig. 7 Time evolution of U1 (blue line) and U2 (red line) for Ku = Kv = 2 is shown in top panels for a
Du = 0.1, Dv = 0.4 and b Du = 0.1, Dv = 10. The corresponding time-dependent pattern is shown in
bottom panels (Color figure online)

Thus, patterns are possible for some values of L provided that

Dv

Du
> 20+ 8

√
6 ≈ 39.6. (46)

This condition is also the condition for the Turing patterns to emerge for the original
system of mean-field PDEs (8)–(9).

4 Comparison of Compartment-Based Models for Ku > 2

The condition (27) for the generalized compartment-based model is only a necessary
condition for the condition (43) for the classical case as we showed in Fig. 6. The
bistability condition difference suggests that, if we use different discretizations for U
and V , the stability of the homogeneous system may change. In this section, we com-
pare the generalized and classical compartment-based models for Ku > 2. In Fig. 8,
we use Du = 5 × 10−4 and Dv = 20Du . In this case, the condition for (determinis-
tic) Turing patterns (46) is not satisfied. The classical compartment-based model also
does not show Turing patterns as it is demonstrated in Fig. 8a (with Ku = Kv = 64
compartments) and Fig. 8b (with Ku = Kv = 8 compartments). In both cases, no
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Fig. 8 Spatial distribution of U at time T = 100 for Dv = 20Du , ω = 4096 and Du = 5 × 10−4 with
a Ku = Kv = 64; b Ku = Kv = 8; c Ku = 64 and Kv = 8; d Ku = 32 and Kv = 8. There is no Turing
pattern in the top panels (classical compartment-based model). Turing patterns appear in the bottom panels
(generalized compartment-based model)

spatial Turing pattern is observed except noise from stochastic effects. However, if the
generalized compartment-based model is used, then the Turing pattern may appear.
In Fig. 8c, a result for the generalized compartment-based model with Ku = 64 and
Kv = 8 is presented. There is a clear Turing pattern. In Fig. 8c, we have γ = 8. We
also tested cases when γ = 2 and γ = 4 and obtained Turing patterns. The case γ = 4
is plotted in Fig. 8d.

In Fig. 9, we demonstrate that both discretizations strategies clearly show Turing
patterns when we increase the ratio of diffusion constants to Dv/Du = 80. In this case,
the condition for (deterministic) Turing patterns (46) is satisfied. Finally, we present
results for Dv = 40Du in Fig. 10. In the deterministic PDE system, when Dv = 40Du ,
Turing pattern should still appear. But in the classical compartment-based model, it is
hard to claim that there is a visible Turing pattern (see Figs. 10a, c). Considering the
generalized compartment-based model, Turing patterns can be clearly observed (see
Fig. 10b, d).

5 Discussion

We have shown that two choices of compartments illustrated in Fig. 2 can give different
parameter regions for stochastic Turing patterns. An obvious question is which one
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Fig. 9 Spatial distribution of U at time T = 100 for Dv = 80Du . Both discretization strategies clearly
show Turing patterns. We use ω = 4096, Du = 5× 10−4 with a Ku = Kv = 32; b Ku = 32 and Kv = 8

Fig. 10 Spatial distribution of U at time T = 100 for Dv = 40Du . The generalized compartment-based
model clearly shows Turing patterns, while it is difficult to see whether Turing patterns appear in the classical
compartment-based model. We use ω = 4096, Du = 5 × 10−4 with a Ku = Kv = 32; b Ku = 32 and
Kv = 8; c Ku = Kv = 64; d Ku = 64 and Kv = 8

is correct. One possibility to address this question is to consider a more detailed
molecular-based approach which would be written in the form of Brownian dynamics
(Erban and Chapman 2009). We are currently working on such a simulation, and we
will report our findings in a future publication.

Although our results might look like a warning against the use of compartment-
based methods for patterns based on the Turing mechanism, there are very good
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reasons to use the compartment-based model in other situations (Engblom et al. 2009;
Isaacson and Peskin 2006). Compartment-based models are often less computationally
intensive than detailed Brownian dynamics simulations (Flegg et al. 2012; Hellander
et al. 2012). They can be used for developing efficient multiscale methods where parts
of the domain are simulated using the detailed Brownian dynamics while the rest of
the domain is simulated using compartments (Erban et al. 2014; Flegg et al. 2013).
They can also be used to bridge Brownian dynamics simulations with macroscopic
PDEs (Ferm et al. 2010), because direct multiscale methods for coupling Brownian
dynamics with PDEs are challenging to implement (Franz et al. 2013).

We have shown in Fig. 9 that the resulting patterns are comparable when the ratio
of diffusion constants is sufficiently large. In this case, the generalized compartment-
based model could also be used to construct computational approaches to speed-up
simulations of the standard compartment-based model, because it does not simulate all
diffusion events for chemical species with large diffusion constants (Li and Cao 2012,
2014). This multigrid discretization strategy has been recently applied in the modeling
and simulation of a spatiotemporal model of PopZ localization in Caulobacter cres-
centus (Subramanian et al. 2014). In this model, the PopZ localization demonstrates a
clear Turing pattern that can be modeled by a variation of the Schnakenberg model (6).
The ratio of diffusion constants is sufficiently large, because PopZ monomers (vari-
able V ) diffuse (by three orders of magnitude) faster than PopZ polymers (variable
U ). Thus, the multigrid discretization strategy can be safely applied, and there is a
significant speedup in numerical simulation (Subramanian et al. 2014).
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