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Abstract We consider a dynamical model of cancer growth including three interact-
ing cell populations of tumor cells, healthy host cells and immune effector cells. The
tumor—immune and the tumor-host interactions are characterized to reproduce exper-
imental results. A thorough dynamical analysis of the model is carried out, showing its
capability to explain theoretical and empirical knowledge about tumor development.
A chemotherapy treatment reproducing different experiments is also introduced. We
believe that this simple model can serve as a foundation for the development of more
complicated and specific cancer models.
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1 Introduction

It is increasingly apparent that the growth deregulation within a tumor can only be
explained once we understand the contributions of the host healthy cells present with it,
which play key roles in driving tumor cell proliferation. Signaling interactions between
the stromal and the neoplastic tissue may ultimately prove to be as important as the
cancer cell autonomous mechanisms in explaining tumor cell proliferation (Hanahan
and Weinberg 2000). The importance of the immune system fighting the growth of
tumors is undeniable, to the point that immunotherapy is lately focusing major atten-
tion of cancer therapists and researchers (Couzin-Frankel 2013). Also chemotherapy
treatments are under constant examination, in the pursuit of better distribution mech-
anisms that diminish the toxicity of the anticancer drugs (Pastorino et al. 2006), as
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A Validated Mathematical Model of Tumor Growth 2885

well as protocols that evade the resistance of tumor cells to such cytotoxic substances
(Lavi et al. 2012). Mathematical modeling of tumor growth (Bellomo et al. 2008)
has been widely used to explain different aspects of tumor progression, such as tumor
dormancy, sneaking through, angiogenic switch, invasion, morphology. Therefore, the
development of validated and simple mathematical models representing several types
of tissues and the nonlinear interactions among them, as well as therapy protocols, is
of paramount importance.

The main goal of the present work was to develop a validated ODE model of tumor
progression with three interacting cell populations representing the healthy tissue,
the neoplastic tissue and the immune effector cells. For this purpose, we derive the
dynamical system equations from a similar validated model describing immune and
tumor dynamics (De Pillis et al. 2005), but that considers different cell populations
for innate and specific immune responses and disregards tumor—host interplay. Here,
the immune response is integrated in a single cell population, as it was the case of
older models (De Pillis and Radunskaya 2003), allowing us to include a population
representing the healthy tissue and still to visualize in a simple manner their dynamical
phase space. By means of the least-squares fitting method, we adjust the model to
experimental data (Diefenbach et al. 2001), verifying that the lysis of cancer cells
by the effector constituents of the immune system is accurately reproduced by the
model. As a completely new feature regarding previous modeling of this nature, we
also introduce a chemotherapy protocol validated with in vivo experiments in mice
(Hiramoto and Ghanta 1974). To reproduce the time evolution of the experimental
fractional tumor cell kill by the chemotherapeutic agents, a new method is proposed
that avoids dealing with complex pharmacokinetical models. The study is closed with
the examination of correlations between the model and the experiments.

2 Model Development

All the biological assumptions considered to set up the model equations are based
on both accepted knowledge of basic laws governing tumor growth and the immune
system function (De Pillis et al. 2005; Diefenbach et al. 2001; Kuznetsov et al. 1994).
The tumor-host competition for space and resources is developed following previous
modeling (De Pillis and Radunskaya 2003; Gatenby and Gawlinsky 1996; Kirschner
and Panetta 1988; Pinho et al. 2002), while the law governing the fractional tumor
cell kill of by the chemotherapeutic drugs is derived from the exponential kill model
(Gardner 1996), developed in accordance with in vitro experiments.

The growth of the cell populations is assumed to be logistic for both the tumor 7
and the healthy cells H, with growth rates r; and r», and carrying capacities K and
K. Other types of laws, such as Gompertz law, have no relevant consequences in the
dynamics and might be used as well. We use ordinary competition terms frequently
appearing in Lotka—Volterra models, identical to those used in De Pillis and Radun-
skaya (2003) and Gatenby and Gawlinsky (1996). Finally, the immune response and
the destruction of the neoplastic tissue are built up from the one presented in De Pillis
et al. (2005), which was validated with data from published mouse (Diefenbach et al.
2001) and human (Dudley et al. 2002) studies. The model of cell-mediated immune
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response described in that work consists of a tumor cell population 7 interacting with
two immune cell populations, the natural killers N and the CD8™ T lymphocytes L.
The fractional tumor cell kill by T cells is given by a Hill function D(L, T') depend-
ing on L/ T, while the fractional tumor cell kill by NK cells is proportional to the
number of such cells. The NK cells dynamics is modeled with four terms: a constant
input o responsible for innate immunity, a recruitment contribution g72/(h 4+ T?)N,
a competition term pNT with tumor cells and a decay term representing the death
f N of the natural killers, which after several interactions with the tumor cells become
inactivated. The CTLs dynamics is governed by analogous laws, but there is no con-
stant input of cells, since they correspond to acquired immunity. On the other hand, it
includes the stimulation of T lymphocytes in response to the interaction between NK
and tumor cells 77 N. The activation term is j D>T?/(k + D>T?)L, the death term is
mL and the competition one is gL T .

It can be numerically shown that for many initial conditions and not long times,
these two immune cell populations are more or less related in a linear fashion. In this
manner, we identify them and linearly combine their equations, simply referring to
them as effector cells E. The resulting model is as follows

. T
T =nrT (1 — K_) —apHT —a3ET — D(E, T)T
1

) H

H = r2H (l — E) —ClleH

E:a—@E+§~ﬂ E+g D*E, T)T°
i+ T2 h+ D*(E, T)T?

E —ayTE, (1

with

(E/T)"

@)

This fractional cell kill law was a novel feature discovered and introduced in De
Pillis et al. (2005), so deserves some comments. To give some hints on the significance
and possible explanations of this law, we rewrite it in the following form

E)L

DE, T)=d———.
( ) sT* + E*

3

Written this way, the law states that the more effector cells, the greater the fractional
cell kill, but bearing in mind the saturation of antigen-mediated immune response,
which depends on the tumor load. The value for which the fraction cell kill is half of
its maximum is given by Ej,, = s'/*T, what means that bigger tumors are harder to
fight by T lymphocytes. If two tumors of the same nature and different size at a certain
time instant are lysed at the same rate by the immune system, the bigger tumor will
require more effector cells. This is because an immune cell destroys tumor cells one by
one, and the number of encounters is limited by the inactivation of the effector cells.
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log s

0 0.5 1
AL
Fig. 1 Changes in the parameter s required to validate the model when the parameter A in the function
W(T)=sTis changed to A + AA. The case Ax = 0 corresponds to the (//) values shown in Table 1. The
relation is explained by the level curves of the function sT* in the parameter space (%, s), which can be
expressed in the form log s = logc(T) — Alog T'. Averaging this equation in time, we obtain the equation

logs = a — bA. A linear regression has been performed to confirm the previous assertion, obtaining the
relation logs = —0.46 — 5.79AX, with a coefficient of determination R? = 0.9996

Or equivalently, if two tumors of different size are reduced to a particular fraction of
its size after a certain period of time, the bigger tumor will require more effector cells.
On the other hand, in our opinion, the saturation effect in this law might be tacitly
including geometrical properties of the tumor and their consequences (e.g., crowding
effects and accessibility of the immune cells). We believe that it would be desirable
to propose a general law of the form

E)»

D(E,T) zdm,

“

and study different functions depending on the tumor load 4 (7") for different tumors. In
the cited work, 2(T) = sT* is used. We have tested the importance of the parameter
A by studying deviations from this function in the form A(T) = sT**2* and we
have found that shifts AA/A even higher than one are still capable of validating in an
accurate manner the immune response by simply decreasing the value of the parameter
s. The precise relation between AA and s is depicted in Fig. 1, and it is explained by
noting that the function 4 (7") can be thought as a surface in the parameter space (%, s),
so that changes in the parameters along a level curve sT* = ¢(T') are also capable of
validating the experimental results. This means that the rational form E /T appearing
in (2) may not generally hold and cannot be derived solely from the experiments used
in De Pillis et al. (2005). What can be safely deduced from such experiments is that
h(T) increases with the tumor size. Therefore, the dePillis—Radunskaya—Wiseman
law (PRW law) states that the number of the T cells for which the fractional tumor cell
kill is half of its maximum, increases monotonically with the tumor burden. It remains
unexplained why the same does not happen for the NK cells as well. As pointed out
in De Pillis et al. (2005), this might be due to the fact that NK cells are less effective
destroying tumor cells. Generally, a T lymphocyte is able to destroy more tumor cells
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Fig. 2 Data and the predicted curves from the models for the lysis of tumor cells by the effector cells.
The green curve represents the general model, while the blue corresponds to its simplified version. a The
experiment where the effector cells are primary challenged with ligand-negative-transduced cells and then
rechallenged again with control-transduced cells (nn). b The case for which the effector cells are primary
challenged with ligand-negative-transduced cells and then rechallenged with ligand-transduced cells (n/).
¢ In this case, the effector cells are primary challenged with ligand-transduced cells and then rechallenged
with control-transduced cells (/n). d The experiment where the effector cells are primary challenged with
ligand-transduced cells and then rechallenged again with ligand-transduced cells (/)

during its life cycle than a natural killer cell (Mallet and De Pillis 2006). Note also
that to obtain similar values for the lysis of tumor cells by T cells and NK cells,
much higher values of the effector:target ratio are required for the last (De Pillis et al.
2005). This hypothesis is also supported by the fact that the PRW law fits better the
experimental results for which the immune system is more effective, as can be seen
in Fig. 2.

The model shown above fits the data accurately, but it is quite hard to manage when
investigating its dynamical properties. A simplified version of this model capable of
reproducing experimental data can be obtained by neglecting the recruitment and lysis
of the NK cells, which are more ineffective fighting the tumor cells. Note, however,
that the role of the NK cells is indirectly present in the model, in the background
source rate o. The equations are now
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T
T =nT (1 - 7) —apHT — D(E, T)T
1

. H

H=rnH I—K—2 —anTH
E d3E + DX(E, T)T* E TE 3)

=0 — —————>FE —a .
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The chemotherapy treatment is here described by the exponential kill model, which
proposes the fractional cell kill law k; (C) = b; (1 — e’pic), withi =1, 2, 3 and C the
drug concentration at the tumor site, which dynamics is given by a single compartment
model and first-order pharmacokinetics. Therefore, the whole set of equations reads

. T
T=nT (1 — ?) —apHT — D(E, T)T — k1 (C)T
1

) H

H=nrH (1 — —) —ayTH —k(C)H

K,

. D*(E, T)T?

E=0c—-dE+g— "
OBkt T E T2

C=1@1)—kC, (6)

E —aTE — k3(C)E

with 1 (¢) the input of drug and k. the rate of elimination of the drug from the body.
In fact, to reproduce in vivo experiments, the fractional cell kill law k(C) is modeled
depending on the time-delayed concentration of drug C(t — 7).

Finally, the cooperation between the healthy and the tumor tissues is not modeled
here. The reason is that the paracrine signals stimulating tumor growth come from
ancillary cells (e.g., fibroblasts), different from the host cells (e.g., epithelial cells) from
which the tumor evolves (Olumi et al. 1999). Moreover, the stromal cells cooperating
with the tumor differ from the normal stromal cells. Therefore, a model with several
healthy cell populations representing the different types of tissues should be considered
to rigorously represent the tumor microenvironment.

3 Fitting the Model to Experimental Data

We fit both, the model and its simplified version, to four experimental situations,
proving that the tumor—immune interaction is again validated with accuracy. The data
used to arrange the equations and fix the parameters of our mathematical model are
obtained from Diefenbach et al. (2001). In this work, the authors study the effects of
ectopically expressing NKG2D ligands in three tumor cell lines, which resulted in the
rejection of the tumors by syngeneic B6 mice. Such rejection was mediated by NK
cells and CD8™ T cells. Their experimental results demonstrate that a high enough
expression of these ligands creates a significant barrier to the tumor establishment
in mice. In particular, the data borrowed from this work and used to fit the model
correspond to the point where the authors address whether prior immunization with
tumor cells that express ligands of the NKG2D receptor induces protective immunity
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to ligand-negative tumor cells. The NK and CD8™ T cells lysis of a T-cell lymphoma
after primary challenging with ligand-expressed cell transductants and being again
challenged with ligand-transduced or ligand-negative-transduced cells is reported.
More specifically, we deal with four possible scenarios: a primary challenge with
control-transduced cells followed by a secondary challenge with ligand or control
cells, and a primary interaction with ligand-transduced cells followed again by ligand
or ligand-negative rechallenges.

Firstly, we give a summary of the parameters used, which are listed in Tables 1
and 2, together with the corresponding sources in which the parameter estimation
methods are explained. As in Gatenby and Gawlinsky (1996), we consider similar
carrying capacities K; for the tumor and the healthy tissue, assuming that generally
the tumor occupies a region that otherwise would be filled with normal cells. Also the
rates of growth r; of both cell populations take very close values, following the same
reference, but we assume that the tumor grows faster in the absence of competition
and immune surveillance, since its dependence on cell to cell signaling for growth is
smaller (Hanahan and Weinberg 2000). These four parameters, the recruitment rates
and steepnesses, the constant input, as well as the inactivation rate of the effector cells,
are borrowed from Refs. 6 and 10. It has been demonstrated that the Gompertz law of
growth of tumor cell populations is a robust emergent feature of cancer dynamics under
nutrient competition among tumor cells (Ferreira et al. 2002). It is commonly consid-
ered (De Pillis and Radunskaya 2003) that the competition between the neoplastic and
the healthy tissues is indirect, what means that cells do not kill each other, but struggle
for territory and nutrient resources. However, a very important source of competition
between the tumor and the healthy host cells is due to the acidic environment in which
tumor cells develop, which is a consequence of the primitive metabolic pathways they
use (Gatenby and Gawlinsky 1996; Warburg 1956; Van der Heiden et al. 2009). In
fact, if we neglect spatial dependence in the equation governing the excess of H' ions
in the model presented in Gatenby and Gawlinsky (1996), the stationary state gives
a fixed point for ion concentration proportional to the number of tumor cells. Clearly
stated, the more the tumor cells, the lower the pH and the worse for the healthy tissue.
When substituted in the reaction—diffusion equation governing the dynamics of the
healthy host cells, we obtain another competition term between the host and the tumor
cells. Therefore, we assume that the tumor cells compete in a more aggressive manner
and set aj» < ap;. The effects of changing these parameters are reported in Sect. 4,
and rough estimates are provided in Sect. 6.

According to the experiments taken from Diefenbach et al. (2001), the model vali-
dation should be carried out in two separate steps, one for each type of effector cells.
For instance, the first could involve the validation of the results concerning NK cells
to obtain the value of the parameter a3 for the ligand and ligand-negative-transduced
cells. Then, after setting a3 to zero, the experimental lysis of CD8" T cells should be
fitted for the different cases. Finally, both contributions would be added to the model.
However, another possibility is to fit only CTLs results and let the parameter a;3 take
diverse values. This procedure allows more accurate fittings and has the advantage of
suggesting a generalization of the PRW law, as explained at the end of the present sec-
tion. To avoid the risks of overfitting because of using too many parameters, we have
to proceed carefully. Since the model is derived from an original validated model, we
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Table 1 Values of the parameters used to compute the curves representing the lysis of cancer cells by the
effector cells, for the general model given by (1)

Parameter Units Value Description Source
r day*1 5.14 x 107! Tumor cells growth rate (6)
K, cell 9.8 x 108 Tumor carrying capacity (6)
arn cell 7! day -1 1.1 x 10710 Competition of host cells with tumor
cells
aj3(nn) cell~! day™! 52x 1078 Fractional tumor cell kill of the (6)
power law
apz(nl) 1.6 x 1077 (6)
ay3(n) 32x 1078 ©6)
ap3(h) 8.5x 1077 ©6)
d(nn) day*1 2.20 Saturation level of fractional tumor
cell kill of the PRW law
d(nl) 3.47
d(In) 2.60
dn 7.86
s(nn) None 1.6 Steepness coefficient of the PRW law
s(nl) 2.5
s(In) 1.4 x 107!
s 4.0 x 107!
A(nn) None 1.2 x 1071 Exponent of the PRW law
Mnl) 2.1 x 1071
A(In) 7.0 x 1071
() 7.0 x 1071
) day*1 1.80 x 107! Host cells growth rate (6,11)
K> cell 1.0 x 10° Host cells carrying capacity (6,11)
asy cell 71 day -1 4.8 x 10710 Competition of tumor cells with host
cells
o cells day_1 7.5 x 10* Constant source of effector cells (10)
d3 day_1 6.12 x 1072 Inactivation rate of effector cells (6)
g(n) day_1 2.5x 1072 Maximum recruitment rate related to (6)
the power law
H0) 2.0x 107! ©6)
g(nn) day*1 3.75 x 1072 Maximum recruitment rate related to (6)
the PRW law
g(nl) 3.75 x 1072 ©6)
g(n) 1.13 x 107! ©6)
gl 3.00 x 107! ©6)
h cell? 2.02 x 107 Steepness coefficient for recruitment (10)

related to the power law
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Table 1 continued

Parameter Units Value Description Source

h cell? 2.02 x 107 Steepness coefficient for the (10)
recruitment related to the PRW law

as| cell ~! day -1 28x 1077 Immune—tumor competition (10)

The parameters of the PRW law, A and d, are obtained by a least-squares fitting of the solutions of the system
of differential equations to the experimental data. The parenthesis represents four different cases: a primary
challenge with control-transduced cells followed by a secondary one with ligand (nl) or control (nn) cells,
and a primary interaction with ligand-transduced cells followed again by ligand (/I) or ligand-negative (In)
rechallenges

Table 2 Values of the parameters used to compute the curves representing the lysis of cancer cells by the
effector cells, for the simplified model given by (5)

Parameter Units Value Description Source
r day*1 5.14 x 107! Tumor cells growth rate (6)
K, cell 9.8 x 108 Tumor carrying capacity (6)
arn cell 71 day -1 1.1 x 10710 Competition of host cells with tumor
cells
d(nn) day_1 2.6 Saturation level of fractional tumor
cell kill of the PRW law
d(nl) 7.1
d(ln) 2.7
d(ll) 7.9
s(nn) None 1.8 Steepness coefficient of the PRW law
s(nl) 5.0
s(n) 1.4 x 107!
sl 4.0 x 107!
A(nn) None 2.2 x 107! Exponent of the PRW law
Mnl) 2.5x 107!
2(in) 7.3 x 107!
i) 7.0 x 107!
r day_1 1.80 x 107! Host cells growth rate 6,11)
K> cell 1.0 x 10° Host cells carrying capacity (6, 11)
az| cell ! day -1 48 x 10710 Competition of tumor cells with host
cells
o cells day*1 7.5 x 104 Constant source of effector cells (10)
d3 day71 6.12 x 1072 Death of effector cells (6)
g(nn) day_1 3.75 x 1072 Maximum recruitment rate related to (6)
the PRW law
g(nl) 3.75 x 1072 ©6)
g(n) 1.13 x 107! (6)
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Table 2 continued

Parameter Units Value Description Source
gl 3.00 x 107! 6)
h cell? 2.02 x 107 Steepness coefficient for the (10)

recruitment related to the PRW law

as| cell ~! day -1 28x 1077 Immune—tumor competition (10)

The parameters of the PRW law, A and d, are obtained by a least-squares fitting of the solutions of the
system of differential equations to the experimental data. The parenthesis again represents four different
cases: a primary challenge with control-transduced cells followed by a secondary one with ligand (n/) or
control (nn) cells, and a primary interaction with ligand-transduced cells followed again by ligand (/) or
ligand-negative (/n) rechallenges

take the values of a13 used in such work and modify them the least as possible to obtain
curves that resemble the ones shown there. The same procedure is followed for the
steepness s of the saturation term in the PRW law. Then, the curves are fitted using the
parameters d and A. Trajectories are runned up to a maximum time of 4 h f,,,,, = 0.167
days, at which the lysis of tumor cells 1 — T’/ Ty is measured in the experiments. Initial
conditions are chosen to guarantee that the experimental effector:target ratios Eo/Tp
belong to the computed interval. The lysis of the tumor cells is obtained at t,,,4, for the
various initial conditions, and optimization is achieved by the least-squares method
using a grid of values for the two parameters. The fitted curves for the model and its
simplified version are shown in Fig. 2, while the residuals are depicted in Fig. 3. The
general model fits the data nicely, with randomly distributed residuals. As expected,
the reduced version gives worse results, specially for the control-transduced cells. The
first four points in Fig. 2a, b can be fitted with exactness, but not the last one. Hence, a
combination of a nonsaturating law with the PRW law gives considerably better results
for the cases in which the immune response is less effective. These results suggest
extending the PRW law by considering a fractional cell kill F(E, T') given by the sum
of a power law function and a Hill function

A

F(E, T)=cE"+d————.
( )=cE" + W) T B

@)

Two limits can be clearly distinguished in this law. On the one hand, we have the
situation in which the immune response is more or less effective ¢ ~ 0, as shown in
Fig. 2c, d. On the other hand, an ineffective immune response is given by d ~ 0, which
corresponds to the NK cell lysis in De Pillis et al. (2005). Intermediate situations are
better represented by (7), as shown in Fig. 2a, b. An heuristic explanation as to why less
effective cells do not show saturation in practice can be given as follows. Suppose that
we have two identical tumors of size T in the presence of the same number of effector
cells, but the first £ being very effective recognizing and lysing tumor cells, while
the second E being ineffective. The difference between these two cell populations
can be represented by considering that in the second case, only a small fraction f of
the effector cells are interacting with the tumor E = f E. Therefore, the PRW law
becomes
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Fig.3 Differences between the experimental data and the model estimated values (residuals) obtained from
the predicted curves for the lysis of tumor cells by effector cells. The green bars correspond to the general
model, while the blue bars belong to its simplified version. They are more or less randomly distributed. a
The (nn) case represented in Fig. 2a. b The (nl) case represented in Fig. 2b. ¢ The (/n) case represented in
Fig. 2c. d The (/l) case represented in Fig. 2d (Color figure online)

5 f)»E)\. E)»
D(E,T)=d =d-— , 8
D= e = e ®

where /1(T) = h(T)/f*. In the case f < 1, and as long as E is not much higher
than 7', we get E(T) > E*, what yields the fractional cell kill D(E, T) = Ek/ﬁ(T).
If the variation of T is small or 4(T) varies slowly with T, then the approximation
cE* holds. For example, if we consider the parameter values of the (/) experiment
in Table 1 and take f = 10~*, then we get a value for h(T) two or three orders of
magnitude higher than E*, depending on the values of the effector:target ratio.

4 Parameter and Phase Space Analysis

Even though the simplified model fits better the experiments where cells are primary
challenged with ligand-transduced cells, to study the dynamics we concentrate on the
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control-transduced choice of parameters. The reason is that the cell lines used in the
experiments do not normally express ligands of the NKG2D receptor (Diefenbach et
al. 2001). We begin by nondimensionalizing (5), redefining the cell populations and

the time
~ T ~ H - nkE .
T=—, H=—, E=—, t=tr]. )
K K> o

The new parameters are related to the previous ones in the following way

_ ank, ~ d (Km)'\
ap = d=— §=s

r r o
N ax Ky
Fr=—= dy =
ri r
5 dy a1 K1 . g - h
diy=— a33=— g=— h=—2 (10)
r r r (Kir1)
Dropping the tildes, our nondimensionalized system becomes
x =x(1 —x) —apyx — D(x, 2)x
y=nry(l —y) —ayxy
. D? X, 2z x2
z=1—-dsz+¢ *,2) — az|xz. (11)

h+ D2(x,)x2 "

The rescaled parameters are aj; = 0.195,d = 5.0,A = 0.21,s = 11.5,rn =
0.35,az1 = 0.954,d3 = 0.112, g = 0.29, h = 7.95 x 107! and a3, = 5.25. Unless
specified, these parameters are used all along our study.

We now describe all the nullclines and equilibria for the current set of parameters.
The fixed points of the system are given by x = y = z = 0, which yields the system
of equations

0=x(1—x—apy— D(x,2)
0=y(r2—ry—ax)
D?(x, 2)x?

0=1-d _
3Z—i—é’,h~|—D2(x,z)xz

Z—asixz. (12)

Nullclines can be read directly from (12). There is a total of five nullclines: the
x—z and y—z planes, the surface S; represented by the implicit equation 1 — x —
appy — D(x, z) = 0, the plane IT given by o — ry — az1x = 0 and the surface S,
which implicit equation is given by the last of the three equations shown above. If
we restrict our attention to the biologically meaningful region, which is the positive
octant RT™ x R* x R, the intersections of the different nullclines yield five different
fixed points x;, as shown in Fig. 4. We give the numerical values of the fixed points
and also analyze their stability by examining the eigenvalues of the Jacobian at each
of them.

The first fixed point is x;“ = (0,0, d;l), in particular (0, 0, 8.93), a saddle with
two positive eigenvalues corresponding to the x-axis and the y-axis, and a negative
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Fig. 4 Positive octant of the
phase space with the nullclines
and the fixed points. The
surfaces represent the different )
nullclines, with the fixed points 10 5%
placed at some of their
intersections. Every fixed point
is the intersection of three
surfaces. The surface Sy has not ]
been plotted completely for Z 5 1.0
clarity, but it also intersects the
y—z plane. The green point is the
healthy state, while the red point
is the tumor stable fixed point.
The other three fixed points are
saddles (Color figure online)

x 0.4 06 0

eigenvalue along the z-axis. The point x7 = (0, 1, 8.93) represents the healthy state,
for which there are only healthy and immune cells. Therefore, we represent it in green
color. This fixed point is stable, being one of the attractors of the dynamical system.
The other stable fixed point is x3 = (0.65, 0, 0.31), representing a stable solution
for which there are only tumor and immune cells. As in previous works (Gatenby
and Gawlinsky 1996), we associate this fixed point to malignant growth, so we have
colored it in red. The fixed point xjf = (0.06, 0, 6.55) is a saddle fixed point with
two unstable and one stable directions, separating the stable tumor attractor and the
state x], which is attractive in such plane, and for which there are only immune
cells. A stable direction and an unstable direction are in the plane y = 0, while
the remaining unstable direction is given by the eigenvector (0.01, 0.08, 1). The last
fixed point is x; = (0.1, 0.74, 3.02), corresponding to the saddle fixed point, which
two-dimensional stable manifold separates the basins of attraction of the healthy and
the tumor stable states. Hence, the system is bistable. The evolution of the three cell
populations for an initial condition leading to the malignant tumor state is shown in
Fig. 5d.

We begin the parameter analysis studying the effects of varying d that affects the
intensity with which the immune system destroys cancer cells. In Fig. 5a, b, we depict
the change in the basins size due to increasing such parameter to a value of d = 6.5,
while in Fig. 6a, a bifurcation diagram is computed, showing the evolution of the
fixed points as such parameter is varied. Starting from high values of d, for which
there is only a healthy stable state and the fixed point xj, the parameter reaches a
critical value of d. = 7.4185 and a saddle-node bifurcation occurs. Another similar
bifurcation appears for d. = 7.4095. In total, four fixed points are born: three unstable
and one stable. Only two of them are in the positive octant, the tumor fixed point x3
and xj, both unstable. As we keep on decreasing the immune strength, for a value
of d. = 7.2650, the stable fixed point enters the positive octant and a transcritical
bifurcation occurs, through which the malignant state switches its stability with the
stable fixed point. These results are in agreement with Diefenbach et al. (2001), where
cells that express ligands reject tumors, while control cells do not. The existence of a
critical value d. beyond which there is not a malignant tumor attractor constitutes an
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Fig. 5 a Stable manifold of the fixed point xg‘ (blue) separating the basins of attraction of the healthy x;‘
(green) and the tumor x_;‘; (red) stable fixed points for d = 5.0. b Same figure but for d = 6.5. As the
immune system response is stronger, the healthy basin enlarges and the tumor coordinate of the malignant
attractor becomes smaller. ¢ A section of the basins of attraction for z = 3.5. Oncogenic mutations can be
understood as a crossing from the green basin to the red one. d Time series with the evolution of the three
cell populations (nondimensional variables). As the tumor starts growing and replacing the normal tissue,
the immune system orchestrates his response, activating the effector cells to counteract the proliferation of
tumor cells. However, the effort is insufficient (Color figure online)

important prediction of the model, and might be used to estimate the minimum level
of ligands required to ensure tumor regression through ligands expression. Also the
parameter s is important in the model. Its behavior is opposed to the previous. As it is
decreased, for a value of s, = 7.55, a transcritical bifurcation occurs, turning unstable
the malignant attractor. It again disappears through a saddle-node bifurcation for the
critical value s, = 7.35. However, the parameter A does not change the stability of
our dynamical system after considerable variations (even twenty times), although its
increase leads to more negative eigenvalues of the tumor attractor, making this fixed
point more attractive.

Looking at the basin of attraction in Fig. Sc, it might result surprising that a healthy
state is always stably preserved. The reason is that cancer is the result of accumulated
mutations and no mutations between healthy and cancerous phenotypes have been
considered in the present model. This is in accordance, but also in contrast, with a
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Fig. 6 a Bifurcation diagram for the tumor coordinate as we vary the parameter d, associated with the
maximum fraction cell kill of the effector cells. As such parameter is decreased from values d > 7.4, for
which there is only a healthy state, two saddle-node (SN and SN») bifurcations occur, giving birth to four
fixed points, among which figures the tumor one, still unstable. Later on, a transcritical bifurcation (TC)
turns the tumor stable fixed point xgk stable, by switching stability with another fixed point. The stable
attractor is shown in green, while the unstable saddles are painted in red. b The bifurcation diagram for the
tumor coordinate as we vary the parameter ap1. For high values of a1, the fixed point xg, corresponding
to an equilibria for which all the cell populations coexist, is unstable and placed out of the positive octant.
As we decrease a1, it enters the positive octant and switches stability with the malignant tumor fixed point
x;‘ through a transcritical bifurcation (TC). The tumor shrinks as we keep on decreasing the value of as
(Color figure online)

simple logistic growth model, for which the zero value of the tumor cell population
is a fixed point, but it is unstable, so that any small perturbation pulls the dynamics
away from it. The homologous to such zero cell population fixed point in the present
model is x, which is always unstable. However, as we argue in detail in the next
paragraph, a healthy stable state will be preserved unless the action of the immune
system and the competition of the healthy cells with the cancer cells are negligible,
what is in consonance with the fact that apoptosis is a major barrier to tumor growth
that must be circumvented (Hanahan and Weinberg 2000). The effect of mutations
can be associated with a passage from one basin to the other. The smaller the basin
of attraction of the healthy point is, the easier for a tumor to be born. Mutations can
be modeled in several manners, for example, considering multiplicative noises on
some parameters of the model, or introducing balanced decay and growth terms in the
host and the tumor cell differential equations, respectively (Ideta et al. 2008; Gardner
2002), like in the quasispecies formalism (Nowak 1992).

Concerning the tumor—host competition terms a2 and a1, the following behavior
is observed. In an ordinary Lotka—Volterra competition model with two populations
(N1, N2) (no immune response), the stability of the fixed point (0, K») depends upon
the competition term aj, affecting the other population, and vice versa. In such a
model, if ajp > r1/K>, then the fixed point (0, K7) is stable, while if it is smaller,
the point becomes unstable. The immune system introduces an innovation in this
scenario as long as d is not very small, since no matter how small aj; is made, the
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effector cells are killing tumor cells, what means that there is always a healthy state.
On the other hand, if we decrease the parameter a>; more than the critical value
0.535, a transcritical bifurcation occurs for which the tumor fixed point xgk becomes
unstable and a equilibria x; representing the coexistence of the three species arises in
the positive octant, becoming stable. As can be seen in Fig. 6b, for a; = 0.5, such
equilibria are x¢ = (0.63, 0.10, 0.32). A big tumor coexists with the healthy tissue.
As we keep on decreasing the value of a1, the tumor shrinks and the healthy tissue
swells, what corresponds to a more benignant state. Thus, the maximum size a tumor
can reach according to our model, depends noticeably on its capability to reduce the
host healthy cells living with it, which in part is related to aerobic glycolysis.

5 Fitting the Chemotherapy Treatment to Experiments

Therapies are the main practical reason for studying tumor growth. Two important
restrictions in the application of chemotherapy are the toxicity of the drugs and the
resistance of tumor cells to such cytotoxic agents. In order to properly model and
understand these two processes in our context, a realistic modeling of chemotherapy
must be attained in the first place. Depending on their particular mechanism of action
(alkylation, topoisomerase inhibition, antimetabolism, etc.), cytotoxic chemothera-
peutic agents can be classified into two main groups: cell cycle specific (CS) and non-
specific (CNS). Both types of drugs appear commonly combined in many therapies.
For example, locally advanced breast cancer uses cyclophosphamide, doxorubicin and
docetaxel. Therefore, we shall utilize a model capable of reproducing CS and CNS
drugs, preferably not requiring explicit modeling through several cell populations in
different stages of the cell cycle, as in other works (Panetta and Adam 1995). A mech-
anistic model that has been tested with in vitro experiments for both types of drugs is
the exponential kill model. This model has been already used (De Pillis et al. 2005;
Gardner 2002; De Pillis et al. 2006) and proposes a fractional cell kill law of the form

k(C) = b(1 — e PC), (13)

where C is the drug concentration at the tumor site, and for CS drugs, b depends on the
fraction of cells in a vulnerable part of the cell cycle at a certain time instant, and the
cells rate of entry and abandon of such phase of the cycle. In the case of CNS drugs,
such parameter is equal to one. The scaling parameter p is related to the levels of
drug resistance. This factional cell kill law means that for a given dose of drug, after a
certain period of time, the tumor is reduced to a particular fraction of its size, no matter
how big or small it was initially (Hiramoto and Ghanta 1974). Survival fractions can
be analytically obtained assuming exponential growth and constant concentrations
of the drug (Gardner 1996), but neither of these two situations generally hold for in
vivo experiments. We have modified this law, so that it depends on the time-delayed
concentration. This is the simplest modification we have been able to elucidate that
permits to fit the data. The significance of this method will be discussed ahead. In this
first approach, to fit the experiments, we neglect the cytotoxic effects of the drug on
the healthy tissue. The resulting nonautonomous dynamical system reads
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with u(t) = uoe_k‘” for + > 0 and zero if + < 0. Hence, a single dose of drug is
administered at ¢+ = 0, but it starts to cause its effect at time 7. The relations between
the chemotherapy parameters of the nondimensional model and the originals shown
in (6) are as follows

b= ton =k (15)
ri r
where tildes have been excluded again in (14).

The data used to fix the parameters of the chemotherapy treatment are borrowed
from Hiramoto and Ghanta (1974). In this study, a plasmacytome is inoculated into
BALB/c mice and allowed to grow up to a certain size. Then, the animals receive
cyclophosphamide, a cell cycle nonspecific alkylating agent, and tumor regression
is observed days later. To validate the modeled chemotherapy treatment, we use the
results from two experiments. In the first one, five mice are given subcutaneous injec-
tions of 1 x 10% viable MOPC 104E cells, and the tumor is allowed to grow up to
0.09 g (1 g equals 1 x 10° tumor cells). Cyclophosphamide is given at a single dose
after palpable nodules are present. In the second experiment, three mice receive intra-
venous injections of 1 x 10 cells of the same cell line, and the tumor is allowed
to proliferate up to maximum size of 2.90 g. They use three mice as control with
mescaline treatment and three more with a single dose of cyclophosphamide. They
are able to estimate the size of the tumor from the immunoglobuline M levels using
alinear model M = T — kM, being M the IgM levels and T the tumor size, which
is assumed to grow exponentially 7T (t) = Tpe®’, with o a function of the doubling
time of tumor cells. The parameter k represents the removal rate of IgM from circu-
lation. The dose of drug administered in the experiments is 200 mg/kg, and the mice
weight around 20 g, so we take ug = 4 mg. We consider that the drug elimination
rate is k, = 2.5 day~!, what approximately corresponds to a half-life of 6.5 h. In the
first experiment in Hiramoto and Ghanta (1974), the averages of the tumor weight
and the mass percentage of the tumor respect to the total mass are reported. In the
second experiment, the same magnitudes are addressed for each of the three mice. We
limit ourselves to the first mouse results, which tumor grows bigger. Because no data
concerning the tumor—immune interaction are provided in these two experiments, we
cannot properly fit the model given by (5). For this reason, we use the nondimensional
model with the parameter values given in Sect. 4, and the mass percentage of the tumor
measured in the experiments, and set the initial conditions (xo, yo, Zo) proceeding as
follows. In the first experiment, the therapy begins at day 22, when the tumor size
reaches the 4 % of the total body weight. Therefore, we consider that the x coordinate
of the fixed point associated with the malignant tumor state x3, represents a size of
5% of the total body, i.e., xo = x5 x 0.4/0.5. An identical prescription is followed
with the second experiment, for which the tumor reaches a size of 12 % of the total
body weight. Now we make xo = x3 x 12/15. Since in the second experiment, large
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Table 3 Values of the level of drug resistance and the time it takes the drug to start causing its cytotoxic
effect

Parameter Units Value Description

Experiment 1

P mg_1 4.04 x 103 Level of drug resistance
T day 4.18 Time delay

Experiment 2

P mg_1 4.03 x 103 Level of drug resistance
T day 3.56 Time delay

They are obtained through a least-squares fitting of the solutions of (14) to two different experimental
situations were mice are treated with cyclophosphamide

implants of intravenously disseminated tumors are studied, while the first experiment
deals with small localized subcutaneous tumors, we consider different initial condi-
tions concerning the effector cells for each experiment, assuming that in the second
one the immune response is stronger. In particular, the values we use are, respectively,
zo = 7.0 and zg = 1.0. The initial condition for the healthy tissue is taken yp = 0.5 in
both experiments. These initial conditions lead to the tumor stable fixed point in the
absence of treatment, and other choices might be used as well. The parameter values t
and p arranged to fit the fractional tumor cell kill by cyclophosphamide are obtained
following the same method as in Sect. 3. We show them in Table 3 for both cases. The
time delay is longer in the first experiment, probably because small localized tumors
are harder to reach than large implants. The levels of drug resistance are certainly low
(high values of p), and similar for the two experiments.

In Figs. 7 and 8, we can see that the model validates well the experimental results.
During the first three/four days, the drug has little effect on the tumor, and from this day
on, a severe decrease is observed. Along these first days, we recognize that the curves
are slightly concave and then rise up, before cyclophosphamide starts to be effective.
This is a consequence of the immune system, that is, destroying proliferating tumor
cells. After this first period of time, the drug starts to cause its effect and dominates
the dynamics during the next five/six days. From this day on, the immune system
takes care of the remaining part of the tumor and the healthy tissue regenerates. The
action of chemotherapy can be thought as a passage from the red basin to the green
one in Fig. 5c. We believe that the lag in the action of the drug is due to complex
pharmacokinetics. In general, it takes a time for the drugs to reach the tumor site
and be absorbed, as well as to inflict damage to the proliferating cells through its
cytotoxic mechanism. In particular, it might happen that different drugs have different
time delays, what might play a role in modeling combination therapy when studying
tumor resistance to chemotherapeutic agents, and also their toxicity.

The dynamical response to chemotherapy mainly consists in a change of the basin
size. The higher the dose, the bigger the healthy basin. The manifold separating the
basins of attraction moves to the right and rotates clockwise. The results are similar
to those shown in Fig. 5a, b, and also in previous works (De Pillis and Radunskaya
2003), so we do not show them. It is important to recall that the nonautonomous
system given by (14) tends to the original system asymptotically. This means that
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Fig. 7 a Data in the first experiment and the model predicted curve for the tumor decay after a single-
dose injection of cyclophosphamide is delivered into the mice. The y-axis represents the fraction of tumor
cells in the body. During the first days, the drug has little effect on the host, and then, the tumor cells are
strongly reduced. b Data for the second experiment and the model predicted curve for the tumor decay after
a single-dose injection of cyclophosphamide is delivered into the mice
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Fig. 8 a Residuals of the fitted data in the first experiment, corresponding to Fig. 7a. b Residuals of the
fitted data in the second experiment, corresponding to Fig. 7b

although the basins structure and size change during the treatment, once the drugs
are eliminated, the original dynamical system is restored, and so they are its stability
properties. Consequently, a tumor relapse requiring to resume the chemotherapeutic
treatment would be expected. On the other hand, as shown in Sect. 4, therapies imply-
ing a change in the parameter values of the dynamical system, as it is the purpose
of immunotherapeutic vaccines (Diefenbach et al. 2001; De Pillis et al. 2006), are
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Fig. 9 Time series given by the model (solid curves) and the experimental data of the tumor (filled circle),
the actual (cross symbol) and the total (open circle) cell populations for the three mice in the second
experiment in Hiramoto and Ghanta (1974). The first points are used to fix initial conditions. a For the first
animal, the actual and the total sizes first decrease because the healthy tissue is being destroyed. Then, the
growth of the tumor rises and the total and the tumor cell populations become equal. b In the second animal,
the tumor grows very slowly and the cell populations are almost constant. ¢ In the third case, the healthy
cells start to grow together with the tumor, but as the tumor increases the normal cells reach a peak and
begin to die (Color figure online)

obviously more advantageous, because they can change the stability properties of the
dynamical system permanently, preventing the disease from recurring.

6 Experimental Correlations with the Model

This section is devoted to expose some correlations between the model and the experi-
mental data appearing in Hiramoto and Ghanta (1974), with the aim of obtaining rough
estimations of the parameters aj; and aj. In particular, the experimental results cor-
respond to the same experiment as those shown in Fig. 7b, but now we focus on the
growth of the tumor before therapy is applied. In that experiment, the actual body
weight, which is defined as the difference between the total weight of each mouse and
the weight of their respective tumors, is computed. For the cyclophosphamide-treated
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Table 4 Values of the parameters in the simplified model that were required to change in order to describe
the growth of the plasmacytome, the time evolution of the body weight and the time evolution of the actual
body weight, for the three mice in the second experiment in Hiramoto and Ghanta (1974)

Parameter Units Value Description

Mouse 1

K cells 3.4 x 10° Carrying capacity of tumor cells

K> cells 3.5 x 10° Carrying capacity of healthy cells

r day_l 0.95 Rate of growth of tumor cells

r daly_l 0.06 Rate of growth of normal cells

arn cells~! day_1 48 x 10~ 1 Competition of healthy cells with tumor cells
azy cells™! day_1 6.0 x 10710 Competition of tumor cells with healthy cells
Mouse 2

K, cells 3.4 % 10° Carrying capacity of tumor cells

K> cells 3.5 x 10° Carrying capacity of healthy cells

r daly_1 0.62 Rate of growth of tumor cells

r daly_1 0.13 Rate of growth of normal cells

arn cells™! day_1 48 x 10~1 Competition of healthy cells with tumor cells
az| cells~! day_l 13x 10710 Competition of tumor cells with healthy cells
Mouse 3

K, cells 3.4 % 10° Carrying capacity of tumor cells

K> cells 3.5 x 10° Carrying capacity of healthy cells

r daly_1 0.82 Rate of growth of tumor cells

r daly_1 0.49 Rate of growth of normal cells

apn cells™! day_1 3.7 x 10711 Competition of healthy cells with tumor cells
as cells™! day_1 23 x 10710 Competition of tumor cells with healthy cells

group, the data are registered at days 10, 18 and 21, the last corresponding to the
beginning of the treatment (see Fig. 9). It is hard to know whether these variations
are due to differences in the tumor cells and the healthy cells interacting with them,
consequence of other cells in the body, changes in the metabolism or, more simply,
nourishment. Nevertheless, we believe that it is good to show that our model is com-
patible with such results, mainly to assure ourselves that the parameter values of the
competition terms are biologically reasonable. For these reasons and because no data
concerning the tumor—immune interaction are available in these experiments, we do
not fit the curves.

We relate the total body weight to the sum of the three cell populations, while the
actual body weight is considered to be the sum of the healthy and the immune cell pop-
ulations. Since the last is considerably smaller than the former, the actual population
of cells looks like the normal cells population. We also consider the approximation
d = 0 (otherwise small tumor sizes lead to the healthy attractor), which is reasonable
during the first days of tumor growth, since it takes the body some time to develop
an immune response. The plots in Fig. 9 show similar behaviors of the experimental
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data and the theoretical predicted values by the model at days 18 and 21 for the three
mice. In some cases, the correspondence is not only qualitative, but also quantitative.

As we can see in Fig. 9, for the first mouse, there is a decrease of the healthy cell
population, what implies a decrease of the actual and total populations at day 18.
Later on, the tumor increases and the total population rises, while the healthy host
cells keep on being destroyed. Interestingly, in this case, a better correlation between
the experimental data and the theoretical predicted curves at day 21 can be achieved if
saturation of the competition term given by a1 with the tumor load is considered. This
saturation would be explained by the fact that competition for space occurs between
nearby cells, and competition for nutrients occurs along the direction of the gradient
of nutrient concentration. For the second mouse, the tumor grows very slowly, so the
cell populations remain almost constant. In the third case, since the mouse has smaller
weight, we choose a smaller value of the healthy cell population as an initial condition.
The population starts to increase and so does the tumor. A maximum actual weight is
observed at day 18, and then, the healthy cell population starts to decrease due to the
growth of the tumor. However, the total weight at day 21 is almost the same, because
the tumor has grown considerably. The parameters we have had to change from the
ones settled in (5) to reproduce the experiments are shown in Table 4. Note that for
every mouse, a1 > ajp holds, as conjectured in Sect. 3.

7 Conclusions and Discussion

We have developed a model of tumor growth taking into account the heterogene-
ity of the tissue as a complex interaction between several types of cells. The model
includes tumor—immune and tumor-host interactions, which are in conformity with
experimental data. We have examined the dynamical properties of the model, showing
its correlation with theoretical and empirical knowledge of tumor progression. Also
chemotherapy has been studied, and a way to overcome the problem of modeling com-
plex drug dynamics has been proposed. We believe that the model might be useful
when attempting to embark the study of tumor growth. Of course, ODE-based model-
ing and the present model itself are both far away from being definitive. Rather, they
might be used as a foundation upon which to build up different and increasingly more
sophisticated models, capable of reproducing the many aspects of the tremendously
complex dynamics of cancer inception and evolution at its different, but inextricably
related, scales.
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