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Abstract Trees are commonly utilized to describe the evolutionary history of a col-
lection of biological species, in which case the trees are called phylogenetic trees.
Often these are reconstructed from data by making use of distances between extant
species corresponding to the leaves of the tree. Because of increased recognition of
the possibility of hybridization events, more attention is being given to the use of
phylogenetic networks that are not necessarily trees. This paper describes the recon-
struction of certain such networks from the tree-average distances between the leaves.
For a certain class of phylogenetic networks, a polynomial-time method is presented
to reconstruct the network from the tree-average distances. The method is proved to
work if there is a single reticulation cycle.

Keywords Phylogeny · Network · Metric · Phylogenetic network · Tree ·
Tree-average distance

1 Introduction

The evolution of a collection of species is commonly modeled via a directed graph
with no directed cycles. The vertices correspond to species and the arcs correspond
to direct descent, usually with modification under mutation. Most commonly these
networks are directed trees. Recently, the importance of reticulation events have been
recognized, such as hybridization of species or lateral gene transfer (Doolittle et al.
2003; Boc and Makarenkov 2003). General frameworks for phylogenetic networks
are discussed in Bandelt and Dress (1992), Baroni et al. (2004, 2006), Moret et al.
(2004), Nakhleh et al. (2004). See also the recent book (Huson et al. 2010). An ex-
ample of a published nontree network published by a biologist is in Marcussen et al.
(2012).
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Fig. 1 A phylogenetic network
N with tips
X = {r, x1, x2, x3, y}

Suppose X denotes the set of extant species, including an outgroup, which is used
to locate the root. The DNA information may be summarized via the computation of
distances between members of X. If x, y ∈ X, then d(x, y) summarizes the amount
of genetic difference between the DNA strings of x and y. A number of different
distances are in use, based on different models of mutation (Jukes and Cantor 1969;
Kimura 1980; Hasegawa et al. 1985; Lake 1994; Steel 1994).

There exist fast methods for reconstruction of phylogenetic trees from distances.
The most commonly used method is Neighbor-joining (Saitou and Nei 1987). An-
other more recent method FastME Desper and Gascuel (2002, 2004) is based on the
principle of balanced minimum evolution, in which one assumes that the correct tree
is the one that exhibits the minimal total amount of evolution, suitably measured.
In fact, it has been shown that Neighbor-joining is a greedy algorithm for balanced
minimum evolution (Gascuel and Steel 2006).

The subject of this paper is a distance method to construct phylogenetic networks
that are not necessarily trees. Prior methods for constructing phylogenetic networks
that are not necessarily trees from distances include Neighbor-Net (Bryant and Moul-
ton 2004) and MC-Net (Eslahchi et al. 2010). In particular, Neighbor-Net is conve-
niently available in the software package SplitsTree4 (Huson and Bryant 2006).

This paper is an extension of the author’s earlier paper (Willson 2012). The ear-
lier paper defined the “tree-average distance” on a phylogenetic network. Suppose
a phylogenetic network N is weighted so that each arc has an arc-length or weight
corresponding to the amount of mutation along the arc. At each reticulation vertex,
there is a certain probability that inheritance of a character comes from each par-
ent. Roughly, the tree-average distance d(u, v) between two vertices u and v of a
phylogenetic network is the expected value of the distance between u and v in each
possible tree displayed by N . See Sect. 2 for a more formal review of the tree-average
distance.

For example, Fig. 1 displays a phylogenetic network N . The set of tips is X =
{r, x1, x2, x3, y}. These vertices correspond to extant species with known DNA. The
root r usually is identified with an outgroup species. Vertex h is a reticulation or
hybrid node with two parents q1 and q2. The probability that a character is inherited
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at h from q1 is α1 and the probability that a character is inherited at h from q2 is α2 =
1−α1. With probability α1 the gene tree T1 will look like N with arc (q2, h) removed
because the inheritance at h will be along arc (q1, h). Similarly, with probability α2,
the gene tree T2 will look like N with arc (q1, h) removed. Each arc has a weight.
The distance d(u, v;T1) between two vertices u and v on T1 will be found by adding
the weights on the unique path joining the vertices in T1. The distance d(u, v;T2)

between the same two vertices on T2 will be found by adding the weights on the path
joining them in T2. The tree-average distance d(u, v;N) will then be the expected
value

d(u, v;N) = α1d(u, v;T1) + α2d(u, v;T2).

Assume that the tree-average distance is known on the network N and that the
underlying directed graph is known. In Willson (2012), various formulas were de-
rived that permitted the calculation of the weight of each arc. The formulas required
knowledge of the directed graph as well as the tree-average distances d(x, y). Thus,
Willson (2012) showed that if the network N is known as well as the tree-average
distance d(x, y) for all x, y ∈ X, then the weights of each arc could be computed
uniquely.

But Willson (2012) did not describe how the directed graph itself could be re-
constructed given the tree-average distances d(x, y). One needed to assume that the
topology of the directed graph was given as well as the tree-average distances, and
then one could compute the weights.

This current paper shows in certain circumstances how, from the tree-average dis-
tances d(x, y), the directed graph itself can be reconstructed. Thus, the entire input is
the collection of exact distances d(x, y) for all x, y ∈ X and the method outputs the
network as well as the weights on each arc and the probabilities of inheritance at each
reticulation vertex. Rather than assuming that the underlying directed graph is known,
this paper shows how to derive the directed graph from the distances d(x, y), under
certain assumptions. The methods of Willson (2012) let us then find the uniquely-
determined weights for each arc. Moreover, the probabilities of inheritance at each
hybrid vertex are uniquely determined and can be computed by explicit formulas. For
Fig. 1, the entire input consists of the 10 numbers d(x, y) for x, y ∈ X. Since from
this input, the network, its weights, and its probabilities are uniquely reconstructed,
the current results show that, under the given assumptions, the method of tree-average
distances is consistent.

The reconstruction described in this paper is possible only because the formulas
in Willson (2012) have simple forms which can be used recursively when only part
of the network is yet known.

Particular kinds of acyclic networks have been studied in various papers. Wang
et al. (2001) and Gusfield et al. (2004) study “galled trees” in which all recombina-
tion events are associated with node-disjoint recombination cycles; the idea occurs
also earlier in Wang et al. (2000). Choy et al. (2005) and Van Iersel et al. (2009) gen-
eralized galled trees to “level-k” networks. Baroni et al. (2004) introduced the idea
of a “regular” network, which coincides with its cover digraph. Cardona et al. (2009)
discussed “tree-child” networks, in which every vertex that is not a leaf has a child
that is not a reticulation vertex. An arc (a, b) is redundant if there is a directed path
from a to b that does not utilize this arc.
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A network is normal if it is tree-child and it contains no redundant arc. Most
results in this paper assume that the network is normal. These networks include trees,
but have only limited complexity, and hence are more easily interpreted than general
networks. For example, (Willson 2010) if there are n tips, then a normal network has
at most (n2 −n+2)/2 vertices. By contrast, a regular network with n tips might have
2n−1 vertices, making the biological interpretation difficult and requiring exponential
time for reconstruction.

It is interesting to contrast this paper with Neighbor-Net (Bryant and Moulton
2004). Both methods use distances to produce a network that need not be a tree. Both
methods recursively combine nodes in an agglomerative manner generally resem-
bling Neighbor-Joining. Neighbor-Net identifies circular collections of splits which
are generally represented by systems of parallel edges rather than single edges. As
such, Neighbor-Net produces networks which exhibit ambiguity among various trees,
or allow “visualizing a space of feasible trees” (Bryant and Moulton 2004, p. 255),
“rather than an explicit history of which reticulations took place” (Bryant and Moul-
ton 2004, p. 259). By contrast, the current paper seeks to produce a single phylogeny
in which each arc can be interpreted in the same manner as in a tree. Neighbor-Net
constructs a network, which is simple in the sense that it is a circular split system,
and hence representable in the plane. The authors concede (Bryant and Moulton 2004,
p. 263) that “the definition of circular splits and circular distances is not biologically
motivated.” By contrast, the current paper constructs a phylogenetic network, which
is simple in the sense that it is normal. In Willson (2010), there are biological mo-
tivations for considering normal networks. As a final comparison, the splits graph
representation of Neighbor-Net is not necessarily unique (Bryant and Moulton 2004,
p. 258), forcing extra care in the interpretation of the output. The current reconstruc-
tion, under the given hypotheses, is unique.

Here is an outline of the current paper. Theorem 3.2 shows that a recursive re-
construction of N will be possible provided that one can correctly recognize two
situations using the tree-average distance d . These two situations are a cherry {x, y}
and a hybrid h with parents q1 and q2 such that h has a leaf-child y, q1 has a leaf-
child x1, and q2 has a leaf-child x2 as in Fig. 1. For each of these situations, one can
use the formulas of Willson (2012) to find the weights and probabilities needed to
simplify the problem to a smaller problem. In the case of a cherry, one can reduce to
a simpler problem in which both x and y have been removed; in the case of a hybrid
one can reduce to a simpler problem in which h, y, x1, and x2 have been removed.

Section 4 deals with the problem of recognizing a cherry {x, y}. The main result is
Theorem 4.5, which gives a necessary and sufficient condition that {x, y} be a cherry,
given in terms of the tree-average distance. As a result of Theorem 4.5, there remains
only the problem of correctly recognizing the hybrid situation.

The recognition of a hybrid is studied in Sect. 5. Several necessary conditions in
terms of the tree-average distance are described. The main Theorem 6.1 asserts that
these conditions are sufficient when there is a single reticulation cycle. A proof is
given in Sect. 6. Section 7 gives a more complicated example with two reticulation
cycles in which the conditions are also sufficient.

Some extensions of the current results and problems are discussed in the conclud-
ing Sect. 8.
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2 Fundamental Concepts

A directed graph or digraph N = (V ,A) consists of a finite set V of vertices and a
finite set A of arcs, each consisting of an ordered pair (u, v) where u ∈ V , v ∈ V ,
u �= v. We interpret (u, v) as an arrow from u to v and say that the arc starts at u

and ends at v. There are no multiple arcs and no loops. If (u, v) ∈ A, say that u is
a parent of v and v is a child of u. A directed path is a sequence u0, u1, . . . , uk of
vertices such that for i = 1, . . . , k, (ui−1, ui) ∈ A. The path is trivial if k = 0. Write
u ≤ v if there is a directed path starting at u and ending at v. We may refer to such
any such path in context as P(u, v) or P(u, v;N). Write u < v if u ≤ v and u �= v.
The digraph is acyclic if there is no nontrivial directed path starting and ending at the
same point. If the digraph is acyclic, it is easy to see that ≤ is a partial order on V .

The indegree of vertex u is the number of v ∈ V such that (v,u) ∈ A. The out-
degree of u is the number of v ∈ V such that (u, v) ∈ A. A leaf is a vertex of out-
degree 0. A normal vertex (or tree vertex) is a vertex of indegree 1. A child c of a
vertex v is called a tree-child of v if c has indegree 1. A hybrid vertex (or reticulation
vertex) is a vertex of indegree at least 2. An arc (u, v) is a normal arc if v is a normal
vertex.

A digraph (V ,A) is rooted if it has a unique vertex r ∈ V with indegree 0 such
that, for all v ∈ V , r ≤ v. This vertex r is called the root.

Let X denote a finite set. Typically in phylogeny, X is a collection of species.
Measurements are assumed to be possible among members of X, so that we may
assume that, for example, their DNA is known for each x ∈ X.

A phylogenetic X-network N = (V ,A, r,X) is a rooted acyclic digraph G =
(V ,A) with root r such that there is a one-to-one map φ : X → V whose image
contains all vertices v such that either

(i) v is a leaf; or
(ii) v = r ; or

(iii) v has indegree 1 and outdegree 1.

There may be additional vertices in X. We will identify each x ∈ X with its image
φ(x). The set X will be called the base-set for N .

An example of a phylogenetic network N is given in Fig. 1.
In biology, the network gives a hypothesized relationship among the members

of X. It is quite common also that a certain extant outgroup species r ′ is assumed to
have evolved separately from the rest of the species in question. When this happens,
we identify the species r ′ with the root r . Thus, extant species (the leaves) are in X

by (i) since measurements can be made on them. The outgroup r ′, which is identi-
fied with the root, is in X by (ii). If a vertex has indegree 1 and outdegree 1, then
nothing uniquely determines it unless, for fortuitous reasons, it is possible to make
measurements on its DNA, in which case it lies in the base-set X.

An X-tree is a phylogenetic X-network such that the underlying digraph is a tree.
An arc (u, v) ∈ A is redundant if there exists w ∈ V such that u, v, and w are

distinct and u < w < v. The removal of a redundant arc (u, v) still leaves u ≤ v in
the network.
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A phylogenetic X-network N = (V ,A, r,X) with base-set X is normal provided
(1) whenever v ∈ V and v /∈ X, then v has a tree-child (a child with indegree 1); and
(2) there are no redundant arcs. The network in Fig. 1 is normal.

A normal path in N from v to x is a directed path v = v0, v1, . . . , vk = x such that
for i = 1, . . . , k, vi is normal. A normal path from v to X is a normal path starting at
v and ending at some x ∈ X. For example, in Fig. 1, the path v, q3, q2, x2 is normal
and is a normal path from v to X. The path q1, h, y is not normal since h is hybrid.
The trivial path x1 is normal.

If N = (V ,A, r,X) is a phylogenetic X-network, then a parent map p for N con-
sists of a map p : V − {r} → V such that, for all v ∈ V − {r}, p(v) is a parent of v.
Note that r has no parent. If v is normal, then there is only one possibility for p(v),
while if v is hybrid, there are at least two possibilities for p(v). In Fig. 1, an example
of a parent map p satisfies p(h) = q2, and for all other vertices w besides r , p(w) is
the unique parent of w.

Write Par(N) for the set of all parent maps for N . In general, if there are k distinct
hybrid vertices and they have indegrees, respectively, i1, i2, . . . , ik , then the number
of distinct parent maps p is |Par(N)| = ∏[ij : j = 1, . . . , k]. If N is a network with
k distinct hybrid vertices, each of indegree 2, then |Par(N)| = 2k .

Given p ∈ Par(N) the set Ap of p-arcs is Ap = {(p(v), v) : v ∈ V − {r}}. The
induced tree Np is the directed graph (V ,Ap) with root r . In Fig. 1, if p(h) = q1,
then Np consists of N with arc (q2, h) deleted. Note that each vertex in V −{r} has a
unique parent in Np . Thus, Np is a tree with vertex set V . The set X, however, need
not be a base-set of Np . For example, in Fig. 1, if p(h) = q1, then Np contains the
vertex h with indegree 1 and outdegree 1, yet h /∈ X.

Several of the proofs will require the notion of “complementary parents”. Suppose
p ∈ Par(N) and h is a particular hybrid vertex with exactly two parents q1 and q2.
Assume p(h) = q1. The complementary parent map p′ of p with respect to h is
defined by

p′(v) =
{

p(v) if v �= h

q2 if v = h.

Thus, p′ agrees with p except at h, where p′ chooses the other parent from that
chosen by p. Of occasional use will be the network Gp = Np ∪ Np′ .

A phylogenetic X-network is weighted provided that for each arc (a, b) ∈ A there
is a non-negative number ω(a, b) called the weight of (a, b) such that

(1) if b is hybrid, then ω(a, b) = 0;
(2) if b is normal, then ω(a, b) ≥ 0.

We call the function ω from the set of arcs to the reals the weight function of N .
We interpret ω(a, b) as a measure of the amount of genetic change from species
a to species b. If h is hybrid with parents q1 and q2 and unique child c, then the
hybridization event is essentially assumed to be instantaneous between q1 and q2 with
no genetic change in those character states inherited by h from q1 or q2 respectively.
Further mutation then occurs from h to c, as measured by ω(h, c).
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If N = (V ,A, r,X) is a phylogenetic X-network and S ⊂ X, then the restriction
of N to S, denoted N |S, consists of that part of N , which includes all possible an-
cestors of members of S. More formally, N |S = (V ′,A′, r, S), where V ′ = {v ∈ V :
there exists s ∈ S such that v ≤ s}, A′ = {(u, v) ∈ A : u ∈ V ′, v ∈ V ′}. It is easy to see
that N |S is a phylogenetic S-network. If N is weighted, then N |S is also weighted,
using the same weight function but restricted to A′.

In any rooted network N = (V ,A, r,X), a most recent common ancestor of two
vertices u and v is a vertex w such that (1) w ≤ u and w ≤ v, and (2) there is no vertex
w′ such that w′ ≤ u, w′ ≤ v, w < w′. In general, a most recent common ancestor of
u and v exists, but it need not be uniquely determined. In any rooted tree, however,
there is a unique most recent common ancestor of u and v.

Suppose that N = (V ,A, r,X) is a weighted phylogenetic X-network with weight
function ω. For each p ∈ Par(N) and for each u,v ∈ V , define the distance
d(u, v;Np) as follows: In Np there is a unique undirected path P(u, v) between
u and v; define d(u, v;Np) to be the sum of the weights of arcs along P(u, v).
More precisely, since Np is a tree, there exists a most recent common ancestor
m = mrca(u, v;Np), a directed path P1 given by m = u0, u1, . . . , uk = u from m

to u, and a directed path P2 given by m = v0, v1, . . . , vj = v from m to v. Define

d(u, v;Np) =
∑[

ω(ui, ui+1) : i = 0, . . . , k − 1
]

+
∑[

ω(vi, vi+1) : i = 0, . . . , j − 1
]
.

We shall refer to d(u, v;Np) as the distance between u and v in Np .
Let H denote the set of hybrid vertices of N . For each h ∈ H , let P(h) denote

the set of parents of h, i.e. the set of vertices u such that (u,h) ∈ A. Since h ∈ H ,
|P(h)| ≥ 2. For each u ∈ P(h), let α(u,h) denote the probability that a character
is inherited by h from u. As an approximation, α(u,h) measures the fraction of the
genome that h inherits from u. Note for all h ∈ H ,

∑[α(u,h) : u ∈ P(h)] = 1.
In Fig. 1, P(h) = {q1, q2}, and Par(N) consists of two maps. The first map p has

p(h) = q1, p(y) = h, p(x1) = q1, p(q1) = v, p(v) = r , p(x2) = q2, p(q2) = q3,
p(x3) = q3, p(q3) = v, p(v) = r . The complementary map p′ agrees with p except
that p′(h) = q2.

If h and h′ are distinct members of H , we will assume that the inheritances at h

and h′ are independent. More generally, suppose for every h ∈ H that qh is a par-
ent of h. Then we assume that the events that a character at h is inherited from qh

are independent. It is then easy to see that for each p ∈ Par(N) the probability that
inheritance follows the parent map p is Pr(p) = ∏[α(p(h),h) : h ∈ H ].

Following Willson (2012) we define the tree-average distance d(u, v;N) between
u and v in N by

d(u, v;N) =
∑[

Pr(p)d(u, v;Np) : p ∈ Par(N)
]
.

It is thus the expected value of the distances between u and v in the various displayed
trees Np .

The simplest situation has each parent of h equally likely, so α(p(h),h) =
1/|P(h)| for each p ∈ Par(N). If this situation occurs, we call the network equiprob-
able at h.
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In this paper as in Willson (2012), we will assume that the weight of an arc into
a hybrid vertex is 0. Thus, in Fig. 1, the weights of arcs (q1, h) and (q2, h) will be
zero. The reason for this assumption is that vertex h corresponds to the immediate
offspring of a hybridization event, in which some characters came intact from q1
and the remainder intact from q2. For those characters inherited from q1, there is no
change between q1 and h; the inheritance is exactly 0 as measured by the weight of
(q1, h), and similarly for characters inherited from q2. Alternatively, in the tree on
which the character was inherited from q1 there was no mutational change between
q1 and h. Further mutation occurred before species y evolved from h, as measured
by the weight of arc (h, y).

An additional explanation for why in Fig. 1 we assume that the weights of arcs
(q1, h) and (q2, h) will be zero is as follows: Suppose that the weights of (q1, h),
(q2, h), and (h, y) were all positive. Then we could subtract the same arbitrary num-
ber ε from the weights of (q1, h) and (q2, h) while adding the same ε to the weight
of (h, y) without changing any distances between leaves of the network. Hence, the
true weights could not be uniquely determined from the data.

Further details and examples are in Willson (2012).
If T = (V ,A, ,X) is a undirected phylogenetic tree with leaf set X, a 4-set

{x1, x2, x3, x4} from X is a quartet. When T is restricted to a quartet, the result
is called a quartet tree. The only possible quartet trees are denoted x1x2|x3x4,
x1x3|x2x4, x1x4|x2x3, and x1x2x3x4. In x1x2|x3x4 removal of the internal edge
disconnects T so that one component contains x1 and x2 while the other com-
ponent contains x3 and x4. The star is denoted x1x2x3x4. For additive distances
on trees, it is well known (Semple and Steel 2003) that x1x2|x3x4 if and only if
d(x1, x2) + d(x3, x4) < d(x1, x3) + d(x2, x4) = d(x1, x4) + d(x2, x3).

Let N = (V ,A) be an acyclic digraph. A pseudocycle in N is a sequence of ver-
tices x0, x1, x2, . . . , xn from V with n > 0 such that xn = x0 and for each i (taken
mod n) either

(1) (xi, xi+1) is an arc; or
(2) xi is hybrid with distinct parents xi−1 and xi+1 and (xi+1, xi) is an arc.

A pseudocycle is not a cycle since it is not a directed path. Nevertheless, it is
very similar to a cycle since time is moving forward on most parts of the sequence.
The existence of a pseudocycle indicates a lack of “time consistency.” For example,
if there is a temporal representation on the network (Baroni et al. 2006), then each
vertex v has a “time” f (v) such that when v has parents p and q , then f (p) = f (q);
and when c is a child of u, then f (u) < f (c). Following a pseudocycle, we see that
the successive hybrid parents must exist later in time and yet loop back to the original
hybrid node, an impossibility. Hence, the network can have no pseudocycle.

3 Overview of the Reconstruction

Throughout the reconstruction, we will make the following assumptions:

Assumptions 3.1 Let N = (V ,A, r,X) be a rooted directed network. Assume

(0) N is normal.
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(1) All hybrids have indegree 2 and outdegree 1, and the child is a tree-child.
(2) Every weight of an arc to a hybrid vertex is 0.
(3) The weight of every arc to a normal vertex is positive.
(4) All normal vertices have outdegree 0 or 2.
(5) N has no pseudocycles.
(6) X consists of the set of leaves of N together with r .

A cherry {x, y} is a set of two vertices x and y in X such that

(1) both x and y are leaves which are normal vertices;
(2) both x and y have the same parent q;
(3) q is normal;
(4) q has outdegree 2.

Suppose that the tree-average distance d is known between all members of X. We
wish to see how to reconstruct N . The first key result, Theorem 3.2, asserts that either
there is a cherry or else there is a hybrid vertex of a particularly simple kind.

Theorem 3.2 Let N satisfy Assumptions 3.1. Suppose N has no cherry and at least
4 vertices in X. Then there exists a hybrid vertex h with parents q1 and q2 such that
each of these has a tree-child which is a leaf.

The conclusion of Theorem 3.2 is illustrated in Fig. 1. In the figure, there is no
cherry but h is hybrid with parents q1 and q2. Then h has tree-child y, which is a
leaf, q1 has tree-child x1 which is a leaf, and q2 has tree-child x2 which is a leaf. If
these conditions occur, we will say that (y;x1, x2) is a hybrid triple.

Proof Choose a maximal path (with the most arcs) from r ending at v1 with par-
ent w1. Then v1 is a leaf, hence normal. If w1 has another child c, then c cannot be
hybrid, since then c would have a child and a longer path from r could have been ob-
tained. Hence, c is normal. Moreover, if c had a child then a longer path could have
been obtained; hence, c is a normal leaf. Since v1 is normal then {c, v1} is a cherry,
a contradiction. Hence, v1 has no sibling whence w1 is hybrid with two parents q11
and q12. We choose the labeling so that q11 is on the given maximal path from r

to w1. Note there are two arcs on the path after q11. By normality, q11 has a normal
child z. If z is not a leaf, it has at least two children c1 and c2. By maximality, each
child ci is a leaf. But no leaf is hybrid, whence both are normal, so {c1, c2} is a cherry,
a contradiction. Hence, z is a normal leaf.

By normality, q12 has a normal child u1. If u1 is a leaf then, we are done with
h = w1, q1 = q11, q2 = q12, y = v1, x1 = z, x2 = u1. Otherwise, choose a maximal
directed path starting at u1. Repeat the argument. Since the vertex set is finite there is
ultimately a repetition leading to a pseudocycle. This is impossible, so the procedure
terminates. �

We may now present the general idea of the reconstruction of N . Suppose that
N = (V ,A, r,X) is a phylogenetic X-network satisfying Assumptions 3.1. Suppose
we are given all the tree-average distances d(x, y;N) for x and y in X. Initially
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a network R = (W,B) has vertex set W = X and arc set B = ∅. We recursively
simplify the network N to a new network N ′ as follows:

(1) For each distinct x and y in X we check, using Theorem 4.5 (in the next
section), whether {x, y} is a cherry.

(2) If a cherry {x, y} is recognized, then we proceed as follows:
By Willson (2012) Lemma 4.3(2), the parent q of both x and y satisfies that

ω(q, x) = [d(x, y;N) + d(x, r;N) − d(r, y;N)]/2 and ω(q, y) = [d(y, x;N) +
d(y, r;N)− d(r, x;N)]/2. Moreover, by additivity of the distances, for every z ∈ X,
z other than x or y, d(z, q;N) = d(q, x;N) − ω(q, x) = d(q, y;N) − ω(q, y).

We construct a new phylogenetic network N ′ = (V ′,A′, r,X′) with distance d ′
and a network R′ = (W ′,B ′) as follows: Since {x, y} is recognized as a cherry,
there exists in N a vertex q which is the parent of x and y. Let V ′ = V − {x, y},
X′ = X −{x, y}∪ {q}, A′ = A−{(q, x), (q, y)}. Moreover, for z ∈ X′, d(z, q;N ′) =
d(z, x;N) − ω(q, x) is known. Finally, d ′(u, v;N ′) = d(u, v;N) for {u,v} ⊂ X′ if
neither u nor v is q; and d ′(z, q;N ′) = d(q, x;N) − ω(q, x).

There is a new vertex q (identified with the q in N ) such that W ′ = W ∪ {q} and
B ′ = B ∪ {(q, x), (q, y)} where ω(q, x) and ω(q, y) are given as above.

(3) Suppose no cherry {x, y} is recognized. Then by Theorem 4.5, no cherry exists
in N , and by Theorem 3.2 there exists a hybrid triple (y0;x10, x20). For each possible
choice of (y;x1, x2), we use Sect. 5 to determine whether (y;x1, x2) is a hybrid triple.
By Theorem 3.2, this will succeed for some choice. By Theorem 6.1, no triple that
is not a hybrid triple will be falsely identified, under certain additional assumptions.
There are now two possibilities:

(3a) Suppose (y;x1, x2) is identified as an equiprobable hybrid triple. By Will-
son (2012), we know ω(h,y), ω(q1, x1), and ω(q2, x2). We modify N to N ′ =
(V ′,A′, r,X′) where V ′ = V − {h,y, x1, x2}, A′ = A − {(h, y), (q1, x1), (q2, x2)},
X′ = X − {y, x1, x2} ∪ {q1, q2}. We know for v ∈ V ′, v other than q1, q2 by Willson
(2012) d(v, q1;N) = d(v, x1;N)−ω(q1, x1) d(v, q2;N) = d(v, x2;N)−ω(q2, x2).
Moreover, d(q1, q2;N) = d(x1, x2;N) − ω(q1, x1) − ω(q2, x2).

We modify R = (W,B) to R′ = (W ′,B ′) where W ′ = W ∪ {q1, q2, h}, B ′ = B ∪
{(h, y), (q1, x1), (q2, x2), (q1, h), (q2, h)}, α(q1, h) = 1/2, α(q2, h) = 1/2,
ω(q1, h) = ω(q2, h) = 0. Moreover, by Willson (2012), ω(h,y), ω(q1, x1), and
ω(q2, x2) are given by the formulas arv = (d(r, x1) + d(r, x2) − d(x1, x2))/2,
ω(q1, x1) = d(x1, y)−d(r, y)+arv , ω(q2, x2) = d(x2, y)−d(r, y)+arv , ω(h,y) =
(d(y, x1) + d(y, x2) − d(x1, x2))/2.

(3b) Suppose (y;x1, x2) is identified as a hybrid triple such that x3 is identified as
a normal descendant of an appropriate ancestor of x2. Then Lemma 4.9 of Willson
(2012) gives formulas in this situation for ω(h,y), ω(q1, x1), ω(q2, x2) as well as
α(q1, h) and α(q2, h). Then we proceed as in (3a) except that we use these alternative
formulas for these quantities.

4 Recognition of a Cherry

In this section, we prove necessary and sufficient conditions to recognize whether
{x, y} is a cherry.
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Suppose w and z in X satisfy that w, x, y, z are distinct in X. For any network
M with base-set X, let Wx(M) = d(w,x;M)+ d(z, y;M), Wy(M) = d(w,y;M)+
d(x, z;M), Wz(M) = d(w, z;M) + d(x, y;M), using the tree-average distance d

on M .

Lemma 4.1 Suppose x and y are leaves that form a cherry in the network N . Sup-
pose w and z in X satisfy that w, x, y, z are distinct in X. Then Wz(N) < Wx(N) =
Wy(N).

Proof For every parent map p, we have wz|xy in Np , so

d(w, z;Np)+d(x, y;Np) < d(w,x;Np)+d(z, y;Np) = d(w,y;Np)+d(z, x;Np)

with the strict inequality since the common parent q of x and y is normal so the arc
into q has positive weight. Hence, Wz(Np) < Wx(Np) = Wy(Np). Taking averages
over p weighted by Pr(p), we see that Wz(N) < Wx(N) = Wy(N). �

Theorem 4.2 is the converse of Lemma 4.1. Together these two results give a
necessary and sufficient condition for {x, y} to be a cherry.

Theorem 4.2 Assume Assumptions 3.1. Suppose x and y are in X. Suppose that for
all choices of w and z in X such that w, x, y, z are distinct, we have that Wz(N) <

Wx(N) = Wy(N). Then {x, y} is a cherry.

The proof of Theorem 4.2 will require a lemma. The lemma shows that if for
various parent maps of N we have exactly two of the possibilities among Wz < Wx =
Wy , Wx < Wz = Wy , Wy < Wz = Wx , then for the tree-average distance we cannot
have the condition Wz(N) < Wx(N) = Wy(N) in Theorem 4.2.

Lemma 4.3 Suppose x and y are in X. Pick w and z in X so that w, x, y, z are
distinct.

(1) Assume for a nonempty collection of parent maps p we have Wz(Np) <

Wx(Np) = Wy(Np) and for a nonempty collection of parent maps p we have
Wx(Np) < Wz(Np) = Wy(Np) but we never have a parent map p for which
Wy(Np) < Wz(Np) = Wx(Np). Then we cannot have Wz(N) < Wx(N) = Wy(N).

(2) Assume for a nonempty collection of parent maps p we have Wy(Np) <

Wz(Np) = Wx(Np) and for a nonempty collection of parent maps p we have
Wx(Np) < Wz(Np) = Wy(Np), but we never have a parent map p for which
Wz(Np) < Wx(Np) = Wy(Np). Then we cannot have Wz(N) < Wx(N) = Wy(N).

(3) Assume for a nonempty collection of parent maps p we have Wz(Np) <

Wx(Np) = Wy(Np) and for a nonempty collection of parent maps p we have
Wy(Np) < Wz(Np) = Wx(Np) but we never have a parent map p for which
Wx(Np) < Wz(Np) = Wy(Np). Then we cannot have Wz(N) < Wx(N) = Wy(N).

Here is a geometric interpretation of Lemma 4.3: Suppose w,x, y, z are distinct
members of X. Suppose there exist parent maps p such that Np displays the quartet
wz|xy and parent maps p such that Np displays the quartet wx|yz but no Np displays
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the quartet wy|xz. Then the tree average distance cannot appear to have quartet wz|xy

via d(w, z) + d(x, y) < d(w,x) + d(y, z) = d(w,y) + d(x, z). Nor can it appear to
have quartet wy|xz via d(w,y) + d(x, z) < d(w,x) + d(y, z) = d(w, z) + d(x, y).

Proof (1) Write Az for the sum of the Wz(Np) for p such that Wz(Np) < Wx(Np) =
Wy(Np) weighted by the probability of p; thus

Az =
∑[

Pr(p)Wz(Np) : Wz(Np) < Wx(Np) = Wy(Np)
]
.

Similarly let Bz = ∑[Pr(p)Wz(Np) : Wx(Np) < Wz(Np) = Wy(Np)]. Then
Wz(N) = Az + Bz since these exhaust all the parent maps p under the assumptions
of (1). Similarly, define

Ax =
∑[

Pr(p)Wx(Np) : Wz(Np) < Wx(Np) = Wy(Np)
]

Bx =
∑[

Pr(p)Wx(Np) : Wx(Np) < Wz(Np) = Wy(Np)
]
,

Ay =
∑[

Pr(p)Wy(Np) : Wz(Np) < Wx(Np) = Wy(Np)
]

By =
∑[

Pr(p)Wx(Np) : Wx(Np) < Wz(Np) = Wy(Np)
]
.

Thus, Wx(N) = Ax + Bx and Wy(N) = Ay + By .
Suppose (1) is false, so Az + Bz < Ax + Bx = Ay + By .
By linearity, Az < Ax = Ay and Bx < Bz = By .
Since Ax +Bx = Ay +By and Ax = Ay , it follows that Bx = By . This contradicts

Bx < By , proving (1).
(2) Let

Az =
∑[

Pr(p)Wz(Np) : Wy(Np) < Wz(Np) = Wx(Np)
]

Bz =
∑[

Pr(p)Wz(Np) : Wx(Np) < Wz(Np) = Wy(Np)
]

and similarly define Ax,Ay,Bx,By . Then Ay < Az = Ax and Bx < Bz = By . More-
over, Wz(N) = Az + Bz since these exhaust all the parent maps p under the assump-
tions of (2). If (2) is false and Wz(N) < Wx(N) = Wy(N) then Az +Bz < Ax +Bx =
Ay + By .

But Az = Ax so Ax + Bz < Ax + Bx whence Bz < Bx , a contradiction, proving
(2).

(3) follows symmetrically with the proof of (1). �

Corollary 4.4 Suppose N is a phylogenetic network satisfying Assumptions 3.1. Sup-
pose w,x, y, z are distinct leaves. Assume

(i) there exists a quartet wx|yz or wy|xz or wz|xy such that there is no parent map
p for which this quartet occurs in Np; and

(ii) there exists a parent map p for which wx|yz or wy|xz occurs in Np .

Then it cannot be the case that Wz(N) < Wx(N) = Wy(N).
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Fig. 2 (a) Case 1 of
Theorem 4.2. (b) Case 2

Proof If there exist two different quartets that arise in some Np but not three, then
one of (1), (2), or (3) in Lemma 4.3 occurs and the conclusion follows. By (i), we
cannot have all three quartets occurring in Np for various parent maps p. Hence, the
only case that remains is that only one quartet occurs in Np for various p. By (ii),
it is either wx|yz or wy|xz. In the former case we have Wx < Wy = Wz and in the
latter we have Wy < Wx = Wz. �

We can now prove Theorem 4.2.

Proof Both x and y are normal leaves. Let qy be the parent of y and qx be the parent
of x. I claim qx = qy .

If qx �= qy , then there exists a most recent common ancestor v of x and y and it
must satisfy that either v < qx or v < qy or both. Without loss of generality, assume
v < qy . Hence, there is a directed path P(v, qy) from v to qy of positive length such
that no vertex of P(v, qy) except v is ancestral to x. In particular, we do not have
qy ≤ x. There are 5 cases to consider.

Assume first that qy is normal, hence of indegree 1. Since it has a child and its
outdegree cannot be 1, its outdegree is 2. Since the outdegree of qy is 2, it has another
child c, which is either normal or hybrid.

Case 1. Suppose c is normal. By normality of N , we may choose a normal path
from c to z ∈ X. See Fig. 2a.

I claim that for all p, in Np we have yz|rx. To see this, note that each Np con-
tains the arcs (qy, y) and (qy, c) and the normal path P(c, z). Their union forms the
undirected path P(y, z) in Np between y and z. But then P(y, z) is disjoint from the
undirected path P(r, x) in Np . (Otherwise, they would meet in a vertex on P(qy, z)

and it would follow that qy ≤ x, a contradiction.)
Since Np is a tree, it follows that for all p, with w = r , Wx(Np) < Wy(Np) =

Wz(Np). If we take the averages weighted by the probabilities, we see Wx(N) <

Wy(N) = Wz(N), contradicting the hypotheses. Thus, Case 1 cannot occur.
Case 2. Suppose c is hybrid with other parent q . Since there are no hybrid leaves,

choose a nontrivial normal path P(c, z) from c to z ∈ X. Since q has outdegree 2,
we may choose a normal path P(q,w) from q to w ∈ X. Assume q is not ≤ x. See
Fig. 2b.

Claim 2a. There is no parent map p such that Np has wy|xz.
To see Claim 2a, we show that for any p, P(w,y;Np) intersects P(x, z;Np).

First, there exists t such that P(w,y;Np) is the union of the directed paths
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P(t,w;Np) and P(t, y;Np). And there exists s such that P(x, z;Np) =
P(s, x;Np) ∪ P(s, z;Np).

First, observe that P(t, y;Np) must include qy since qy is the unique parent of y.
Moreover, since t ≤ w in Np and P(q,w) is normal in N , either t lies on P(q,w) or
else t ≤ q and P(t, y;Np) contains P(q,w). But if t lies on P(q,w) then q ≤ t ≤ qy

so (q, c) is redundant. Thus, P(t, y;Np) contains P(q,w) and in particular q . Hence,
P(t, y;Np) must contain both q and qy .

Second, observe that P(x, z;Np) must contain either q or qy . To see this, since
s ≤ z and P(c, z) is normal, either s ≤ c or else s lies on P(c, z). But if s lies on
P(c, z) then qy ≤ c ≤ s ≤ x contradicting that qy is not ≤ x. Hence, s ≤ c in Np .
Since c has only the two parents q and qy , it follows that P(s, z) contains either q

or qy .
Thus, P(w,y;Np) intersects P(x, z;Np) as claimed.
Claim 2b. There exists a parent map p such that Np displays yz|wx.
To see Claim 2b, suppose p satisfies p(c) = qy . Since y is normal and P(c, z;N)

is normal, it follows that P(y, z;Np) is the union of (qy, y), (qy, c), and P(c, z).
There exists t such that P(w,x;Np) = P(t,w;Np) ∪ P(t, x;Np). I claim that
P(w,x) is disjoint from P(y, z). To see this note

(i) P(t,w;Np) cannot contain the leaf y.
(ii) P(t,w;Np) cannot contain qy . If P(t,w;Np) contains qy then qy ≤ w. Since

P(q,w) is normal, either qy ≤ q or else qy lies on P(q,w). If qy ≤ q then
(qy, c) is redundant, a contradiction. If qy lies on P(q,w) then q ≤ qy so (q, c)

is redundant, a contradiction.
(iii) P(t,w;Np) cannot intersect P(c, z). If they met in u, then c ≤ u ≤ w. Since

P(q,w) is normal either c ≤ q or else c lies on P(q,w). But if c ≤ q , there is
a directed cycle in N . If c lies on P(q,w), then since q �= c the arc (q, c) is
redundant.

(iv) P(t, x;Np) cannot contain the leaf y.
(v) P(t, x;Np) cannot contain qy . Otherwise, qy ≤ x, a contradiction.

(vi) P(t, x;Np) cannot intersect P(c, z). If they met in u, then c ≤ u ≤ x whence
qy ≤ x, a contradiction.

This proves Claim 2b.
By Corollary 4.4, we cannot have Wz(N) < Wx(N) = Wy(N). Hence, Case 2

cannot occur.
Case 3. Suppose c is hybrid with other parent q . Since there are no hybrid leaves,

we may choose a normal path from c to z ∈ X. Suppose we may also choose a normal
path from q to x ∈ X. Let w = r . See Fig. 3a.

Claim 3a. There is no parent map p such that wz|xy in Np .
To see this, suppose p is a parent map. Recall w = r . We show that the undi-

rected path P(w, z;Np) from w to z in Np always intersects P(x, y;Np). In the
rooted tree Np , note that q and qy have a most recent common ancestor u. Np must
contain either (q, c) or (qy, c). Thus, the path P(w, z;Np) must contain P(r,u;Np),
P(c, z;Np), and either P(u,q;Np) or P(u,qy;Np). In particular, P(w, z;Np) must
contain either q or qy .

On the other hand, P(x, y;Np) must contain qy since it is the unique parent of
the leaf y. Moreover, P(x, y;Np) must contain q . This is because P(x, y;Np) =
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Fig. 3 (a) Case 3 of Theorem 4.2. (b) Case 4. (c) Case 5

P(s, x) ∪ P(s, y) for some s. Since P(q, x) is normal and s ≤ x, either s ≤ q or s

lies on P(q, x) and s �= q . In the latter case, q < s ≤ y, whence q ≤ qy and (q, c) is
redundant, a contradiction.

Claim 3b. There exists a parent map p such that wx|yz in Np .
To see this, choose p such that p(c) = qy . I claim P(w,x;Np) does not intersect

P(y, z;Np). Note that P(r, x;Np) must consist of directed paths P(r,u;Np) to-
gether with P(r, q;Np) and P(q, x;Np) since P(q, x) is normal in N . On the other
hand, P(y, z;Np) consists of (qy, y), (qy, c) and P(c, z) since P(c, z) is normal
in N . It is now clear that P(w,x;Np) is disjoint from P(y, z;Np).

By Corollary 4.4 we cannot have Wz(N) < Wx(N) = Wy(N), showing that Case 3
cannot occur.

Now instead of assuming that qy is normal, we assume qy is hybrid and the leaf y

is the unique child of qy . Let q1 and q2 be the parents of qy . Choose normal children
ci of qi respectively and normal paths from ci to xi ∈ X, respectively.

Case 4. Assume that we may choose x1 and x2 so that x, y, x1, and x2 are all
distinct. See Fig. 3b.

Let w = x1, z = x2.
Claim 4a. There is no parent map p such that in Np we have wz|xy. To see this,

suppose p is a parent map. Suppose wz|xy, so that P(x1, x2;Np) is disjoint from
P(x, y;Np).

Note that P(x1, x2;Np) is the union of P(s, x1;Np) and P(s, x2;Np) for some s.
Since s ≤ x1 in Np , either s ≤ q1 or else s lies on P(q1, x1;Np) and is distinct
from q1. But in the latter case q1 < s ≤ x2 in Np , whence q1 < s ≤ q2 in Np and
(q1, qy) is redundant in N , a contradiction. Hence, s ≤ q1 in Np . A similar argument
shows s ≤ q2 in Np . Hence, P(x1, x2;Np) includes both q1 and q2.

On the other hand, P(x, y;Np) must contain the leaf y, hence its unique child qy ,
hence the parent of qy in Np , hence either q1 or q2. This shows that P(x, y;Np)

cannot be disjoint from P(x1, x2;Np), proving the claim.
For every p, Np is binary, so in any Np it follows we must have either wx|yz or

wy|xz.
By Corollary 4.4, it follows that we cannot have Wz(N) < Wx(N) = Wy(N), so

Case 4 cannot occur.
Since Case 4 cannot occur, it follows that we cannot select x1 and x2 so that x1, x2,

x, and y are distinct. Hence (possibly by interchanging x1 and x2), we may assume
that the only leaf descendant of q1 by a normal path is x. Thus, the only remaining
case is the following case 5. See Fig. 3c.
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Case 5. The vertex qy is hybrid with parents q1 and q2. There is a normal path
from q1 to x and a normal path from q2 to x2. Let w = r , z = x2.

Claim 5a. There is no parent map p such that ry|xx2 in Np .
To see claim 5a, it suffices to show P(r, y;Np) and P(x, x2;Np) must intersect.

Let u denote the most recent common ancestor of x and x2 in Np , so P(x, x2;Np)

is the union of P(u,x;Np) and P(u,x2;Np). But u ≤ x in Np , so either u lies on
P(q1, x) or u ≤ q1 in Np . If u lies on P(q1, x), then in Np we have q1 ≤ u ≤ x2,
whence in Np we have q1 ≤ q2, whence q1 ≤ q2 in N , which implies that (q1, qy) is
redundant, a contradiction. Hence, u ≤ q1 in Np . A similar argument shows u ≤ q2
in Np . Hence, P(x, x2;Np) contains both q1 and q2. On the other hand P(r, y;Np)

must include y; hence, its unique parent qy , hence either q1 or q2, so P(r, y;Np)

intersects P(x, x2;Np).
Claim 5b. There exists a parent map p such that rx|yx2 in Np .
To see claim 5b, choose p such that p(qy) = q2. Then in Np we have

that P(y, x2;Np) is the union of P(q2, x2;Np) and P(q2, qy, y;Np). If u =
mrca(q1, q2;Np), then P(r, x) is the union of P(r,u), P(u,q1), and P(q1, x). Sup-
pose P(r, x) meets P(y, x2;Np) in s.

(i) If s ∈ P(q1, x) ∩ P(q2, x2), then q1 ≤ s ≤ x2, forcing q1 ≤ s ≤ q2, making
(q1, qy) redundant.

(ii) If s = y, there is a contradiction since y has no children, and if s = qy there is a
contradiction since the only proper descendant is y.

(iii) If s ∈ P(u,q1) ∩ P(q2, x2) then q2 ≤ s ≤ q1, so (q2, qy) is redundant.
(iv) If s ∈ P(r,u) ∩ P(q2, x2) then q2 ≤ s ≤ u ≤ q1 so (q2, qy) is redundant.

Hence, there can be no intersection of P(r, x) and P(y, x2), so rx|yx2 in Np .
By Corollary 4.4, it follows that we cannot have Wz(N) < Wx(N) = Wy(N), so

Case 5 cannot occur.
Cases 1 through 5 show that the assumption that qx �= qy is impossible, so qx = qy .

Since qx has outdegree at least two, it must have outdegree exactly 2 by the hypothe-
ses, and it must be normal (since a hybrid vertex has outdegree one). Hence {x, y}
form a cherry, as asserted. This completes the proof of the theorem. �

We may combine Lemma 4.1 and Theorem 4.2 into the following summary.

Theorem 4.5 (a) If |X| ≥ 4, then {x, y} is a cherry if and only if for all w and z in X

such that {w,x, y, z} are distinct, we have Wz(N) < Wx(N) = Wy(N).
(b) If |X| = 3, say X = {r, x, y}, then {x, y} is a cherry.

Proof (a) is immediate from Lemma 4.1 and Theorem 4.2. If |X| = 3 then there can
be no hybrid vertex and (b) is immediate. �

5 Recognition of a Hybrid Vertex

Suppose that we seek to reconstruct N = (V ,A, r,X) from the tree-average distances
on X. From Sect. 4, we know how to recognize a cherry {x, y}. Hence, we may
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assume there is no cherry, and by Theorem 3.2 there exists a hybrid vertex h with
parents q1 and q2 such that h has a child y, which is a leaf, q1 has a child x1 which is
a leaf, and q2 has a child x2 which is a leaf. The essential step is to identify such y,
x1, and x2. To do this, we consider all possibilities for y, x1, and x2 and find a choice,
which satisfies certain necessary criteria.

We present five necessary criteria, labeled B through F.

5.1 Criterion B: Clustering Conditions

This criterion is the most useful for quickly eliminating false candidates for hybrids.

Lemma 5.1 Assume that h is hybrid with parents q1 and q2 and both α(q1, h) > 0
and α(q2, h) > 0. Suppose h has a normal leaf child y, q1 has a normal leaf child x1,
and q2 has a normal leaf child x2. Suppose w ∈ X is distinct from y, x1, and x2.
For each network M with the same X let Wy(M) = d(w,y;M) + d(x1, x2;M),
Wx1(M) = d(w,x1;M) + d(y, x2;M), Wx2(M) = d(w,x2;M) + d(y, x1;M).

Then for all such w, Wx1(N) < Wy(N) and Wx2(N) < Wy(N).

The geometric content of Lemma 5.1 is seen in Fig. 1. Suppose w ∈ X is distinct
from y, x1, and x2 somewhere in the network (unspecified in Fig. 1). Note that for
a parent map p with p(h) = q1, for the 4-set {w,y, x1, x2} we necessarily have the
quartet tree yx1|wx2. For the complementary parent map p′ with p′(h) = q2, we
necessarily have the quartet tree yx2|wx1. Lemma 5.1 essentially says that there is
no parent map p such that wy|x1x2 in Np .

The proof will require the following definition. For a given parent map p with
p(h) = q1, let p′ denote the complementary parent map and Gp = Np ∪ Np′ be the
network Np with the additional arc (q2, h). Let H be the set of hybrid vertices of N .
For each p ∈ Par(N) satisfying p(h) = q1, let W(p) = ∏[α(p(h′), h′) : h′ ∈ H,

h′ �= h]. Hence, Pr(p) = α(q1, h)W(p) and Pr(p′) = α(q2, h)W(p).

Proof Each parent map satisfies either p(h) = q1 or p(h) = q2. If p(h) = q1, then
for every w ∈ X distinct from y, x1, x2 we have that {y, x1} is a cherry in Np , so
Wx2(Np) < Wx1(Np) = Wy(Np). If p(h) = q2, then for all such w we have that
{y, x2} is a cherry, so Wx1(Np) < Wx2(Np) = Wy(Np). In particular, if p(h) = q1 we
have Wx2(Np) < Wx1(Np) = Wy(Np) and if p′ is the complementary parent map (so
p′(h) = q2) then Wx1(Np′) < Wx2(Np′) = Wy(Np′). It follows that

α(q1, h)Wx2(Np) < α(q1, h)Wx1(Np) = α(q1, h)Wy(Np)

and

α(q2, h)Wx1(Np′) < α(q2, h)Wx2(Np′) = α(q2, h)Wy(Np′).

We combine Np and Np′ into the network Gp = Np ∪Np′ . When we take into ac-
count the probabilities at h, we see Wy(Gp) = α(q1, h)Wy(Np) + α(q2, h)Wy(Np′).

Take the sum over all parent maps. Since each p satisfying p(h) = q1 has its
complementary p′, we see that

Wy(N) =
∑[

W(p)Wy(Gp);p(h) = q1
]
.
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Similarly,

Wx1(Gp) = α(q1, h)Wx1(Np) + α(q2, h)Wx1(Np′),

Wx1(N) =
∑[

W(p)Wx1(Gp) : p(h) = q1
]
,

Wx2(Gp) = α(q1, h)Wx2(Np) + α(q2, h)Wx2(Np′),

Wx2(N) =
∑[

W(p)Wx2(Gp) : p(h) = q1
]
.

Hence, Wx1(Gp) = α(q1, h)Wx1(Np) + α(q2, h)Wx1(Np′) < α(q1, h)Wy(Np) +
α(q2, h)Wy(Np′) = Wy(Gp) and the inequality is strict since the case p′(h) = q2

occurs and α(q2, h) > 0 so Wx1(Gp) < Wy(Gp). Similarly, Wx2(Gp) =
α(q1, h)Wx2(Np) + α(q2, h)Wx2(Np′) < α(q1, h)Wy(Np) + α(q2, h)Wy(Np′) =
Wy(Gp), but the inequality is strict since p(h) = q1 occurs and α(q1, h) > 0 so
Wx2(Gp) < Wy(Gp).

Now Wx1(N) = ∑[W(p)Wx1(Gp) : p(h) = q1] <
∑[W(p)Wy(Gp) : p(h) =

q1] = Wy(N) so Wx1(N) < Wy(N). Similarly, Wx2(N) < Wy(N). �

We say that (y;x1, x2) passes Criterion B provided that the conclusion of
Lemma 5.1 holds. Alternatively, Lemma 5.1 says that if y, x1, and x2 have the hy-
pothesized relationship with a hybrid vertex, then (y;x1, x2) passes Criterion B.

5.2 Criterion C: Exact Relationships Among Distances Relating y, x1, and x2

The following Lemma 5.2 is useful since it gives an exact relationship that must
hold for any z between d(z, y), d(z, x1), d(z, x2), and α(q1, h). Assume that N =
(V ,A, r,X) has hybrid h with parents q1, q2, such that q1 has a child x1 which is a
normal leaf, q2 has a child x2 which is a normal leaf, and h has a child y, which is a
normal leaf.

Lemma 5.2 For every z ∈ X other than y, x1, x2

(1) d(z,h) = α(q1, h)d(z, q1) + α(q2, h)d(z, q2),
(2) d(z, y) − ω(h,y) = α(q1, h)[d(z, x1) − ω(q1, x1)] + α(q2, h)[d(z, x2) −

ω(q2, x2)].
In particular, in the equiprobable case,

(3) d(z, y) − ω(h,y) = (1/2)[d(z, x1) − ω(q1, x1)] + (1/2)[d(z, x2) − ω(q2, x2)].

Proof For each parent map p such that p(h) = q1, let p′ denote the complementary
parent map, which agrees with p except that p′(h) = q2. Then every parent map has
the form either p or p′. For each z ∈ X, z other than y, x1, x2, note

d(z,h;Np) = d(z, q1;Np) since ω(q1, h) = 0 and

d(z,h;Np′) = d(z, q2;Np′) since ω(q2, h) = 0.
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Hence, if p(h) = q1, then

d(z,h;Gp) = α(q1, h)d(z,h;Np) + α(q2, h)d(z,h;Np′).

By Lemma 4.6 of Willson (2012), for each parent map p with p(h) = q1,
d(z,h;N) = ∑[W(p)d(z,h : Gp);p(h) = q1] where W(p) = ∏

(α(p(h′), h′) :
h′ �= h), whence

d(z,h;N)

=
∑[

α(q1, h)W(p)d(z,h;Np) +
∑

α(q2, h)W(p)d(z,h;Np′) : p(h) = q1

]

=
∑

α(q1, h)W(p)d(z,h;Np) +
∑

α(q2, h)W(p)d(z,h;Np′)

=
∑

α(q1, h)W(p)d(z, q1;Np) +
∑

α(q2, h)W(p)d(z, q2;Np′)
(
since ω(q1, h) = ω(q2, h) = 0

)

= α(q1, h)
∑[

W(p)d(z, q1;Np)
] + α(q2, h)

∑[
W(p)d(z, q2;Np′)

]
.

But d(z, q1;Np) = d(z, q1;Np′) and d(z, q2;Np) = d(z, q2;Np′) since the path
connecting z to q1 in either case does not pass through h. Hence, by Lemma 4.6
of Willson (2012) d(z, q1;N) = ∑[W(p)d(z, q1;Gp) : p(h) = q1] and simi-
larly d(z, q2;N) = ∑[W(p)d(z, q2;Gp) : p(h) = q1]. It follows that d(z,h;N) =
α(q1, h)d(z, q1;N) + α(q2, h)d(z, q2;N) proving (1).

Since d(z, q1;N) + ω(q1, x1) = d(z, x1;N) we have d(z, q1;N) = d(z, x1;N) −
ω(q1, x1). Similarly, d(z, q2;N) = d(z, x2;N) − ω(q2, x2) and d(z,h;N) =
d(z, y;N)−ω(h,y). If we substitute these into (1), we obtain (2). Finally, we obtain
(3) from (2) in the equiprobable case since then α(q1, h) = 1/2. �

Corollary 5.3 The value d(z, y)−ω(h,y) should lie between the values [d(z, x1)−
ω(q1, x1)] and [d(z, x2) − ω(q2, x2)].

We say that the hybrid passes Criterion C2 if (2) from Lemma 5.2 holds, and it
passes Criterion C3 if (3) from Lemma 5.2 holds.

5.3 Criterion D. Relationship Among r , x1, x2, x3

In the event of a non-equiprobable hybrid, Lemma 5.4 gives a relationship that most
hold among r , x1, x2, and x3.

Lemma 5.4 In the case of a non-equiprobable hybrid (y;x1, x2, x3), we must have
that

d(r, x1;N) + d(x2, x3;N) < d(r, x2;N) + d(x1, x3;N)

= d(r, x3;N) + d(x1, x2;N).
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Proof From Fig. 1, we see that for every parent map p we have that rx1|x2x3 is a
quartet in Np . Hence,

d(r, x1;Np) + d(x2, x3;Np) < d(r, x2;Np) + d(x1, x3;Np)

= d(r, x3;Np) + d(x1, x2;Np)

for each p. Taking the weighted sum where Np is weighted by Pr(p), we obtain the
result. �

5.4 Criterion E. Conditions on Signs in the Equiprobable Case

This subsection gives some inequalities that must hold in the equiprobable case.
Let y, x1, x2 be distinct leaves (and distinct from r). In the equiprobable case for

the network M , define

wrv(M) := (
d(r, x1;M) + d(r, x2;M) − d(x1, x2;M)

)
/2

wq1x1(M) := d(x1, y;M) − d(r, y;M) + wrv(M)

wq2x2(M) := d(x2, y;M) − d(r, y;M) + wrv(M)

wvq1(M) := d(r, x1;M) − wrv(M) − wq1x1(M)

wvq2(M) := d(r, x2;M) − wrv(M) − wq2x2(M)

why(M) := (
d(y, x1;M) + d(y, x2;M) − d(x1, x2;M)

)
/2.

These definitions are made plausible from the diagram of N in Fig. 1. In the dia-
gram from Willson (2012), wrv(M) is the estimate for the distance between r and v;
wq1x1(N) is the estimate for the distance between q1 and x1; wq2x2 is the estimate for
d(q2, x2;N); wvq1(N) estimates d(v, q1;N); wvq2(N) estimates d(v, q2;N); and
why(N) estimates d(h, y;N). We now show that, if the distances are exactly known,
then these estimates tell the exact values.

Lemma 5.5 Assume that h is an equiprobable hybrid with parents q1 and q2.
Suppose h has a normal child y which is a leaf. Suppose q1 and q2 have nor-
mal children x1 and x2 respectively which are leaves. Then the quantities wrv(N),
wq1x1(N), wq2x2(N), wvq1(N), wvq2(N), and why(N) are all positive. Moreover,
d(q1, x1) = wq1x1(N), d(q2, x2) = wq2x2(N), and d(h, y) = why(N).

Proof Note that for every complementary pair p and p′, if Gp = Np ∪ Np′ then the
network in Fig. 1 depicts part of Gp , where v is the most recent common ancestor of
q1 and q2 in both Np and Np′ . If w is another vertex distinct from r , y, x1, and x2,
there are three possibilities for the placement of w: it could be attached on the path
from r to v, on the path from v to q1, or on the path from v to q2.

Then in Gp we have the distances determined as follows:

wrv(Gp) := d(r, v;Gp) = (
d(r, x1;Gp) + d(r, x2;Gp) − d(x1, x2;Gp)

)
/2

wq1x1(Gp) := d(q1, x1;Gp) = d(x1, y;Gp) − d(r, y;Gp) + d(r, v;Gp)
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wq2x2(Gp) := d(q2, x2;Gp) = d(x2, y;Gp) − d(r, y;Gp) + d(r, v;Gp)

wvq1(Gp) := d(v, q1;Gp) = d(r, x1;Gp) − wrv(Gp) − wq1x1(Gp)

wvq2(Gp) := d(v, q2;Gp) = d(r, x2;Gp) − wrv(Gp) − wq2x2(Gp)

why(Gp) := d(h, y;Gp) = (
d(y, x1;Gp) + d(y, x2;Gp) − d(x1, x2;Gp)

)
/2

and all are positive.
By Lemma 4.6 of (Willson 2012) wrv(N) = ∑[W(p)wrv(Gp) : p ∈ Par(N),

p(h) = q1] which is positive since W(p) > 0 and wrv(Gp) > 0.
A similar argument proves the other conclusions. The identification of the values

for d(q1, x1), d(q2, x2), and d(h, y) follows from Willson (2012). �

A choice of (y;x1, x2) will be said to satisfy Criterion E in the equiprobable case
provided that the conclusion of Lemma 5.5 holds.

5.5 Criterion F. Conditions on Signs in the General Case

The material in this subsection is like that for Criterion E, but applies to the general
case which is not equiprobable.

For the general case in which the hybrid need not be equiprobable, we assume
the existence of x3 as in Fig. 1. From Willson (2012), Lemma 4.9, we obtain the
following explicit formulas.

Lemma 5.6 Suppose h is hybrid with indegree 2 and parents q1 and q2. Suppose
there is a normal path from q1 to x1 ∈ X, from q2 to x2 ∈ X, and from h to y ∈ X.
Assume q3 is such that there is a normal path from q3 to q2, a normal path from q3 to
x3 ∈ X, but no directed path from q3 to q1. Suppose M is a phylogenetic X-network
that is a subnetwork of N . Let

(a) wrv(M) = [d(r, x1;M) + d(r, x3;M) − d(x1, x3;M)]/2 = [d(r, x1;M) +
d(r, x2;M) − d(x1, x2;M)]/2

(b) wvq3(M) = [d(r, x3;M) + d(x1, x2;M) − d(r, x1;M) − d(x3, x2;M)]/2
(c) wq3x3(M) = [d(r, x3;M) + d(x3, x2;M) − d(r, x2;M)]/2
(d) why(M) = [d(y, x2;M) + d(y, x1;M) − d(x1, x2;M)]/2
(e) E2(M) = d(x1, y;M) − d(r, y;M) + wrv(M)

(f) E4(M) = d(x2, y;M) − d(r, y;M) + wrv(M)

(g) α(M) = [2d(x3, y;M) − 2wq3x3(M) − 2why(M) − d(r, x1;M) + E2(M) +
2wrv(M) + E4(M) − d(r, x2;M) + 2wvq3(M)]/[4wvq3(M)]

(h) wvq1(M) = [d(r, x1;M) − E2(M) − wrv(M)]/[2α(M)]
(i) wq3q2(M) = [d(x3, y;M) − wq3x3(M) − why(M) − α(M)(wvq3(M) +

wvq1(M))]/(1 − α(M))

(j) wq1x1(M) = d(r, x1;M) − wrv(M) − wvq1(M)

(k) wq2x2(M) = d(r, x2;M) − wrv(M) − wvq3(M) − wq3,q2(M)

(l) C(M) = 2d(x3, y;M) − 2wq3x3(M) − 2why(M) − d(r, x1;M) + E2(M) +
2wrv(M) + E4(M) − d(r, x2;M) + 2wvq3(M)

(m) D(M) = 4wvq3(M).
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Then

(i) α(q1, h;N) = α(N) = C(N)/D(N).
(ii) d(q1, x1;N) = wq1x1(N).

(iii) d(q2, x2;N) = wq2x2(N).

Indeed, wrv(N), wvq1(N), wq1x1(N), why(N), wvq3(N), wq3x3(N), wq3q2(N),
wq2x2(N), and α(N) estimate the respective quantities d(r, v;N), d(v, q1;N),
d(q1, x1;N), d(h, y;N), d(v, q3;N), d(q3, x3;N), d(q3, x2;M), α(q1, h;N) and
give the exact values when the hypotheses are satisfied.

Lemma 5.7 In the general case, the quantities wrv(N), wvq1(N), wq1x1(N),
why(N), avq3(N), aq3x3(N), aq3q2(N), wq2x2(N) of Lemma 5.6 are all positive.
Moreover, 0 < α(q1, h;N) < 1.

The proof is similar to that of Lemma 5.5.
A choice of (y;x1, x2) with x3 will be said to satisfy Criterion F provided that the

conclusion of Lemma 5.7 holds.

5.6 Summary of the Test for a Hybrid

Suppose we are given the tree-average distances for N . Using Theorem 4.5, we may
eliminate all cherries. Hence, we may assume that there are no cherries. By The-
orem 3.2, there exists a hybrid vertex h with parents q1 and q2 such that h has a
child y which is a leaf, q1 has a child x1 which is a leaf, and q2 has a child x2 which
is a leaf. We consider all possibilities for y, x1 and x2. For each choice of (y, x1, x2),
we perform the following checks:

(i) equiprobable(y, x1, x2): The choice passes the test provided it passes Criteria B,
C3, and E.

(ii) general(y, x1, x2): Consider all possible x3 ∈ X distinct from y, x1, x2. The
choice of (y, x1, x2) with x3 passes the test provided that it passes Criteria B, C2,
D, and F. In checking Criterion C2, we utilize the formulas of Lemma 5.6 to es-
timate ω(h,y), ω(q1, x1), ω(q2, x2), and α(q1, h); note α(q2, h) = 1 −α(q1, h).

We accept any (y, x1, x2) that passes either (i) or (ii).

6 Proof that the Algorithm Works if There Is Only One Reticulation Cycle

The main theorem of this paper is the following result.

Theorem 6.1 Suppose the phylogenetic network N = (V ,A, r,X) satisfies Assump-
tions 3.1. Assume N has a single reticulation cycle and has its exact tree-average
distances known. Then N is reconstructed by the algorithm from its tree-average dis-
tances.
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Fig. 4 The reality when there is
a single reticulation cycle to
hybrid h and there are no
cherries. Here the parents of h

are q1 and q2. Moreover, h, q1,
and q2 have respectively normal
children y, x1, x2 in X

By Theorem 4.5, we may recognize any cherry that occurs in N and remove it
by following the method described in Sect. 3. Hence, we may assume that N has no
cherries. Then N appears as in Fig. 4 (possibly with some vertices deleted).

Suppose that the hybrid h has normal child y ∈ X and parents q1 and q2

with respective normal children x1 and x2 in X. We say A(v;v1, v2) is true
if v = y, v1 = x1, v2 = x2 passes Criterion B. In other words, for w ∈ X

let Wv(N) = d(w,v;N) + d(v1, v2;N), Wv1(N) = d(w,v1;N) + d(v, v2;N),
Wv2(N) = d(w,v2;N) + d(v, v1;N). Then A(v;v1, v2) is true iff for all w ∈ X

other than v, v1, v2 we have both Wv1(N) < Wv(N) and Wv2(N) < Wv(N). By
Lemma 5.1, A(y;x1, x2) is true. Note that by symmetry, A(a;b, c) is true if and only
if A(a; c, b) is true.

Observe that we are interested only in possibilities for a, b, c in X such that
A(a;b, c) is true and also such that a, b, c are all possibilities for being children of
a hybrid and the parents of a hybrid. Consequently, none of a, b, c can be the root r .
On the other hand, w in the test could possibly equal r .

Lemma 6.2 Suppose A(a;b, c) is true. Then for all e ∈ X, e /∈ {a, b, c} both
A(a;b, e) and A(a; e, c) are false.
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Proof If A(a;b, e) is true, then choosing w = c we have d(c, b)+d(a, e) < d(a, c)+
d(b, e). But since A(a;b, c) is true, then choosing w = e yields d(e, b) + d(a, c) <

d(e, a) + d(b, c), a contradiction. Hence, A(a;b, e) is false. A symmetric argument
shows A(a; e, c) is false. �

Lemma 6.3 Suppose there is a 4-set {a, b, c, e} such that for all parent maps p, the
same quartet tree is in Np . Then A(a;b, c) is false.

Proof Suppose that the common quartet tree is uv|xy for a permutation u, v, x, y

of a, b, c, e. Then d(u, v) + d(x, y) < d(u, x) + d(v, y) = d(u, y) + d(v, x). But if
A(a;b, c) is true then there is a unique strict maximum among the three quantities
d(a, b) + d(c, e), d(a, c) + d(b, e), d(a, e) + d(b, c), a contradiction. �

Lemma 6.4 Suppose there is a subset S of X such that |S| ≥ 4 and for all parent
maps p, the restriction Np|S is the same tree. Then for {a, b, c} ⊆ S, A(a;b, c) is
false.

Proof Since |X| ≥ 4 we may suppose w ∈ S − {a, b, c}. Then for all p, the trees Np

induce the same quartet on the 4-set {a, b, c,w}. By Lemma 6.3, A(a;b, c) is false. �

Lemma 6.5 Assume that for a nonempty collection of parent maps p, we have wx|yz

in Np and for a nonempty collection of parent maps p we have wy|xz in Np but there
is no parent map p such that in Np we have wz|xy. Then A(y;x, z), A(y; z, x),
A(x;y, z), and A(x; z, y) are false.

Briefly, Lemma 6.5 assumes that for the 4-set {w,x, y, z} exactly two quartet
trees appear in the various Np , including wy|xz. The lemma asserts that A(y;x, z),
A(y; z, x), A(x;y, z), and A(x; z, y) are false. This leaves open the possibility that
A(z;x, y) is true.

Proof Let P1 ⊂ Par(N) be the set of p such that wx|yz in Np , and let P2 be the set
of p such that wy|xz in Np . Then Par(N) = P1 ∪ P2 since the other quartet never
occurs.

For p ∈ P1,

d(w,x;Np) + d(y, z;Np) < d(w,y;Np) + d(x, z;Np)

= d(w, z;Np) + d(x, y;Np).

For p ∈ P2,

d(w,y;Np) + d(x, z;Np) < d(w,x;Np) + d(y, z;Np)

= d(w, z;Np) + d(x, y;Np).

Taking the weighted sums, it follows
∑[

Pr(p)d(w,y;Np) : p ∈ P2
] +

∑
Pr(p)d(x, z;Np)p ∈ P2

]

<
∑[

Pr(p)d(w, z;Np) : p ∈ P2
] +

∑[
Pr(p)d(x, y;Np) : p ∈ P2

]
.
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Add to each side
∑[Pr(p)d(w,y;Np) : p ∈ P1] + ∑[Pr(p)d(x, z;Np) : p ∈ P1].

We obtain
∑[

Pr(p)d(w,y;Np) : p ∈ P2
] +

∑
Pr(p)d(x, z;Np)p ∈ P2

]

+
∑[

Pr(p)d(w,y;Np) : p ∈ P1
] +

∑[
Pr(p)d(x, z;Np) : p ∈ P1

]

<
∑[

Pr(p)d(w, z;Np) : p ∈ P2
] +

∑[
Pr(p)d(x, y;Np) : p ∈ P2

]

+
∑[

Pr(p)d(w,y;Np) : p ∈ P1
] +

∑[
Pr(p)d(x, z;Np) : p ∈ P1

]
.

But the left side

=
[∑[

Pr(p)d(w,y;Np) : p ∈ P1
] +

∑[
Pr(p)d(w,y;Np) : p ∈ P2

]]

+
[∑[

Pr(p)d(x, z;Np) : p ∈ P1
] +

∑
Pr(p)d(x, z;Np) : p ∈ P2

]]

= d(w,y;N) + d(x, z;N)

and the right side

=
[∑[

Pr(p)d(w, z;Np) : p ∈ P2
] +

∑[
Pr(p)d(x, y;Np) : p ∈ P2

]]

+
[∑[

Pr(p)d(w, z;Np) : p ∈ P1
] +

∑[
Pr(p)d(x, y;Np) : p ∈ P1

]]

= d(w, z;N) + d(x, y;N).

Hence, d(w,y;N) + d(x, z;N) < d(w, z;N) + d(x, y;N). Yet if A(y;x, z) is
true then d(w, z;N) + d(x, y;N) < d(w,y;N) + d(x, z;N), a contradiction. Thus,
A(y;x, z) is false, and equivalently A(y; z, x) is false.

If we interchange x and y we obtain by symmetry that A(x;y, z) and A(x; z, y)

are false. �

Note that Lemma 6.5 may be contrasted with Lemma 5.1, which says that if for
all w, wx|yz in some Np and wz|xy in some Np but never wy|xz then A(y;x, z) is
true.

Lemma 6.6 Suppose that N = (V ,A, r,X) satisfies that A(y1;x11, x12),

A(y1;x12, x11),A(y2;x21, x22),A(y2;x21, x21), . . . ,A(yk;xk1, xk2),A(yk;xk2, xk1)

are the only acceptances that are true. Form N ′ = (V ′,A′, r,X′) by picking a leaf
z ∈ X and replacing it by a cherry {z1, z2}. (Thus, we add z1, z2, and arcs (z, z1),
(z, z2), with positive weights, removing z from X but adding z1 and z2 to make X′.)
Then in N ′ the following hold:

(i) If there is no i such that z is yi or xi1 or xi2, then A(yi;xi1, xi2) and
A(yi;xi2, xi1) remain true in N ′.

(ii) Suppose A(a;b, c) is true in N ′. Then {a, b, c} ⊂ X − {z}, so none of a, b, c is
z1 or z2.
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Proof Note that for each u ∈ X, d(u, z1) = d(u, z) + ω(z, z1) and d(u, z2) =
d(u, z) + ω(z, z2) by the construction.

(i) Suppose z is not yi or xi1 or xi2. In N we have A(yi;xi1, xi2) is true. Hence
for every w ∈ X other than yi , xi1, xi2 we have

d(w,xi1;N) + d(yi, xi2;N) < d(w,yi;N) + d(xi1, xi2;N)

d(w,xi2;N) + d(yi, xi1;N) < d(w,yi;N) + d(xi1, xi2;N).

In N ′, for each w �= z1, z2 the same inequalities will still hold. I claim the same
inequalities also hold for w = z1 or z2. To see this note that choosing w = z yields

d(z, xi1;N) + d(yi, xi2;N) < d(z, yi;N) + d(xi1, xi2;N) and

d(z, xi2;N) + d(yi, xi1;N) < d(z, yi;N) + d(xi1, xi2;N).

Hence, when we add ω(z, z1) to each side, we obtain

ω(z, z1) + d(z, xi1;N) + d(yi, xi2;N) < ω(z, z1) + d(z, yi;N) + d(xi1, xi2;N)

and

ω(z, z1) + d(z, xi2;N) + d(yi, xi1;N) < ω(z, z1) + d(z, yi;N) + d(xi1, xi2;N).

Hence, d(z1, xi1;N ′) + d(yi, xi2;N ′) < d(z1, yi;N ′) + d(xi1, xi2;N ′) and
d(z1, xi2;N ′) + d(yi, xi1;N ′) < d(z1, yi;N ′) + d(xi1, xi2;N ′) so A(yi;xi1, xi2) is
true in N ′. The same argument shows A(yi;xi2, xi1) is true in N ′.

(ii) Suppose A(a;b, c) is true in N ′. I claim that {a, b, c} ⊂ X − {z}, so none of a,
b, c is z1 or z2.

Case 1. Suppose a = z1 so A(z1;b, c) in N ′ and neither b nor c equals z2. Then for
all w, d(w,b) + d(z1, c) < d(w, z1) + d(b, c) and d(w, c) + d(z1, b) < d(w, z1) +
d(b, c). In particular, if w = z2, then d(z2, b) + d(z1, c) < d(z2, z1) + d(b, c) and
d(z2, c) + d(z1, b) < d(z2, z1) + d(b, c). But relating distances to z2 and z1 we have
ω(z, z2) + d(z, b) + ω(z, z1) + d(z, c) < ω(z, z2) + ω(z, z1) + d(z, z) + d(b, c) and
ω(z, z2) + d(z, c) + ω(z, z1) + d(z, b) < ω(z, z2) + ω(z, z1) + d(z, z) + d(b, c).

Hence, d(z, b)+d(z, c) < d(b, c) which contradicts the triangle inequality, shown
to be true in Willson (2012).

Case 2. Suppose a = z1 so A(z1;b, c) in N ′ and b = z2, so A(z1; z2, c) is true
in N ′. Then for all w ∈ X − {z}, d(w, z2) + d(z1, c) < d(w, z1) + d(z2, c) and
d(w, c)+d(z1, z2) < d(w, z1)+d(z2, c). Substituting d(w, z2) = d(w, z)+ω(z, z2)

etc. we obtain ω(z, z2)+d(w, z)+d(z, c)+ω(z, z1) < d(w, z)+ω(z, z1)+d(z, c)+
ω(z, z2) and d(w, c)+d(z, z)+ω(z, z1)+ω(z, z2) < d(w, z)+ω(z, z1)+d(z, c)+
ω(z, z2). Hence, d(w, z) < d(w, z) contradicting that d is a metric, shown in Willson
(2012).

It follows that a cannot be z1, and a symmetric argument shows a �= z2.
Case 3. Suppose a /∈ {z1, z2} but b = z1, c �= z2 yet A(a; z1, c) is true. Then for

all w, d(w, z1) + d(a, c) < d(w,a) + d(z1, c) and d(w, c) + d(z1, a) < d(w,a) +
d(z1, c). In particular, for w = z2, d(z2, , z1) + d(a, c) < d(z2, a) + d(z1, c) and
d(z2, c) + d(z1, a) < d(z2, a) + d(z1, c).
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Thus, ω(z, z2) + ω(z, z1) + d(a, c) < d(z, a) + d(z, c) + ω(z, z2) + ω(z, z1) and
ω(z, z2) + ω(z, z1) + d(z, c) + d(z, a) < d(z, a) + d(z, c) + ω(z, z2) + ω(z, z1).

This shows that d(a, c) < d(z, a) + d(z, c) and d(z, c) + d(z, a) < d(z, a) +
d(z, c) so 0 < 0, a contradiction.

Case 4. Suppose a /∈ {z1, z2} but b = z1, c = z2 and A(a; z1, z2) is true. Then for
w distinct from z1, z2, and a, we have d(w, z1) + d(z2, a) < d(w,a) + d(z1, z2) and
d(w, z2) + d(z1, a) < d(w,a) + d(z1, z2).

Since d(w, z1) = d(w, z) + ω(q, z1), it follows that ω(z, z1) + ω(z, z2) +
d(w, z)+d(z, a) < ω(z, z1)+ω(z, z2)+d(w,a) and ω(z, z1)+ω(z, z2)+d(w, z)+
d(z, a) < ω(z, z1) + ω(z, z2) + d(w,a). Hence d(w, z) + d(z, a) < d(w,a) and
d(w, z) + d(z, a) < d(w,a) contradicting the triangle inequality. This completes the
proof of (ii). �

Lemma 6.7 Assume the hypotheses of Lemma 6.6 and the construction of N ′.
If z = yi , then A(z;xi1, xi2) is meaningless for N ′ since z /∈ X′. Moreover,
A(z1;xi1, xi2) and A(z2;xi1, xi2) are false for N ′. Similarly, if z = xi1 so A(yi; z, xi2)

is true in N , then A(yi; z, xi2) is meaningless in N ′, while A(y; z1, xi2) is false in N ′.

Proof Suppose z = yi . Since A(z;xi1, xi2) is true for every w ∈ X other than yi = z,
xi1, xi2 we have

d(w,xi1;N) + d(z, xi2;N) < d(w, z;N) + d(xi1, xi2;N) and

d(w,xi2;N) + d(z, xi1;N) < d(w, z;N) + d(xi1, xi2;N).

I claim that A(z1;xi1, xi2) is false. Adding ω(z, z1) to the above yields that for
w ∈ X other than z, xi1, xi2 we have

d(w,xi1;N) + ω(z, z1) + d(z, xi2;N) < d(w, z;N) + ω(z, z1) + d(xi1, xi2;N)

d(w,xi2;N) + d(z, xi1;N) + ω(z, z1) < d(w, z;N) + ω(z, z1) + d(xi1, xi2;N).

Hence,

d
(
w,xi1;N ′) + d

(
z1, xi2;N ′) < d

(
w,z1;N ′) + d

(
xi1, xi2;N ′) and

d
(
w,xi2;N ′) + d

(
z1, xi1;N ′) < d

(
w,z1;N ′) + d

(
xi1, xi2;N ′).

The only remaining issue is whether the same is true for w = z2. We ask whether

d
(
z2, xi1;N ′) + d

(
z1, xi2;N ′) < d

(
z2, z1;N ′) + d

(
xi1, xi2;N ′) and

d
(
z2, xi2;N ′) + d

(
z1, xi1;N ′) < d

(
z2, z1;N ′) + d

(
xi1, xi2;N ′).
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But d(z2, z1) = ω(z, z1) + ω(z, z2) and d(z2, xi1;N ′) = d(z, xi1;N ′) + ω(z, z2).
Hence, these inequalities would imply

d(z, xi1;N) + ω(z, z2) + d(z, xi2;N) + ω(z, z1)

< ω(z, z1) + ω(z, z2) + d(xi1, xi2;N) and

ω(z, z2) + d(z, xi2;N) + ω(z, z1) + d(z, xi1;N)

< ω(z, z1) + ω(z, z2) + d(xi1, xi2;N).

But then we obtain d(z, xi1;N)+d(z, xi2;N) < d(xi1, xi2;N) and d(z, xi2;N)+
d(z, xi1;N) < d(xi1, xi2;N), which violates the triangle inequality. Hence,
A(z1;xi1, xi2) is false. A symmetric argument shows A(z2;xi1, xi2) is false.

A similar argument applies if z = xi1 or xi2. The lemma follows. �

We now give the proof of Theorem 6.1. We are assuming there are no cherries.
See Fig. 4.

Since there is a single reticulation cycle, if h and y are removed, then we obtain a
tree T . Consider the path P1 in T from the root r to x1 and the path P2 from r to x2.
These paths diverge at a point v (possibly v = r). Suppose x is a leaf other than y,
x1, or x2. Then the path from r to x in T must depart from P1 ∪ P2 at a point w,
whence there is a path Px from w to x disjoint from P1 ∪P2 except for w. But a path
from w that starts along Px toward x and has a maximal number of arcs must end at a
leaf with parent q; and if this maximal length is greater than one, then the other child
of q must also be a leaf by maximality. Since neither can be hybrid (since h is the
only hybrid), it follows that if the maximal path from w in that direction has length
greater than one, then N has a cherry, a contradiction. It follows that x is a leaf with
parent w.

It is possible that h is equiprobable. It is also possible that q2 has an ancestor q3
such that there is a normal path from q3 to q2 and there is no path from q3 to q1, and
there is a normal path from q3 to x3 ∈ X that is disjoint from the normal path to q2
except for q3. In either situation, if we can correctly identify y, x1, x2 and α(q1, h),
then we may remove the correct hybrid. Once this has occurred, there are no more
hybrid vertices and successive identification of cherries may take place. Hence, the
theorem is true provided we can correctly identify y, x1, x2, and α(q1, h). Of course,
in either case the correct choice satisfies the criteria of Sect. 5. Hence, we must show
that there is no false signal to accept a different choice.

Write A(v;v1, v2, α) if the algorithm accepts the hybrid h′ as having child v and
parents q1 and q2 with respective normal children v1 and v2 in X, with α(q1, h

′) = α.
Clearly, if A(v;v1, v2) is false, then for all α, A(v;v1, v2, α) is false.

The proof of Theorem 6.1 will involve a sequence of claims.

Claim 1 Suppose none of v, v1, v2 is y. Then A(v;v1, v2) is false.

Proof Let S = X − {y}. Then Lemma 6.4 applies since {v, v1, v2} ⊆ S. �

Hence, if A(v;v1, v2) is true then one of v, v1, v2 is y.
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Claim 2 Suppose A(y;x1, v) is true. Then v = x2.

Proof Since A(y;x1, x2) is true, then by Lemma 6.2 for v �= x2 we must have that
A(y;x1, v) is false. �

Similarly, we have the following.

Claim 3 Suppose A(y;x2, v) is true. Then v = x1.

Claim 4 If {u1, u2} is disjoint from {x1, x2}, then A(y;u1, u2) is false.

Proof Let T = N with h removed as well as all arcs involving h, so T is a directed
tree. See Fig. 4. Note that if p(h) = q1 then Np consists of T with x1 replaced by a
cherry {x1, y}, while if p′(h) = q2 the Np′ consists of T with x2 replaced by a cherry
{x2, y}. All leaves other than x1 and x2 have their parent on the path P1 or P2. In
particular, u1 and u2 are situated in this manner. The vertex where P1 and P2 diverge
is denoted v.

We analyze 7 cases.
Case 1. Suppose u1 and u2 both branch off the path from r to v. Then the quar-

tet for {u1, u2, y, x1} in Np is always u1u2|yx1. Hence, A(y;u1, u2) is false by
Lemma 6.3.

Case 2. Suppose u1 branches off the path from r to v but u2 branches off the path
from v to x2. If p(h) = q1 then the quartet for {u1, u2, y, x1} in Np is u1u2|yx1, while
if p′(h) = q2 then the quartet in Np′ is yu2|u1x1. Hence, by Lemma 6.5 with w = x1,
A(y;u1, u2) is false.

Case 3. Suppose u1 branches off the path from r to v but u2 branches off the
path from v to x1. An argument symmetric to that of Case 2 with w = x2 yields a
contradiction.

Case 4. Suppose u2 branches off the path from r to v but u1 branches off the path
from v to x2. An argument symmetric to that of Case 2 yields a contradiction.

Case 5. Suppose u2 branches off the path from r to v but u1 branches off the path
from v to x1. An argument symmetric to that of Case 3 yields a contradiction.

Case 6. Suppose u1 and u2 both branch off the path from v to x1. By symmetry
we may assume that the branch for u1 is closer to r than the branch for u2. Let
w = x1 and consider the quartets for {x1, y,u1, u2}. If p(h) = q1 then Np has the
quartet x1y|u1u2 while if p′(h) = q2 then Np′ has the quartet x1u2|u1y. Hence, by
Lemma 6.5, A(y;u1, u2) is false.

Case 7. Suppose u1 and u2 both branch off the path from v to x2. An argument
symmetric to Case 6 yields a contradiction.

This completes the proof of Claim 4. �

It follows from Claims 2, 3, and 4 that if A(v;u1, u2) is true, then either the correct
hybrid is found via v = y; {u1, u2} = {x1, x2} or else we may assume u1 = y. We
must eliminate the possibility that u1 = y.

Claim 5 Suppose A(k;y,u) is true. Then k = x1 or x2.
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Proof As with Claim 4, the proof considers 7 cases.
Case 1. Suppose k and u both branch off the path from r to v. Then for all parent

maps p, Np has the quartet x1y|uk. Hence, A(k;y,u) is false by Lemma 6.3.
Case 2. Suppose k and u both branch off the path from v to x1, k �= x1, u �= x1,

k further from r than is u. Let w = x1. If p(h) = q1 then Np has the quartet yx1|ku

and if p′(h) = q2 then Np′ has the quartet x1k|yu. Hence, by Lemma 6.5, A(k;y,u)

is false.
Case 3. Suppose k and u both branch off the path from v to x1, k �= x1, u �= x1, k

closer to r than is u. Let w = x2. If p(h) = q1 then Np has the quartet yu|kx2 and if
p′(h) = q2 then Np′ has the quartet ku|yx2. By Lemma 6.5, A(k;y,u) is false.

Case 4. Suppose k and u both branch off the path from v to x2, k �= x2, u �= x2, k

further from r than is u. Then A(k;y,u) is false by an argument symmetric to Case 2.
Case 5. Suppose k and u both branch off the path from v to x2, k �= x2, u �= x2, k

closer to r than is u. Then A(k;y,u) is false by an argument symmetric to the proof
of Case 3.

Case 6. Suppose k branches off the path from v to x1, k �= x1, while u branches
off the path from v to x2, u �= x2. Then A(k;y,u) is false. To see this, let w = x1. If
p(h) = q1 then Np has the quartet yx1|ku and if p′(h) = q2 then Np′ has the quartet
x1k|yu. By Lemma 6.5, A(k;y,u) is false.

Case 7. Suppose k branches off the path from v to x2, k �= x2, while u branches
off the path from v to x1, u �= x1. Then A(k;y,u) is false by an argument symmetric
to Case 6.

This completes the proof of Claim 5. �

As a result of Claim 5, the only possible accepted false hybrids are A(x1;y,u)

or A(x2;y,u). Since the cases are symmetric, we will study only the possibility of
A(x2;y,u).

Claim 6 Suppose the attachment point of u lies on the path from v to x1. Then
A(x2;y,u) is false.

Proof Let w = r . We consider the 4-set {x2, y,u, r}. If p(h) = q1 then we obtain
rx2|yu. If p′(h) = q2 then we obtain ru|yx2. By Lemma 6.5, A(x2;y,u) is false. �

Claim 7 Suppose the attachment point of u lies on the path from r to v. Then
A(x2;y,u) is false.

Proof Note that u �= r . Consider the quartet {r, x2, y,u}. For every parent map p, Np

displays ru|x2y. Hence, A(x2;y,u) is false by Lemma 6.3. �

If A(x2;y,u) is true, it follows that the attachment point of u lies on the path from
v to x2. The next claim shows that this attachment point must be the parent of q2.

Claim 8 Suppose A(x2;y,u) is true. If the parent of x2 is q2, then the parent q3 of
q2 satisfies that q3 is not ≤ q1, and u = x3 is the other child of q3 besides q2.
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Fig. 5 Networks M1 or M2 might suggest that A(x2;y, x3, α) is true

Proof Suppose first that the parent q3 of q2 satisfies that q3 is not ≤ q1 and that x3 �= u

is the other child of q3. Let w = x3. We consider the quartet for {x2, y, x3, u}. If
p(h) = q1, then the quartet tree is x3x2|yu; if p′(h) = q2 then the quartet is x3u|yx2.
Hence, A(x2;y,u) is false by Lemma 6.5.

Now suppose that the parent of q2 is v ≤ q1 (so no x3 exists). Then u must satisfy
the hypotheses of either Claim 6 or Claim 7, and then that claim would lead to a
contradiction. Thus, this case cannot occur. �

It follows that the only other possibility besides the correct A(y;x1, x2) is that
A(x2;y, x3) holds (or a symmetric case A(x1;y, x0) where the parent of x0 is the
grandparent of x1). The proofs above show that Lemma 5.1 (Criterion B) eliminates
all other possibilities. In fact, A(x2;y, x3) is consistent with Lemma 5.1. To see this,
if w �= y, x2, x3, then if p(h) = q1 we have wy|x2x3 in Np , while if p′(h) = q2
then Np′ displays wx3|yx2, the same predictions as A(x2;y, x3). Hence other criteria
besides Criterion B are now needed.

Claim 9 A(x2;y, x3,1/2) is false. More specifically, the equiprobable case is elimi-
nated by Criterion C.

Proof Suppose in a network M , x2 is the child of a hybrid, while y and x3 are the
normal children of the parents of the hybrid, yet the tree-average distances are those
given for N . See Fig. 5 for two possibilities M1 and M2 for M .

We test whether M could pass the tests as an equiprobable hybrid. This would
require by Criterion C, that for any z,

d(z, x2) − ω(h,y) = (1/2)
[
d(z, y) − ω(q1, x1)

] + (1/2)
[
d(z, x3) − ω(q2, x2)

]
.

Moreover, by Lemma 5.5 we have

wrv(M) = (
d(r, y) + d(r, x3) − d(y, x3)

)
/2

ω(q1, x1) = wq1x1(M) := d(y, x2) − d(r, x2) + wrv(M)

ω(q2, x2) = wq2x2(M) := d(x3, x2) − d(r, x2) + wrv(M)

ω(h, y) = why(M) := (
d(x2, y) + d(x2, x3) − d(y, x3)

)
/2.

This simplifies to

2d(z, x2) + d(r, y) + d(r, x3) = d(z, y) + 2d(r, x2) + d(z, x3).
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To check whether this equation holds, we substitute the true values obtained
from N .

d(r, y) = d(r, v) + ω(h,y) + (1/2)d(v, q1) + (1/2)d(v, q3) + (1/2)ω(q3, q2)

d(r, x3) = d(r, v) + d(v, q3) + ω(q3, x3)

d(r, x2) = d(r, v) + d(v, q3) + ω(q3, q2) + ω(q2, x2).

This leads to 2d(z, x2) + d(r, v) + ω(h,y) + (1/2)d(v, q1) + (1/2)d(v, q3) +
(1/2)ω(q3, q2) + d(r, v) + d(v, q3) + ω(q3, x3) = d(z, y) + 2d(r, v) + 2d(v, q3) +
2ω(q3, q2) + 2ω(q2, x2) + d(z, x3).

This must hold for all z ∈ X distinct from x2, y, x3, in particular for z = x1. The
true values are d(x1, x2) = ω(q1, x1) + d(v, q1) + d(v, q3) + ω(q3, q2) + ω(q2, x2),
d(x1, y) = ω(q1, x1) + ω(h,y) + (1/2)d(v, q1) + (1/2)d(v, q3) + (1/2)ω(q3, q2),
d(x1, x3) = ω(q1, x1) + d(v, q1) + d(v, q3) + ω(q3, x3).

When these values are substituted, the equation simplifies to d(v, q1) = 0, which
contradicts Assumption A(3).

Hence, A(x2;y, x3,1/2) is false since it fails Criterion C under the assumption
that the hybrid is equiprobable. �

There remains only the possibility that A(x2;y, x3, α) is true, where α �= 1/2, and
in reality the attachment point of x3 is the parent of x2.

Claim 10 If α �= 1/2, then A(x2;y, x3, α) is false.

Proof Suppose that A(x2;y, x3, α) is true. Since α �= 1/2, there must be an ancestor
of the hybrid on one side of the reticulation cycle with a normal child u in X. Thus,
we assume that one of M1 and M2 in Fig. 5 passes all the tests for being a hybrid
with child x2.

If M1 is true, then for every p, Np must display r, x3|u,y by Criterion D.
Hence, d(r, x3) + d(u, y) < d(r,u) + d(x3, y) = d(r, y) + d(u, x3). If u attaches
between v and x1, then when p(h) = q1 it follows that Np displays uy|rx3 while
when p′(h) = q2 then Np′ displays ur|yx3 whence by Lemma 4.3 we cannot
have d(r, x3) + d(u, y) < d(r,u) + d(x3, y) = d(r, y) + d(u, x3). If u attaches be-
tween r and v then for all p, Np displays ru|yx3, whence d(r, u) + d(y, x3) <

d(r, y) + d(u, x3) = d(r, x3) + d(u, y), a contradiction. Finally, if u attaches be-
tween v and x2 then when p(h) = q1, Np displays ux3|ry while when p′(h) = q2,
Np′ displays yx3|ru; hence, by Lemma 4.3, we cannot have d(r, x3) + d(u, y) <

d(r,u) + d(x3, y) = d(r, y) + d(u, x3). Hence, in every case, Criterion D fails, so in
the event of M1, A(x2;y, x3, α) is false.

Hence, we must assume that M2 depicts the assumed situation. In this situation,
there is no path from q3 to q1, but there is a normal path from q3 to q2. It need not be
the case that q3 is actually a parent of q2.

Note that if M2 is true, then for every p, Np must display ry|ux3. Hence,
d(r, y) + d(u, x3) < d(r,u) + d(y, x3) = d(r, x3) + d(u, y). But the reality is Fig. 5.
If u attaches between r and v, then when p(h) = q1 Np must display ru|yx3
while when p′(h) = q2 then Np′ must display ru|yx3. Hence, we must have
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d(r, u) + d(y, x3) < d(r, y) + d(u, x3) = d(r, x3) + d(u, y), a contradiction. If u at-
taches between v and x1, then when p(h) = q1 Np must display uy|rx3 while when
p′(h) = q2, Np′ must display yx3|ru. Since these are different by Lemma 4.3, we
cannot have d(r, y) + d(u, x3) < d(r,u) + d(y, x3) = d(r, x3) + d(u, y).

It follows that in reality u must attach between v and x2. Since x3 attaches to an
ancestor of x2, it follows that the attachment point q4 of u must lie between v and q3.
If p(h) = q1 then for the 4-set {u,y, x3, r}, Np must display ux3|ry, so Criterion B
does not prevent A(x2;yx3).

We now show that the value of α computed from Lemma 5.6 cannot satisfy 0 <

α < 1, contradicting Criterion F.
Since we are assuming M2, the formulas in Lemma 5.6 must be utilized with x1

replaced by y, y replaced by x2, x2 replaced by x3, and x3 replaced by u. These
become:

(a) wrv = [d(r, y) + d(r, u) − d(y,u)]/2 = [d(r, y) + d(r, x3) − d(y, x3)]/2,
(b) wvq3 = [d(r, u) + d(y, x3) − d(r, y) − d(u, x3)]/2,
(c) wq3u = [d(r, u) + d(u, x3) − d(r, x3)]/2,
(d) whx2 = [d(x2, x3) + d(x2, y) − d(y, x3)]/2,
(e) E2 = d(y, x2) − d(r, x2) + wrv ,
(f) E4 = d(x3, x2) − d(r, x2) + wrv ,
(g) α = [2d(u, x2) − 2wq3u − 2whx2 − d(r, y) + E2 + 2wrv + E4 − d(r, x3) +

2wvq3]/[4wvq3 ],
(h) wvq1 = [d(r, y) − E2 − wrv]/[2α],
(i) wq3q2 = [d(u, x2) − wq3u − whx2 − α(wvq3 + wvq1)]/(1 − α),
(j) wq1y = d(r, y) − wrv − wvq1 ,
(k) wq2x3 = d(r, x3) − wrv − wvq3 − wq3q2 ,
(l) C = 2d(u, x2)−2wq3u −2whx2 −d(r, y)+E2 +2wrv +E4 −d(r, x3)+2wvq3 ,

(m) D = 4wvq3 .

Then

(i) α(q1, h) = α = C/D.
(ii) d(q1, y) = wq1y .

(iii) d(q2, x3) = wq2x3 .

We must substitute the true quantities from the true network given in Fig. 5.

d(r, y) = d(r, v) + d(h, y) + αd(v, q1) + d(v, q4) + d(q4, q3) + d(q3, q2)

− αd(v, q4) − αd(q4, q3) − αd(q3, q2)

d(u, x3) = d(q4, u) + d(q4, q3) + d(q3, x3)

d(r, u) = d(r, v) + d(v, q4) + d(q4, u)

d(y, x3) = d(h, y) + d(q3, x3) + αd(v, q1) + αd(v, q4) + αd(q4, q3) + d(q3, q2)

− αd(q3, q2)

d(r, x3) = d(r, v) + d(v, q4) + d(q4, q3) + d(q3, x3)

d(y, x2) = d(h, y) + d(q2, x2) + αd(v, q1) + αd(v, q4) + αd(q4, q3) + αd(q3, q2)
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d(r, x2) = d(r, v) + d(v, q4) + d(q4, q3) + d(q3, q2) + d(q2, x2)

d(u, x2) = d(q4, u) + d(q4, q3) + d(q3, q2) + d(q2, x2)

d(x3, x2) = d(q3, x3) + d(q3, q2) + d(q2, x2)

d(y,u) = d(h, y) + d(q4, u) + αd(v, q1) + αd(v, q4) + d(q4, q3) − αd(q4, q3)

+ d(q3, q2) − αd(q3, q2).

When we make these substitutions and simplify, we find after considerable alge-
bra:

C = −4d(q4, q3) + 4αd(q4, q3)

D = 4αd(v, q4) + 4αd(q4, q3) − 4d(q4, q3).

Hence α = C/D = [−4d(q4, q3) + 4αd(q4, q3)]/[4αd(v, q4) + 4αd(q4, q3) −
4d(q4, q3)].

We require 0 < α < 1 by Criterion F.
Case 1. Suppose D > 0. Then 0 < C/D < 1 requires 0 < C < D so 0 <

−4d(q4, q3) + 4αd(q4, q3) < 4αd(v, q4) + 4αd(q4, q3) − 4d(q4, q3). In particular,
0 < 4(α − 1)d(q4, q3), which is impossible since d(q4, q3) > 0 and 1 − α > 0.

Case 2. Suppose D < 0. Then 0 < C/D < 1 requires 0 > C > D, 0 >

−4d(q4, q3) + 4αd(q4, q3) > 4αd(v, q4) + 4αd(q4, q3) − 4d(q4, q3).
In particular, −4d(q4, q3)+4αd(q4, q3) > 4αd(v, q4)+4αd(q4, q3)−4d(q4, q3)

so 0 > 4αd(v, q4) which is impossible since α > 0 and d(v, q4) > 0.
Case 3. Suppose D = 0 so wvq3 = 0. But then from Willson (2012) it follows that

0 = wvq3 = d(v, q3) whence v = q3. This is a contradiction since in Fig. 5 we saw
that u must attach strictly between v and q3.

This completes the proof of Claim 10, which completes the proof of Theo-
rem 6.1. �

In summary, suppose the truth was that there was a hybrid h with child y and par-
ents q1 and q2 with respective children x1 and x2, where y, x1, and x2 are in X. Then
Criterion B eliminates all false possibilities except A(x2;y, x3) and the symmetric
possibility A(x1;y, x0) (where x3 attaches to the parent of q2 or x0 attaches to the
parent of q1). The elimination of these two false possibilities makes use of the other
criteria.

It is clear that the reconstruction is polynomial. Indeed

Theorem 6.8 Suppose N = (V ,A, r,X) is normal and satisfies Assumptions 3.1.
Let |X| = n. Given the tree-average distances d(x, y;N) for all x, y, in X, then the
procedure reconstructs N in time O(n7).

Proof By Willson (2010), the number of vertices is O(n2). For each vertex, the anal-
ysis of the possibilities of a hybrid includes for a given y, x1, x2, x3, a check for
all w distinct from these, hence time O(n5). The analysis of the possibilities of a
cherry involves for a given {x, y} a check for all {w,z} distinct from these, hence
time O(n4) ≤ O(n5). Hence, we need O(n2) steps, each using at most time O(n5),
for a total time of O(n7). �
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Fig. 6 A network N with two
reticulation cycles. This network
can also be reconstructed from
its tree-average distances

Neighbor-Net (Bryant and Moulton 2004) takes time O(n3) in the same situa-
tion, comparable to the time taken by Neighbor-Joining (Saitou and Nei 1987). As
n grows, it follows that the tree-average distance method will take much more time
than Neighbor-Net.

7 A More Complicated Example

The methods of the paper also work for some normal networks that do not contain a
single reticulation cycle. It is easy to see, for example, that they work for galled trees
(Gusfield et al. 2004) that satisfy Assumptions 3.1. They also work for the normal
network N shown in Fig. 6.

Suppose we were given the tree-average distances between members of X =
{1,2,3,4,5,6,7,8,9,10}, where 1 is the root. We would check all pairs {x, y} for
possible cherries by seeing whether the conclusion of Theorem 4.5 holds. We would
conclude that the network has no cherry. Checking for hybrids we would locate the
hybrid with

(a) y = 5, x1 = 6, x2 = 4, x3 = 3, satisfying all the criteria.

This same hybrid would also be recognized as

(b) y = 5, x1 = 6, x2 = 4, x3 = 2
(c) y = 5, x1 = 4, x2 = 6, x3 = 7.

All of these descriptions will lead to the correct identification, with the correct
weights ω(17,6), ω(16,5), ω(15,4) and probability α(17,16). If α(17,16) = 1/2,
then an equiprobable hybrid

(d) y = 5, x1 = 6, x2 = 4

would also be accepted and would result in the same weights.
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The only issue so far is whether an incorrect hybrid might have been identified
instead of (a), (b), (c), or (d). If the correct hybrid is identified, then it is removed.
The resulting network has only a single reticulation cycle, so Theorem 6.1 applies.
Thus, the network N is correctly reconstructed and can be drawn exactly as in Fig. 6
without the labels on internal vertices.

In fact, arguments like those for the proof of Theorem 6.1 show that no incorrect
hybrid would be identified in that first step. The arguments are made more compli-
cated by the fact that N has four different trees of form Np rather than just two, as
in Theorem 6.1. The hypotheses of Lemma 6.5 require a bit more checking, since we
must avoid the possibility of having all three quartets arise for a certain choice of w.
(This is immediate in Theorem 6.1 since there are only two trees Np .) In addition,
there are many more cases. We omit further analysis.

Suppose in Fig. 6 all the weights are 10 and the probabilities at both hybrid ver-
tices are 0.5. When the tree-average distances are input to the current method, the
output is precisely the same as Fig. 6 except for the arbitrary labeling of the internal
vertices. When the tree-average distances are input to Neighbor-Net (implemented in
Splitstree4 (Huson and Bryant 2006)), the output is the network in Fig. 7, rather than
Fig. 6. This output illustrates the different type of network constructed by Neighbor-
Net. Neighbor-Net does not reconstruct the reality shown in Fig. 6 but instead creates
a network displaying certain incompatibilities.

8 Conclusions and Extensions

In this section, we remark on some related issues.

(a) Dealing with inaccuracies in the distances The methods in this paper assume
that the correct tree-average distances are known exactly. A major difficulty is that
some of the criteria for a cherry or a hybrid as stated require some exact equalities.
For example, the criterion that {x, y} is a cherry requires that for all w and z such
that x, y,w, z are distinct, we must have d(x, y) + d(w, z) < d(x,w) + d(y, z) =
d(x, z)+d(w,y). Such a condition is unlikely to hold if the true distances are subject
to small errors, since the equality will almost certainly fail. Similarly, the formulas
used in Theorem 6.1 for recognition of a hybrid involve an equality.

More generally, if we are to be able to use the results on real data, it would be use-
ful to have a more robust calculation that will work when the data have sufficiently
small errors. While the author has a computer program that works well when the ex-
act tree-average distances are input or are input with only very small perturbations,
the program does not appear to be reliable yet with real data. Nor is it reliable when
simulations, using for example a Kimura process (Kimura 1980) for nucleotide mu-
tation, generate artificial nucleotide data from which a Kimura distance is computed
between each pair of leaves. Further research is needed to make the method practical.

The significance of the current paper is theoretical. It shows that, under certain
specified general assumptions, distances between taxa uniquely determine a phylo-
genetic network proposing an evolutionary history that may not be a tree. The algo-
rithm which is used to reconstruct the network from its distances is not intended as a
practical method at this time.
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Fig. 7 The output of Neighbor-Net from the tree-average distances in Fig. 6

(b) Taxon sampling The results raise the issue of taxon sampling. Suppose that the
true network is as in Fig. 1, with the probability α(q1, h) �= 1/2, say α(q1, h) = 1/3.
Suppose that the taxon x3 were not present, so X = {r, x1, y, x2} and the true tree-
average distances were still known. Our method could correctly find that there is no
cherry and use Criterion B to find that y is child to the hybrid and the parents have
children x1 and x2. But we would be forced to accept the hybrid as equiprobable
and we would not reconstruct the correct α(q1, h). The tree-average distances in the
reconstructed network would not match the input distances.

With real data, of course, we would not expect an exact match in any event. A more
serious problem, however, is that unless x3 is present, there is no possibility of finding
the correct α(q1, h). Thus the method needs to be applied only when x3 is present.
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On the other hand, it is not possible in advance to guarantee that all hybrids have a
taxon in a position analogous to x3.

(c) Hybrids of indegree 3 or higher It is quite possible that a network could have
hybrids with indegree 3 or higher. Suppose that a hybrid has indegree 3. The results
of Willson (2012) do not apply to give explicit formulas for the weights even in the
equiprobable case when each parent of the lower hybrid has probability 1/3. With
inadequate taxon sampling, such a normal network might well be the best descrip-
tion of a system in which several species in tandem experience gene transfer and/or
hybridization.
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