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Abstract In the last decade, the use of phylogenetic networks to analyze the evolu-
tion of species whose past is likely to include reticulation events, such as horizontal
gene transfer or hybridization, has gained popularity among evolutionary biologists.
Nevertheless, the evolution of a particular gene can generally be described without
reticulation events and therefore be represented by a phylogenetic tree. While this is
not in contrast to each other, it places emphasis on the necessity of algorithms that
analyze and summarize the tree-like information that is contained in a phylogenetic
network. We contribute to the toolbox of such algorithms by investigating the question
of whether or not a phylogenetic network embeds a tree twice and give a quadratic-
time algorithm to solve this problem for a class of networks that is more general than
tree-child networks.
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1 Introduction

Although phylogenetic networks are becoming increasingly important in studying the
evolution of present-day species whose past includes reticulation events, phylogenetic
trees remain to play a fundamental role in phylogenetic analyses since the evolutionary
history of a single gene can, in most cases, be described by a tree. It is therefore not
surprising that investigating the tree-like content of phylogenetic networks is often
an important first step in analyzing and interpreting such networks. For example,
one might be interested in deciding whether a phylogenetic network embeds a given
phylogenetic tree or in counting the number of trees embedded in a network. The latter
problem is related to calculating the parsimony score of a network (Nakhleh et al. 2005)
which, given the popularity of parsimony tree reconstruction algorithms, is likely to
become a standard tool in computing a phylogenetic network directly from sequence
data. While deciding whether a tree is embedded in a network is polynomial-time
solvable for certain special classes of phylogenetic networks (van Iersel et al. 2010), the
problem is NP-complete in its general form (Kanj et al. 2008). Similarly, counting the
number of phylogenetic trees that are embedded in an arbitrary phylogenetic network
is also known to be a computationally hard problem (Linz et al. 2013).

In this paper, we investigate a related problem. Given a phylogenetic network N ,
this problem asks whether or not there exists a phylogenetic tree with the same leaf set
as N that is embedded more than once in N . If such a tree exists, then there are two
distinct sets of edges in N that yield the same tree. It is known that if N is binary and
has k reticulations (detailed definitions are deferred to Sect. 2), then the maximum
number of possible trees embedded in N is 2k . While it was shown independently
that the upper bound of 2k is sharp for so-called “normal networks” in van Iersel et
al. (2010, Theorem 1) and Willson (2012, Corollary 3.4), little is known about the
properties of a phylogenetic network that guarantee it embeds the maximum number
of trees. Here, we present the first such characterization for a class of networks that lies
strictly between tree-child and tree-sibling networks. This characterization is based
on a certain type of underlying cycle in a network that will be formally introduced in
Sect. 3. Moreover, we will show that such cycles are recognizable in quadratic time,
leading to the following theorem, where, for now, displaying a tree twice implies that
there are two distinct embeddings for the same tree.

Theorem 1 Let N be a rooted binary phylogenetic network with leaf set X and sup-
pose that, for each reticulation of N , at least one of its parents is connected to a leaf of
N via a directed path that does not contain a reticulation. Then it takes time quadratic
in the size of |X | to decide whether or not N displays a rooted phylogenetic tree with
leaf set X twice.

It is worth pointing out that for a network N with the property described in Theorem 1,
the number of leaves in N does not bound the total number of vertices in N . Hence,
for a fixed set X , the class of networks with leaf set X that we consider in this paper
contains infinitely many networks (for example, see Fig. 1, where the directed path
from the root of the network to the leaf labeled 1 can be arbitrarily long). In contrast,
for a fixed set X , the number of tree-child networks with leaf set X is finite (McDiarmid
et al.).
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Fig. 1 A phylogenetic network
for which each reticulation has a
parent connected to the leaf
labeled 1 via a directed path that
does not contain a reticulation

1 2

3

The remainder of the paper is organized as follows. The next section contains
notation and terminology that is used throughout the paper. In Sect. 3, we introduce
the concepts of switchings, and avoidable vertices and cycles. We also derive several
lemmas and observations in this section that are important in establishing the above-
mentioned characterization, which is presented in Sect. 4. In Sect. 5, we establish
Theorem 1. The last section contains a remark on tree-child and normal networks.

2 Preliminaries

This section provides notation and terminology that is used in the remainder of the
paper. Throughout the paper, X denotes a finite set.

2.1 Phylogenetic Trees

A rooted phylogenetic X -tree T is a rooted tree in which the root has degree at least
two and all other interior vertices have degree at least three, and whose leaf set is X . In
addition, T is binary if, apart from the root which has degree two, all interior vertices
have degree three. Since we are interested only in rooted binary phylogenetic X -trees
throughout the paper, we will almost always refer to such a tree as a tree on X .

2.2 Phylogenetic Networks

A phylogenetic network N on X is a rooted acyclic digraph that satisfies the following
three properties:

(i) the root has out-degree two,
(ii) each vertex with out-degree zero has in-degree one, and the set of vertices with

out-degree zero is X , and
(iii) all other vertices either have in-degree one and out-degree two, or in-degree two

and out-degree one.

We will refer to N as a network on X or, simply, as a network if X plays no particular
role. Such networks are commonly referred to as binary phylogenetic networks. An
example of a network on {1, 2, 3, 4} is shown in the left of Fig. 2, where the vertex
labels u, u′, v, and v′ are ignored for the moment. Here, as well as in all other figures,
edges are directed down the page. Furthermore, we will assume that networks have
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Fig. 2 Left A phylogenetic network N that displays three trees. Middle A phylogenetic tree that is displayed
twice by N . Right A phylogenetic network N ′ that displays four trees. While N and N ′ are both tree-
sibling, only N ′ also satisfies the stronger tree-child condition

no parallel edges. For a network N , vertices with in-degree two and out-degree one
are called reticulations and all other vertices are called tree vertices. In addition,
edges directed into a reticulation are called reticulation edges and all other edges are
called tree edges. Similar to rooted phylogenetic trees, vertices with out-degree zero
are referred to as leaves. Indeed, a rooted binary phylogenetic tree is a phylogenetic
network with no reticulations.

Biologically, like phylogenetic trees, phylogenetic networks illustrate the evolu-
tionary history of a collection of present-day species. Such species are represented by
the leaves, while all other vertices represent (hypothetical) ancestors. A reticulation
represents, for example, a hybrid species.

Let u and v be two vertices of a network N on X . If there is a directed path (resp.
a directed path that contains at least one edge) from u to v, then u is an ancestor
(resp. strict ancestor) of v, and v is a descendant (resp. strict descendant) of u. More
particularly, if (u, v) is an edge in N , then u is a parent of v, and v is a child of u.
Furthermore, if two vertices have a common parent, then they are said to be siblings.
We use Du to denote the subset of X whose elements are precisely the descendants of
u.

Let T be a tree on X , and let N be a network on X . We say that N displays T if
T can be obtained from N by deleting edges and vertices, and contracting vertices
with in-degree one and out-degree one. Intuitively, T is displayed by N if all of the
ancestral information inferred by T is also inferred by N . Note that if T is displayed
by N , then T is necessarily binary.

Tree-child and tree-sibling networks are two prominent types of networks arising
in the literature. Let N be a network on X . A vertex v of N has the tree-path property
if there exists a leaf � such that there is a directed path P from v to � containing no
reticulations, except for possibly v. If such a path exists, then each edge of P is a tree
edge and P is the unique directed path from v to � in N . For example, except for the
parent common to v and v′, each vertex of the network shown on the left-hand side in
Fig. 2 has the tree-path property. We say that N is tree-child (e.g. see Cardona et al.
2009) if each vertex of N has the tree-path property. Equivalently, N is tree-child if
each non-leaf vertex u of N has a child v such that v is a tree vertex. Biologically, such
networks guarantee that all species that arise from a speciation event (represented by a
tree vertex) or a reticulation event exist for a certain period of time before evolving any
further. Furthermore, N is tree-sibling (e.g. see Cardona et al. 2008) if each reticulation
has a sibling that is a tree vertex. For example, the network shown on the left-hand side
of Fig. 2 is tree-sibling but not tree-child, while the network shown on the right-hand
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side of the same figure is tree-child (and, hence, also tree-sibling). Observe that, for a
fixed set X , the class of tree-child networks on X is a proper subclass of tree-sibling
networks on X . A class of networks on X that is nested strictly between these two
classes is the class which has the property that, for each reticulation, at least one of its
parents has the tree-path property. It is this later class that is the subject of Theorem 1.

3 Switchings and Avoidability

In the first part of this section, we introduce the concept of switchings in a network to
describe precisely what it means for a tree to be displayed twice. In the second part,
we describe a certain type of cycle and establish several lemmas that play a role in the
characterization of the next section.

3.1 Switchings

Let N be a network on X . A subset S of reticulation edges of N is a switching of N
if, for each reticulation v of N , the set S contains precisely one of the two reticulation
edges directed into v. Now, let S be a switching of N . If we delete each reticulation
edge in N that is not in S, then the resulting directed graph contains no underlying
cycle and, for each leaf � ∈ X , it is easily checked that there is a directed path from
the root of this directed graph to �. If we now repeatedly contract each resulting vertex
with in-degree one and out-degree one and delete each vertex with degree one that is
not in X , it is easily seen that we obtain a tree T on X . We say that S yields T . Note
that T is well defined and, by construction, T is displayed by N . Conversely, observe
that, if T is a tree on X displayed by N , then there exists a switching that yields T . In
summary, this leads to the following observation, which we will freely use throughout
the paper.

Observation 1 A network N on X displays a tree T on X if and only if there exists
a switching of N that yields T .

With Observation 1 in hand, we say that N displays a tree twice if there exist two
distinct switchings of N each of which yields (up to isomorphism) the same tree on
X . For example, for the network N shown on the left in Fig. 2, it is easily verified
that the tree shown in the middle of the same figure is displayed twice by N . Also,
referring back to a comment made in the introduction, it follows from Observation 1
that, if N is a network on X with exactly k reticulations, then N displays at most 2k

distinct trees on X .

3.2 Avoidable Vertices

Let N be a network on X , and let v be a vertex of N . We say that v is avoidable
if, for each � ∈ X , there exists a directed path from the root of N to � that avoids
v. Otherwise, v is unavoidable. In particular, if v is unavoidable, then there exists a
leaf � such that every directed path from the root of N to � contains v. To illustrate,
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Fig. 3 A phylogenetic network
that has the tree-path property
for at least one parent of each
reticulation and with an
avoidable reticulation v

2 3 4

v

1

Fig. 3 shows a network with an avoidable reticulation v. Note that the definition of an
unavoidable reticulation coincides with that of a so-called visible reticulation in Huson
et al. (2010).

The next lemma gives a sufficient, but not a necessary, condition for guaranteeing
that a network displays a tree twice.

Lemma 1 Let N be a network on X. If N has an avoidable reticulation, then N
displays a tree on X twice.

Proof Let v be an avoidable reticulation of N , and let e1 and e2 be the two reticulation
edges that are incident with v. Since v is avoidable, there exists, for each � ∈ X , a
directed path P� from the root of N to � that avoids v. Let T be a tree on X that is
displayed by N and, up to degree-2 vertices, whose edge set is a subset of

⋃
�∈X P�. It

is easily seen that such a T always exists. Now, let S be a switching of N that yields T .
It follows that the two distinct switchings (S −{e1, e2})∪{e1} and (S −{e1, e2})∪{e2}
both yield T and, hence, N displays a tree on X twice. ��

3.3 Avoidable Cycles

We now extend the concept of avoidability to cycles of a network. Let N be a network
on X , and let v be a reticulation of N . Let u be a tree vertex of N such that there exist
two directed paths P1 and P2 from u to v whose vertex sets, apart from u and v, are
disjoint. We call the underlying cycle induced by the union of the vertex sets of P1
and P2 a 2-path cycle of N , where u is the source vertex and v is the sink vertex. It is
easily seen that each reticulation of N is the sink of at least one 2-path cycle in N .

Let C be a 2-path cycle of N with source u and sink v. Let H be a subset of the
vertex set of C such that, for each leaf � ∈ X , at least one of the following holds:

(i) there is a directed path from the root of N to � which avoids every vertex in C , or
(ii) there is a directed path from the root of N to � for which the last vertex in the

path meeting C is contained in H .

We refer to H as a hitting set of C . Furthermore, H is minimum if C has no hitting
set H ′ with |H ′| < |H |. If there exists a hitting set of C with at most two elements,
we say that C is avoidable. A simplified phylogenetic network that has an avoidable
cycle and summarizes the basic idea of such a cycle is shown in Fig. 4. Moreover, for a
more explicit example, the network shown on the left-hand side of Fig. 2 has a 2-path
cycle C with source u and sink v that is avoidable, and a 2-path cycle with source u′
and sink v′ that is unavoidable. Note that C is avoidable because there exist directed
paths from the root of the network to leaves 3 and 4 that do not meet C .
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Fig. 4 A 2-path cycle C of a network N on X = X1 ∪ X2 ∪ X3 with source u and sink v. Note that
{v, v1} is a hitting set of C because X can be partitioned into three sets X1, X2, and X3 such that, for each
�1 ∈ X1, there exists a directed path from ρ to �1 that avoids every vertex in C , and, for each �2 ∈ X2
(resp. �3 ∈ X3), there exists a directed path from ρ to �2 (resp. �3) for which the last vertex on that path that
meets a vertex in C is v (resp. v1). Thus C is an avoidable cycle. Except for the edge joining v1 and v, lines
indicate directed paths in N . Furthermore, the three triangles indicate subnetworks of N . While omitted
for the sake of simplicity, these subnetworks as well as C may be further interwoven among themselves
and among each other

The next lemma gives another sufficient, but again not a necessary, condition for
guaranteeing that a network displays a tree twice.

Lemma 2 Let N be a network on X, and let v be a reticulation of N . If v is the sink
of an avoidable cycle, then N displays a tree on X twice.

Proof Suppose that v is the sink of an avoidable cycle C . Then, there is a hitting set
H of C such that |H | ≤ 2. Furthermore, for each � ∈ X , there is a directed path P� in
N from the root to � such that either P� avoids every vertex of C or the last vertex of
P� meeting C is an element of H .

Now, let T be a tree on X displayed by N whose edge set, up to degree-2 vertices,
is a subset of

⋃
�∈X P�. Since H contains at most two elements, T has a subtree

that can be detached by deleting a single edge and whose leaf set contains precisely
each element � ∈ X for which the last vertex of P� meeting C is an element of H .
Let e1 and e2 denote the reticulation edges incident with v, and let S be a switching
of N that yields T . By construction, it is now easily seen that the two switchings
(S − {e1, e2}) ∪ {e1} and (S − {e1, e2}) ∪ {e2} both yield T . Hence, N displays a tree
on X twice. ��
The converse of Lemma 2 does not hold. For example, Fig. 5 shows a network that
has no avoidable cycle, but displays a tree twice.

We end this section with a concept and an observation that is used in the rest of
the paper. Let N be a network, and let v be a reticulation of N . A parent of v is a
distinguished parent if it has the tree-path property and, if both parents of v have the
tree-path property, then it is not an ancestor of the other parent. Note that, if v has
a parent that has the tree-path property, then v has at least one distinguished parent.
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Fig. 5 A phylogenetic network
(left) that displays the tree
shown on the right twice.
Moreover, N has no avoidable
cycle because each 2-path cycle
of N with sink vi , for
i ∈ {1, 2, 3}, has a minimum
hitting set of size at least three.
For example, {h1, h2, v3} and
{h1, h3, v3} are the two unique
minimum hitting sets of the
2-path cycle of N with sink v3

2

4

v3

v2

v1

h2

h1

h3
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Moreover, if v has two distinguished parents, then v is not the sink of an avoidable
cycle in N . Referring back to Fig. 2, each of the two reticulations in the network shown
on the left has exactly one distinguished parent, while each of the two reticulations in
the network shown on the right of the same figure has two distinguished parents.

The following observation immediately follows from the definition of an avoidable
cycle and recalling that such a cycle has a hitting set of size at most two.

Observation 2 Let N be a network with no avoidable reticulation, and let v be a
reticulation of N . If v has a distinguished parent, say v1, and v is the sink of an
avoidable cycle C in N , then {v1, v} is the unique minimum hitting set of C.

4 Characterization

In this section, we characterize when a network with at least one parent of each
reticulation having the tree-path property displays a tree twice. This characterization is
in terms of avoidable reticulations and avoidable cycles. We will see in the next section
that this result leads naturally to a quadratic-time algorithm that decides whether or
not such a network displays a tree twice.

We start by describing an operation that involves a deletion of a reticulation in a
network. Let N be a network with no avoidable reticulation and, for each reticulation,
at least one of its parents has the tree-path property. Let ρ be the root of N , and let v

be a reticulation of N whose strict descendants are all tree vertices. Since N is acyclic
such a reticulation exists. Obtain a rooted acyclic digraph N ′ from N by deleting v and
contracting any resulting vertex of in-degree one and out-degree one. Such vertices
correspond to v1 and v2 and, provided neither is ρ, there are two contractions. If v1
or v2 is ρ, then delete ρ as well. We say that N ′ is obtained from N by a reticulation
deletion relative to v. The next lemma shows that N ′ preserves the two properties of
N that distinguish it.

Lemma 3 Let N be a network on X with no avoidable reticulation. Suppose that
N has the tree-path property for at least one parent of each reticulation. Let N ′ be
the rooted acyclic digraph obtained from N by a reticulation deletion relative to a
reticulation v. Then N ′ is a network on X − Dv with no avoidable reticulation and,
for each reticulation, at least one of its parents has the tree-path property.
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Proof Let ρ denote the root of N . Furthermore, let v1 and v2 denote the parents of
v. Without loss of generality, we may assume that v1 is a distinguished parent of v.
Let m denote a leaf in N with the property that there is a tree-path from v1 to m.
Now, since each reticulation in N is unavoidable, v1 and v2 are tree vertices. Using
this fact, as well as the property that at least one parent of each reticulation has the
tree-path property in N , it is easily checked that N ′ is indeed a phylogenetic network
on X − Dv (with no parallel edges).

We next show that each reticulation in N ′ is unavoidable, and at least one parent
of each reticulation in N ′ has the tree-path property. The latter certainly holds as no
such tree-path in N contains either (v1, v) or (v2, v). Now, let w be a reticulation in
N ′. If w is avoidable in N ′, then, as w is unavoidable in N , there is a leaf � ∈ Dv

such that every directed path in N from ρ to � meets w. Moreover, there is a directed
path Pm from ρ to m in N avoiding w. Since Pm extends the unique tree-path from
v1 to m, it follows that, by making use of the first part of Pm from ρ to v1, we can
construct a directed path from ρ to � that uses the edge (v1, v) and avoids w in N ; a
contradiction. Thus, each reticulation in N ′ is unavoidable. ��

The next theorem is the aforementioned characterization. For the purpose of its
proof, we need an additional definition. Let T be a tree on X , and let a, b, and c be
three distinct elements in X . We say that T contains the triple ab|c (or, equivalently,
ba|c) if, in T , the path connecting a and b does not intersect the path from the root to
c.

Theorem 2 Let N be a network on X. Suppose that at least one parent of each
reticulation in N has the tree-path property. Then N displays a tree on X twice if and
only if N contains an avoidable reticulation or an avoidable cycle.

Proof Let ρ denote the root of N . If N contains an avoidable reticulation or an
avoidable cycle, then, by Lemmas 1 and 2, N displays a tree on X twice.

Now, suppose that N contains neither an avoidable reticulation nor an avoidable
cycle. Let k be the number of reticulations in N . We will show by induction on k that
N does not display a tree on X twice. If k = 0, then N is a tree on X and the result
holds. Now assume that k ≥ 1 and that the result holds for all networks with k − 1
reticulations. Let v be a reticulation of N whose strict descendants are all tree vertices,
and let v1 and v2 be the two parents of v. Without loss of generality, assume that v1 is
a distinguished parent of v. Furthermore, let m denote a leaf in N with the property
that there is a tree-path from v1 to m. Let N ′ be the rooted acyclic digraph obtained
from N by applying a reticulation deletion relative to v. It follows by Lemma 3 that
N ′ is a network on X − Dv with no avoidable reticulation and, for each reticulation,
at least one parent has the tree-path property.

To apply the induction assumption, we next show that N ′ contains no avoidable
cycles. Suppose to the contrary that N ′ has an avoidable cycle C ′ with sink t . Let
t1 and t2 denote the parents of t and, without loss of generality, assume that t1 is
a distinguished parent of t . By Observation 2, it follows that {t1, t} is the unique
minimum hitting set H ′ of C ′. Let C denote the 2-path cycle in N induced by C ′
in N ′. Since each tree vertex in N and N ′ has out-degree exactly 2, and t1 has the
tree-path property in N ′, it follows that t1 is not contained in {v1, v2}, so (t1, t) is an
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edge in C ′ and C . Now, let P ′
m be a directed path from the root of N ′ to m such that

either P ′
m avoids C ′ or the last vertex of P ′

m that meets C ′ is contained in H ′. As C ′ is
an avoidable cycle in N ′, such a path exists. Now, if v2 = ρ and (v2, v1) is an edge in
N , let vp denote the child of v1 in N such that vp 	= v; otherwise, let vp denote the
parent of v1 in N . Note that the unique directed path from vp to m in N ′ is a subpath
of P ′

m .
We next consider two cases. First, assume that the subpath of P ′

m in N ′ from vp to
m either avoids every vertex in C ′ or vp ∈ {t1, t}. By the existence of P ′

m in N ′, we
have that, for each leaf � ∈ Dv , there exists a directed path P� from ρ to � in N that
uses the edge (v1, v) such that P� avoids every vertex of C or the last vertex of P� that
meets C is contained in {t1, t}. Furthermore, as (t1, t) is an edge in C , we have that
H ′ is a hitting set of C in N . In particular, as C ′ is an avoidable cycle in N ′, it follows
that C is an avoidable cycle in N ; a contradiction.

Second, assume that the subpath of P ′
m from vp to m in N ′ does not avoid every

vertex in C ′ and vp /∈ {t1, t}. As C is unavoidable in N , v1 is either a vertex of C or the
source of C is a strict descendant of v1. In the latter case, it is easily checked that, as
C ′ is avoidable in N ′, C is avoidable in N ; a contradiction. We may therefore assume
that v1 is a vertex of C . If there is an element � ∈ Dv for which there is a directed
path in N from ρ to � through v2 such that either it avoids C , or it meets C and the
last vertex it meets in C is t or t1, then all elements in Dv have such a path. In turn,
this implies that C is avoidable in N ; a contradiction. Hence, for all � ∈ Dv , every
directed path from ρ to � through v2 meets a vertex of C and the last such vertex is
neither t nor t1. Let r denote such a vertex of C , and let Pr denote a directed path from
r to v2 in N . We may assume that r is the only vertex of Pr meeting C . Potentially,
Pr may consist of the single vertex v2. Now, let D be the unique 2-path cycle in N
with sink v whose vertex set is the union of V (Pr )∪{v} and a subset of the vertices in
C , and whose edge set is E(Pr ) ∪ {(v1, v), (v2, v)} a subset of the edges in C , where
V (Pr ) and E(Pr ) are the vertex and edge sets of Pr , respectively. Let Xv1 denote the
subset of X such that p ∈ Xv1 precisely if p ∈ Dv or there is a path from v1 to p
that avoids D except for v1. Since v is not the sink of an avoidable cycle in N , the set
X − Xv1 is non-empty. In particular, there exists a leaf q ∈ X − Xv1 with the property
that every directed path from ρ to q in N meets D and the last vertex meeting D is
neither v nor v1. Moreover, since C ′ is avoidable in N ′, at least one such path, say Pq ,
does not meet a vertex of C in N or the last vertex meeting C in N is an element in
{t1, t}. If the last vertex of Pq that meets C in N is either t1 or t , it is easily checked
that there is a path from ρ to q such that the last vertex on this path meeting D is v1; a
contradiction. We may therefore assume that Pq does not meet a vertex of C . Hence,
V (Pr ) − {r} is non-empty and, in particular, Pq meets D in a vertex of V (Pr ) − {r}.
But then there is a directed path in N from ρ to � using Pq that avoids every vertex in
C , in which case, C is avoidable in N ; a contradiction.

We now proceed with the induction. Since N ′ has k − 1 reticulations, it follows by
the induction assumption that N ′ does not display a tree on X − Dv twice. Let T ′ be a
tree on X − Dv that is displayed by N ′, and let S′ be a switching that yields T ′. Now
consider the two switchings S1 = S′ ∪ {e1} and S2 = S′ ∪ {e2}, where e1 = (v1, v)

and e2 = (v2, v). For completeness, if S′ contains an edge (w1, w), where w1 is the
parent of v2 and w is a child of v2 in N , then replace (w1, w) with (v2, w) in S1 and
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S2. Let C be a 2-path cycle in N whose sink is v. It is easily checked that C exists.
Furthermore, let � be an element in Dv , and let q be an element in X such that the last
vertex of each directed path from ρ to q in N that meets C is neither v nor v1. As C
is not avoidable, such a q exists. Then, S1 yields a tree T1 on X that contains the triple
�m|q while S2 yields a tree T2 on X that contains the triple �q|m or qm|� and, thus,
T1 � T2. Applying this argument to each of the trees on X − Dv displayed by N ′, it
follows that N does not display a tree on X twice; thereby completing the proof of
the theorem. ��

5 Quadratic-Time Algorithm

Making use of the characterization Theorem 2, in this section, we establish Theorem 1.
If N is a network with n vertices, then, as each vertex of N has degree at most three,
the number of edges in N is at most 3

2 n. We will implicitly use this fact throughout
the section.

We start by showing that the total number of vertices in a certain type of network
N on X is bounded by a function that is linear in the size of X . Eventually, this will
enable us to get the overall running time to be quadratic in |X |.
Lemma 4 Let N be a network on X with no avoidable reticulation, and suppose that
N has the tree-path property for at least one parent of each reticulation. Let k be the
number of reticulations in N , and let n be the total number of vertices in N . Then
k ≤ |X | and, in particular, n < 4|X |.
Proof If k = 0, then the result clearly holds. So assume that the result holds for all
networks with fewer than k reticulations. Let N ′ be a network obtained from N by
applying a reticulation deletion relative to a reticulation v in N . It follows by Lemma 3
that N ′ is a network on X−Dv with no avoidable reticulation and, for each reticulation,
at least one parent has the tree-path property. Moreover, N ′ has k − 1 reticulations
and at most |X | − 1 leaves. Therefore, by induction,

k − 1 ≤ |X − Dv| ≤ |X | − 1,

and so k ≤ |X |. To establish the second part, we use a result from (McDiarmid et al.,
Equation 5) whose authors have shown that |X | + k = n+1

2 . Since k ≤ |X |, it follows
that

n = 2(|X | + k) − 1 ≤ 4|X | − 1 < 4|X |,

thereby establishing the second inequality of the lemma. ��
Corollary 1 Let N be a network on X that has the tree-path property for at least one
parent of each reticulation. If N has at least 4|X | vertices, then N displays a tree on
X twice.

Proof It follows by the contrapositive of Lemma 4 that N has an avoidable reticulation.
Hence, by Lemma 1, N displays a tree on X twice. ��
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Following on from Corollary 1, the next lemma shows that we can decide quickly
if a network on X has at least 4|X | vertices.

Lemma 5 Let N be a network on X. It takes time linear in |X | to decide whether N
has at least 4|X | vertices.

Proof The result follows by applying a breadth-first search traversal to N that keeps
track of the number of previously visited distinct vertices in N and either returns the
number n of vertices in N if n < 4|X | or stops if 4|X | distinct vertices have been
traversed. Since the running time of a breadth-first search algorithm applied to N is
O( 3

2 n + n) (Cormen et al. 2001), the lemma now follows. ��
We next establish a lemma on avoidable cycles and then state an algorithm that

recognizes whether or not a reticulation is the sink of an avoidable cycle in a network
with no avoidable reticulations and, for each reticulation, at least one parent has the
tree-path property.

Lemma 6 Let N be a network with no avoidable reticulation, and suppose that at
least one parent of each reticulation in N has the tree-path property. Let v be a
reticulation in N with parents v1 and v2 say, where v1 is a distinguished parent of
v. If v is the sink of an avoidable cycle C, and P1 and P2 are the two directed paths
whose union is C with vi lying on Pi , then, apart from v, the path P1 contains at most
one reticulation and the path P2 contains no reticulations. Moreover, C is the unique
avoidable cycle with sink v.

Proof Let ρ denote the root of N . It follows by Observation 2 that {v, v1} is the unique
hitting set of C . We first show that P2 contains no reticulations except for v. Assume
that w is a reticulation lying on P2 such that w 	= v. Among all such reticulations,
choose w so that the only reticulation in P2 after w is v. Since w is unavoidable, there
exists a leaf q such that every directed path from ρ to q contains w. In particular, there
exists a directed path from ρ to q, say Pq , such that, as C is avoidable, the last vertex
of Pq meeting C is either v or v1. But then, as w is not the source of C , there is a
directed path from ρ to q using P1 that avoids w; a contradiction. Thus, P2 contains
no reticulations except v.

We next show that P1 contains at most one reticulation except for v. Assume that w

is a reticulation lying on P1 such that w 	= v. Like above, choose w so that among all
such reticulations the only reticulation after w in P1 is v. Let w1 and w2 be the parents
of w in N . Without loss of generality, we may assume that w1 is a distinguished parent
of w. Since w1 has the tree-path property, there is a leaf q with the property that there
is a tree-path from w1 to q. Since C is avoidable and {v, v1} is the unique hitting set of
C , it follows that w1 does not lie on P1; otherwise, a hitting set of C has size at least
three. Thus, w2 lies on P1. Now assume that P1 contains a reticulation t other than
v and w. Choose t so that the only reticulations after t in P1 are w and v. Since t is
unavoidable, there exists a leaf r such that every directed path from ρ to r contains t .
Moreover, as C is avoidable, there exists at least one such path, say Pr , such that the
last vertex of Pr meeting C is either v or v1. Now, let Pq be a directed path from ρ

to q and observe that Pq contains as a subpath the tree-path from w1 to q. Since N is
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acyclic and C is avoidable, Pq does not meet C . But then there is a directed path from
ρ to r using Pq to w1, the unique path from w1 to v1, and the subpath of Pr from v1
to r . In particular, this path avoids t ; a contradiction. Hence, P1 contains at most one
reticulation other than v.

To see that C is the unique avoidable cycle with sink v in N , first note that P2
contains no reticulations except v. Furthermore, P1 contains at most one reticulation
(other than v) and, if it contains such a reticulation w, then P1 has no choice with regard
to which parent of w it meets. Since no 2-path cycle of N with sink v that contains v,
v1, and a parent of w that has the tree-path property is avoidable, the uniqueness of C
now follows. ��

The previous lemma provides insights into how to decide whether or not a reticula-
tion is the sink of an avoidable cycle in a network N on X with no avoidable reticulation
and for which the tree-path property holds for at least one parent of each reticulation.
We next summarize these insights in the form of an algorithm, called Avoidable-
Cycle. Subsequently, we will establish that AvoidableCycle works correctly and
that its running time is linear in the size of X .

Algorithm: AvoidableCycle
Input: A network N on X with no avoidable reticulation and, for each reticulation,
at least one parent has the tree-path property. A reticulation v of N with parents v1
and v2 say, where v1 is a distinguished parent of v.
Output: Return ‘yes’ if v is the sink of an avoidable cycle in N ; otherwise, return
‘no’.

Step 1 Set P2 = u1, u2, . . . , ul to be the (unique) maximal directed path in N with
ul−1 = v2 and ul = v such that, except for v, each vertex on P2 is a tree
vertex.

Step 2 Set P1 = w1, w2, . . . , wm to be the (unique) maximal directed path in N with
wm−1 = v1 and wm = v such that the following three properties are satisfied:
(i) w1 is a tree vertex, (ii) P1 contains at most one reticulation other than v,
and (iii) except for v1 and, possibly v2, no vertex on P1 that is a parent of a
reticulation in N , has the tree-path property.

Step 3 If P1 and P2 have no common tree vertex, then return ‘no’. Otherwise, let C
be the 2-path cycle of N induced by subpaths of P1 and P2 with source u and
sink v, where u is the last tree vertex in P1 and P2 common to both paths.

Step 4 Let X ′ be the subset of X such that � ∈ X ′ if and only if there is a directed
path from either v1 or v to � avoiding all other vertices of C .

Step 5 For each leaf q in X − X ′, check whether there is a directed path from the root
of N to q avoiding all vertices of C . Return ‘yes’ if there exists such a path
for all q; otherwise, return ‘no’.

Lemma 7 Let N be a network on X with no avoidable reticulation. Suppose that
at least one parent of each reticulation in N has the tree-path property. Let v be a
reticulation in N . Calling AvoidableCycle for N and v returns ‘yes’ if and only if v
is the sink of an avoidable cycle. Furthermore, the running time of AvoidableCycle
in this call is linear in the number of vertices in N .
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Proof Let ρ denote the root of N , and let v1 and v2 denote the parents of v. Without
loss of generality, we may assume that v1 is a distinguished parent of v. Furthermore,
let n denote the number of vertices in N . Throughout the proof, we use the same
notation as in the description of AvoidableCycle.

We first show that AvoidableCycle works correctly. Suppose that C ′ is an avoid-
able cycle of N with sink v. Then, by Lemma 6, C ′ is unique. Applying Avoid-
ableCycle to N and v, it follows by Lemma 6 and the construction described in
AvoidableCycle that C ′ is the 2-path cycle C constructed in Step 3 of the algo-
rithm. By the definition of an avoidable cycle, Step 5 returns ‘yes’. Now suppose that
N has no avoidable cycle with sink v. Applying AvoidableCycle to N and v, there
are two cases to consider depending on whether or not P1 and P2 meet in Step 3. If P1
and P2 do not meet at a tree vertex, then Step 3 returns ‘no’. Therefore, assume that
P1 and P2 do meet at a tree vertex. Then, as v is not the sink of an avoidable cycle in
N , there is some leaf q ∈ X − X ′ such that every path from ρ to q meets C , in which
case Step 5 returns ‘no’. Hence, AvoidableCycle correctly determines whether v is
the sink of an avoidable cycle in N .

We now turn to the running time of AvoidableCycle. Starting at v2 and traversing
edges in the opposite direction to determine P2 takes time linear in n. Similarly, deter-
mining P1 takes time linear in n. However, if P1 contains a reticulation v′, distinct from
v, then one has additionally to determine which of its two parents, say v′

1 and v′
2, have

the tree-path property. A naive way to do this is the following. Let (r1, r2, . . . , r|X |)
be an ordering on the leaves of N . In turn, for each ri , let Pri be the unique maximal
directed path in N that ends in ri such that each vertex on Pr is a tree vertex and, except
for the first vertex of Pri , no vertex is contained in a path Pr j with 1 ≤ j < i ≤ |X |.
If there exists an ri such that Pri meets v′

k with k ∈ {1, 2}, then v′
k has the tree-path

property. Collectively, this takes time linear in n. Clearly, Step 3 can be done in time
linear in n and, so, it remains to check the running time of Steps 4 and 5. For Step 4,
delete the vertices in C that are neither v nor v1, and then determine, for each leaf �,
if there is a directed path from v1 to � in the resulting directed graph, in which case,
� ∈ X ′. Here, we can, for example, use a depth-first search traversal (Cormen et al.
2001) starting at v1 and, so, this step takes time linear in n. An analogous approach
can be done for Step 5. We conclude that the running time of AvoidableCycle is
linear in n. ��

We are now in a position to prove Theorem 1 which we restate in the language of
Sect. 2.

Theorem 1 Let N be a network on X and suppose that N has the tree-path property
for at least one parent of each reticulation. It takes time quadratic in the size of X to
decide whether N displays a tree on X twice.

Proof First, by Lemma 5, we can decide in time linear in |X | if N has at least 4|X |
vertices. If N has at least that many vertices, then, by Corollary 1, N displays a tree
on X twice. We may therefore assume that N has at most 4|X | vertices.

We complete the proof by showing that it takes time quadratic in |X |, to decide
whether or not N has an avoidable reticulation or an avoidable cycle which is, by
Theorem 2, a necessary and sufficient condition for N to display a tree on X twice.
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Let v be a reticulation in N . Deciding if v is avoidable is easily checked in time that
is linear in the size of N , which is at most 4|X |. For example, one way is to simply
delete v from N and then use a depth-first search (Cormen et al. 2001), whose running
time is linear in |X |, to decide whether there is a directed path from the root to each
vertex in X in the resulting directed graph. Since the number of reticulations in N is
at most |X | (see Lemma 4), deciding whether or not N has an avoidable reticulation
takes time quadratic in |X |. Now we may assume that N has no avoidable reticulation.
It then follows by Lemma 7 that it takes time linear in the number of vertices in N
and, hence, by Lemma 5, time linear in |X |, to decide if v is the sink of an avoidable
cycle in N using AvoidableCycle. Applying this algorithm to each reticulation in
N to decide if there exists a reticulation that is the sink of an avoidable cycle takes
time quadratic in |X |. The theorem now follows. ��

6 Remark on Tree-Child and Normal Networks

As tree-child networks are a subclass of the networks in which each reticulation has
at least one parent that satisfies the tree-path property, it immediately follows by
Theorem 1 that it can be decided quickly whether or not a tree-child network displays
a tree twice. Curiously, since each vertex of a tree-child network N has the tree-path
property, it is tempting to assume that N never displays a tree twice and therefore
has no avoidable cycles. However, this is not necessarily true. To see this, consider
a reticulation v of N and its two parents v1 and v2. If v1 has the tree-path property
and v2 is an ancestor of v1, then it is possible for v to be contained in an avoidable
cycle. In Willson (2010), refers to a tree-child network that does not have a reticulation
for which one parent is an ancestor of the other parent as a normal network. Noting
that a normal network does not have an avoidable cycle as every 2-path cycle has a
minimum hitting set of size at least three, the next corollary is now an immediate result
of Theorem 2.

Corollary 2 Let N be a normal network on X. Then N does not display a tree on X
twice.
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