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Abstract Pattern formation occurs in a wide range of biological systems. This pat-
tern formation can occur in mathematical models because of diffusion-driven insta-
bility or due to the interaction between reaction, diffusion, and chemotaxis. In this
paper, we investigate the spatial pattern formation of attack clusters in a system for
Mountain Pine Beetle. The pattern formation (aggregation) of the Mountain Pine
Beetle in order to attack susceptible trees is crucial for their survival and reproduc-
tion. We use a reaction-diffusion equation with chemotaxis to model the interaction
between Mountain Pine Beetle, Mountain Pine Beetle pheromones, and susceptible
trees. Mathematical analysis is utilized to discover the spacing in-between beetle at-
tacks on the susceptible landscape. The model predictions are verified by analysing
aerial detection survey data of Mountain Pine Beetle Attack from the Sawtooth Na-
tional Recreation Area. We find that the distance between Mountain Pine Beetle at-
tack clusters predicted by our model closely corresponds to the observed attack data
in the Sawtooth National Recreation Area. These results clarify the spatial mecha-
nisms controlling the transition from incipient to epidemic populations and may lead
to control measures which protect forests from Mountain Pine Beetle outbreak.
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1 Introduction

Pattern formation is ubiquitous in biology (Murray 2003). Nature provides a diverse
array of systems with spatial patterns. Examples include static spatial patterns such
as those found on butterfly wings and mammalian coats, and spatiotemporal pat-
terns such as those exhibited by predator-prey populations (Murray 2003). What is
even more interesting is that reaction-diffusion systems can exhibit all of these vari-
ous patterns given the correct range of parameter values. Pattern arises in these sys-
tems through diffusion-driven instability, which was first observed by Turing (1952).
An essential element for spatial patterning is local activation with long-range inhibi-
tion (Murray 2003).

Not all of pattern formation is due to diffusion-driven instability. Pattern formation
can also occur in reaction-diffusion equations with chemotaxis. Examples include
models for snake pigmentation patterns and spatial patterns formed by colonies of
growing bacteria (Murray 2003). In particular, Budrene and Berg (1991, 1995) found
very diverse and interesting patterns formed by the bacteria Escherichia coli and
S. typhimurium. Tyson et al. (1999) were able to reproduce these interesting patterns
using a reaction-diffusion model which incorporated chemotaxis.

A very interesting insect to study in regard to pattern formation is the Mountain
Pine Beetle (Dendroctonus ponderosae Hopkins, MPB). This bark beetle has had a
major economic impact on the Western Canada and United States forestry indus-
tries (Safranyik and Wilson 2006). Many characteristics of the spread and spatial
synchrony of MPB have been well researched at both large (Aukema et al. 2008;
Gamarra and He 2008; Brooks and Stone 2003; Peltonen et al. 2002) and small
(Robertson et al. 2009; Mitchell and Preisler 1991) scales. These studies have il-
luminated the factors driving the spatial patterns in beetle spread, such as weather,
elevation and proximity to nearby MPB attacked areas. Additionally, models for
MPB movement have been developed to describe the spread and aggregative be-
haviour of MPB (Logan et al. 1998; Bentz et al. 1996; Pérez and Dragićević 2011;
Polymenopoulos and Long 1990; Safranyik and Wilson 2006; Burnell 1977; Geis-
zler et al. 1980; Safranyik et al. 1999; Riel et al. 2004; Heavilin and Powell 2008;
Powell et al. 1998; White and Powell 1997; Hughes et al. 2006). In this paper, we
will focus on the spot formation that occurs at intermediate spatial scales. Previous
cluster analysis focused on either large scales (kilometres) or very small scales (100-
metre regions). In this study we are interested in the pattern formation of clusters at
intermediate scales, with distances between clusters falling within the 0–1000-metre
range. We also focus our search to investigate spot formation in a single year rather
than the change in spot formation across multiple years.

Successful aggregation of MPB (in response to a suite of pheromones) is crucial
for reproduction and survival of the species. At incipient epidemic population levels,
the pattern of attack of MPB on a landscape is small isolated spots (Safranyik and
Wilson 2006). In contrast, there can be high mortality of host trees over thousands of
contiguous acres at epidemic population levels. We are interested in understanding
the pattern formed by MPB during the transition from incipient epidemic to frank
outbreaks. To do this work, we investigate pattern formation via a spatially explicit
model for MPB dispersal (White and Powell 1997). We then compare the model
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predictions to 19 years of data from MPB attack in the Sawtooth National Recreation
Area (SNRA), in Idaho, USA. We find that the distances between MPB attack clusters
predicted by our model and observed in the SNRA are the same. This indicates that
the biological behaviours in our model are sufficient to explain the observed attack
pattern.

We first introduce our mathematical model in Sect. 2. Using pattern formation
analysis in Sect. 3, we determine the wavelength in-between MPB attack clusters
as predicted by our mathematical model. We then calculate the wavelength between
clusters of MPB attack in the data from the SNRA and compare it to the model
predictions in Sect. 4. Discussion and future work can be found in Sect. 5.

2 Mathematical Model

We are interested in the period of emergence, dispersal and attack of the MPB. These
events all occur over the space of one summer: adults emerge from their host trees,
then aggregate on new hosts where they mount an attack and, if successful, lay new
eggs. The period between egg-laying and adult emergence occurs during the winter,
and is not relevant to the modelling exercise here. That is, we are interested in un-
derstanding the attack pattern that results from the dispersal and aggregation stages
of the MPB life cycle in a single summer. We thus require a model for MPB move-
ment through forest habitat that incorporates the interaction between the beetle and
its pheromones in a continuous framework over space and time. The choice of model
structure is based on theoretical work by Powell et al. (1998). The model equations
are

∂P

∂t
=

diffusion
︷ ︸︸ ︷

μp∇2P −

chemotaxis
︷ ︸︸ ︷

∇
[(

νa

b0 − A

b0 + A/b1
∇A

)

P

]

−
death
︷︸︸︷

δpP −

nesting
︷ ︸︸ ︷

λP
P 2

P 2 + (kp)2
+

emergence
︷︸︸︷

γ ,

(1a)

∂Q

∂t
=

death
︷ ︸︸ ︷

−δqQ+

nesting
︷ ︸︸ ︷

λP
P 2

P 2 + (kp)2
, (1b)

∂A

∂t
=

diffusion
︷ ︸︸ ︷

μa∇2A+
synthesis
︷︸︸︷

a1Q −
degradation

︷︸︸︷

δaA , (1c)

where our three variables are P —the density of flying MPB, Q—the density of nest-
ing MPB, and A—the concentration of beetle pheromone. The model we have chosen
allows us to investigate the dynamics of MPB attack in a single summer season where
the emergence rate, γ (x, t), is determined by the position and severity of MPB attacks
in the previous year. That is, given the pattern of MPB attacks in the previous year,
we can predict the emergence rate of flying MPB and the resulting pattern of attacks
in the current year.
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The movement of MPB is described by two processes: diffusion and chemotaxis.
These are the first two terms in (1a). The diffusion component describes the random
movement of flying MPB, while the chemotaxis describes the attraction and repulsion
of MPB according to the concentration of MPB pheromones. MPB have a biological
mechanism whereby the pheromone suite is attractive at low densities and repulsive
after the concentration becomes too high (White and Powell 1997). As a result, the
density of beetles attacking a given tree stays below overcrowding levels (though in
epidemic situations, when tree resources are limiting, beetles will attack in higher,
suboptimal densities) (Raffa and Berryman 1983).

Our model is structurally similar to the model in Powell et al. (1998), but differs
in that the detailed interaction between MPB and lodgepole pine trees in the original
model (holes and resin dynamics) has been replaced by a type 3 functional response,
P 2/(P 2 + kp

2), multiplied by a random landing rate, λ(x). We discuss both of these
terms in some detail here, as they frame a novel description of the MPB response to
the pheromone and susceptible tree landscape. The random landing rate, λ(x), is spa-
tially dependent based on the density of susceptible trees on the landscape. A lower
susceptible tree density results in a lower landing rate λ. In this manner, we can
include the effects of spatial heterogeneity on the MPB aggregation behaviour. We
expect this heterogeneity to affect the spatial distribution of MPB attacks. The type 3
functional response term assumes that the MPB must attack in sufficient densities to
successfully nest in a lodgepole pine tree (Safranyik and Wilson 2006). This function
is defined such that a low density of attacking beetles has a very low success rate
until the MPB density reaches a population threshold, at which point the success of
the MPB increases dramatically. This population density threshold is kp , the MPB
density required for 50 % attack success rate. This parameter was estimated based
on the empirical data provided in Raffa et al. (1983). For full derivation of kp see
Sect. A.1. All other parameters were based on estimates by Biesinger et al. (2000).

We assume that nesting MPB density, Q, have a small linear death rate, δq , since
they have successfully penetrated the tree defenses. Once MPB nest they do not move
spatially and therefore (1b) contains only reaction terms. In contrast, the suite of
MPB pheromones, A, diffuses, is produced by nesting MPB, and has some linear
degradation rate, δa .

Previous theoretical and empirical work (Biesinger et al. 2000; Raffa and Berry-
man 1983) informed the selection of parameter values chosen for this study. These
values are displayed in Table 1.

2.1 Non-dimensionalization

To simplify model analysis we make the model non-dimensional. The dimensionless
variables are:

Q = b0δa

a1
Q, P = b0δa

a1
P , A = b0A,

t = 1

δa

t, (x, y) =
√

μa

δa

(x, y).

(2)
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Table 1 Table of parameter values for the dimensional model (1a)–(1c). Note that the unit ‘fh’ refers to
flight hour of MPB. The parameter kp was estimated based on emperical data provided in Raffa et al.
(1983). All other parameters were based on estimates by Biesinger et al. (2000)

Parameter Description Units Value

μp diffusion of flying MPB ha
fh 1

μa diffusion of beetle pheromones ha
fh 0.648

νa beetle pheromone attractiveness ha2

µg·fh 5.7

b0 concentration of pheromones at which dissipation occurs µg
ha 5.4

b1 concentration at which pheromone is saturated n/a 1

λ random landing rate of flying MPB ha
trees·fh 0.16

a1 rate of pheromone increase due to nesting MPB µg
fh·mpb 0.02

kp flying beetle density required for 50 per cent success of mass attack mpb
ha 250000

δp death rate of flying MPB fh−1 0.014

δq death rate of nesting MPB fh−1 0.001

δa degradation of beetle pheromone fh−1 180

The choice of non-dimensional scalings can be interpreted biologically. The den-
sity of nesting MPB, Q, and the concentration of MPB pheromones, A, were scaled
by the density of nesting MPB, 48600 MPB/ha, and the concentration of pheromone
(b0) required for the pheromone to switch from attractive to repulsive, respectively.
The density of flying MPB, P , was scaled by the same factor as Q to remain consis-
tent. Time was scaled by the average degradation time of the chemical pheromone.
Space was scaled by the average distance that the pheromone will spread before
degradation.

Inspection of the parameters in Table 1 reveals order of magnitude differences in
the parameter values. We therefore defined a scaling parameter that identifies param-
eters as relatively small or large when compared to other parameter values. We chose
the scaling parameter describing the relative persistence of a pheromone plume, 1

δa
,

and the life expectancy of the dispersing MPB, 1
δp

:

ε = δp

δa

.

Since δp (death rate of flying MPB) is very small compared to δa (degradation rate
of MPB pheromone), this ratio is a very small quantity. This order parameter allows
us to identify parameters that work over fast and slow scales, respectively. With this
scaling parameter we define the following new dimensionless parameters:

μp = μp

μa

, νa = νab0

μa

, kp = kpa1

b0δa

,

γ = γ a1

b0δ2
a

, εδq = δq

δa

, ελ = λ

δa

.

(3)
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Table 2 Table of parameter
values for the non-dimensional
model (4a)–(4c)

Parameter Value

μp 1.54

νa 47.5

ε 0.0000778

kp 5.14

δq 0.0714

λ 11.4

Values of the non-dimensional parameters (3) are shown in Table 2. Substituting
the non-dimensional parameters (3) and variables (2) into (1a)–(1c), we arrive at

∂P

∂t
= μp∇2P − νa∇

(

1 − A

1 + A/b1
P∇A

)

− εP − ελ
P

3

P
2 + kp

2
+ γ , (4a)

∂A

∂t
= ∇2A + Q − A, (4b)

∂Q

∂t
= −εδqQ + ελ

P
3

P
2 + kp

2
. (4c)

For the remainder of the paper we will drop the bars above the non-dimensional
quantities and assume that we are using the non-dimensional variables and parameter
values to simplify notation. The model becomes

∂P

∂t
= μp∇2P − νa∇

(

1 − A

1 + A/b1
P∇A

)

− εP − ελ
P 3

P 2 + kp
2

+ γ, (5a)

∂A

∂t
= ∇2A + Q − A, (5b)

∂Q

∂t
= −εδqQ + ελ

P 3

P 2 + kp
2
. (5c)

3 Model Pattern Formation

The type of pattern formation we investigate is diffusion and chemotaxis-driven insta-
bility of a spatially uniform steady state (Murray 2003). Biologically, this amounts to
assuming that early in the season emerging MPB are uniformly dispersed on a land-
scape devoid of chemical information and that hot spots of infestation will develop
at spatial scales on which the natural processes of dispersal, attack and pheromone
production/dissipation resonate. Often the distribution of previously attacked trees is
clustered and non-uniform. Early in the season, however, when beetles are just be-
ginning to emerge, there is no pre-existing chemical information. Consequently, the
random dispersal of emerging MPB, coupled with a brief maturation period during
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which beetles are not in search of nesting sites (Hughes et al. 2006), together gener-
ate a largely uniform distribution of beetles. The distribution is clearly not completely
uniform, and the spacing of previously attacked trees should have some effect on the
spatial pattern of attack in the following year. This pre-pattern, however, would most
likely amplify and accelerate the pattern of MPB attack clusters through a forcing
of the inherent spatial resonance. In other words, it is less surprising to see a spatial
pattern emerge when it is seeded with a pre-pattern than when it is seeded with no
pattern at all. We therefore take the more parsimonious assumption, and set attack
and emergence rates to be spatially uniform λ(x) = λ and γ (x, t) = γ (t). We ad-
ditionally set our emergence rate to be constant over time, γ (t) = γ . To investigate
potential pattern formation, we find the spatially uniform steady state in Sect. 3.1,
then linearize about this steady state and add spatial perturbations to find the disper-
sion relation in Sect. 3.2 (Murray 2003). This dispersion relation relates the temporal
growth of perturbations to the wavenumber of the pattern. This dispersion relation
is studied analytically and numerically in Sects. 3.3 and 3.4, to determine the dom-
inant wavenumber of the pattern. This dominant wavenumber predicts the expected
spacing between MPB attacks in a given year.

3.1 Spatially Uniform Steady State

To find spatially uniform steady states for (5a)–(5c), all spatial and temporal deriva-
tives are set to zero. The spatially uniform steady state of the model (5a)–(5c) is the
solution to the system

0 = −εP − ελ
P 3

P 2 + kp
2

+ γ, (6a)

0 = Q − A, (6b)

0 = −εδqQ + ελ
P 3

P 2 + kp
2
. (6c)

Solving (6b) and (6c), we find that there is a spatially uniform steady state given
by

(

P ∗,A∗,Q∗) =
(

P ∗, 1

δq

λ
(P ∗)3

(P ∗)2 + k2
p

,
1

δq

λ
(P ∗)3

(P ∗)2 + k2
p

)

, (7)

where P ∗ is unknown. Rearranging (6a), we obtain a cubic equation

P 3 − γ

ε(1 + λ)
P 2 + k2

p

1 + λ
P − λk2

p

ε(1 + λ)
= 0. (8)

The real positive root(s) of this cubic equation (8) will give us the steady state density
of flying MPB, P ∗. The first derivative of (6a) is always negative and therefore there
is only one possible real root. This steady state is positive by inspection of (6a).
Emergence rate, γ , is determined exogenously by the density of MPB attack in the
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previous year and the temperature (phenology) (Bentz et al. 1996), which will then
determine the unique density of dispersing MPB.

This system exhibits three distinct behaviours as the emergence rate, γ , is varied.
For very low γ , the flying MPB density, P ∗, is very low. At these population levels
we have essentially the trivial steady state and the MPB do not successfully attack any
trees in the susceptible landscape. If γ is O(1), the largest root scales like P ∗ ∝ 1

ε
.

Using this scale one finds that the steady state is approximately

(

P ∗,A∗,Q∗) =
(

γ

ε(1 + λ)
,

λ

δq

P ∗, λ

δq

P ∗
)

. (9)

At these emergence rates, P ∗ is at epidemic densities, and therefore the MPB is
successful at inducing mortality in any healthy tree. In contrast, when γ is small,
O(ε), the roots of P ∗ are O(1). When γ is at these values, the population of MPB
is not large enough to kill susceptible trees easily, and must successfully aggregate
to overcome tree defenses. We will show through our analysis that for a specific
intermediate range of γ values, our unique real steady state is an unstable critical
point in the presence of diffusion and chemotaxis. Thus, when spatial factors are
included, perturbations of the uniform steady state lead to the formation of a spatial
pattern. This scale of aggregation will determine the spacing between MPB attacks
on a susceptible landscape.

3.2 Linear Analysis

Linearizing about the spatially uniform steady state, we define f = νa(
1−Q∗

1+Q∗/b1
)P ∗

and g = ελ
(P ∗)4+3(P ∗)2k2

p

((P ∗)2+k2
p)2 . Note that since Q∗ = A∗, we replace A∗ by Q∗ in our

equations. We add small spatial perturbations by substituting P = P ∗ + δP1, Q =
Q∗ + δQ1, and (δ � 1) A = A∗ + δA1 into (5a)–(5c) to obtain the perturbation
equations,

∂P1

∂t
= μp∇2P1 − f ∇2A1 − εP1 − gP1, (10a)

∂Q1

∂t
= −εδqQ1 + gP1, (10b)

∂A1

∂t
= ∇2A1 + Q1 − A1. (10c)

3.2.1 Method of Annihilators to Find Dispersion Relation

Beginning with (10a)–(10a), we can rewrite these equations in terms of linear differ-
ential operators (Nagle et al. 2005):

L1[P1] = −f L2[A1], (11a)

L3[Q1] = g[P1], (11b)

L4[A1] = [Q1], (11c)
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where L1 = (∂t −μp∂xx + (ε +g)), L2 = ∂xx , L3 = (∂t +εδq), and L4 = (∂t −∂xx +
1).

From (11a)–(11c) we deduce that L1L3L4[A1] = −gf L2[A1]. If the linear oper-
ators are then expanded, we have the equation

(

∂t − μp∂xx + (ε + g)
)

(∂t + εδq)(∂t − ∂xx + 1)[A1] = −gf ∂xx[A1]. (12)

We assume that the perturbations have an exponential solution of the form A1 =
c1e

σ t+iνmx . This substitution in (12) produces the dispersion relation which links the
temporal growth rate, σ , of patterns to their spatial wavenumber, νm:

(

σ + μpν2
m + (ε + g)

)

(σ + εδq)
(

σ + ν2
m + 1

) = gf ν2
m. (13)

If the polynomial (13) is expanded in terms of powers of σ , we have

σ 3 + σ 2(ε + μpν2
m + ν2

m + g + 1 + εδq

) + σ
(

εν2
m + εδq + μpν4

m

+ μpν2
mεδq + μpν2

m + gν2
m + g + gεδq + ν2

mεδq + ε2δq + ε
)

− gf ν2
m + gεδq + μpν4

mεδq + ε2ν2
mδq + gν2

mεδq + ε2δq + μpν2
mεδq = 0. (14)

3.3 Analysis of the Dispersion Relation

Before turning to numerical analysis, we first utilize some analytical techniques to
find the boundary of the region of maximum pattern formation, and to determine the
dominant wavenumber. The dominant wavenumber is the spatial wavenumber that
maximizes the temporal growth rate. We rewrite the dispersion relation (14) as

p1 = σ 3 + a2σ
2 + a1σ + a0, (15)

where

a2 = ε + μpν2
m + ν2

m + g + 1 + εδq,

a1 = εν2
m + εδq + μpν4

m + μpν2
mεδq + μpν2

m + gν2
m + g + gεδq

+ ν2
mεδq + ε2δq + ε,

a0 = −gf ν2
m + gεδq + μpν4

mεδq + ε2ν2
mδq + gν2

mεδq + ε2δq + μpν2
mεδq.

We are interested in situations where pattern formation occurs, that is, where σ1 =
maxα∈C(�(α)|p1(α) = 0) > 0. Using Descartes’ rule of signs (Smith and Latham
1954), we are able to determine regions in which positive real roots should occur.
Descartes’ rule of signs counts the number of sign changes of the coefficients of a
polynomial to determine the maximum number of real positive roots. Furthermore, if
there is a maximum of n real positive roots, the number of allowable roots is n,n −
2, n − 4, . . . because complex roots must occur in pairs. Therefore, in order for a real
positive root to occur, we must have a0 < 0 (one sign change). This is equivalent to
the condition

gf ν2
m > gεδq + μpν4

mεδq + ε2ν2
mδq + gν2

mεδq + ε2δq + μpν2
mεδq. (16)
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Technically, Descartes’ rule of signs limits us to a single positive real root, and
either zero or two negative real roots. In the case where there are two negative real
roots, we do not need to know anything about these negative real roots, as pattern
formation occurs if a single root has a positive real part. When there are not two
negative real roots, but a0 < 0, we will argue that the two complex roots have a
negative real part.

Assume our cubic has a positive real root r1 (r1 > 0) and a pair of complex roots
r2 ± r3i. The expanded form of the polynomial is:

σ 3 + σ 2(−r1 − 2r2) + σ
(

2r1r2 + r2
2 + r2

3

) − r1
(

r2
2 + r2

3

)

. (17)

Since a2 > 0 in (15), we must have that −r1 − 2r2 > 0 in (17). Thus, since r1 > 0
by assumption, we have that r2 < 0. Therefore, in the case where we have a single
positive real root and two complex roots, our complex roots must have negative real
parts.

In the case where a0 > 0, Descartes’ rule of signs determines that there are no
positive real roots and that the maximum number of negative real roots are 3. There-
fore, there is either 1 or 3 negative real roots to (15). Obviously, in the case of three
negative real roots, no pattern formation can occur. There is the possibility of a single
negative root, and a pair of complex roots with positive real parts. This case does not
occur in the parameter space we explored in the numerical determination of the roots
of (15) (see Sect. 3.4).

This means that our pattern formation analysis is restricted to the case where (15)
has a single positive real root. We focus on this region when trying to determine the
maximum region of pattern formation. Patterns will first form at wavelengths νm and
parameters chosen such that σ1 first becomes positive. Therefore, we examine the
behaviour of maxima of (15). We know that the maximum pattern formation region
with respect to the wavenumber νm will occur when p2 = ∂p1

∂(ν2
m)

= 0. The wavenum-

ber at which pattern formation is maximum is called the dominant wavenumber. At
this dominant wavenumber, ∂σ

∂(ν2
m)

= 0, thus we can reduce our polynomial (15) to

order 2 by taking the derivative. In summary, the dominant wavenumber occurs when
σ1 > 0, σ2 = maxα∈C(�(α)|p2(α) = 0) > 0, and σ1 = σ2. The last condition must be
satisfied since both p1 = 0 and p2 = 0 at the dominant wavenumber. Thus we have

p2 = ∂a2

∂ν2
m

σ 2 + ∂a1

∂ν2
m

σ + ∂a0

∂ν2
m

,

= (μp + 1)σ 2 + (

ε + 2μpν2
m + μpεδq + μp + g + εδq

)

σ

+ (−gf + 2μpν2
mεδq + ε2δq + gεδq + μpεδq

)

,

= d2σ
2 + d1σ + d0.

Since g > 0, we have that d2 > 0 and d1 > 0. This means that there is exactly
one positive real root of p2 if d0 < 0. Therefore, σ1 > 0 if and only if a0 < 0, and
σ2 > 0 if and only if d0 < 0. Using these conditions we can sketch the region of pat-
tern formation (Fig. 1). Additionally, we numerically calculate (using the method in
Sect. 3.4) σ1 and σ2 and find the squared difference. If the squared difference is zero,
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this signifies a point of intersection between the two curves and a maximum value of
σ with respect to ν2

m. In short, the dominant wavenumber occurs at the intersection
of σ1 and σ2, which is shown on the contour plot.

3.4 Numerical Analysis of the Dispersion Relation

Using a root-finding algorithm in Matlab, we calculated σ1 while varying γ , the emer-
gence rate (of flying MPB) at steady state, and νm, the spatial wavenumber. The con-
tour plot produced is shown in Fig. 1. Additionally, we show the two-dimensional
plot of growth rate with respect to wavenumber. This curve shows the maximum
growth rate with respect to emergence rate at each wavenumber. In our calculations
we scaled the wavenumber, νm, so that it would be the reciprocal of wavelength. The
wavelength wm can be calculated as

wm = 2π

νm

. (18)

The maximal eigenvalue of 8.04e−5 in the contour plot is dimensionless, and when
redimensionalized becomes 0.0145 fh−1, which is an appropriate timescale for pat-
tern formation within a single summer (corresponding to 80 fh, or 2–4 weeks of the
flight season). The maximal eigenvalue occurred at the dominant wavenumber of 2.74
km−1, with an emergence rate of 300 MPB/(ha fh). Assuming an output of approxi-
mately 10,000 MPB/tree per flight season (Powell and Bentz 2009), this corresponds
to approximately 2–3 source trees/ha. The resulting steady state density of nesting
MPB is Q∗ ≈ 20100 MPB/ha. Using the conversion of 800 nesting MPB/tree (Pow-
ell and Bentz 2009), we find the resulting number of killed trees due to this attack is
approximately 25. Therefore, this pattern of aggregation is important for the transi-
tion in-between incipient epidemic and epidemic densities of MPB. In an incipient
epidemic (Safranyik and Wilson 2006), the MPB population can form small clus-
ters of attack rather than attacks occurring on large tracts of continuous forest. These
source densities would describe the transition from incipient epidemic to epidemic
densities.

There is a strong agreement between the analytical and numerical determinations
of the dominant wavenumber and the region of pattern formation. The analytical
method correctly identifies the region where there is a single positive root, and from
Fig. 1 this is exactly the same as the region where σ1 > 0 (pattern formation occurs).
Additionally, the wavenumber at which σ1 = σ2 in Fig. 1 verifies the numerical calcu-
lation of the dominant wavenumber at 2.74 km−1, which corresponds to a wavelength
of 364 m. Thus, our analytical and numerical works yield the prediction that attack
clusters during the transition between incipient epidemic and epidemic population
levels will be approximately 364 m apart. This prediction is based on our model as-
sumptions which include landscape homogeneity, chemotactic response of MPB due
to pheromone (both attractive/repulsive), and a type-3 functional response describing
the transition between flying and nesting MPB.
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Fig. 1 Numerical contour plot of the temporal growth rate, σ1, against wavenumber and emergence rate
of MPB (a). The maximum value of σ1 is labeled with a diamond at (2.74,299). The surface is unimodal
with a single maximum. The analytical contour plot of temporal growth rate against wavenumber and
emergence rate of MPB is shown in (b). The contour plot in (b), uses the analysis of the dispersion relation
to find the region of pattern formation (σ1 = 0), and the dominant wavenumber (σ1 = σ2). The contour plot
in (a), shows the region of pattern formation and the dominant wavenumber as determined numerically.
The final plot (c), is a horizontal slice of the surface in (a) at a fixed emergence rate, γ = 299 MPB/(fh ha).
This curve demonstrates how well defined the peak is in the σ1(νm,γ ) surface

4 Data Analysis

The second component of this project was to compare spatial data of MPB attacks
to the model predictions. We analysed MPB attack data from the Sawtooth National
Recreation Area (SNRA), located in the Rocky Mountains of central Idaho, to iden-
tify any characteristic distances between patches of beetle infestation. Data was pro-
vided by USDA Forest Service aerial detection survey (ADS) in and around the
SNRA. Full details are provided in Crabb et al. (2012). The data set extends over
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a period of 19 years, 1991–2009. The data are remarkably detailed, taken at a grid-
scale of 30 m over a region of 275,776 ha. All 19 years include regions where MPB
are at incipient epidemic densities; many of these years also have regions with epi-
demic densities of MPB. Thus, this data tracks the progression of an MPB epidemic
as captured by dead (red top) trees. Trees develop a red top the following summer
after being attacked as a result of beetle-induced mortality. The initial attacks at in-
cipient epidemic levels resulted in small clusters of dead trees. During the 19 years,
many of these populations had risen to epidemic levels and killed a more significant
portion of the available pine trees over the landscape. The later years of this data
set capture the period after the epidemic where the MPB population density has de-
creased to lower levels. For the purposes of our analysis the data was defined with
ones given to grid cells (locations) of MPB attack, and zeroes given to locations with
no MPB attack.

The data sets chosen for analysis in each year were from areas of incipient epi-
demic MPB population densities, consistent with the assumptions used in the lin-
earization of the model. That is, we selected regions with small spots (≤300 m in
diameter) of MPB attack and at least 5 spots per region. For the size of these regions,
we picked the largest region such that these two conditions were satisfied. The error
in the computation of wavenumber decreased as the size of the chosen region in-
creased because larger regions increased resolution in Fourier space. To calculate the
distance between spots of MPB attack we used discrete fast Fourier transform. Dis-
crete Fourier transform assumes that the data can be decomposed into a finite number
of sine and cosine functions on a grid. The process returns the amplitude of these sine
and cosine functions, the wavenumbers with the largest amplitude best describe the
scale of aggregation of MPB attack in the data. The particular DFT used was Matlab’s
fft2, with which we calculated the radial wavenumber, νr :

νr =
√

ν2
x + ν2

y , (19)

where νx and νy are spatial wavenumbers of the data in the x and y directions. Since
DFT returns the amplitude of both the sine and cosine components of the data, we
need to compute the power, which is the squared complex modulus of the amplitude.
This factors both the sine and cosine amplitudes at each wavenumber into a single
value, the power. An example region and power spectral density is shown in Sect. A.2
(Fig. 4).

We are interested mainly in the wavenumber at which the power is maximum.
This is called the dominant wavenumber and is the most influential wavenumber
represented in the data. To have error bounds we computed the upper (νu) and lower
(νl) bounds for the dominant wavenumber, νd , which were chosen such that:

νl = {

min(ν)|m(ν) ≥ 0.80m(νd)
}

,

νu = {

max(ν)|m(ν) ≥ 0.80m(νd)
}

,

where m(ν) is the power at the wavenumber, ν.
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Fig. 2 Average dominant
wavenumber over years
1991–2009. νd refers to the
average dominant wavenumber,
νl and νu refer to the lower and
upper bounds on νd , Mean(νd )
refers to the average of the
dominant wavenumber over all
years, and νd,model refers to the
model predicted dominant
wavenumber. This graph shows
the trend in νd over the years
1991–2009. Points where νu and
νl are near νd represent years in
the data where the power
spectral density shows a very
large sharp peak at the given νd

Since multiple regions were chosen in each year, the average dominant wavenum-
ber in a given year was calculated as a weighted average based on the power:

νd = Σi

(

mi

Σjmj

νi

)

, (20)

where νi is the dominant wavenumber for region i and mi is the power at the maxi-
mum. Average upper and lower bounds for each year were calculated similarly.

The average dominant wavenumber in each year is displayed in Fig. 2 over 1991–
2009. The average dominant wavenumber varies between 1.5 and 5.5 km−1. The
dominant wavenumber appears to be higher in 1991–2000 than in the years 2001–
2009. The mean dominant wavenumber is calculated to be 2.83 km−1, which is very
close to the model predicted dominant wavenumber of 2.74 km−1.

The frequency of each dominant wavenumber independently of year is given in
Fig. 3. The dominant wavenumber from the model, νd,model, is validated by the data,
as it is close to the centre of the distribution of νd . In fact, the majority of νd appearing
is enclosed between the lower (νl,model) and upper (νu,model) bounds on the model
dominant wavenumber.

A weighted histogram was also produced, where each count is scaled by the rel-
ative power at that νd . This measure is important as it highlights the wavenumbers
which more strongly represent patterns in MPB attacks in the data. Similarly to the
first histogram, νd,model provided a good estimate of the centre of the distribution of
νd (data), and a large proportion the distribution of νd was effectively captured within
the range between νl,model and νu,model.
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Fig. 3 The histogram of
dominant wavenumbers over all
years (a) and the histogram
weighted by the power at each
dominant wavenumber over all
years (b). The solid line is the
model dominant wavenumber
and the dotted lines are upper
(5.5069 km−1) and lower
(1.3783 km−1) bounds on the
model dominant wavenumber

For the histogram, the upper and lower bounds for the model dominant wavenum-
ber were chosen such that:

νl,model = {

min(ν)|σ1(ν) ≥ 0.975σ1(νd,model)
}

,

νu,model = {

max(ν)|σ1(ν) ≥ 0.975σ1(νd,model)
}

,

where σ1(ν) is the growth rate at the wavenumber, ν.
We found an interesting trend when analysing the data: as time progressed, the

spots of MPB attack became larger and farther apart (results not shown). This trend
in the spot pattern is intriguing and it would be valuable to investigate if this trend is
characteristic of the progression of an MPB epidemic.
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5 Discussion

Model pattern formation analysis predicts a dominant wavenumber of 2.74, or spots
of MPB attack that are 364 m apart. Analysis of SNRA spot data indicates spots are
353 m apart on average, with a wavenumber of 2.83, only a 3 % difference between
the model predictions and field observations. Since our model was parameterized
completely independently of the SNRA data, this correspondence between the model
and data gives a strong validation of our model.

Our analysis indicates that it might be possible to use pheromone baits to disrupt
the aggregation process. Our modelling approach could be used to determine whether
or not judicious placement of pheromone baits could completely or partially hinder
the formation of spot aggregates, and the number and placement of baits necessary to
prevent the transition from incipient epidemic to epidemic.

Past forestry practices and fire suppression has given rise to homogeneous and
even-age stands of lodgepole pine which has led to large outbreaks of MPB (Sam-
man and Logan 2000). Numerical simulations of the model could be used to deter-
mine what types of heterogeneous distributions of susceptible trees (in homogeneous
and mixed-forest stands) would interfere with the natural pattern formation of MPB
attack clusters. In particular, it might be possible to find tree distributions that would
make it impossible (or very difficult) for MPB to transition from endemic to epidemic
densities.

Our model assumes the habitat is homogeneous and therefore the wavelength be-
tween attacks formed by MPB predicted in our model is driven by the intrinsic biol-
ogy of the MPB. This means that at incipient epidemic densities there can be devel-
opment of aggregation pattern that is driven by the MPB movement dynamics and not
heterogeneities in the landscape. A previous study by White and Powell (1997) found
that the patterns observed at endemic densities were driven by the landscape, while
patterns observed at the epidemic densities are driven by the self-focusing dynamics
of the MPB. Our study adds to this work by finding that the patterns at the incipient
epidemic density (between the endemic and epidemic levels studied by White and
Powell) can be explained by the MPB biology.

Our results are fairly robust to changes in parameter values. Parameter sensitiv-
ity analysis showed that our model wavelength prediction is most sensitive to in-
creases in μp , the diffusion rate of MPB. This result is expected, intuitively, as dif-
fusion is known to smooth patterns when pattern formation is driven by chemotaxis.
All parameters were altered by 10 % (while keeping all other parameters constant),
and the most sensitive parameter, μp , only changed the wavelength prediction by at
most 3.8 %. This means that our pattern formation analysis is relatively insensitive
to parameter changes. Parameter sensitivity was measured as a ratio of standardized
changes in wavenumber to standardized changes in parameter values (Haefner 2005).
Future work needs to investigate the effects of varying multiple parameters simulta-
neously.

An important factor not included in our model is the effect of temperature, which
has been shown to have a significant effect on MPB emergence and spread (Aukema
et al. 2008; Gilbert et al. 2004; Powell and Bentz 2009). If temperature changes,
through global warming (Logan and Powell 2001; Powell and Logan 2005), habitats
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that were previously unsuitable for MPB may become suitable. Additionally, tem-
perature changes can increase the synchrony of emergence, which could increase the
density of MPB attacks and allow for spot formation. An interesting extension of our
mathematical model would explore how the predicted wavelength changes as this
factor is included. This could be done by making the emergence rate, γ , a function
of temperature. This modification would add a new layer to the complexity of the
pattern formation analysis, and may require numerical simulations to determine the
expected wavelength between clusters in a given landscape.

From an analytical standpoint, it would be interesting to complete the second-
order perturbation analysis of these equations (Murray 2003; Tyson 1996). We only
investigate spot aggregation patterns in the present work, but it may be that other
patterns are possible. An understanding of the possible aggregation patterns would
provide managers with an additional tool for gauging the MPB population level and
risk of an epidemic.

A final interesting extension of our work would be to determine the time it takes
for the MPB population to reach epidemic levels once the characteristic wavelength
of pattern formation (364 m) has been established. In order to do this, the model
would require a between-season component to describe the over-winter reproduction
and development of MPB. This study is currently in progress.

Our modelling approach can be applied to other organisms that exhibit patchy
spread (Shigesada et al. 1995). Examples include birds such as house finches (Lewis
and Pacala 2000), sparrows, and starlings (Shigesada et al. 1995). Additionally, there
are insects who exhibit patchy spread, such as are rice weevils (Shigesada et al. 1995),
emerald ash borer, leaf-miner moth, pinewood nematode, corn rootworm (Carrasco
et al. 2010), and gypsy moth (Petrovskii and McKay 2010). Some plants, such as
cheat grass (Lewis and Pacala 2000), also exhibit patchy spread. Note that the patch-
iness of the MPB spread is an inherent property of the chemotactic behaviour of the
insects. The patchy spread exhibited by the other organisms listed here may or may
not be due to the same mechanism and comparisons would be both interesting and
instructive. Many of the populations mentioned are invasive species and so an under-
standing of their spatial invasion dynamics is vitally important, as invasive species
can devastate populations of native flora and fauna (Mack et al. 2000).
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Appendix

A.1 Estimating Allee Attack Threshold, kp

The parameter kp is the density of flying MPB required for 50 % nesting beetle
success. Assuming each female beetle makes a single gallery, we estimate the density
of flying MPB required for a 50 per cent success of mass attack to be 40 beetles/m2
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Fig. 4 The SNRA (top left) is plotted for 2007, where white areas denote regions of MPB attack. The red
highlighted region (left bottom) is analysed using Discrete fast Fourier transforms to determine the power
spectral density (right). In this graph, the dominant wavenumber (νd ) is represented by a solid red dot, and
the upper (νu) and lower (νl ) bounds on the dominant wavenumber are displayed with vertical green and
black lines, respectively (Color figure online)

(Raffa and Berryman 1983). Since our model uses area in ha instead of m2, we must
multiply this quantity by a conversion factor

Bh = Bm

SA

TA
, (21)

where Bh is the number of beetles per hectare, Bm is the number of beetles per m2,
SA is the surface area of the tree attacked, and TA is the area within which a beetle is
considered to be “attacking” a tree.

Assuming that the basal 7.5 m of a tree can be attacked (Raffa and Berryman
1983), we find the surface area as SA = πdh, where the tree diameter, d , can range
from 0.1874 to 0.3456 m and the height h is taken to be 7.5 m. Therefore, SA can
range from 4.42 to 8.14 m2. We assume that beetles will attack within a 10 m2 area
of the tree, TA = 10 m2 = 10−3 ha, which makes kp = 176800–325600 beetles/ha.
We initially assume the value of kp = 250000 MPB/ha.

A.2 FFT Analysis of MPB Data

An example of the FFT analysis of the data (in 2007) is shown in Fig. 4. Each year
the landscape was analysed for regions of incipient epidemic densities of MPB. The
size and number of regions chosen in each year is displayed in Fig. 5.
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Fig. 5 The size (km2) (a) and number of regions (b) over the time period 1991–2009. Multiple regions
of the same size in the same year are represented by a single dot for clarity
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