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Abstract In healthy subjects some tissues in the human body display metabolic flex-
ibility, by this we mean the ability for the tissue to switch its fuel source between
predominantly carbohydrates in the postprandial state and predominantly fats in the
fasted state. Many of the pathways involved with human metabolism are controlled by
insulin and insulin-resistant states such as obesity and type-2 diabetes are characterised
by a loss or impairment of metabolic flexibility. In this paper we derive a system of
12 first-order coupled differential equations that describe the transport between and
storage in different tissues of the human body. We find steady state solutions to these
equations and use these results to nondimensionalise the model. We then solve the
model numerically to simulate a healthy balanced meal and a high fat meal and we
discuss and compare these results. Our numerical results show good agreement with
experimental data where we have data available to us and the results show behaviour
that agrees with intuition where we currently have no data with which to compare.
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1 Introduction

The human diet consists of a mix of carbohydrates and fats delivered in a discon-
tinuous manner whilst the human body is constantly expending energy. To deal with
this discontinuous supply of energy from the diet, human physiology has evolved
mechanisms to manage the transport, storage and utilisation of carbohydrates and fats
between the different tissues of the body.

In lean healthy subjects skeletal muscle displays metabolic flexibility, by this we
mean that the body is able to switch its fuel source between predominantly carbohy-
drates in the post prandial, insulin stimulated, state and predominantly fats in the fasted
state. The main regulatory hormone involved in metabolism is insulin, and because of
this, insulin-resistant states such as type 2 diabetes and obesity are characterised by
this loss of metabolic flexibility (Kelley and Mandarino 2000; Kelley 2005).

Insulin resistance or insulin-deficient states can be generalised into three cate-
gories: (i) abnormal β-cell secretory product, resulting in lower levels of insulin being
produced by the β-cells of the pancreas, that is, insulin insufficiency; (ii) insulin
antagonists in the blood plasma, either due to counterregulatory hormones or due to
nonhormonal bodies that either affect insulin receptors or alter insulin signalling effec-
tiveness; (iii) the target tissue being defective in insulin action, due either to insulin
receptor defects or to defects in the effector systems. The third of these causes is
of most interest to us as this form of insulin resistance is common in some obese
and all type 2 diabetic subjects, although early phase insulin secretion is inhibited
in some type 2 diabetic subjects (Olefsky 1981; Mizuno et al. 2007). Both obese
and diabetic subjects demonstrate a reduced rate of plasma glucose disposal and a
higher than normal basal glucose level (Olefsky 1981; Mizuno et al. 2007; Prager
et al. 1986). In the case of type 2 diabetes, this can be partially explained by the
fact that hepatic glucose uptake is impaired (Mizuno et al. 2007; Iozzo et al. 2003)
and the suppression of hepatic glucose output by insulin is reduced Kotronen et al.
(2008), and also skeletal muscle glucose uptake is known to be impaired in type 2
diabetes Phielix and Mensink (2008). Similarly, with nondiabetic obese subjects there
is reduced hepatic glucose output suppression from insulin (Olefsky 1981; Prager et
al. 1986) and reduced skeletal muscle glucose uptake den Boer et al. (2006). It has
also been shown that insulin-resistant subjects can have increased hepatic lipogenesis,
resulting in larger changes in hepatic triglyceride concentrations in the postprandial
state which is counter intuitive as it is an insulin-stimulated pathway; however, it
was also shown that the insulin-resistant subjects had a much greater reduction in
muscle glucose uptake indicating that insulin resistance affects different tissues to
different degrees (Peterson et al. 2007) with the liver being less severely affected
Bock et al. (2007). It is not just glucose metabolism that is affected by insulin resis-
tance, it also affects adipose tissue with reduced insulin suppression of free fatty acid
release common in obesity den Boer et al. (2006). Insulin-resistant subjects also show
reduced adipose tissue triglyceride clearance and reduced skeletal muscle triglyc-
eride clearance (Bickerton et al. 2008). Fatty liver disease is a large area of interest
currently as it is closely related to obesity and insulin resistance. Although it has
been shown that there is a strong correlation between obesity and fatty liver disease
(Rijkelijkhuizen et al. 2009), it is not known if fatty liver disease is the cause or
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effect of insulin resistance. It has been shown that postprandial hepatic triglyceride
release is higher in people with fatty liver disease than healthy people, although the
basal secretion rate is the same indicating that it is not a higher fat presence in the
liver which causes the increased output but rather insulin resistance (Adiels et al.
2007).

Although there has been much work published on mathematical modelling of human
metabolism much has focused on single tissues or a limited number of substrates
and, in some cases, on metabolism at a cellular level. Glucose-insulin metabolism
has been extensively investigated with many models describing the effect of insulin
supply on glucose metabolism (Tolic et al. 2000; Engelborghs et al. 2001; Ben-
net and Gourley 2004; Li et al. 2006) and conversely the effects of a controlled
glucose supply on insulin dynamics De Gaetano and Arino (2000). More com-
plex models have also been proposed (Cobelli et al. 1982; Sedaghat et al. 2002;
Chew et al. 2009; Perival et al. 2008) which although detailed are still limited to
glucose-insulin metabolism. There are also models focusing on the metabolism of
a variety of lipoproteins in the body and the transport of and conversion between
them August et al. (2007). Other models describe specific types of lipoprotein and
their competitive uptake in the liver (Tindall et al. 2009; Wattis et al. 2008; Pear-
son et al. 2009). Models of skeletal muscle metabolism, particularly in terms of
energy balance have also been proposed (Vicini and Kushmerick 2000; Lambeth
and Kushmerick 2002); however, these are restricted to skeletal muscle and ignore
the rest of the body. Some very detailed although very computational models have
also been proposed covering skeletal muscle (Li et al. 2010; Kim et al. 2007) and
whole body metabolism Klinke (2008). There has also been simpler, more analyt-
ical, models proposed to describe whole body metabolism of carbohydrates, fats
and proteins on long time scales although these tend to focus on energy balance
and weight gain (Hall 2010a, b; Jordan and Hall 2008; Hall et al. 2007, 2006;
Song and Thomas 2007; Flatt 2004). A recent PhD thesis developed four detailed,
separate, models of metabolism covering glucose-fat interactions, hepatic glucose
metabolism, postprandial lipid metabolism and adipose tissue distribution Hallgreen
(2009).

In this paper we develop a compartmental mathematical model to describe the
transport, storage and utilisation of glucose and fats in the human body covering many
of the different tissues. In particular we pay close attention to the blood plasma, the
liver and skeletal muscle and we include terms which model the rest of the tissues in
the human body. We aim to produce a model describing whole body metabolism as
opposed to more detailed models which focus on a single metabolic subsystem. As
such we take a more simplified approach to model the complex physiological process
in the human body but still retains enough detail to produce meaningful results. Once
we have formulated our model in Sect. 2; in Sect. 3 we find steady-state equations in
the fasted state where steady concentrations are applicable, and use these to nondi-
mensionalise the model, details of which are given in Appendix 2. In Sect. 4 we refer
to the experimental literature to derive parameter values for the model. Finally we
generate numerical results to the system of equations subject to realistic simulated
meals in Sect. 5 and in Sect. 6 we draw conclusions.
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2 Mathematical Model of Metabolism

In this section we formulate a mathematical model describing human metabolism
and the dynamics of metabolic flexibility. We take account of the substrates glucose,
glycogen, triglyceride (TAG), free fatty acids (FFA) and insulin in multiple compart-
ments, of blood plasma, liver and skeletal muscle and we assume adipose tissue to be
an unlimited source of FFA. Since we are concerned with how concentrations evolve
over a 12–14 h period, this is quite reasonable. We model the synthesis and transport
between compartments of each substrate. We assume the usage of glucose by the tis-
sues and organs not modelled to be linearly dependent on the amount of each substrate
in the blood plasma and that fat usage by the rest of the body is negligible. We derive
the model one compartment at a time and start with the blood plasma as this acts as
the main transport medium for substrates between the different organs and tissues of
the body and no synthesis of glucose, FFA or TAG occurs in the plasma.

Following ingestion of a meal, glucose and TAG are absorbed from the gut into
the blood plasma and we will use this as the input for our model. As well as this
absorption from the gut, FFA are released, at an insulin-inhibited rate, into the blood
plasma from stores in adipose tissue. The presence of glucose and, to a lesser extent,
FFA in the plasma stimulates the pancreas to produce and secrete insulin. We assume
that insulin secretion dependence on FFA is small and model it by a linear dependence.
Experimental data showing pancreatic insulin secretion rate compared to plasma glu-
cose concentration Harrison et al. (1985) suggests that a Hill function models the
glucose dependence. Whilst glucose concentrations at the higher end of the data are
only observed, in vivo, in cases of hyperglycemia, we include the saturating effect
whereby the insulin production term has some maximum value even at extreme glu-
cose levels. Hence, with these assumptions we arrive at our first equation, modelling
plasma insulin concentration by

Vb
d I

dt
= k1 + k2erf((Gb − v)/c)+ kI A Ab − λI I, (1)

where the first two terms represent the saturating dependence on plasma glucose (Gb),
the third term represents the linear dependence on plasma FFA (Ab) and the final term
represents the linear decay of plasma insulin.

We now turn our attention to the uptake from and secretion to the plasma of glucose,
TAG and FFA. The pathways we will now discuss are shown in Fig. 1. Glucose in the
plasma may be taken up into skeletal muscle via two glucose transporters, the GLUT1
insulin-independent and GLUT4 insulin-dependent transporters. Other tissues of the
body, such as the brain and the kidneys, use glucose as their energy source; we model
this effect with the usage term SG Gb in the equations below. Glucose can also be
taken up into and secreted by the liver, the uptake into the intracellular compartments
of the liver and the release back into the plasma, is handled by the GLUT2 insulin-
independent transporter and as such is entirely driven by concentration gradients.
For this reason we make a simplification that we can ignore this step and instead
we take account of what can happen to hepatic intracellular glucose. The storage of
glucose in the liver as glycogen is mediated by insulin-stimulated enzymes and the
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Fig. 1 Diagram showing the input and transportation of glucose, FFA and TAG in the blood plasma, not
including utilisation by the rest of the body, with the rate of flux for each pathway shown

liver has a finite-storage capacity. The breakdown of glycogen back into glucose is
mediated by insulin-inhibited enzymes. As well as storage as glycogen, glucose in
the liver can be used to synthesise FFA in the liver via the pathways of glycolysis and
subsequently lipogenesis, there are many steps in these pathways; however, we make
use of the fact that each step in the pathways is insulin-stimulated and simplify this
to a single insulin-stimulated step. It is worth noting that no glucose released from
the breakdown of glycogen is used in FFA synthesis as the breakdown of glycogen
happens predominantly in the fasted, low insulin state, when the insulin-stimulated
pathway of hepatic FFA synthesis will be inactive, allowing our earlier simplification
of ignoring intracellular glucose to remain valid. FFA in the plasma may be taken up
into the liver and released back as well as being taken up into skeletal muscle and are
handled by an insulin-independent fatty acid transporter.

As well as being absorbed from the gut, TAG can be released into the plasma from
the liver, this release is inhibited by insulin and is somewhat dependent on liver fat
content, in that at lower liver fat levels secretion is reduced; however, this secretion rate
does not increase drastically at high liver fat levels. TAG in the plasma can be taken up
into adipose tissue and skeletal muscle. Although TAG molecules are too large to be
taken across the cell membrane, they are bound to the cell walls and broken down by
the enzyme lipoprotein lipase into FFA before being taken up into the cell. Lipoprotein
lipase is thought to be dependent on insulin in adipose tissue and so we model the
breakdown and uptake of TAG on this pathway as being both insulin-independent
and insulin dependent; however, lipoprotein lipase is not insulin stimulated in skeletal
muscle. Using these assumptions we arrive at the equations

Vb
dGb

dt
=

(
βG

1 + kGL I 2

)
f1(YL)− SG Gb − kG(1 + kG I I )Gb − kL I Gb f2(YL)

−kAL I Gb + FG(t), (2)
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Vb
dTb

dt
=

(
βT

1 + kT L I

)
f3(TL)− kT Tb − kT A(1 + kAI I )Tb + FT (t), (3)

Vb
d Ab

dt
= βA

1 + kAA I 2 − kA Ab − kBL Ab + kL B AL . (4)

Equations (2)–(4) describe the concentrations of plasma glucose, TAG and FFA,
respectively, where YL , TL and AL denote the concentrations of hepatic glucose
(stored as glycogen), TAG and FFA, respectively. We have introduced the dimen-
sional parameter Vb = blood volume. The nondimensional functions f1, f2 and f3
are introduced so that the uptake and release of glucose and the release of TAG from
the liver are dependent on how much is in the liver. In the case of f1, the rate of
release of glucose from the liver should depend on insulin with the main dependence
on hepatic glycogen being that the release should be slow or switched off when the
store is almost empty. Similar properties hold for the hepatic TAG release and the
function f3. In the case of f2, the uptake of glucose by the liver should be mostly
dependent on plasma glucose and insulin with the dependence on hepatic glycogen to
slow or shut off completely the uptake when the liver is almost full. Hence we define
these functions by

f1(YL) = YL

Y0 + YL
, f2(YL) = Ymax − YL

Y0 + Ymax − YL
, f3(TL) = TL

T0 + TL
, (5)

where Ymax denotes the maximum amount of glycogen the liver can store and Y0 and
T0 are small parameters. The final terms in Eqs. (2) and (3) model the glucose and
TAG absorbed by the gut following ingestion of a meal and are given by

FG(t) = θGt

B2
G

e−t2/2B2
G , FT (t) = θT t

B2
T

e−t2/2B2
T . (6)

These will act as our control inputs for the model and we are free to choose the
parameters in these functions, θG and θT control the magnitude of the substrates
entering the blood stream and BG and BT control the timescale for the release into the
blood.

We now derive the equations for the liver, the pathways we discuss are shown in
Fig. 2. As mentioned before, glucose from the plasma can be taken up into the liver and
either stored as glycogen or used to synthesise fatty acids. Fatty acids from the plasma
contribute to the hepatic FFA pool, with insulin-independent uptake to and release from
the liver. This FFA can be converted to fatty acetyl-CoA, via an insulin-independent
process which is, in turn, either converted to TAG and stored in the liver, or oxidised to
create ketone bodies. We make a simplification here in that we do not take account of
the concentration of fatty acetyl-CoA but rather we will introduce two sink terms into
the equation for hepatic FFA, to represent the FFA oxidised into ketone bodies and
that stored as TAG. The storage as TAG is driven by an insulin-stimulated pathway
and the oxidation to ketone bodies is primarily stimulated by glucagon. Currently,
our model does not include glucagon; however, it has been shown that glucagon and
insulin are in general inversely related such that at high levels of insulin there is a low
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Fig. 2 Diagram showing the input and transportation of glucose, FFA and TAG in the liver with the rate
of flux for each pathway shown

level of glucagon and vice versa (Frayn, 2003, Ch. 5). Hence we model this glucagon
stimulation as insulin inhibition. As mentioned before, TAG stored in the liver is
released back into the plasma at an insulin-inhibited rate. Using these assumptions we
arrive at the equations

Vl
dYL

dt
= kL I Gb f2(YL)−

(
βG

1 + kGL I 2

)
f1(YL), (7)

Vl
d AL

dt
= kAL I Gb − SL AL

1 + kAS I
+ kBL Ab − kL B AL − kT H I AL , (8)

Vl
dTL

dt
= kT H I AL −

(
βT

1 + kT L I

)
f3(TL). (9)

Equations (7)–(9) describe the concentrations of hepatic glucose (stored as glycogen),
FFA and TAG, respectively. As with the equations for plasma concentrations (2)–
(4) we have introduced the dimensional parameter Vl = liver volume. We use the
same units for our glycogen concentration variables as for glucose; thus glycogen is
measured in effective, or equivalent, amount of glucose that can be stored in that form.

We complete the compartmental model by deriving equations for skeletal muscle.
As well as modelling the uptake, storage and usage of glucose and FFA by the skeletal
muscle we take account of energy expenditure since in skeletal muscle this has a large
effect on the metabolism in the skeletal muscle. To model skeletal muscle energy
expenditure, we define a new variable, P , which is related to skeletal muscle AMP
concentration; although not actually AMP concentration, it acts as a measure of flux
through the skeletal muscle oxidative pathways. We assume that P decays linearly and
is decreased by oxidation with glucose or FFA in the skeletal muscle to create ATP, with
glucose oxidation being insulin-stimulated and FFA oxidation insulin-independent.
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Fig. 3 Diagram showing the input and transportation of glucose, glycogen , FFA and TAG in skeletal
muscle with the rate of flux for each pathway shown

Using these assumptions we derive

Vs
d P

dt
= μ− λP P − γa MA Am P − γg MG P I Gm . (10)

The parameter μ acts as our measure of energy expenditure and is a control input for
our model. As a first approximation we could assume a constant production of AMP
from ATP; however, this is unphysical, as there is only a limited amount of ATP, ADP
and AMP available, so as AMP rises, ATP decreases, and the rate of production of AMP
would also decrease. This effect is modelled in a simplistic way by the combined effect
ofμ and λ. The nondimensional parameters γa and γg are the number of P molecules
used in FFA and glucose oxidation, respectively. The dimensional parameter Vs =
skeletal muscle volume.

We now derive equations for skeletal muscle glucose, glycogen, FFA and TAG. As
before the pathways we will consider are shown in Fig. 3. As mentioned earlier, glucose
is taken up from the plasma at insulin-stimulated and insulin-independent rates, FFA
is taken up from the plasma at an insulin-independent rate and TAG is taken up into
skeletal muscle by being broken down into FFA at an insulin-independent rate. Once
inside skeletal muscle, glucose and FFA, as well as being oxidised, can be stored as
glycogen and TAG, respectively, to be released later, when needed. We assume the
rate of storage and release of both FFA and glycogen are regulated in the same way,
with storage being insulin-stimulated and AMP-inhibited and release being AMP-
stimulated and insulin-inhibited. Using these assumptions we arrive at the equations

Vs
dGm

dt
= kG(1 + kG I I )Gb − MG P I Gm − kY

(
1 + kY I I

1 + kY P P

)
Gm + kC P PYm

1 + kC I I
,

(11)
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Vs
dYm

dt
= kY

(
1 + kY I I

1 + kY P P

)
Gm − kC P PYm

1 + kC I I
, (12)

Vs
d Am

dt
= kT Tb + kA Ab − MA P Am − kX

(
1 + kX I I

1 + kX P P

)
Am + kD P PTm

1 + kDI I
, (13)

Vs
dTm

dt
= kX

(
1 + kX I I

1 + kX P P

)
Am − kD P PTm

1 + kDI I
. (14)

Equations (11)–(14) describe the concentration of skeletal muscle glucose, glycogen,
FFA and TAG, respectively. As with hepatic glycogen, the concentration of skeletal
muscle glycogen is actually the concentration of potential glucose stored as glycogen
and the concentration of skeletal muscle TAG is actually the concentration of potential
FFA stored as TAG. The terms MG P I Gm in (11) and MA P Am in (13) describe the use
of glucose and fatty acids in the conversion of AMP (and ADP) to ATP, which is then
a source of energy for muscle’s activity. Protein could also provide a component of
the energy required for ATP production, but since our model does not include protein
metabolism, we have ignored such effects in this work.

In summary, we have derived twelve first-order coupled differential equations along
with 53 dimensional parameters which describe our model. All parameter values are
given in Table 1 along with a brief description of the parameter and a reference to
its source where applicable. We summarise the overall model and the interactions
between compartments in Fig. 4.

3 Steady State

The steady state we are interested in is the state reached after a 12–14 hour overnight
fast. Although hepatic glycogen and hepatic triglyceride will not be at steady state
at this time, we assume the stores are sufficiently high that we may approximate the
functions f1, f2 and f3 by 1, in the case of f2 we are also assuming YL is not close
to Ymax (that is, Y0 � Ymax − YL ). These assumptions are reasonable for our steady
state as YL will only be near Y0 after a period of starvation and will only be near Ymax

directly after a meal. Steady-state values of variables will be denoted with a superscript
“*”.

We start by finding the steady states of Eqs. (2) and (3)

G∗
b = βG

(1 + kGL I ∗2)(SG + kG(1 + kG I I ∗)+ kL I ∗ + kAL I ∗)
, (15)

T ∗
b = βT

(1 + kT L I ∗)(kT A(1 + kAI I ∗)+ kT )
. (16)

Next we solve for the steady states of Eqs. (4) and (8). Solving them explicitly would
lead to complicated formulae so we leave the solutions as implicit expressions in a
form that is useful when we nondimensionalise
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Table 1 List of dimensional parameters together with brief description of each parameter

Parameter Description Value Units Reference

MG Glucose oxidation rate 20,000 l3/min3

MA FFA oxidation rate 0.02 l2/min2

kY Glycogen synthesis rate (basal) l/min

kY I Glycogen synthesis rate (insulin
stimulated)

1,000,000 l/mmol

kY P Glycogen synthesis rate (AMP inhibited) 0 l/mmol

kT Muscle triglyceride uptake rate (basal) 6 × 10−3 l/min Bickerton et al. (2008)

kG Muscle glucose uptake rate (basal) 1.08 × 10−1 l/min Meyer et al. (2002)

kG I Muscle glucose uptake rate (insulin
stimulated)

1.75 × 107 l/mmol Meyer et al. (2002)

kC P Glycogenolysis rate (AMP stimulated) 0.1 l2/min2

kC I Glycogenolysis rate (insulin inhibited) 0 l/min (Frayn, 2003, Ch. 4)

SG Body glucose consumption rate l/min

μ AMP (P) creation rate 1 mmol/min

λI Insulin degradation rate l/min

k1 Insulin production rate 6.97 × 10−5 mmol/min

k2 Insulin production rate 8.36 × 10−5 mmol/min

v Insulin production (glucose threshold) 9 mmol/l

c Insulin production (glucose range) 4 mmol/l

kI A insulin production rate 10−6 l/min

kA Muscle FFA uptake rate constant l/min

βA basal FFA production rate 0.33 mmol/min Bickerton et al. (2008)

βT Basal triglyceride production rate 6.75 × 10−3 mmol/min †

βG Basal glucose production rate 0.57 mmol/min Taylor et al. (1996)

γa Number of P molecules used in FFA
oxidation

1

γg Number of P molecules used in glucose
oxidation

1

λP Degradation of P in the absence of any
other process

l/min

kGL Insulin-inhibition rate for glucose from
liver

1.06 × 1014 l2/mmol2 Meyer et al. (2002)

kT L Insulin-inhibition rate for TAG from liver 2.5 × 106 l/mmol Adiels et al. (2007)

kAA Insulin-inhibition rate for FFA from
adipose tissue

2 × 1014 l2/mmol2 Bickerton et al. (2008)

kT A Adipose TAG uptake constant (basal) 1.5 × 10−3 l/min Bickerton et al. (2008)

kAI Adipose TAG uptake const. (insulin
stimulated)

5 × 106 l/mmol Bickerton et al. (2008)

kX Muscle TAG synthesis rate constant
(basal)

l/min

kX I Muscle TAG synthesis const. (insulin
stimulated)

0 l/mmol (Frayn, 2003, Ch. 4)
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Table 1 continued

Parameter Description Value Units Reference

kX P Muscle TAG synthesis constant
(AMP inhibited)

0 l/mmol (Frayn, 2003, Ch. 4)

kD P Muscle TAG usage constant
(AMP stimulated)

0 l2/min2

kDI Muscle TAG usage constant
(insulin inhibited)

0 l/mmol (Frayn, 2003, Ch. 4)

kL Liver glucose uptake rate 6 × 105 l2/min2 Taylor et al. (1996)

Ymax Maximum potential glucose
stored in liver

310 mmol/l Blakemore and Jennett (2001)

Vb Blood volume 5 l

Vl Liver volume 1.8 l Andersen et al. (2000)

Vs Skeletal muscle volume 30 l Acheson et al. (1988)

kAL Rate of conversion of glucose to
FFA via glycolysis

2,000 l2/mmol min

kAS Insulin-inhibition rate for
oxidation of hepatic FFA

105 l/mmol

kBL Rate of uptake of plasma FFA
into the liver

0.034 l/min

kL B Rate of release of hepatic FFA
into blood plasma

0.0059 l/min

kT H Rate of conversion of FFA to
TAG in the liver

33,000 l2/mmol min

SL Rate of oxidation of FFA in the
liver

0.01 l/min

BT Delay from feeding to
triglyceride reaching blood

min

BG Delay from feeding to glucose
reaching blood

min

θG Amount of carbohydrates in diet mmol

θT Amount of triglyceride in diet mmol

References are given where a parameter is known from the literature. Parameters without a value given are
either eliminated in the nondimensionalisation, are input parameters that we are free to choose. † The value
of the parameter βT is determined in Sect. 4 using the steady-state relations obtained in Sect. 3

A∗
b = βA

(1 + kAA I ∗2)(kA + kBL)
+ kL B A∗

L

kA + kBL
, (17)

A∗
L = kAL I ∗G∗

b + kBL A∗
b

SL
1+kAS I ∗ + kL B + kT H I ∗ . (18)

The steady-state solution for insulin is governed by a complicated equation and it
is not useful for us to consider the steady-state value of this right now as values are
commonly available in the literature.
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Fig. 4 Diagram of the biochemical reaction network modelled in the rest of this paper. Dashed boxes
indicate the different compartments of the model with the liver at the top, the blood plasma in the middle
and skeletal muscle at the bottom

The steady-state solutions for Eqs. (11)–(14) are given by

G∗
m = βGkG(1 + kG I I ∗)

MG P∗ I ∗(SG + kG(1 + kG I I ∗)+ kL I ∗ + kAL I ∗)
, (19)

Y ∗
m = kY G∗

m

(
1 + kY I I ∗

1 + kY P P∗

) (
1 + kC I I ∗

kC P P∗

)
, (20)

A∗
m = 1

MA P∗

(
βT kT

(1 + kT L I ∗)(kT A(1 + kAI I ∗)+ kT )

)

+ 1

MA P∗

(
βAkA

(1 + kAA I ∗2)(kA + kBL)

)
+ 1

MA P∗

(
kAkL B A∗

L

kA + kBL

)
, (21)

T ∗
m = kX A∗

m

(
1 + kX I I ∗

1 + kX P P∗

) (
1 + kDI I ∗

kD P P∗

)
. (22)

We can use these equations to find the steady-state value for P

P∗ = μ− μc

λP
, (23)

where μc is given by

μc = γAβT kT

(1 + kT L I ∗)(kT A I ∗ + kT )

+ γGβGkG(1 + kG I I ∗)
SG + kG(1 + kG I I ∗)+ kL I ∗ + kAL I ∗

+ γAβAkA

(1 + kAA I ∗2)(kA + kBL)
+ γAkAkL B A∗

L

kA + kBL
, (24)
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Table 2 List of steady-state
concentrations for plasma model
variables together with reference

Parameter Description Value Reference

G∗
b Plasma glucose 5 mmol/l (Frayn, 2003, Ch. 6)

T ∗
b Plasma TAG 1 mmol/l (Frayn, 2003, Ch. 6)

A∗
b Plasma FFA 0.5 mmol/l (Frayn, 2003, Ch. 6)

I∗ Plasma insulin 5 × 10−8 mmol/l (Frayn, 2003, Ch. 6)

and we require μ > μc. The steady-state values for plasma substrate concentrations,
which are widely available in the literature, are given in Table 2.

4 Parameter Assessment

Our model has a total of around 50 dimensional parameters, of these: eight are input
parameters which we are free to pick in order to simulate different conditions, four are
parameters that we can eliminate through nondimensionalisation and the remaining
are physiological rate parameters which we must either determine from the literature
or, where not known, must choose for ourselves such that the numerical results behave
as expected from time courses of experimental data. In this section we describe how
we determine some of the model parameters from data available in the literature. We
will also make use of some of the results in Sect. 3 by enforcing that some of the
equations tend to a steady state, from which we derive a relationship between a group
of parameters and the steady state value of a variable. The steady-state values of many
of our model variables are well documented in the literature so rather than using our
estimated parameters to determine the value of the steady state, we will use the well
documented steady-state values to eliminate the need for us to find all parameters.
The standard units of our model are mmol/l for concentrations and time is measured
in minutes.

Ymax —The liver is known to be able to store approximately 100 g of glucose as
glycogen Blakemore and Jennett (2001). Using an approximate liver volume of 1.8
litres Andersen et al. (2000) this yields a concentration of 55.5 g/l. Converting this
into the standard units of the model we find Ymax ≈ 310 mmol/l.

kG, kG I , kGL—Meyer et al. (2002) studied postprandial glucose homeostasis,
analysing the liver, kidneys and skeletal muscle. Healthy subjects were given a 75-
gram glucose meal and blood samples were taken over a period of 270 min. Fasting
plasma glucose and insulin were measured at approximately 5 mmol/l and 50 pmol/l,
respectively, and fasting skeletal muscle glucose uptake calculated as approximately 2
µmol/kg/min. Postprandial results showed peak plasma glucose, insulin and skeletal
muscle glucose uptake after approximately 90 min, with plasma glucose and insulin
at approximately 7.5 mmol/l and 300 pmol/l, respectively, and skeletal muscle glu-
cose uptake at approximately 10 µmol/kg/min. This skeletal muscle glucose uptake
is given in our model by the term kG(1 + kG I I )Gb/Vb and as we have data for this
rate of uptake, plasma glucose and insulin levels both at the fasted state and at 90 min
postprandial we can solve simultaneously for the two parameters which gives values
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of kG ≈ 1.08 × 10−1 l/min and kG I ≈ 1.75 × 107 l/mmol. This study also calculated
hepatic glucose output and we use these data to calculate kGL , the magnitude of hepatic
glucose output suppression by insulin. The data calculated hepatic glucose output as
8.34 µmol/kg/min in the fasted state and as 0.21 µmol/kg/min in the postprandial
state. As stated before we also know the concentrations of insulin at these times and
we can pick our parameter such that the measured increase in insulin levels results
in a suppression of hepatic glucose output in agreement with the data. This yields an
estimate of kGL ≈ 1.06 × 1014 l2/pmol2.
βG, kL —Taylor et al. (1996) carried out a study into hepatic glycogen storage in

healthy subjects. Three different studies were done in order to measure different rates
and concentrations. We will be interested in the data from study A as this had the
most simplest protocol. Subjects were fed a liquid meal of approximately 550 kcal
carbohydrates and 150 kcal fat following an overnight fast. Hepatic glycogen levels
were then measured over the next 10 h using magnetic resonance spectroscopy. The
results showed a steady rise in hepatic glycogen concentration during the insulin-
stimulated postprandial period to near the liver storage limit, followed by a steady
decline in hepatic glycogen over the remainder of the 10 h. We pick our parameters
such that subject to the same simulated meal our results show a qualitative agreement
with these data, in particular that hepatic glycogen rises following the meal until
almost full followed by a steady decline returning to its initial value after a 12–14 h
fast. This gives estimates for the parameters ofβG ≈ 0.57 mmol/min and kL ≈ 6×105

l2/mmol/min.
kT , kT A, kAI , βA, kAA—Bickerton et al. (2008) carried out a study looking into

fatty acid metabolism in healthy and insulin-resistant men. The study was carried out
after an overnight fast followed by a test meal of 40 g fat and 40 g carbohydrate.
Blood samples were taken for 6 h after ingestion of the meal (initially every 30 min
and then every 60 min) and results for plasma concentrations recorded as well as a
calculation of the rate of clearance of TAG from the plasma into adipose tissue and
skeletal muscle. Comparing the results for skeletal muscle TAG clearance to the plasma
TAG concentration confirmed that a linear relationship between skeletal muscle TAG
uptake and plasma TAG concentration was a good model. After converting the units
of the study (ml/min/100 g tissue) into the units of our model, we are able to derive
a value for kT by finding the value of kT /Vb that maps the results for plasma TAG
concentration to the results of skeletal muscle TAG clearance. This gives a value for
kT of 6 × 10−2 l/min. However, the results for adipose tissue TAG clearance show a
behaviour that our current model is unable to simulate and show an immediate spike in
adipose TAG uptake which then returns towards steady-state value before raising again
later, coinciding with the peak in plasma TAG levels. The data also show a third rise
in adipose TAG uptake towards the end of the data at approximately 6 hours after the
test meal when TAG and insulin levels have returned to steady state. We nevertheless
find values for kT A and kAI that produce as good a fit with the experimental data as
possible, in particular, our model predicts rates of uptake within the same range of
values as the data. We use the same approach as with skeletal muscle uptake and take
the data for plasma TAG and also insulin and pick values for the parameters which
make the quantity kT A(1 + kAI I )Tb/Vb in good agreement with the experimental
data. Using kT A = 1.5 × 10−2 l/min and kAI = 5 × 106 l/mmol yields results in the
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same range as the experimental data, however, this does not show good qualitative
agreement, in particular the third spike in adipose tissue TAG uptake. Also of use
to us from this study is the results for adipose tissue NEFA (FFA) output. Fasting
adipose NEFA output was measured at approximately 1,200 nmol/min/100 g adipose
tissue, at which time plasma insulin was measured at approximately 50 pmol/l. At
approximately 120 min after the meal was ingested, adipose NEFA output reached its
minimum of approximately 200 nmol/min/100 g adipose tissue, this coincides with the
maximum plasma insulin concentration measured, approximately 200 pmol/l. Adipose
tissue NEFA output is given in our model by the term βA/(Vb(1 + kAA I 2)) and as we
have data for this rate of release and insulin levels both at the fasted state and 120 min
postprandial we can solve simultaneously for the two parameters which gives values
of βA ≈ 0.33 mmol/min and kAA ≈ 2 × 1014 l2/pmol2.
βT , kT L—Here we make use of the steady-state relation given in Eq. (15), as we

have estimates for the parameters kT , kT A and kAI and we know the steady-state value
of plasma TAG, T ∗

b , we can derive that

βT

1 + kT L I ∗ = (kT + kT A(1 + kAI I ∗))T ∗
b ,

= 6 × 10−3mmol/min. (25)

Now, as we have two parameters to find and only one equation we require a little
more information. Adiels et al. (2007) carried out a study into the suppression of hepatic
VLDL1 secretion by insulin, and of particular use to us VLDL-TAG is measured. This
secretion of VLDL1 relates in our model to the release of TAG from the liver; although
the other types of lipoprotein are involved in TAG transport, VLDL1 is responsible
for the majority of the flux through the insulin-inhibited hepatic secretion pathway.
Their study compared results for subjects with type-2 diabetes to control subjects
under conditions of an euglycemic hyperinsulinemic clamp following an overnight
fast. Plasma insulin for the control subjects was measured at approximately 50 pmol/l
at the start of the clamp and 500 pmol/l once a steady state was achieved. VLDL1-TAG
secretion rate for the control subjects was measured at approximately 250 mg/kg/day
at the start of the clamp and 125 mg/kg/day once a steady state was reached. We
can simplify these data by saying that a 10-fold increase in plasma insulin, from its
steady state value, causes hepatic TAG output to drop to 50 % of its steady state value.
Combining this observation with equation (25) gives a value for βT of 6.75 × 10−2

mmol/min and a value for kT L of 2.5 × 106 l/mmol.

5 Numerical Results

In this section we solve our model numerically subject to two different simulated
meals. Hence we must pick our input functions, FG(t) and FT (t), appropriately and
it will be useful for us to consider them in terms of energy (kcal).
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Table 3 List of parameters used
to determine calorific content of
simulated meal

Parameter Description Value Reference

Vb Total volume of blood 5 l

Rg Mass of one mmol glucose 0.18 g (Frayn, 2003, Ch. 6)

Cg Kcal per gram glucose 4 kcal (Frayn, 2003, Ch. 6)

Rt Mass of one mmol TAG 0.85 g (Frayn, 2003, Ch. 6)

Ct Kcal per gram TAG 9 kcal (Frayn, 2003, Ch. 6)

The total amount of glucose entering the system from the diet is given by

Gin = 1

Vb

∫ ∞

0
FG(t)dt. (26)

However as we are solving the nondimensional system we need to transform the
integral to nondimensional variables which gives

Gin = G∗
b

∫ ∞

0
F̂G (̂t)dt̂ . (27)

Now in order to convert this result from the units of our model, namely mmol/l (blood),
into energy we need to know the total volume of blood, the mass in grams of oneμmol
of glucose and the amount of kcal per gram of glucose, which we will denote by Vb,
Rg and Cg , respectively. This gives the following expression for total energy from
glucose entering the system from the diet

Gcal = Cg RgVbG∗
b

∫ ∞

0
F̂G (̂t)dt̂ . (28)

Using a similar derivation for TAG entering the system from the diet gives

Tcal = βT Ct Rt VbG∗
b

βG

∫ ∞

0
F̂T (̂t)dt̂, (29)

where Rt and Ct denote the mass in grams of one mmol of TAG and the calories per
gram of TAG, respectively. These parameters and their values are listed in Table 3.

Using the above results we simulate a “healthy” balanced meal and a high fat meal
and solve the model numerically in matlab. The initial conditions we take as being
the steady state after a 12–14 h overnight fast. For the balanced meal we choose
the input functions to simulate a meal of 550 kcal carbohydrates (glucose) and 150
kcal of fat (TAG). For the high fat meal we simulate 300 kcal of carbohydrates and
300 kcal of fat. Before solving the governing equations numerically, the system is
nondimensionalised, the details of which are given in Appendix 2.

The results for the plasma concentrations are shown in Fig. 5 and show good
qualitative agreement with experimental data, both in postprandial behaviour and in
the timescales to return to steady state (Frayn, 2003, Ch. 6). Only concentrations are
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Fig. 5 Postprandial kinetics for plasma glucose (top left), plasma insulin (bottom left), plasma FFA (bottom
right) and plasma TAG (top right) for a balanced meal (solid line) and a high fat meal (dashed line). Time
is plotted in hours
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Fig. 6 Experimental postprandial kinetic data for plasma glucose (top left), plasma insulin (lower left),
plasma FFA (lower right), all plotted against time (hours). Taken from Taylor et al. (1996)
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Fig. 7 Postprandial kinetics for hepatic FFA (top left) hepatic TAG (top right) and hepatic glycogen
(lower left), for a balanced meal (solid line) and a high fat meal (dashed line). Experimental data for hepatic
glycogen from Taylor et al. (1996) is shown in the lower right plot. In all plots, time is measured in hours

plotted here: since most fluxes are of the form constant times a concentration, the
evolution of fluxes simply follows the corresponding concentration. In Appendix 3,
we plot more complex combinations of concentrations which describe the other fluxes
in the system. The quantitative agreement with experimental data for these results is
fairly good, as can be seen by comparing Fig. 5 with the experimental data of Taylor
et al. (1996) plotted in Fig. 6. Comparing the two meals we see that plasma insulin
and glucose concentrations do not reach as high in the high fat meal as in the balanced
meal, due to less glucose entering the system which also directly affects the rate of
insulin secretion. Plasma FFA has less of a decline in the high fat meal due to the lower
levels of insulin producing a smaller reduction in the adipose tissue, FFA output and
plasma TAG concentration is higher in the high fat meal.

The results for hepatic concentrations are shown in Fig. 7. Hepatic glycogen shows
good qualitative and quantitative agreement with experimental data Taylor et al.
(1996). Following ingestion of the meal glucose is taken up from the plasma to be
stored in the liver and within a few hours the liver is almost full to its maximum. Then
follows several hours of the store being slowly depleted as the glycogen is released
back into the plasma as glucose. Although we have no data to compare the results for
hepatic TAG with, these results seem to agree with our intuition, that following a meal
the liver TAG concentration would rise and then slowly deplete as the TAG is released
back into the plasma. The magnitude by which this happens is also in agreement with
the fact that liver fat content is not heavily affected by a single meal but rather by
a consistent unhealthy diet, which would result in a significant build up of liver fat.
Similarly, for the results for hepatic FFA, we have no data to compare this to; however,
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Fig. 8 Postprandial kinetics for muscle glucose (top left), muscle glycogen (bottom left), muscle FFA (top
right) and muscle TAG (bottom right) for a balanced meal (solid line) and a high fat meal (dashed line),
plotted against time (in hours)

the simulated results agree with our intuition. Following ingestion of the meal, plasma
FFA concentration decreases, this in turn causes the hepatic FFA concentration to also
decrease. Of particular interest is the simulated “two stage” reduction in hepatic FFA
which is due to the uptake and conversion of plasma glucose into FFA in the liver
partially counteracting the decrease in concentration caused by the lower plasma FFA
levels. Comparing the results for the two meals we see that in the high fat meal, the
shortage of glucose entering the system means that hepatic glycogen does not reach
its maximum after the meal and over the course of the 12–14 h simulation the liver
has an overall net loss of glycogen. The effects of the lower levels of plasma glucose
and insulin can also be seen in the results for hepatic FFA and TAG, with not enough
glucose being taken up into the liver and converted to FFA in order to see the two
stage decline in hepatic FFA. Interestingly we see that in the high fat meal the liver
gains less TAG and over the 12–14 h actually loses TAG, this is due to the conversion
of hepatic FFA into TAG being an insulin-driven pathway.

The results for skeletal muscle concentrations are shown in Fig. 8. We currently
have no data to compare the results for all substrates in skeletal muscle with. The
results for skeletal muscle glucose and glycogen rise after ingestion of the meal which
would seem intuitive due to the increase in plasma glucose and insulin. The results for
skeletal muscle FFA and TAG show that, despite an elevated level of plasma TAG, the
uptake of TAG from the plasma is not enough to compensate for the reduced uptake
of FFA from the plasma. Whether or not this is what happens in vivo we are unable
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Fig. 9 Postprandial P (AMP) (top left) and post prandial adipose tissue TAG uptake (top right) for a
balanced meal (solid line) and a high fat meal (dashed line). Postprandial metabolic flexibility (lower left),
assessed by the percentage of total oxidation due to glucose oxidation, and experimental data on respiratory
quotient, taken from Taylor et al. Taylor et al. (1996). In all panels, time is in hours. P , being a proxy for
AMP, is left dimensionless

to say at this time as we have no data to compare it to. In the case of the high fat meal
we do, however, see that after the initial decline in muscle FFA and TAG that we get a
slight increase above the steady-state value, this is due to the timescale for appearance
in, and subsequently removal from, the plasma of TAG being on a longer timescale
than glucose and insulin. There are data for metabolic flexibility in skeletal muscle
for which we can compare our model results to. There are well- documented data for
respiratory quotient in skeletal muscle (�RQ), these in effect measure how much of
the total oxidation in the muscle is due to glucose oxidation. We can define a term
from our model which is analogous to a respiratory quotient which we define by

SW = MG P I Gm

MA P Am + MG P I Gm
= MG I Gm

MA Am + MG I Gm
. (30)

The results for this “metabolic flexibility” are shown in Fig. 9. These results show
very good agreement with experimental data Phielix and Mensink (2008), with approx-
imately one third of oxidation being due to glucose oxidation in the fasted state and
almost 90 % of oxidation being due to glucose in the postprandial period in the case
of the balanced meal. As we would expect, in the case of the high fat meal we see
less of a switching in fuel source; however, in the postprandial state glucose is still the
predominant fuel source.
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One area that we simplify in our model which is of interest to us is the adipose
tissue. We do not take account of any concentrations inside adipose tissue nor do we
account for varying volumes of adipose tissue. We can, however, take some data from
our simulations to get an idea of the effect of the different meals on adipose tissue
by looking specifically at adipose tissue TAG uptake. We will produce the results for
adipose tissue TAG uptake in dimensional form by plotting the following expression

kT A(1 + kAI I ∗ I )T ∗
b Tb. (31)

The results for adipose tissue TAG clearance are shown in Fig. 9 and we can see that
following a meal some of the excess fat in the blood plasma is taken up into the adipose
tissue for storage. This rate is given by the product kT ATb(1 + kAI I ), and the form
can be deduced from the graphs in Fig. 5. In the case of the high fat meal we can see
there is a significant increase in the amount of fat taken up into adipose tissue, despite
the lower levels of plasma insulin and an overall lower total calorific intake, due to the
increased plasma TAG concentrations. In contrast, the rate of triglyceride clearance
in muscle is given by kD P PTm/(1 + kDI I ), whose constituent concentrations can be
seen in Figs. 5 (I ), 8 (Tm) and 9 (P), from these graphs we note that in the range
0 < t < 10 TAG clearance is higher during high fat meal. Note, lower insulin levels
during a high fat meal gives rise to the counterbalancing possibility that high fat meals
cause greater lipolysis of adipose tissue.

6 Conclusions

We have developed a compartmental model of human metabolism including substrate
transport and utilisation in the plasma, the liver and skeletal muscle. Our simulated
results have been shown to be in good agreement with experimental data, in particular
the results for plasma concentrations and hepatic glycogen. The fact that these are the
substrates for which we can find many of the rate parameters from the literature is
encouraging. In the case of some of the rates, in particular those related to glucose
and insulin, there is an abundance of data available from the literature which implies
that our modelling assumptions are correct. We have stated that for some other results,
although we currently have no data to compare with, our model predictions agree with
our intuition. In the case of hepatic FFA and TAG we must be careful with how we
assign these parameters and what we define as intuitively correct, as the transport to
and from, and the conversion in, the liver is heavily dependent on what happens in
the plasma. In contrast to this, although we currently have little data on what happens
in skeletal muscle, this is not so important since the equations for plasma and hepatic
concentrations have no dependence on the skeletal muscle concentrations. In effect,
we really have two subsystems, the plasma-liver subsystem and the skeletal muscle
subsystem, which is driven by the plasma-liver subsystem.

In recent years there has been much mathematical modelling of human metabolism,
however, most of this work focuses on smaller scale, localised modelling, describing
in detail certain systems or pathways involved with metabolism and in some cases
focusing on kinetics on the cellular level. In this paper we have taken a larger scale
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approach to modelling metabolism and derived equations to link together most of the
different pathways involved with metabolism of carbohydrates and fats by taking a
less detailed approach but still keeping account of the important stages in metabolism.
The model does not model the increase or decrease in adipose tissue over large times,
and it is not designed to describe the long-term starvation. Rather, our aim is to provide
a more detailed understanding of metabolic flexibility.

We developed a system of 12 first-order coupled differential equations which
describe human metabolism across the whole body. With important tissues such as the
liver and skeletal muscle modelled in detail and the rest of the body is simplified into
single terms. We found steady-state solutions to the system and used these solutions to
nondimensionalise the system which reduces the number of parameters which influ-
ence the models kinetic behaviour. We found numerical results for the model based
on ingestion of a “balanced” meal and highlighted areas where our model results are
in agreement with experimental data as well as areas where we are unsure of the
physiological behaviour due to a lack of data.

Future work on this model will include calibrating the model to simulate insulin
resistance in order to produce a variety of results for different levels of insulin resis-
tance, different combinations of tissues insulin resistant. We shall also look at dif-
ferent combinations of meals and meal compositions. In addition, we plan to expand
the model to give a more complete model of human metabolism by including a more
detailed study AMP oxidation, lactate transport between skeletal muscle and the liver,
gluconeogenesis in the liver, including other regulatory hormones (such as glucagon)
and modelling metabolism in adipose tissue Pratt et al. (2014).
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Appendix 1: Properties of Solutions of the Governing Equations

Uniqueness of Steady State

In this appendix we will prove the uniqueness of our steady states. We begin by writing
down which variables each steady state is a function of (except I ∗),

G∗
b = βG

(1 + kGL I ∗2)(SG + kG(1 + kG I I ∗)+ kL I ∗ + kAL I ∗)
= f1(I

∗),

T ∗
b = βT

(1 + kT L I ∗)(kT A(1 + kAI I ∗)+ kT )
= f2(I

∗),

A∗
l = kAL I ∗G∗

b + kBL A∗
b

SL
1+kAS I ∗ + kL B + kT H I ∗ = f3(I

∗,G∗
b, A∗

b),

A∗
b = βA

(1 + kAA I ∗2)(kA + kBL)
+ kL B A∗

L

kA + kBL
= f4(I

∗, A∗
l ),

G∗
m = βGkG(1 + kG I I ∗)

MG P∗ I ∗(SG + kG(1 + kG I I ∗)+ kL I ∗ + kAL I ∗)
= f5(I

∗, P∗),
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A∗
m = 1

MA P∗

(
βT kT

(1 + kT L I ∗)(kT A(1 + kAI I ∗)+ kT )

)
= f6(I

∗, P∗),

Y ∗
m = kY G∗

m

(
1 + kY I I ∗

1 + kY P P∗

)(
1 + kC I I ∗

kC P P∗

)
= f7(I

∗, P∗,G∗
m),

T ∗
m = kX A∗

m

(
1 + kX I I ∗

1 + kX P P∗

) (
1 + kDI I ∗

kD P P∗

)
= f8(I

∗, P∗, A∗
m),

P∗ = μ− μc

λP
= f9(I

∗). (32)

The expressions for A=
b f4 and A∗

l = f3 form a linear system for A∗
b and A∗

l which
has a unique solution for each quantity in terms of I ∗ and G∗

b, and hence the solutions
can be written explicitly in terms of I ∗ using G∗

b = f1(I ∗). Now we substitute the
expression for P∗ = f9 into the equations for G∗

m = f5, A∗
m = f6, Y ∗

m = f7, etc., to
obtain a simpler system given by

G∗
b = f1(I

∗), T ∗
b = f2(I

∗), A∗
l = f̃3(I

∗), A∗
b = f̃4(I

∗), G∗
m = f̃5(I

∗),

A∗
m = f̃6(I

∗), Y ∗
m = f̃7(I

∗,G∗
m), T ∗

m = f̃8(I
∗, A∗

m), P∗ = f9(I
∗). (33)

Thus, all quantities can now be written as a function of I ∗, only T ∗
m still depends

on other quantities, and these can be eliminated using other expressions in (33), for
example, T ∗

m = f̃8(I ∗, f̃6(I ∗)).
Considering the steady-state equation for insulin, we write down an expression

for I ∗,

I ∗ = k1 + k2erf((Gb − v)/c)+ kI A A∗
b

λI
. (34)

We now examine the steady-state values for G∗
b and A∗

b given in Table 2 and note that
Gb terms contribute more significantly to the steady state than the A∗

b terms. Hence we
temporarily neglect the A∗

b term. Under this assumption we substitute in the expression
for G∗

b to find

λI I ∗ = k1 + k2erf

(
f1(I ∗)− v

c

)
.

The left-hand side of Eq. 35 is an increasing function of I ∗ for I ∗ > 0, satisfying
rhs= 0 when I ∗ = 0, and the right-hand side is a decreasing function of I ∗ for
I ∗ > 0, with rhs> 0 at I ∗ = 0; therefore, there is a unique solution for I ∗.

Given that I ∗ has a unique solution, we can now follow the chain of reasoning

I ∗ has unique steady-state ⇒ G∗
b, T ∗

b , P∗ have unique steady-states,

I ∗ and P∗ have unique steady-states ⇒ G∗
m and A∗

m have unique steady-states,

I ∗ and G∗
b have unique steady-states ⇒ Al ∗ and A∗

b have unique steady-state,
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I ∗, P∗ and G∗
m have unique steady-states ⇒ Y ∗

m has unique steady-state,

I ∗, P∗ and A∗
m have unique steady-states ⇒ T ∗

m has unique.

Hence the system as whole has a unique steady-state solution.
Reinstating the A∗

b term theoretically could make the rhs of (35) nonmonotone, and
so there could be multiple steady-states, however, for the physically realistic parameter
values of interest to us, this does not occur.

Positivity of Solutions

Since all of the governing Eqs. (1)–(4), (7)–(14) have the form dX/dt = A − B X
with A > 0, we can be sure that if X = 0 ever occurs, then X would increase, and so,
provided we start with positive initial data, the concentrations will remain positive for
all time.

Since the nonlinearities in the model are all analytic and have at most linear growth,
the standard theory of ordinary differential equations implies uniqueness for the initial
value problem.

Appendix 2: NonDimensionalisation

Before we attempt to solve the system numerically, we nondimensionalise it so that
we may reduce the number of parameters in the model. This process also allows for
simpler numerical simulations. We rescale each variable by its steady-state value,
except for YL which we rescale by Ymax , and TL which we rescale by a typical healthy
liver fat concentration, denoted by T H

L . This means that we are now concerned with
the following nondimensional variables

ŶL = YL

Ymax
, ÂL = AL

A∗
L
, T̂L = TL

T H
L

, Ĝb = Gb

G∗
b
,

Âb = Ab

A∗
b
, T̂b = Tb

T ∗
b
, Î = I

I ∗ , Ĝm = Gm

G∗
m
, Ŷm = Ym

Y ∗
m
,

Ŷm = Ym

Y ∗
m
, Âm = Am

A∗
m
, T̂m = Tm

T ∗
m
, P̂ = P

P∗
b
, t = VbG∗

B

βG
t̂ .

The forcing functions are nondimensionalised by FG(t) = βG F̂G (̂t) and FT (t) =
βT F̂T (̂t), where the nondimensional forcing functions are given by

F̂G (̂t) = k̂FG t̂

τ̂G
e−̂t 2/2τ̂ 2

G , k̂FG = θG

BGβG
, τ̂G = BGβG

VbG∗
B
, (35)

F̂T (̂t) = k̂FT t̂

τ̂T
e−̂t 2/2τ̂ 2

T , k̂FT = θT

BTβT
, τ̂T = BTβG

VbG∗
B
, (36)
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In terms of their nondimensional variables, the functions f1, f2 and f3 are given by

f1(ŶL) = ŶL

Yc + ŶL
, Yc = Y0

Ymax
,

f2(ŶL) = 1 − ŶL

Yc + 1 − ŶL
, Yc = Y0

Ymax
,

f3(T̂L) = T̂L

Tc + T̂L
, Tc = T0

T H
L

. (37)

Using the above rescalings we obtain the following system of nondimensional equa-
tions where we have dropped the hats for convenience

η
dYL

dt
= ψL

(
β1 I Gb f2(YL)+ f1(YL)

1 + δG I 2

)
, (38)

η
d AL

dt
= εgaθ1 I Gb −

(
θ3

1 + δH I
+ θ2 + θ4 I

)
AL + θ5

εlb
Ab, (39)

η
dTL

dt
= εatθ4 I AL − ψV f3(TL)

1 + δT I
, (40)

dGb

dt
= FG(t)+ f1(YL)

1 + δG I 2 − Gb

1 + δG
+ β1(1 − I f2(YL))Gb

+(β0 + θ1)(1 − I )Gb, (41)
d Ab

dt
= ψa

(
1

1 + δA I 2 − Ab

1 + δA

)
+ εlbθ2(AL − Ab), (42)

dTb

dt
= ψt

(
FT (t)+ f3(TL)

1 + δT I
− Tb

1 + δT

)
+ (β4 + β5)(1 − I )Tb, (43)

d I

dt
= β6(1 − I )+ β7(Ab − I )+ β8(erf(wGb − ρ)− I erf(w − ρ)), (44)

α
dGm

dt
= μg(Gb − P I Gm)− εggβ0Gm(1 − I )

−εygβ2

(
(1 + γp)

(1 + γp P)

(1 + γy I )

(1 + γy)
Gm

)
− εygβ2

(
(1 + γI )

(1 + γI I )
PYm

)
, (45)

α
dAm

dt
= μa(Ab − Am P)− εtaβ4(Ab − Tb)+ εtaβ4γt (Ab − I Tb)

−εtgβ3

(
(1 + γq)

(1 + γq P)

(1 + γx I )

(1 + γx )
Am

)
− εtgβ3

(
(1 + γ j )

(1 + γ j I )
PTm

)
, (46)

α
dYm

dt
= β2

(
(1 + γp)

(1 + γp P)

(1 + γy I )

(1 + γy)
Gm

)
− β2

(
(1 + γI )

(1 + γI I )
PYm

)
, (47)

α
dTm

dt
= β3

(
(1 + γq)

(1 + γq P)

(1 + γx I )

(1 + γx )
Am

)
− β3

(
(1 + γ j )

(1 + γ j I )
PTm

)
, (48)

α
dP

dt
= μp(1 − P)+ εgpγgμg P(1 − I Gm)+ εapγaμa P(1 − Am). (49)
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where the new dimensionless parameters are given by

β0 = kGkG I I ∗G∗
b

βG
, β1 = kL I ∗G∗

b

βG
, β2 = kC P P∗G∗

b

βG G∗
m(1+kC I I ∗)

, ρ= v

c
, w= G∗

b

c
,

β3 = kD P P∗G∗
b

βG A∗
m(1 + kDI I ∗)

, β5 = kT A I ∗G∗
b

βG
, β4 = kT I ∗G∗

b

βG
, β6 = k1G∗

b

βG I ∗ ,

β7 = kI A A∗
bG∗

b

βG I ∗ , β8 = k2G∗
b

βG I ∗ , θ1 = kAL I ∗G∗
b

βG
, θ2 = kL B G∗

b

βG
, θ3 = SL G∗

b

βG
,

θ4 = kT H I ∗G∗
b

βG
, θ5 = kBL G∗

b

βG
, γY =kY I I ∗, γP =kY P I ∗, γQ =kX P I ∗,

γI =kC I I ∗, γJ =kDI I ∗, γX =kX I I ∗, μp = μG∗
b

βG P∗ , μg = MG P∗ I ∗G∗
b

βG
,

μa = MA P∗G∗
b

βG
, ψL = G∗

b

Ymax
, ψa = βAG∗

b

βG A∗
b
, ψT = βT G∗

b

βG T ∗
b
, ψV = βT G∗

b

βG T H
L

,

δG =kGL I ∗2
, δT =kT L I ∗, δA =kAA I ∗2

, δH =kAS I ∗, εga = G∗
b

A∗
L
,

εlb = A∗
L

A∗
b
, εgg = G∗

b

G∗
m
, εyg = Y ∗

m

G∗
m
, εta = T ∗

b

A∗
m
, εat = A∗

L

T H
L

, εgp = G∗
m

P∗ ,

εap = A∗
m

P∗ , εtg = T ∗
m

G∗
m
, α= Vs

Vb
, η= Vl

Vb
, Yc = Y0

Ymax
, Tc = T0

T H
L

. (50)

The values for the nondimensional parameters are given in Table 4.

Appendix 3: Graphs of Fluxes

In this section we plot various combinations of the governing concentration variables
to illustrate the evolution of the fluxes in the model. Noting that the three functions
f1, f2, f3 are defined to be unity over the vast majority of their ranges, we only need
to consider 10 combinations of concentrations of functions, which are plotted in Figs.
10 and 11.

The flux of glucose from plasma to muscle has a component which depends on
insulin according to the product I Gb, which we plot in the top left panel of Fig. 10.
This quantity also influences the flux from plasma glucose to liver glycogen and liver
FFA, see Eqs. (2), (7), (8) and (11). The flux from plasma TAG to adipose tissue
as modelled in (3) depends on the product I Tb, which is plotted in the top central
panel. This is the only case where the high fat meal induces a higher response than the
balanced meal. The product I AL describes the rate of conversion of FFA into TAG in
the liver (8)–(9).

In the muscle, both glucose and FFA are used to convert P into ATP, with rates
that depend on P I Gm and P Am , respectively, as described by Eqs. (10), (11) and
(13). These two fluxes are plotted in the lower left and lower centre plots in Fig.
10. The difference between balanced and high fat meals is more pronounced in the
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Table 4 List of nondimensional parameters, their interpretation, and values used to produce the example
results

Parameter Value Description

β0 0.8289 Rate of muscle glucose uptake from plasma

β1 0.2632 Rate of hepatic glucose uptake from plasma glucose

β2 26.32 Rate of muscle glucose—glycogen conversion

β3 263.16 Rate of muscle FFA—muscle triglyceride conversion

β4 0.5263 Rate of muscle triglyceride uptake from plasma

β5 0.0329 Rate of uptake of triglycerides into adipose tissue

β6 3.669×105 Influence of blood glucose on insulin

β7 2.632×103 Influence of blood FFA on insulin

β8 3.872×105 Quadratic influence of blood glucose on insulin

ρ 1.3926 insulin production: ratio of glucose threshold to range

w 0.87 ratio of steady glucose conc to range of insulin production

γp 0 P-inhibited conversion of glucose to glycogen

γi 0 Insulin-inhibition of glycogen conversion to glucose

γy 0.05 Insulin-activated conversion of glucose into glycogen

γq 0 P-inhibited conversion of muscle FFA to triglycerides

γ j 0 Insulin-inhibition of muscle triglyceride conversion to
FFA

γx 0 Insulin-activated conversion of muscle FFA into triglyc-
eride

μp 263.16 Rate of AMP creation

μg 2.6316 Rate of glucose oxidation

μa 5.2632 Rate of FFA oxidation

ψL 0.0161 Plasma glucose—hepatic glycogen constant

ψa 5.79 FFA source constant

ψT 0.592 Triglyceride source constant

ψV 0.007 Hepatic TAG secretion rate

δG 0.265 Insulin-inhibition of glucose source from liver

δT 0.125 Insulin-inhibition of triglyceride source from liver

δA 0.5 Insulin-inhibition of FFA source from adipose

δH 0.005 Insulin-inhibition of hepatic FFA oxidation

εgg 5 Ratio of steady-state plasma glucose to muscle glucose

εyg 1 Ratio of steady-state muscle glucose to muscle glycogen

εta 1 Ratio of steady-state plasma triglycerides to muscle FFA

εat 0.0118 Ratio of steady state liver FFA to healthy liver triglyc-
erides

εgp 1 Ratio of steady-state muscle glucose to muscle AMP

εap 1 Ratio of steady-state muscle FFA to muscle AMP

εga 5 Ratio of steady-state plasma glucose to hepatic FFA

εlb 2 Ratio of steady-state hepatic FFA to plasma FFA

εtg 1 Ratio of steady-state muscle TAG to muscle glucose
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Table 4 continued

Parameter Value Description

γa 30 Number of P molecules used when FFA is oxidised

γg 60 Number of P molecules used when glucose is oxidised

θ1 0.0263 Rate of conversion of glucose to hepatic FFA

θ2 1.553 Rate of release of hepatic FFA into plasma

θ3 2.632 Rate of oxidation of hepatic FFA

θ4 0.434 Rate of conversion of hepatic FFA into TAG

θ5 8.947 Rate of uptake of FFA from plasma into liver

TC 1.177×10−5 Ratio of minimum to typical average liver fat

YC 3.226×10−6 Ratio of minimum to maximum liver glycogen

τ̂G 1.41 Timescale for digestion of glucose

τ̂T 2.24 Timescale for digestion of triglycerides

k̂FG 21.2, 11.6 Nondimensional quantity of carbohydrate ingested

k̂FT 2.91, 5.82 Nondimensional quantity of triglycerides ingested

α 6.0 Volume ratio of skeletal muscle to blood plasma

η 0.36 Volume ratio of liver to blood plasma
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Fig. 10 Top dimensionless fluxes involved in the model, namely the products of insulin concentration
with plasma glucose (left), plasma TAG (centre) and liver FFA (right). Bottom, fluxes which involve the
concentration P , muscle glucose with insulin (left), muscle FFA (centre) and muscle TAG (right). All
graphs plotted against time in hours. Dotted lines indicate the results for the high fat meal, whilst the solid
lines represent the balanced meal

123



Model of Metabolic Flexibility 2119

0 5 10
0

0.2

0.4

0.6

0.8

1

t = Time, hours

1/
(1

+k
G

LI2 )

0 5 10
0

0.2

0.4

0.6

0.8

1

t = Time, hours

1/
(1

+k
A

A
I2 )

0 5 10
0

0.2

0.4

0.6

0.8

1

t = Time, hours

1/
(1

+k
T

LI)

0 5 10
0

0.5

1

1.5

t = Time, hours

A
L/(

1+
k A

S
 I)

Fig. 11 Dimensionless fluxes which are suppressed by insulin, plotted again time (hours). Top left flux
from liver glucagon to plasma glucose; top right flux of FFA into plasma from adipose tissue; lower left
flux of TAG from liver to plasma; lower right oxidation of liver FFA. Dotted lines indicate the results for
the high fat meal, whilst the solid lines represent the balanced meal

glucose term than the FFA term. The product PTm determines the rate of conversion
of TAG to FFA in muscle as described in Eqs. (13) and (14), (note that in our current
parameterisation, kDI = 0).

In the top left panel of Fig. 11, we plot the rate of release of glucose into the
plasma from liver glycogen, this is inhibited by insulin, which we have modelled by
βG/(1 + kGL I 2) in Eqs. (2) and (7). The top right panel shows the flow of FFA from
adipose tissue to plasma, which has a similar form, but with kAA replacing kGL , see
Eq. (4). The flux from liver TAG to plasma TAG is shown in the lower left panel. This
has weaker insulin dependence, being of the form βT /(1 + kT L I ) in Eqs. (3) and (9).
The oxidation of hepatic FFA is shown in the lower right panel of Fig. 11, this has the
form SL AL/(1 + kAS I ), see Eq. (8). All four fluxes show significant reductions for
the time that insulin is elevated, and not a great difference between the high fat mean
and the balanced meal.
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