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Abstract The diffusion of finite-size hard-core interacting particles in two- or three-
dimensional confined domains is considered in the limit that the confinement di-
mensions become comparable to the particle’s dimensions. The result is a nonlinear
diffusion equation for the one-particle probability density function, with an overall
collective diffusion that depends on both the excluded-volume and the narrow con-
finement. By including both these effects, the equation is able to interpolate between
severe confinement (for example, single-file diffusion) and unconfined diffusion. Nu-
merical solutions of both the effective nonlinear diffusion equation and the stochastic
particle system are presented and compared. As an application, the case of diffusion
under a ratchet potential is considered, and the change in transport properties due to
excluded-volume and confinement effects is examined.

Keywords Brownian motion · Fokker–Planck equation · Diffusion in confined
geometries · Entropic effects · Stochastic simulations

1 Introduction

Transport of material under confined conditions occurs throughout nature and appli-
cations in industry. Examples include the transport of particles in biological cells,
such as ion channels that conduct ions across the cell surface (Hille 2001) or intracel-
lular cargo along microtubule filaments (Alberts et al. 2002; Klumpp et al. 2005), and
in zeolites (Keil et al. 2000). Similarly, confinement can be important in the diffusion
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of cells themselves (e.g., blood cells through microvessels, Pries et al. 1996) and sur-
face diffusion on the cell membrane, which is usually crowded with fixed and mobile
obstacles (Nicolau et al. 2007). Moreover, recent advances in nanotechnology have
allowed the development of synthetic nanopores and microfluidic devices (Hänggi
and Marchesoni 2009), which can be used for the sensing of single particles (such as
small molecules, organic polymers, proteins, or enzymes) and for studying chemical
reactions, biomolecular recognition, and interactions at the nanoscale (Dekker 2007;
Howorka and Siwy 2009). A common feature in these applications is the interplay
between the particle motion (usually noisy) and the geometric constraints. An addi-
tional factor comes into play if the system contains a collective of interacting particles
rather than an individual particle. The way in which these characteristics combine to
produce the global behavior is a crucial factor in the understanding of such systems.
In many respects, these transport phenomena can be studied in terms of the canonical
problem of geometrically constrained Brownian dynamics (Burada et al. 2009).

When considering a theoretical model of particle diffusion in confined environ-
ments, there are three important modeling decisions to make. First, one must decide
on the most appropriate representation of the particle diffusion and interactions (with
other particles and the confining walls). For example, a common approach is to use
a lattice-based random walk model with exclusion (Plank and Simpson 2012), that
is, to assume that the motion of particles is restricted to taking place on a lattice and
that any attempted move to an occupied site is aborted. An alternative approach is to
consider a lattice-free random walk, in which the individual particle movements are
not restricted to a lattice. It this case, excluded-volume interactions can be taken into
account by assuming particles are hard spheres, which cannot overlap each other, thus
considering a Brownian motion of hard spheres (Bruna and Chapman 2012b). While
in some cases a lattice-based model is more suitable for the particular application, in
general, the lattice-free approach is more realistic (Plank and Simpson 2012) and the
choice of an on-lattice model is for technical convenience only.

The second modeling decision concerns the level of description, that is, whether to
use an individual-based model or a population-based model. In the first case, the sys-
tem of diffusing and interacting particles is represented with a stochastic model that
describes the dynamics and interactions of each particle explicitly. This is typically
a computationally intensive approach, involving many statistically identical realiza-
tions of the stochastic simulation to develop insight into the population-level dynam-
ics. In contrast, the population-based model consists of a continuum description of
the system in the form of a partial differential equation (PDE) for the population den-
sity of individuals. The continuum model tends to be easier to solve and analyze and
can be particularly useful when, for large systems of interacting particles, discrete
models become computationally intractable. However, the challenge is to predict the
correct PDE description of a given system of interacting particles, and as a result,
many population-based models are described phenomenologically at the continuum
level rather than derived from the underlying particle transport process. For exam-
ple, while it is well understood that a noninteracting Brownian motion is associated
a linear diffusion PDE at the population-level, it is not so straightforward to predict
how excluded-volume interactions at the discrete level emerge in the PDE model.
As pointed out in Plank and Simpson (2012), the ability to represent mathematically
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both the individual-level details and the population-level description of a stochastic
particle system is important because many experimental observations involve data at
both levels for the same system. As a result, if we are to use both the individual-based
and the population-based models of the same system, the link between the two must
be fully understood to ensure that both models are consistent with each other.

Finally, the third consideration has to do with the way confinement is included
in the model. It is important to note that the idea of confinement is inevitably rela-
tive the particle’s characteristic size. A common approximation of confinement sit-
uations which is applicable when the particles are much smaller than the channel
width is to ignore steric interactions between particles (assuming they are simply
points) and only consider the geometric effects of the confining environment (Bu-
rada et al. 2009). For example, the diffusion of point particles in a (narrow) tube
of varying cross-section can be approximated by an effective one-dimensional diffu-
sion equation known as the Fick–Jacobs equation (Jacobs 1967; Reguera and Rubí
2001). Another example in which particle interactions are omitted can be found in
the Brownian ratchet models of molecular motors (Muñoz Gutiérrez et al. 2012;
Eichhorn et al. 2002), which take the form of a one-dimensional diffusion under a
periodic potential and tilting force.

The opposite limit is single-file diffusion (Henle et al. 2008), in which the finite-
size of particles is taken into account but the confinement is so extreme that particles
cannot diffuse past each other (imagine a channel of width equal to the diameter
of particles). Mathematically, this problem is modeled as a one-dimensional domain
with hard-core interacting particles (hard rods) and has been widely studied (see, for
example, Lizana and Ambjörnsson 2009; Bodnar and Velázquez 2005).

Both of these limits are extremes. The distinguished limit in which the finite-size
interactions are important but the confinement is not so extreme that particles cannot
pass one another has received little attention; one notable exception is the exclusion
process on a lattice in Henle et al. (2008).

1.1 Aim of This Paper

This work introduces a theoretical framework for studying particle diffusion pro-
cesses in confined environments. Rather than attempting to answer a particular ques-
tion related to one of the applications presented earlier, here we are interested in de-
veloping a technique to tackle the common first steps in any of these such problems.
Following the three considerations outlined above, we are interested in a lattice-free
approach, in deriving the population-level model systematically from the individual-
based model, and in an intermediate level of confinement. To this end, we consider the
evolution of a system of N identical hard spheres in a confined domain, in the limit
that the confinement dimensions become comparable to the particle dimensions. In
this setting, the finite size of particles is important not only for particle–particle in-
teractions, but also for interactions with the domain walls. We consider in particular
three confinement scenarios: a two-dimensional channel, a three-dimensional square
channel, and two close parallel plates. However, since our approach is systematic, our
model can be extended to other geometries.

The key idea is that the system will reach equilibrium in the confined directions
quickly, leading to an effective diffusion of reduced dimension in the unconfined
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directions only. With this in mind, the solution procedure consists of two steps: first,
to reduce the model of N interacting particles to a model for the evolution of the
one-particle marginal density, as we did in Bruna and Chapman (2012b); and second,
to reduce the resulting model from a d-dimensional confined domain to an effective
one-dimensional axial model in the case of a narrow channel, or to an effective two-
dimensional planar model in the case of parallel plates.

1.2 Plan of This Paper

The work is organized as follows: In the next section, we will introduce the prob-
lem setup, illustrate how the problem simplifies in the case of point particles, and
present the main result of this work, a population-level PDE model for the diffusion
of hard spheres as a function of a confinement parameter, given by Eq. (10). In the
third section, we examine how our model interpolates between the different limiting
cases of confinement. In Sect. 4, we explore numerical solutions of our PDE model
and compare them with stochastic simulations of the particle-based model and nu-
merical solutions of the limiting models. Finally, the fifth section will be devoted to
the derivation of (10) for a two-dimensional channel.

2 The Model

2.1 The Setup: Drift-Diffusion in Confined Geometries

We consider a population of N identical particles diffusing in a bounded domain
Ω ⊂ R

d (d = 2,3), interacting with each other and the domain walls with a repul-
sive hard-core potential, and in the presence of an external force. We work in the
dimensionless problem by scaling space with a typical unconfined dimension L, time
with L2/D0 where D0 is the constant molecular diffusion coefficient, and force with
γD0/L where γ is the frictional drag coefficient. We assume particles are spherical
with a nondimensional diameter ε � 1.

Assuming the overdamped limit, the stochastic dynamics of the system is de-
scribed by a set of stochastic Langevin equations

dXi (t) = f
(
Xi (t)

)
dt + √

2 dWi (t), i = 1, . . .N, (1)

where Xi (t) ∈ Ω denotes the center of particle i at time t ≥ 0, f is the dimensionless
external force (or drift) and Wi are N independent d-dimensional standard Brown-
ian motions. We note that by writing f(Xi (t)) we are assuming that the force acting
on the ith particle only depends on its own position, thus excluding forces such as
the electromagnetic force which would depend on the positions of all the particles
X = (X1, . . . ,XN). We suppose that the initial positions Xi (0) are random and iden-
tically distributed. Note that, because of the finite size of particles, we have the set of
constraints ‖Xi − Xj‖ ≥ ε for i �= j , so that the system of SDEs (1) is coupled.

The Langevin system (1) is equivalent to the Fokker–Planck equation for the
joint probability density P(x, t) of the N particles to be found at the position
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x = (x1, . . . ,xN) ∈ ΩN at time t , given by

∂P

∂t
(x, t) = ∇x · [∇xP − F(x)P

]
, (2a)

where ∇x and ∇x · respectively, stand for the gradient and divergence operators with
respect to the N -particle position vector x and F(X) = (f(x), . . . , f(x)) is the total
drift vector. Because of excluded-volume effects, the domain of definition of (2a),
(2b) (or configuration space) is not ΩN , but its hollow form ΩN

ε = ΩN \ Bε , where
Bε = {x ∈ ΩN : ∃i �= j such that ‖xi − xj‖ ≤ ε} is the set of all illegal configurations
(with at least one overlap). On the contact surfaces ∂ΩN

ε , we have the reflecting
boundary condition

0 = [∇x P − F(x)P
] · n, (2b)

where n ∈ S dN−1 denotes the unit outward normal. Finally, since the particles are
initially identically distributed, the initial probability density P(x,0) = P0(x) is in-
variant to permutations of the particle labels. The form of (2a), (2b) then means that
P itself is invariant to permutations of the particle labels for all times.

We suppose that Ω is a confined domain, with k < d confinement dimensions
which are comparable to ε. We introduce de = d − k as the effective dimensionality
of the problem. In particular, we shall consider the following cases:

• (NC2) Two-dimensional narrow channel (d = 2, k = 1 and de = 1):

Ω =
[
−1

2
,

1

2

]
×

[
−H

2
,
H

2

]
. (3a)

• (NC3) Three-dimensional narrow channel (d = 3, k = 2 and de = 1):

Ω =
[
−1

2
,

1

2

]
×

[
−H

2
,
H

2

]
×

[
−H

2
,
H

2

]
. (3b)

• (PP) Two parallel plates (d = 3, k = 1 and de = 2):

Ω =
[
−1

2
,

1

2

]
×

[
−1

2
,

1

2

]
×

[
−H

2
,
H

2

]
, (3c)

where H = O(ε) is the confinement parameter. We note that H ≥ 0, with H = 0
allowed since Ω is the volume available to the particles’ centers. In the case of a
narrow-channel, when H < ε particles cannot pass each other. We assume that the
volume fraction is small; since |Ω| = O(εk) this implies that Nεde � 1.

The high-dimensional diffusion problem (2a), (2b) will be reduced to an effective
de-dimensional transport model in two steps (see Fig. 1). First, as we did in Bruna
and Chapman (2012b), the dimensions can be reduced from dN to d (individual to
population-level description) by looking at the marginal density function of one par-
ticle (the first particle, say) given by p(x1, t) = ∫

P(x, t)dx2 · · · dxN (the particle
choice is unimportant since all the particles are identical). Second, we will exploit
the geometry of the domain Ω to further reduce the dimensionality by k, the number
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Fig. 1 Schematic of the problem solution steps for de = 1 [narrow-channel cases (NC2) and (NC3)].
The goal is transformation T , to obtain an effective one-dimensional equation along the channel for the
marginal density of one particle. We achieve this with the combined steps T1 followed by T2

of confining dimensions. To this end, we will introduce the narrow-domain vari-
ables and obtain, from the d-dimensional density p(x, t) a reduced effective density
p̂e(xe, t), with xe ∈ R

de . For cases (NC2) and (NC3), the effective density p̂e will
be a one-dimensional density p̂e(x, t) along the channel axis. For (PP), it will be an
effective two-dimensional density on the plane, p̂e ≡ p̂e(x, y, t).

For the sake of clarity, we illustrate the derivation for the two-dimensional case
(NC2) for both point and finite-size particles; the extension to the three-dimensional
cases follows similarly and the respective models are only given in a summarized
form.

2.2 Point Particles

We begin by considering the case of point particles, for which the first reduction T1 in
Fig. 1 from N to one particle is straightforward. Since the particles are independent,
P(x, t) = ∏N

i=1 p(xi , t), and

∂p

∂t
(x, t) = ∇x · [∇x p − f(x)p

]
in Ω, (4a)

0 = [∇x p − f(x)p
] · n̂ on ∂Ω, (4b)

where n̂ is the outward unit normal to ∂Ω . Thus, we move to the second model
reduction T2 which is applied to (4a), (4b). Using the definition of Ω (3a), we want
to exploit the smallness of H . We introduce a change of variables to the narrow-
domain variables, which consist of rescaling by ε the variables corresponding to the
confined dimension:

x = x̂, y = εŷ. (5)

Introducing h such that H = εh, the domain Ω transforms into ω = [− 1
2 , 1

2 ] ×
[−h

2 , h
2 ]. In the rescaled domain, we define p̂(x̂, t) = εp(x, t). (The factor of ε is in-

troduced so that both p and p̂ integrate to one in their respective domains Ω and ω.)
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Then (4a), (4b) becomes

ε2 ∂p̂

∂t
(x̂, t) = ε2 ∂

∂x̂

(
∂p̂

∂x̂
− f1(x̂, εŷ)p̂

)
+ ∂

∂ŷ

(
∂p̂

∂ŷ
− εf2(x̂, εŷ)p̂

)
, (6a)

in ω, with boundary conditions

∂p̂

∂x̂
= f1(x̂, εŷ)p̂ on x̂ = ±1

2
, (6b)

∂p̂

∂ŷ
= εf2(x̂, εŷ)p̂ on ŷ = ±h

2
, (6c)

where f1 and f2 are respectively the horizontal and vertical components of the exter-
nal force f. Expanding p̂ in powers of ε, Taylor-expanding f1 and f2 around (x̂,0),
and solving (6a) with the boundary condition (6c) gives, at leading order, that p̂ is
independent of ŷ. Integrating (6a) over the channel’s cross section and using (6c) we
find that, to O(ε)

∂p̂e

∂t
(x̂, t) = ∂

∂x̂

(
∂p̂e

∂x̂
− f1(x̂,0) p̂e

)
x̂ ∈ [−1/2,1/2], (7)

where p̂e = ∫ h/2
−h/2 p̂ dŷ is the effective one-dimensional density along the channel.

This equation is complemented with no-flux boundary conditions at x̂ = ±1/2. Equa-
tion (7) can be generalized to three-dimensional geometries as

∂p̂e

∂t
(x̂e, t) = ∇x̂e

· [∇x̂e
p̂e − fe(x̂e) p̂e

]
x̂e ∈ ωe, (8)

with no-flux boundary conditions on ∂ωe , where x̂e ∈ ωe are the coordinates in the
effective domain (i.e. the one-dimensional axis for (NC3) as in (7), or the two-
dimensional plane for (PP)). The effective drift fe is the projection of the full drift vec-
tor onto the effective domain ωe. The initial condition is p̂e(x̂e,0) = p̂0(x̂e), where
p̂0(x̂e) = ∫

ΩN P0(x)δ(x̂e − x1,e)dx.
A common extension to (7) is to suppose that the channel has a nonconstant cross

section, h = h(x). The simplest model is the Fick–Jacobs equation (Jacobs 1967),
which in our notation reads

∂p̂e

∂t
(x̂, t) = ∂

∂x̂

[
h(x̂)

∂

∂x̂

(
p̂e

h(x̂)

)
− f1(x̂,0) p̂e

]
, (9)

and is valid for εh′(x) small. Generalizations to this equation to account for the chan-
nel curvature (a higher-order term) have been given in Reguera and Rubí (2001). The
key step in deriving (9) is to assume that the full two- or three-dimensional probabil-
ity density p̂(x̂, t) is at equilibrium in the transverse direction, that is, it is assumed to
factorize as p̂(x̂, t) ≈ p̂e(x̂, t)ρ(x̂), where ρ(x̂) is the local equilibrium distribution
of ŷ (and ẑ, for d = 3), conditional on a given x̂ (the normalized Boltzmann–Gibbs
probability density); see Zwanzig (1992).

In what follows, we keep h constant since the inclusion of a variable channel width
in the analysis for finite-size particles is not straightforward.
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2.3 Finite-Size Particles

We now describe the main result of this paper: the model of the effective dynamics
in a confined domain for the drift-diffusion of finite-size particles. Using a similar
technique to our previous work (Bruna and Chapman 2012b), we are able to reduce
the Fokker–Planck equation (2a), (2b) for the joint probability density P(x, t) of N

interacting finite-size particles in a confined domain Ω to the following effective
equation for the marginal density p̂e(x̂e, t):

∂p̂e

∂t
(x̂e, t) = ∇x̂e

· {[1 + (N − 1)εdeαhp̂e

]∇x̂e
p̂e − fe(x̂e) p̂e

}
, (10)

for x̂e ∈ ωe ⊂ R
de , where de are the effective dimensions of the reduced domain

ωe. The coefficient αh, which depends on the geometry of the problem, determines
how the excluded volume varies with the confinement parameter h. This equation is
complemented with no-flux boundary conditions on ∂ωe and initial data p̂e(x̂e,0) =
p̂0(x̂e). Below we specify the coefficient αh for some specific cases.

1. Two-dimensional channel of width h (NC2), de = 1:

αh = 1

h2

[
πh − 4

3
+ Θ(1 − h)

(
2

3

(
2 + h2)

√
1 − h2 − 2h arccos(h)

)]
, (11)

where Θ(x) is the Heaviside step function,

Θ(x) =
{

0 x < 0,

1 x ≥ 0.

2. Three-dimensional channel of cross-section h × h (NC3), de = 1:

αh = 1

h4

[
Θ(h − 1)

(
4π

3
h2 − πh + 8

15

)
+ Θ(1 − h)m(h)

]
, (12)

where

m(h) = s(h) +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σa(h) 0 ≤ h ≤
√

5−1
2 ,

σb(h)
√

5−1
2 < h ≤ 1√

2
,

0 1√
2

< h,

(13)

with

s(h) = 8

15
+ 2

15

√
1 − h2

(
2h4 − 9h2 − 8

) − π

3
h
(
h4 − 6h2 + 4h − 3

)

− 2h arcsin(h),

σa(h) = 2

15

√
1 − 2h2

(
h4 + 9h2 + 4

) + π

12
h
(
3h4 − 18h2 + 16h − 9

)

+ 1

6
h3(h2 − 6

)
arccot

(
2h

√
1 − 2h2

1 − 3h2

)
− 4

3
h2 arccot

(
1 − 2h2 − h4

2h2
√

1 − 2h2

)
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− 1

2
h arccot

(
2h(1 − 2h2)3/2 + 2h

√
1 − h2(3h2 − 1)

1 − 5h2 + 6h4 + 4h2
√

(1 − 2h2)(1 − h2)

)

+ h arcsin(h) − 1

3
h
(
h4 − 6h2 − 3

)
arcsin

(
h√

1 − h2

)
,

σb(h) = 2

15

√
1 − 2h2

(
h4 + 9h2 + 4

) + π

12
h
(
2h4 − 12h2 + 8h − 3

)

+ 1

3
h3(h2 − 6

)
arccot

(
2h

√
1 − 2h2

1 − 3h2

)
+ 4

3
h2 arctan

(
1 − 2h2 − h4

2h2
√

1 − 2h2

)

+ 1

2
h arccot

(
4h

√
1 − 2h2(3h2 − 1)

1 − 10h2 + 17h4

)
.

3. Three-dimensional parallel plates a distance h apart (PP), de = 2:

αh = π

6h2

[(
h2(6 − h2))Θ(1 − h) + (8h − 3)Θ(h − 1)

]
. (14)

The coefficient αh corresponding to cases (NC2), (NC3), and (PP) is plotted in Fig. 2.
Equation (10) describes the probability density for finding the first particle at po-

sition x̂e at time t . Since the original system (2a), (2b) is invariant to permutations
of the particle labels, the marginal density function of any other particle is the same.
Thus, the probability distribution function for finding any particle at position x̂e at
time t is simply Np̂e .

In Fig. 3 we sketch the narrow-channel domain (rescaled by ε) for various
heights h. The physical domain (of width h + 1 in the narrow-domain variables)
is delimited by the solid black lines, while the configuration domain (of width h)
corresponds to the yellow shaded region delimited by dot-dash lines.

The nonlinear diffusion term in (10) is proportional to the effective excluded vol-
ume created by the remaining (N − 1) particles as well as the domain walls after
the dimensional reduction. For example, in the (NC2) case εαh is the effective one-
dimensional excluded interval, corresponding to the excluded area divided by the
height of the cross section available to a particle center (see Fig. 3). When h = 0, a

Fig. 2 Excluded-volume
coefficient αh as a function of
the confinement parameter h in
three cases: two-dimensional
channel (NC2) (11),
three-dimensional channel
(NC3) (12), and parallel plates
(PP) (14)
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Fig. 3 Sketch of the channel domain [shaded in yellow (light grey)] for different values of h with particles
of diameter one (note that here we are depicting the actual particles, not their excluded-area which has
radius one). Single-file channel for 0 ≤ h < 1 (with h = 0 being the extreme case in which particles can
only move in the axial direction). When h = 1 particles can just pass each other, and for h > 1 (bottom
row) particles can more easily change order

Fig. 4 Excluded volume αhA

as a function of the confinement
parameter h in three cases:
two-dimensional channel (NC2)
(A = h), three-dimensional
channel (NC3) (A = h2), and
parallel plates (PP) (A = h)

particle of diameter ε excludes an interval of 2ε (this explains why αh = 2 for h = 0;
see Fig. 2). As the channel width increases, the value εαh decreases since the whole
width of the channel is not always excluded by a given particle. As h gets large, εαh

gives the ratio of the area excluded by the particle, πε2, to the cross section height
εh, so that αh ∼ π/h as h → ∞ [see (11)].

While αh gives the effective excluded volume after dimensional reduction, the
actual excluded volume is proportional to hαh. This is plotted in Fig. 4 [along with
the corresponding expressions for (NC3) and (PP)].

It is clear from Fig. 3 that the excluded volume due to a particle varies depending
on its position in the channel’s cross-section: in (NC2), while a particle excludes an
area of π when it is far from the channel walls, it only excludes half of this area
when in contact with the channel walls (less if h < 1). This effect, known as an
entropic effect, implies that the average excluded area over possible locations across



Diffusion of Finite-Size Particles in Confined Geometries 957

the channel width decreases as the channel narrows (h → 0). As the channel width
h grows, the boundary effects in which the excluded area is reduced contribute less
and less to the average value, implying that the average excluded area tends to the
constant value π as h → ∞, which corresponds to the “bulk” excluded area. This is
confirmed in Fig. 4. Similarly, αh tends to 4π/3 for the three dimensional cases as
this is the rescaled excluded volume (the volume of the unit sphere). As h → 0 the
average excluded area hαh → 0 since in the extreme confinement cases almost all of
the actual excluded area lies outside the domain available to a particle’s center.

2.3.1 Effective Equation for the Volume Concentration

In our derivation of (10), we do not require N to be large: In fact, Eq. (10) is valid for
any N (as long as the volume fraction is small), so that one could set N = 1 or 2 if
required. This equation gives the probability of finding a particle at a given position
at a given time. However, for large N such that N − 1 ≈ N we can introduce the
volume concentration ĉe = φp̂e, where φ is the total volume fraction of particles, and
rewrite Eq. (10) as an equation for the concentration of particles in the system:1

∂ĉe

∂t
(x̂e, t) = ∇x̂e

· [(1 + ghĉe)∇x̂e
ĉe − fe(x̂e) ĉe

]
, (15)

with

(NC2): gh = 4

π
(h + 1)αh, φ = Nπε

4(h + 1)
, (16a)

(NC3): gh = 6

π
(h + 1)2αh, φ = Nπε

6(h + 1)2
, (16b)

(PP): gh = 6

π
(h + 1)αh, φ = Nπε2

6(h + 1)
. (16c)

These expressions for gh are plotted in Fig. 5. We note all three have a finite value as
both h → 0 and h → ∞ and, most importantly, that they have a relative maximum
at h = h∗, where h∗ is slightly greater than one. In particular, h∗ = 1.47, h∗ = 1.28,
and h∗ = 1.2 for (NC2), (NC3), and (PP), respectively.

The presence of this relative maximum at a fixed volume fraction is interesting, as
it implies an optimal ratio between the particles’ size and the confinement dimension
at which excluded-volume effects, and thus the effective transport, are maximized. In
terms of the physical domains, it corresponds to a narrow domain around 2.2 to 2.5
times wider than the particles’ diameter, so that two particles can just diffuse side by
side in the channel.

Thus, the theory predicts that diffusive transport in a (NC2) channel of width 5ε

(h = 4) may be increased by dividing the channel into two subchannels of width 2.5ε

(h = 1.5), as shown in Fig. 6. This operation gives an increase in gh of 7 %. The

1Note the factors (1 + h) in φ: this is because φ is the total volume of particles divided by the actual
volume of the channel, not the volume available to a particle’s center.
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Fig. 5 Coefficient gh as a
function of the confinement
parameter h in three cases:
two-dimensional channel (NC2),
three-dimensional channel
(NC3), and parallel plates (PP)

Fig. 6 Sketch of channel of width 5ε with and without an intermediate wall that creates two lanes. The
domain available to the particles centers’ in each case is shaded in yellow (light grey). Left: one narrow
channel with h = 4. Right: two narrow channels each with h = 1.5 (roughly equal to h∗ for maximal
exclusion effects)

increase is more dramatic in the three-dimensional case: if a (NC3) square channel
has an original width and depth of 4.6ε (so that h = 3.6), then subdividing it into four
identical channels of width 2.3ε (so that each has h = 1.3) gives a relative increase
in gh is of 19 %.

3 Limiting Cases: From Single-File Diffusion to Unconfined Diffusion

We have briefly discussed the limiting behavior of αh as h → 0 and h → ∞ above.
Here, we examine these limits in Eq. (10), and check that they agree with existing
results. For a channel of width h (NC2 or NC3), Eq. (10) interpolates between two
limiting cases: a single-file channel (h → 0) and an unconfined two- (NC2) or three-
dimensional (NC3) domain (h → ∞). For the (PP) case, the limit h → 0 gives an (un-
confined) two-dimensional diffusion, while the limit h → ∞ gives three-dimensional
unconfined diffusion. Finally, the extension of the square cross section (NC3) to a
rectangular cross section h×m can be used to interpolate between (NC2) (as m → 0)
and (PP) (as m → ∞).

In this section, we will examine these limits by comparing the limiting behavior of
our model (10) with the limiting problem of diffusion of hard spheres in R

d for d =
1,2,3. This problem has been studied extensively, especially in the one-dimensional
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case, which is known as single-file diffusion (Lizana and Ambjörnsson 2009). For the
cases d = 2,3, we will use the results from our previous work of unconfined diffusion
of hard spheres (Bruna and Chapman 2012b).

3.1 Limit to an Unconfined Domain: h → ∞

As h increases we expect the boundary effects contained in αh to vanish and to re-
cover the “bulk” or unconfined equation found in Bruna and Chapman (2012b):

∂p

∂t
(x, t) = ∇x · {[1 + (N − 1)αεdp

]∇xp − f(x)p
}

in Ω, (17)

where Ω ⊂ R
d as given in (3a)–(3c), α = π for d = 2 and α = 4π/3 for d = 3 (or

α = 2(d − 1)π/d for d = 2,3). It is important to note that this equation is only valid
for H = O(1) (that is, when Ω has volume order one).

In order to take the limit h → ∞ in our model (10), it is convenient to use the
original density p̂ in R

d rather than the effective density p̂e. In other words, we
consider the following equation for p̂ = p̂e/A (where A is the cross-sectional area):

∂p̂

∂t
(x̂e, t) = ∇x̂e

· {[1 + (N − 1)αhAεde p̂
]∇x̂e

p̂ − fe(x̂e) p̂
}
, (18)

where αhA is the excluded-volume coefficient shown in Fig. 4. As can be seen in
the figure [or in the formulas for αh (11)–(14)], the limit of αhA as h → ∞ is π for
the two-dimensional channel (NC2) and 4π/3 for the three-dimensional cases (NC3)
and (PP). Therefore, the limiting behavior of (18) as h → ∞ corresponds to replacing
αhA by α, where the latter is given in the bulk equation (17). The last step to show
that (17) is indeed the limiting model of (18) is to integrate (17) over the cross section
to reduce it to a de-dimensional equation as (18). In other words, the limit h → ∞
of the confined-domain model (18) should coincide with the limit H → 0 of the bulk
equation (17). Rescaling the confined dimensions by ε [cf. (5)] and integrating (17)
over the cross-section, it is straightforward to arrive at the following equation for
p̂ = εkp:

∂p̂

∂t
(x̂e, t) = ∇x̂e

· {[1 + (N − 1)αεde p̂
]∇x̂e

p̂ − fe(x̂e) p̂
}
, (19)

where we have used no-flux boundary conditions on the cross-section boundaries.

3.2 Limit to Single-File Diffusion: h → 0

We now consider the limiting case h → 0 in the narrow channel cases (NC2) and
(NC3). From the plot of αh in Fig. 2 we have that limh→0 αh = 2 in both cases. This
is confirmed by taking the limit h → 0 in (11) for (NC2) or (12) for (NC3). Thus, the
single-file limit of (10) is

∂p̂e

∂t
(x̂, t) = ∂

∂x̂

[[
1 + 2(N − 1)εp̂e

]∂p̂e

∂x̂
− f1(x̂)p̂e

]
. (20)
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We see that the effective diffusion coefficient for N large (such that N − 1 ≈ N )
is Dc(c) = (1 + 2c) with c = Nεp̂e being the particle concentration, which is con-
sistent with that derived by Ackerson and Fleishman (1982) for a uniform particle
concentration c = Nε.

We now compare (20) with the classic one-dimensional model of diffusing hard
rods. It is well known that the one-dimensional diffusion of finite-size particles can
be mapped onto a point-particle problem (cf. Lizana and Ambjörnsson 2009). Using
this trick, a fast diffusion equation for the evolution for the marginal density of N

rods of length ε under no external force (f1 ≡ 0) and in the thermodynamic limit
(N → ∞, L → ∞, N/L → φ finite) is found in Rost (1984) (in French, see Bodnar
and Velázquez 2005 for an explanation of Rost method in English), namely

∂ρ

∂t
(x̂, t) = ∂

∂x̂

(
1

(1 − ερ)2

∂ρ

∂x̂

)
, (21)

where ρ = Np̂e is the number density. Expanding the equation above in ε, we obtain,
to O(ε),

∂p̂e

∂t
(x̂, t) = ∂

∂x̂

(
(1 + 2Nεp̂e)

∂p̂e

∂x̂

)
, (22)

which is in agreement with the large N limit of (20). An alternative derivation of
(20) using matched asymptotics on the original problem (without elimination of the
hard-core parts) can be found in Bruna (2012). It differs from that in Rost (1984) in
that it is valid for any N and allows an external force field f.

3.3 Other Limits

From (14), we see that limh→0 αh = π (see also Fig. 2), from which it is straight-
forward to show that the limit h → 0 of (PP) corresponds to an unconfined two-
dimensional diffusion.

A final limit to consider concerns the generalization of the three-dimensional chan-
nel (NC3) to a rectangular cross section h × m. We have already seen above that this
tends to the single-file diffusion model for h = m → 0, and to an unconfined three-
dimensional diffusion for h,m → ∞. Now, keeping h fixed, the extra parameter m

will allow us to interpolate between a two-dimensional narrow channel (NC2) of
width h as m → 0 and two parallel plates a distance h apart (PP) as m → ∞. For
m ≥ 1, it can be shown that the rectangular counterpart of (12) reads:

αhm = 1

h2m2

{
8

15
+ Θ(h − 1)

[
4π

3
hm − π

2
(h + m)

]
+ Θ(1 − h)s(h,m)

}
, (23)

with

s(h,m) = πmh2
(

1 − h2

6

)
− h arcsinh +

√
1 − h2

15

(
2h4 − 9h2 − 8

)
.

Now, in order to compare between the one-dimensional (NC3) model and the two-
dimensional (PP) model, the relevant quantity is mαhm (so that the one-dimensional
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effective density p̂e is mapped onto a two-dimensional plate of width m). We find
that

lim
m→∞mα

(NC3)
hm = α

(PP)
h ,

as expected.

4 Model Analysis

4.1 Numerical Analysis of Time Dependent Solutions

In this section, we compare solutions of our effective nonlinear diffusion equation for
the (NC2) case with direct stochastic simulations, averaging over 2 · 104 stochastic
realizations of the corresponding individual-based model (1). For the PDE, we use the
method of lines with a standard second-order finite-difference discretization of the
spatial derivatives. For the coupled system of SDEs, we perform Monte Carlo (MC)
simulations of the discretized version of (1) using the Euler–Maruyama method,

Xi (t + �t) = Xi (t) + f
(
Xi (t)

)
�t + √

2�t ξ i , (24)

where ξ i is a 2-vector whose entries are independent normally distributed random
variables with zero mean and unit variance. The reflective boundary conditions on
∂Ω implemented as in Erban et al. (2007), namely, the distance that a particle has
traveled outside the domain is reflected back into the domain. Care must be taken for
very narrow channels to account for the possibility that a particle has traveled outside
the domain by more than a width h. The particle–particle overlaps are implemented
similarly: the difference ε − ‖Xi (t + �t) − Xj (t + �t)‖ corresponds to the distance
that particles have penetrated each other illegally. Then we suppose that each particle
has traveled the same illegal distance, and we separate them accordingly along the
line joining the two particles’ centers. This approach works well for low volume
fractions, but may run into difficulty at high volume fractions when the separated
particles may suffer further overlaps. In that case, the algorithm in Scala et al. (2007),
an event-driven Brownian dynamics, becomes more suitable.

Figures 7 and 8 show the numerical results at t = 0.05 for h = 3, ε = 0.01,
N = 30, f = 0 with no-flux and periodic boundary conditions at the channel ends,
respectively. At initial time, the particles are uniformly distributed in a segment of
length 0.2 [Figs. 7(a) and 8(a) in cyan triangles and dash line]. The data points show
the one-dimensional histogram obtained by averaging the MC results over the chan-
nel’s cross section. To test the importance of the excluded-volume interactions and
the confinement, we also compare with the corresponding solutions with point par-
ticles (equivalent to standard linear diffusion) and the limiting cases as h → ∞ and
h → 0 of Sects. 3.1 and 3.2, respectively.

In both cases, we see very good agreement between the stochastic average and
the solution of the narrow-channel model p̂e, while there are noticeable differences
between the three limiting models, namely the point particles, single-file, and uncon-
fined limits. In order to quantify the error committed by the limiting models, we note
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Fig. 7 One-dimensional density p̂e(x̂, t) in a channel of width εh with no-flux boundary conditions at
x̂ = ±0.5: solution of the continuum model (10) for finite-size particles versus individual-based model
simulations of (1) and limiting continuum models. (a) Initial (t = 0) and final (tf = 0.05) densities p̂e

(lines) and histograms (data points). (b) Final density and histogram, together with three limiting cases:
point particles or standard linear diffusion (7), unconfined limit (19) and single-file limit (20). Parameters
are h = 3, ε = 0.01, and N = 30, �t = 10−5

Fig. 8 One-dimensional density p̂e(x̂, t) in a channel of width εh with periodic boundary conditions at
x̂ = ±0.5: solution of the continuum model (10) for finite-size particles versus individual-based model
simulations of (1) and limiting models (7), (19) and (20). Other details of the plots are given in the caption
of Fig. 7

that, for the chosen parameters, the volume fraction is φ ≈ 6 % and the nonlinear co-
efficient in (16a) is gh ≈ 4.6. The corresponding nonlinear coefficient in the limiting
cases is 0 for the point particles limit, 2 for the single-file limit and 4 for the uncon-
fined limit. The difference between the narrow channel coefficient and these limiting
values are consistent with the differences observed in the numerical solutions: while
for h = 3 the unconfined limit compares reasonably well with the stochastic simula-
tions, the single-file and the point particles limits show more important differences.
However, we note that our model gives the best agreement with the MC simulations
results.

The results of Figs. 7 and 8 suggest that, depending on the value of h, either
the single-file or the unconfined limits will be more appropriate, while our narrow-
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Fig. 9 One-dimensional density p̂e(x̂, t) in a two-dimensional channel of width εh with fixed volume
fraction φ = 0.05 at time t = 0.05. No-flux boundary conditions at x̂ = ±0.5 and uniformly initial condi-
tions in |x̂| ≤ 0.1. Solution p̂e of the narrow-channel equation (10) (solid blue line), versus the singlefile
limit (20) (dash red line), the unconfined limit (19) (dot-dash black line, curve shown is hp̂), and the point
particles limit (7) (solid green line)

channel model captures the whole range of h from 0 to ∞. To investigate this further,
in Fig. 9, we examine how the narrow-channel model compares with three limiting
cases [point particles (7), unconfined (19), and single-file (20)] for various values
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of the channel width h while keeping the volume fraction φ fixed.2 It may seem
counterintuitive that the limiting solutions appear to change with h more than the
narrow channel solution (solid blue line) does. However, we note that, although the
three limiting models are independent of h, the unconfined model and the single-file
model solutions (shown in dot-dash black and dash red lines respectively in Fig. 9) do
vary as h increases because the value of ε is being changed in order to keep φ fixed.
The narrow channel solution also changes (albeit less markedly) with h as predicted
by the coefficient gh (see Fig. 5).

As expected, for h = 0.5 the narrow-channel solution agrees very well with the
single-file limit, since in this case the cross-sectional space is not enough to let par-
ticles pass each other (see top right plot in Fig. 3). In contrast, the unconfined case
solution is far apart from the previous two, since the approximation that boundary
effects are negligible is poor for h = 0.5. As we increase h, we can observe how the
single-file solution (in dash red) moves apart from the narrow-channel solution (in
solid blue), while the unconfined case solution (in dot-dash black) becomes closer to
the latter. When h = 5 the narrow channel and unconfined model curves are nearly
overlapping each other, indicating that at this channel width the boundary effects are
almost negligible. These observations can also be made by looking at the graph of gh

in Fig. 5, in particular by considering the difference between gh at a given value of h

and the extreme values at h = 0, g0 = 2, and at h = ∞, g∞ = 4.

4.2 Stationary Solutions in Periodic Channels

In this section, we study the steady states of our continuum model and use the narrow-
channel equation as an extension to the one-dimensional linear ratchet model for
Brownian motors. For convenience, we focus on the one-dimensional equation (15)
in terms of the coefficient gh for the narrow channel cases (NC2) and (NC3) only. As
in the time-dependent case, the numerical solutions of the PDE are compared with
corresponding stochastic simulations of the individual-based model (1). We suppose
that the force along the channel axis f1(x̂) is the gradient of a potential V (x̂), so that
f1(x̂) = −V ′(x̂), where the prime indicates differentiation. Then (15) can be written
as

∂p̂e

∂t
+ ∂

∂x̂
(p̂eu) = 0, where u = − ∂

∂x

(
log p̂e + ghφp̂e + V (x̂)

)
. (25)

The quantity u can be interpreted as a flow down the gradient of the free energy F
(Carrillo et al. 2003) associated with (15); see Bruna (2012) for more details. The sta-
tionary solution of (25) with no-flux boundary conditions is obtained by minimizing
the free energy, which corresponds to solving

log p̂e + ghφp̂e + V (x̂) = C,

with the constant C determined by the normalization condition on p̂e. For the ap-
plication to ratchet systems, we are interested in periodic solutions of (25) with a
(constant) flux J0 ≡ p̂eu.3

2We keep the volume fraction φ = Nπε/4(h + 1) fixed by varying ε as h changes.
3For periodic boundary data, J0 is an extra degree of freedom determined by imposing periodicity.
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Fig. 10 Tilted Smoluchowski–Feynman ratchet potential V (x̂,F0) in Eq. (26) for F0 = −1 (left) and
F0 = −3 (right)

The one-dimensional Fokker–Planck equation (7) for point particles with f1(x̂) =
−V ′(x̂) can be used to model directed particle transport under ratchet potentials
(i.e. potentials spatially asymmetric with respect to their maxima Slater et al. 1997).
These potentials may describe a periodic asymmetric free-energy substrate in the
case for molecular motors through microtubules (Kolomeisky and Fisher 2007) or
steric interactions in the case of polyelectrolytes (Slater et al. 1997). In particular,
theoretical approaches to molecular motors such as kinesin have focused on either
a one-dimensional continuum model such as (7) (thus ignoring the interactions be-
tween different motors and the other dimensions) or on stochastic simple-exclusion
models on a lattice (Kolomeisky and Fisher 2007). More generally, in these applica-
tions the modeling has focused on the form of the ratchet potential in order to make
the model more realistic, instead on the possible interactions between the particles
involved in the transport. In the remainder of this section, we will explore the ef-
fects that interactions (specifically, excluded-volume interactions, but this could be
extended to other types of interactions) can have on such models. To this end, we
consider a specific ratchet model with a ratchet potential consisting of a periodic
part plus a constant external force or tilt. We use the tilted Smoluchowski–Feynman
potential

V (x̂,F0) = sin(2πx̂) + 0.25 sin(4πx̂) − F0x̂. (26)

Two plots of V (x̂) for different values of the tilt F0 are shown in Fig. 10. It can
be shown that in the long-time limit the sign of the particle current (or net motion)
agrees with the sign of the tilt F0 and that, in the absence of tilt (F0 = 0) there is
no net motion (Reimann 2002). An interesting feature of this model is that the re-
lationship between the tilt F0 and the flux J0 is nonlinear (see thick black line in
Fig. 12).

Next, we examine how the F0 vs. J0 relationship changes when nonlinear effects
(due to the finite-size of particles and confinement) are included in the model. To this
end, we solve for the stationary states of (25) when V (x̂) is given by (26) for various
tilts F0 and compute the stationary flux J0 of the resulting solution. For each tilt F0,
we must find the flux J0 and the stationary solution p̂e(x̂) such that the periodic and
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Fig. 11 Stationary solution p̂e(x̂) under the tilted Smoluchowski–Feynman potential (26) for various
values of F0. Stationary solutions of (25) for point particles, gh = 0 (left) and for finite-size particles with
ghφ = 0.6 (right)

Fig. 12 Steady-state flux J0
versus tilt F0 from solving (25)
for increasing values of ghφ

(from 0 to 1). The colored lines
correspond to finite-size
particles (gh > 0). The thick
black line corresponds to point
particles (gh = 0) as shown in
Reimann (2002, Fig. 2.4)

normalization conditions are fulfilled:

(1 + ghφ p̂e)p̂
′
e + V (x̂,F0) p̂e = −J0,

p̂e(−1/2) = p̂e(1/2), (27)
∫ 1/2

−1/2
p̂e dx̂ = 1.

We solve this problem numerically using Chebfun (Trefethen et al. 2011) in MAT-
LAB. Solutions of (27) for an increasing value of the constant force F0 (varying
from −6 to +6) are shown in Fig. 11. The left panel corresponds to point particles
(gh = 0), while the right panel corresponds to finite-size particles with ghφ = 0.6.
The diagram of the resulting steady flux J0 versus the tilt F0 is shown in Fig. 12 for
increasing values of ghφ. We observe that the relationship is nonlinear for point par-
ticles (gh = 0, thick black line), but it appears to become linear as excluded-volume
effects get larger (i.e., as ghφ increases). This is physically reasonable, since point
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Fig. 13 Stationary solution
p̂e(x̂1) under the potential (26).
Solutions of (25) for gh = 0 and
gh = 0.15, and F0 = −6 and
F0 = 2.5

particles get easily trapped in the wells of the potential, even if these wells are rel-
atively small. In contrast, it is easier for finite-size particles to escape, as they may
not all fit in the potential well and the nonlinear diffusion makes the potential barrier
easier to overcome.

In Fig. 13, we compare the stationary solutions p̂e for point particles (gh = 0) and
finite-size particles (with an excluded-volume coefficient of gh = 0.15) in two tilting
scenarios: for F0 = −6 and for F0 = 2.5. We observe that while the solutions are
almost overlapping for a tilt of F0 = −6, they are considerably different for F0 = 2.5.
This is because for F0 = −6 the potential V is so tilted that it ceases to have a local
minimum within each period. As a result, the “advantage” of finite-size particles that
could more easily overcome the local minima in the potential is lost.

We conclude this section by comparing the equilibrium solutions of the continuum
model with the corresponding stochastic simulations of the discrete model. We use
the Metropolis–Hastings algorithm (Chib and Greenberg 1995) to sample from the
stationary density of the full-particle system, and compare the resulting histogram
(averaged over the cross section) with the stationary solutions p̂e of (25). We consider
the (NC2) case for which the coefficient gh is maximized for a fixed volume fraction
φ, that is, a channel of width h∗ = 1.47. The other parameters used in the simulations
are ε = 10−3, N = 133 and F0 = 2.5. Figure 14 displays the histograms after 107

steps of the MH algorithm. The histogram for point particles (upper plot in Fig. 14)
does not vary in the cross-sectional direction, as expected. In contrast, the histogram
for finite-size particles does display some variation in the ŷ-direction: More particles
want to be near the boundaries than in the center of the channel. This is because a
hard-disk particle on the boundary excludes only half of the area that would exclude
in the center of the domain (recall that the channel of width h is the domain available
to the particles centers, not the physical domain), and this is entropically favorable.
In our derivation of Eq. (10), this variation is taken into account but integrated out
to obtain the one-dimensional equation. Accounting for the variation in ŷ is not the
main objective of this paper but this could be done either by numerically solving the
two-dimensional equation (48) or evaluating higher order terms in the expansion of
Sect. A.2.

We plot the theoretical predictions by solving (25) for both point and finite-size
particles alongside their respective simulation counterparts, and observe an excellent
agreement in both cases. We examine the importance of taking into account the ac-
tual width of the channel, which in this example is only h = 1.47, by solving the
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Fig. 14 Histogram of the stationary density p̂(x̂) under the potential V (x̂,F0) in (26) for point particles
(top plot) and finite-size particles (bottom plot). Parameters are F0 = 2.5, h = 1.47, ε = 10−3, N = 133.
Histograms computed by 107 MH steps

Fig. 15 One-dimensional stationary density p̂e(x̂) under the potential V (x̂,F0) in (26). Solutions of (25)
for point particles (gh = 0, dash red line) and finite-size particles (gh = 0.1, solid blue line), with F0 = 2.5,
N = 133, h = 1.47, ε = 10−3. Cross-sectional averages of the histograms in Fig. 14 for point particles
(red asterisks) and finite-size particles (blue circles). Stationary solution of the single-file equation (20) is
shown in a dot-dash black line

analogous stationary problem for the single-file model (20). We plot the result (dot-
dash black line in Fig. 15) and observe that the single-file model overestimates the
excluded-volume effects, as demonstrated by the flatter density profile.

5 Discussion

In this paper, we have presented a derivation of a continuum model for the diffu-
sion of finite-size particles in a confined domain whose dimensions are comparable
to the particle dimensions. We have given the model explicitly for three confined
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geometries, namely a two- and three-dimensional narrow channel of square cross-
section and Hele–Shaw cell (two close parallel plates), but also indicated how the
model derivation for more general geometries can be done. The resulting continuum
model is a nonlinear drift-diffusion equation for the one-particle probability density
or for the population volume concentration, with the nonlinear term depending on
the excluded-volume created by the particles as well as the confinement parameter
(in the cases we have studied, the confinement parameter is the channel width or
the separation between plates). This equation is defined in the effective domain, a
lower-dimensional domain for the unconfined dimensions only, exploiting the fact
that equilibration in the confined dimensions is relatively fast and most dynamics oc-
cur along the unconfined ones. For example, in the case of a two- or three-dimensional
channel the resulting continuum model is a one-dimensional equation along the axial
direction.

The derivation of the final continuum model involved two key steps. First, as in our
previous works (Bruna and Chapman 2012a, 2012b), we used the method of matched
asymptotic expansions to reduce the high-dimensional Fokker–Planck equation as-
sociated with the individual-based description of the system to a low-dimensional
Fokker–Planck equation for the one-particle density function. Second, we exploited
the confined geometry of the domain to perform a further reduction and integrate out
the confined dimensions of the problem. While in our previous works, the particle–
particle–wall interactions were a higher-order correction, and thus were neglected,
in this work they were taken into account. In other words, while in an unconfined
domain such three-body interactions simply create a boundary layer near the domain
walls, in the situations considered in the present work this boundary layer extends
across the cross section and must be solved accurately.

The model has two interesting features. First, we found that, for a given volume
fraction, there exists an optimal ratio h between confinement and particle size such
that the excluded-volume effects are maximized. This means, for example, that one
can design a lab-on-a-chip device to achieve a maximal collective diffusion coeffi-
cient. Second, the model is capable of describing the whole range of confinement
levels and interpolating between confinement extremes, that is, between extreme
confinement (h = 0) when particles cannot pass each other to unconfined diffusion
(h = ∞). We have examined the limiting models corresponding to each of the three
geometries we have studied, and found that our model agrees with them. For exam-
ple, in the narrow-channel cases, the extreme confinement corresponds to a single-file
diffusion model (Rost 1984) while the other limit is an unconfined two or three-
dimensional diffusion model (Bruna and Chapman 2012b). This is a useful analyt-
ical tool to predict the error that is being committed by using the limiting models,
that is, either ignoring the fact that particles can (just) pass each other and using the
purely one-dimensional single-file equation, or neglecting confinement conditions
and boundary layers.

In order to assess the validity of our model predictions, we have compared the
numerical results of our continuum model for the two-dimensional narrow channel
to the results from the corresponding individual-based model as well as the limiting
continuum models of point particles, single-file diffusion and unconfined diffusion.
We have observed excellent agreement between the narrow channel model and the
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stochastic simulations of the discrete model, and confirmed the interpolating proper-
ties of the model between confinement extremes. Finally, we have discussed a case
study involving the diffusion under a ratchet potential, used for example to describe
the transport of molecular motors through microtubules. We have examined the ef-
fects that interactions between particles and confinement conditions can have in the
analysis of the problem. For example, we have found that an increase on excluded-
volume effects causes the particle transport to be less sensitive to the tilting of the
ratchet potential.

There are several directions along which one can extend this model. Firstly, it
would be interesting to allow multiple types of particles (labeled blues and reds, say)
by combining the analysis in Bruna and Chapman (2012a) with the present work.
A challenging aspect of this problem is that the resulting model of two species in
a narrow channel must account for the fact that as the channel becomes single file
the order of particles is fixed, and since the two types of particles are distinguishable
the order of particles matters. In other words, we expect a qualitative difference in
the model as h crosses the value of one: for h > 1, even if all the red particles were
initially to the left of the blue particles, we expect the two populations to mix together
(that is, the jump in the initial density profiles will spread); in contrast, for h < 1, if the
two populations are segregated initially, they will stay like that for all times, and we
expect to see this reflected in the population-level densities. In connection with this
issue is the fact that the self-diffusion of a particle is not defined in one-dimensional
systems (Ackerson and Fleishman 1982). Another extension is to allow channels of
varying cross section, that is, to extend the Fick–Jacobs model (9) to the case of
finite-size particles. A simplification of this problem (ignoring the particle–particle
interactions) has been considered by Riefler et al. (2010). A related problem would
be to match a narrow channel with two bulk domains in each end; such a geometry
could have important applications in the area of ion channels.
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Appendix: Derivation of the Narrow-Channel Equation (10) for the (NC2)
Case

This appendix is devoted to the derivation of (10) in the two-dimensional channel
(NC2) case. The derivation of the three-dimensional cases (NC3) and (PP) or other
(simple) geometries follows similarly (see Sect. A.3 for an outline of the condi-
tions/calculations to be carried out).

A.1 Transformation T1: Reduction from the Individual- to the Population-Level

Our starting point is the Fokker–Planck equation for N hard-disc particles (2a), de-
fined in the high-dimensional (configuration) space ΩN

ε ⊂ R
2N . Recall that the con-

figuration space has holes that correspond to illegal configurations (with particles’
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Fig. 16 Sketch of the original channel geometry (solid black lines) and the effective configuration space
for the center of a second circular particle, given by the boundary function ∂Ω(x1) (dash red lines) which
depends on the position of the first particle x1. The collision boundary function Cx1 forms part of the
effective boundary ∂Ω(x1)

overlaps) on which the no-flux boundary conditions (2b) hold. The aim of this sub-
section is to derive the corresponding Fokker–Planck equation for the one-particle
density p(x1, t) = ∫

P(x, t)dx2 · · · dxN , where P(x, t) is the joint probability den-
sity of the N particles. We first note that the integration of (2a), (2b) over x2, . . . ,xN

results in integrals over contact surfaces on which P must be evaluated (Bruna and
Chapman 2012b). When the particle volume is small, the dominant contributions
to these contact integrals correspond to two-particle interactions, so that we can set
N = 2 and then extend the result to N arbitrary in a straightforward manner. How-
ever, in contrast with the unconfined case studied in Bruna and Chapman (2012b),
under confinement conditions the particle–particle–wall interactions (three-body) are
not negligible and must be taken into account. For two particles at positions x1 and
x2, (2a), (2b) reads

∂P

∂t
(x1,x2, t) = ∇x1 · [∇x1P − f(x1)P

] + ∇x2 · [∇x2P − f(x2)P
]

in Ω2
ε , (28a)

0 = [∇x1P − f(x1)P
] · n̂1 + [∇x2P − f(x2)P

] · n̂2, (28b)

on xi ∈ ∂Ω and ‖x1 − x2‖ = ε. Here n̂i = ni/‖ni‖, where ni is the component of the
normal vector n corresponding to the ith particle, n = (n1,n2). We note that n̂1 = 0
on x2 ∈ ∂Ω , and that n̂1 = −n̂2 on ‖x1 − x2‖ = ε.

A.1.1 From N Particles to 1 Particle

We denote by Ω(x1) = Ω \ Bε(x1) the region available to the center of particle 2
when particle 1 is at x1. Note that when the distance between x1 and ∂Ω is less
than ε the area |Ω(x1)| increases (see Fig. 16) because the area U (x1) = Bε(x1) ∩ Ω

excluded by particle 1 changes with x1. The points on which the two particles are in
contact are given by the collision boundary

Cx1 = {
x2 ∈ Ω s.t. ‖x2 − x1‖ = ε

}
. (29)

Integrating Eq. (28a) over Ω(x1) using the Reynolds transport theorem (on the
moving boundary Cx1 ), the divergence theorem, and the boundary condition (28b)
yields

∂p

∂t
(x1, t) = ∇x1 · [∇x1 p − f(x1)p

] +
∫

Cx1

−(∇x1P + ∇x2P) · n2 dS2. (30)
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We denote the collision integral above by I . If we now consider the case of N par-
ticles we would obtain a collision integral for each pair, so that after some particle
relabeling the corresponding equation is

∂p

∂t
(x1, t) = ∇x1 · [∇x1 p − f(x1)p

] + (N − 1)

∫

Cx1

−(∇x1P + ∇x2P) · n2 dS2.

(31)

Equation (31) is halfway through transformation T1 (cf. Fig. 1), since the first half
of the equation depends only on x1 while the integral I still depends on the two-
particle density P near the collision surface Cx1 .

At this stage, it is common to use a closure approximation such as P(x1,x2, t) =
p(x1, t)p(x2, t) to evaluate I and obtained a closed equation for p (Rubinstein and
Keller 1989). However, the pairwise particle interaction—and, therefore, the correla-
tion between their positions—is exactly localized near the collision surface Cx1 . In-
stead, in the next section we will use an alternative method based on matched asymp-
totic expansions to evaluate I systematically (Bruna and Chapman 2012b).

A.1.2 Matched Asymptotic Expansions

We suppose that when two particles are far apart (|x1 − x2| � 1) they are indepen-
dent (at leading order), whereas when they are close to each other (|x1 − x2| ∼ ε)
they are correlated. We denote these two regions of the configuration space Ω2

ε the
outer region and the inner region, respectively. We use the x-coordinate to distinguish
between the two regions because the inner region spans the channel’s cross section.
Importantly, this implies that the outer region is disconnected.

Outer Region In the outer region, we consider the change to the narrow-domain
variables (5) and define P̂ (x̂1, x̂2, t) = ε2P(x1,x2, t). This scaling is consistent with
that introduced for the one-particle density in Sect. 2.2, and is such that P and P̂

each integrate to one in their respective domains Ω2
ε and the narrow-domain variable

equivalent ω2
ε . Then (28a) becomes

ε2 ∂P̂

∂t
(x̂1, x̂2, t) = ∂

∂ŷ1

(
∂P̂

∂ŷ1
− εf2(x̂1, εŷ1)P̂

)
+ ∂

∂ŷ2

(
∂P̂

∂ŷ2
− εf2(x̂2, εŷ2)P̂

)

+ ε2 ∂

∂x̂1

(
∂P̂

∂x̂1
− f1(x̂1, εŷ1)P̂

)

+ ε2 ∂

∂x̂2

(
∂P̂

∂x̂2
− f1(x̂2, εŷ2)P̂

)
, (32a)

for (x̂1, x̂2) ∈ ω2
ε , with

∂P̂

∂x̂i

− f1(x̂i , εŷi)P̂ = 0 on x̂i = ±1

2
, (32b)
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∂P̂

∂ŷi

− εf2(x̂i , εŷi)P̂ = 0 on ŷi = ±h

2
, (32c)

for i = 1,2. The boundary condition on the collision line Cx1 disappears for
|x̂1 − x̂2| > ε, so that it is “invisible” to the outer region.4

In the outer region, we define Pout(x̂1, x̂2, t) = P̂ (x̂1, x̂2, t) and look for an asymp-
totic solution to (32a)–(32c) by expanding Pout in powers of ε. We find at leading
order that Pout must be independent of the vertical coordinates ŷ1 and ŷ2. By inde-
pendence in the outer region, we suppose that the leading-order solution is separable,
so that it is of the form q(x̂1, t)q(x̂2, t) for some function q . Solving for the next two
orders in ε, we find that the solution in the outer region is, to O(ε2),

Pout(x̂1, x̂2, t) = q(x̂1, t)q(x̂2, t)

+ ε
{
q(x̂1, t)q(x̂2, t)

[
ŷ1f2(x̂1,0) + ŷ2f2(x̂2,0)

] + Υ1(x̂1, x̂2, t)
}

+ ε2
{

1

2

[
ŷ2

1
∂f2

∂y
(x̂1,0) + ŷ2

2
∂f2

∂y
(x̂2,0) + (

ŷ1f2(x̂1,0)

+ ŷ2f2(x̂2,0)
)2

]
+ Υ1(x̂1, x̂2, t)

[
ŷ1f2(x̂1,0) + ŷ2f2(x̂2,0)

]

+ Υ2(x̂1, x̂2, t)

}
, (33)

where the Υi(x̂1, x̂2, t) are arbitrary functions of integration, determined by solvabil-
ity conditions at higher order. Note that the invariance of P with respect to a switch
of particle labels means that in the outer region both particles have the same density
function q . From the solvability condition on the O(ε2) terms above, we obtain the
following equation for q:

∂q

∂t
(x̂, t) = ∂

∂x̂

(
∂q

∂x̂
− f1(x̂,0)q

)
. (34)

Inner Region In the inner region, we introduce the inner variables

x1 = x̃1, y1 = εỹ1, x2 = x̃1 + εx̃, y2 = εỹ2, (35)

and define P̃ (x̃1, x̃2, t) = ε2P(x1,x2, t). The contact boundary Cx1 (29) becomes

C̃ỹ1 = {
(x̃, ỹ2) ∈ R × [−h/2, h/2] s.t. x̃2 + (ỹ2 − ỹ1)

2 = 1
}
, (36)

and problem (28a), (28b) is transformed to

ε2 ∂P̃

∂t
(x̃1, x̃2, t) = 2

∂2P̃

∂x̃2
+ ∂2P̃

∂ỹ2
1

+ ∂2P̃

∂ỹ2
2

− 2ε
∂2P̃

∂x̃1∂x̃
− ε

∂

∂ỹ2

[
f2(x̃1 + εx̃, εỹ2)P̃

]

4To see this, we write (29) in terms of the narrow variables. It becomes Cx̂1
= {x̂2 ∈ ω: (x̂2 − x̂1)2 +

ε2(ŷ2 − ŷ1)2 = ε2}.
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+ ε
∂

∂x̃

{[
f1(x̃1, εỹ1) − f1(x̃1 + εx̃, εỹ2)

]
P̃

}

−ε
∂

∂ỹ1

[
f2(x̃1, εỹ1)P̃

] + ε2 ∂2P̃

∂x̃2
1

− ε2 ∂

∂x̃1

[
f1(x̃1, εỹ1)P̃

]
, (37a)

with

2x̃
∂P̃

∂x̃
+ (ỹ2 − ỹ1)

(
∂P̃

∂ỹ2
− ∂P̃

∂ỹ1

)

= εx̃
∂P̃

∂x̃1
+ εx̃

[
f1(x̃1 + εx̃, εỹ2) − f1(x̃1, εỹ1)

]
P̃

+ ε(ỹ2 − ỹ1)
[
f2(x̃1 + εx̃, εỹ2) − f2(x̃1, εỹ1)

]
P̃ , (37b)

on C̃ỹ1 and

∂P̃

∂ỹ1
= εf2(x̃1, εỹ1)P̃ on ỹ1 = ±h

2
, (37c)

∂P̃

∂ỹ2
= εf2(x̃1 + εx̃, εỹ2)P̃ on ỹ2 = ±h

2
. (37d)

In addition to (37b)–(37d), the inner solution must match with the outer as x̃ → ±∞.
Expanding the outer solution in terms of the inner variables, which corresponds to
replacing x̂1 = x̃1, ŷ1 = ỹ1, x̂2 = x̃1 + εx̃ and ŷ2 = ỹ2 in (33), and subsequently
expanding in powers of ε, we obtain the following matching condition:

P̃ ∼ q2 + ε

[
x̃q

∂q

∂x̃1
+ (ỹ1 + ỹ2)f2q

2(x̃1) + Υ1(x̃1, x̃1)

]

+ ε2
[
x̃2

2
q

∂2q

∂x̃2
1

+ x̃(ỹ1 + ỹ2)f2qqx̃1 + x̃ỹ2
∂f2

∂x
q2 + x̃

∂Υ1

∂x̂2
(x̃1, x̃1)

+ 1

2

((
ỹ2

1 + ỹ2
2

)∂f2

∂y
+ (ỹ1 + ỹ2)

2f 2
2

)
q2 + (ỹ1 + ỹ2)f2Υ1(x̃1, x̃1)

+ Υ2(x̃1, x̃1)

]
+ · · · as x̃ → ±∞, (37e)

where q ≡ q(x̃1, t). Expanding P̃ in powers of ε, P̃ ∼ P̃ (0) + εP̃ (1) + ε2P̃ (2) + · · · ,
we find that the leading- and first-order solutions of (37a)–(37e) are

P̃ (0) = q2(x̃1), (38)

P̃ (1) = x̃ q(x̃1)
∂q

∂x̃1
(x̃1) + (ỹ1 + ỹ2)f2(x̃1,0)q2(x̃1) + Υ1(x̃1, x̃1). (39)
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Unlike in the bulk or unconfined problem (Bruna and Chapman 2012a, 2012b), the
narrow-channel problem requires computing the second-order inner solution. The
solution procedure is rather cumbersome and is omitted here. It involves a further
change of variable x̃ = √

2s̃ to turn the problem into a Poisson problem, and solving
two sub-problems numerically using the commercial finite-element solver COMSOL
Multiphysics 4.3. The second-order solution of (37a)–(37e) is (see Appendix C.1 in
Bruna 2012 for full details)

P̃ (2) = 1

2
x̃2q

∂2q

∂x̃2
1

+ 1

2

(
ỹ2

1 + ỹ2
2

)
q2

(
∂f2

∂y
+ f 2

2

)
+ ỹ1ỹ2f

2
2 q2

+ x̃

(
ỹ1f2q

∂q

∂x̃1
+ ỹ2q

∂(f2q)

∂x̃1

)
+

(
∂f1

∂y
− ∂f2

∂x

)
q2Q̃2(x̃, ỹ1, ỹ2)

+ √
2

[
q

∂2q

∂x̃2
1

−
(

∂q

∂x̃1

)2

− ∂f1

∂x
q2

]
Q̃1(x̃, ỹ1, ỹ2) + Υ2(x̃1, x̃1), (40)

with Q̃i(x̃, ỹ1, ỹ2) = ṽi (x̃/
√

2, ỹ1, ỹ2), where ṽ1(s̃, ỹ1, ỹ2) and ṽ2(s̃, ỹ1, ỹ2) are given
by (numerical solutions of)

∇̃2
ṽ1 = 0,

∇̃ṽ1 · ν̃ = s̃2 on D̃ỹ1 ,

∇̃ṽ1 · ν̃ = 0 on ỹi = ±h

2
,

ṽ1 ∼ D1|s̃| as s̃ → ±∞,

(41)

and

∇̃2
ṽ2 = 0,

∇̃ṽ2 · ν̃ = s̃(ỹ1 − ỹ2), on D̃ỹ1 ,

∇̃ṽ2 · ν̃ = 0, on ỹi = ±h

2
,

ṽ2 ∼ 0, as s̃ → ±∞.

(42)

Here, ∇̃ stands for the gradient operator with respect to the position vector (s̃, ỹ1, ỹ2),
D̃ỹ1 is the transformed collision boundary C̃ỹ1 (36), and ν̃ is the outward unit normal

on this mapped boundary, ν̃ = −
√

2
2 (2s̃, ỹ1 − ỹ2, ỹ2 − ỹ1). Finally, the constant field

D1 at infinity for ṽ1 is related to the integration function from the outer Υ1,

D1 = limx̂2→x̂1
∂Υ1
∂x̂2

(x̂1, x̂2)

[q ∂2q

∂x̃2
1

− (
∂q
∂x̃1

)2 − ∂f1
∂x

q2]
.

Out of the derivation we also find that Υ1(x̂1, x̂2) ≡ Υ1(|x̂1 − x̂2|) with Υ1(x) dif-
ferentiable satisfying Υ1(0) = 0. In contrast, the contribution from the other outer
function Υ2 is left unknown (it could be determined by matching higher order terms),
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Fig. 17 Domain of integration
C̃ỹ1

(solid green line), distances
l1 and l2 between the vertical
coordinate of the first particle
and the lower and upper channel
walls and corresponding angles
θ1 and θ2

but we are able to ignore it as it has a zero contribution to the collision integral I (as
we will see in the next section). We note that, in (40), q , f1 and f2 are functions of
the “outer” variable x̃1 only, namely, q = q(x̃1, t) and fi = fi(x̃1,0).

Combining (38), (39), and (40) we have the solution to the inner problem (37a)–
(37e) up to O(ε2).

A.1.3 Collision Integral

Now we go back to Eq. (31) and use the asymptotic solution of the previous subsec-
tion to turn it into an equation for p(x1, t) only thus completing transformation T1.
Note that, since the integral I is over the collision boundary Cx1 , it lives in the inner
region and we must use P̃ to evaluate it.

In terms of the inner variables, I is

I = ε−2
∫

C̃ỹ1

[
(ỹ2 − ỹ1)

(
∂P̃

∂ỹ1
+ ∂P̃

∂ỹ2

)
+ εx̃

∂P̃

∂x̃1

]
dl̃, (43)

where C̃ỹ1 is given in (36) and dl̃ is the line integral along this curve (for ỹ1 fixed,
see Fig. 17). Depending on the channel width h (relative to one, which is the radius
of C̃ỹ1 ), the integration is over the whole circle or a part of it. Introducing the dis-
tances l1 = max(−h/2 − ỹ1,−1) and l2 = min(h/2 − ỹ1,1), the angles at contact
with the lower and upper channel walls are θ1 = arcsin l1 and θ2 = arcsin l2, respec-
tively. (These are equal to ±π/2 for no contact.)

Writing I = ε−2(I (0) + εI (1) + ε2 I (2) + · · · ) and using (43), we find that

I (0) = 0, (44)

I (1) = 2f2q
2μ0(h, ỹ1), (45)

I (2) = 2q2
(

∂f2

∂y
+ 2f 2

2

)
ỹ1μ0(h, ỹ1) +

(
2q

∂2q

∂x̃2
1

− q2 ∂f1

∂x

)
μ1(h, ỹ1)
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+ q2
(

∂f2

∂y
+ 2f 2

2

)
μ2(h, ỹ1) + 2

(
∂f1

∂y
− ∂f2

∂x

)
q2 J [Q̃2](h, ỹ1)

+ 2
√

2

[
q

∂2q

∂x̃2
1

−
(

∂q

∂x̃1

)2

− ∂f1

∂x
q2

]
J [Q̃1](h, ỹ1), (46)

where fi = fi(x̃1,0),

μ0(h, ỹ1) =
∫

C̃ỹ1

(ỹ2 − ỹ1)dl̃ = 2
(√

1 − l2
1 −

√
1 − l2

2

)
, (47a)

μ1(h, ỹ1) =
∫

C̃ỹ1

x̃2 dl̃ = l2

√
1 − l2

2 − l1

√
1 − l2

1 + arcsin l2 − arcsin l1, (47b)

μ2(h, ỹ1) =
∫

C̃ỹ1

(ỹ2 − ỹ1)
2 dl̃ = l1

√
1 − l2

1 − l2

√
1 − l2

2 − arcsin l1 + arcsin l2,

(47c)

and J is the integral operator J [Q](h, ỹ1) = ∫
C̃ỹ1

[Qỹ2(ỹ2 − ỹ1)+Qx̃x̃]dl̃. The terms

J [Q̃1] and J [Q̃2] are evaluated numerically with COMSOL (see Appendix C.2 in
Bruna 2012 for more details).

A.1.4 Population-Level Fokker–Planck Equation

Combining (45) and (46), we obtain the first two terms of the asymptotic expansion
for I , which depends on both the channel width h and the elevation of the first particle
ỹ1 but is independent of the position of the second particle. Thus, we can drop the
first particle label (the subindex 1) for clarity of notation. Inserting this expansion
into (31), we obtain an equation for the first particle

∂p

∂t
(x, t) = ∇x · [∇x p − f(x)p

] + (N − 1)
(
ε−1 I (1) + I (2)

)
in Ω, (48)

which involves the marginal density p(x, t), the outer density q(x̂, t) and the channel
width h. This concludes the transformation T1 from N particles to one particle (see
Fig. 1).

A.2 Transformation T2: Reduction of the Number of Geometric Dimensions

Following a similar procedure to that for point particles in Sect. 2.2, we will re-
duce (48) into a one-dimensional effective equation along the axial direction. First,
integrating (28b) over Ω(x) for x ∈ ∂Ω , we obtain the following no-flux boundary
condition:

[∇xp − f(x)p
] · n̂ = 0 on ∂Ω. (49)

Analogously to the point-particles case, we use the narrow-domain variables (5) and
define p̂(x̂, t) = εp(x, t). With this rescaling, Eqs. (48) and (49) become
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ε2 ∂p̂

∂t
(x̂, t) = ∂

∂ŷ

(
∂p̂

∂ŷ
− εf2p̂

)
+ ε2 ∂

∂x̂

(
∂p̂

∂x̂
− f1p̂

)
+ (N − 1)ε2(I (1) + εI (2)

)
,

(50a)

∂p̂

∂x̂
= f1p̂ on x̂ = ±1

2
, (50b)

∂p̂

∂ŷ
= εf2p̂ on ŷ = ±h

2
, (50c)

where fi ≡ fi(x̂, εŷ). There is no need to expand the integral terms I (i) in terms of
the narrow-domain variables since these are written in terms of the inner variables
(35), which coincide with the narrow-domain variable for expressions independent
of the second particle’s coordinates.

Expanding p̂ in powers of ε and solving (50a)–(50c) gives, at leading order, that p̂

is independent of ŷ. As before, we introduce the effective one-dimensional densities
as p̂

(i)
e = ∫ h/2

−h/2 p̂(i) dŷ. Thus we have that p̂
(0)
e ≡ hp̂

(0)
e . At the next order,

p̂(1)(x̂, t) = f2(x̂,0)p̂(0)(x̂, t) ŷ + p̂(1)
e (x̂, t)/h. (51)

For clarity of notation, in the remaining of this section, we write fi(x̂,0) ≡ fi . In-
tegrating the second order of (50a) over the channel’s cross section and using (50c),
gives

∂p̂
(0)
e

∂t
(x̂, t) = ∂

∂x̂

(
∂p̂

(0)
e

∂x̂
− f1p̂

(0)
e

)
, (52)

where we have used that
∫ h/2
−h/2 I (1) dŷ = 0 [see Eqs. (45) and (47a)]. Note that this

equation coincides with the effective equation for point particles (7). It is at the next
order that the finite-size effects appear.

Repeating the same procedure of integrating with respect to ŷ the O(ε3) of (50a)–
(50c) and using (50c) to eliminate p̂(3) yields the following solvability condition:

∂p̂
(1)
e

∂t
(x̂, t) − ∂

∂x̂

(
∂p̂

(1)
e

∂x̂
− f1 p̂(1)

e

)
= (N − 1)

∫ h/2

−h/2
I (2) dŷ. (53)

Using (46) and (47a)–(47c), the cross-section integral of I (2) is

∫ h/2

−h/2
I (2) dŷ =

(
2q

∂2q

∂x̃2
1

− q2 ∂f1

∂x

)
M1(h) + 2

(
∂f1

∂y
− ∂f2

∂x

)
q2 M[Q̃2]

+ 2
√

2

[
q

∂2q

∂x̃2
1

−
(

∂q

∂x̃1

)2

− ∂f1

∂x
q2

]
M[Q̃1], (54)

where M1(h) = ∫ h/2
−h/2 μ1(h, ŷ)dŷ reads

M1(h) = πh − 4

3
+ Θ(1 − h)

[
2

3

(
2 + h2)

√
1 − h2 − 2h arccos(h)

]
, (55)
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Table 1 Dimension and
variables in each of the spaces
and subspaces

Dimension Variables Domain

Original problem d x Ω

Confined space k xc Ωc

Effective problem de xe Ωe

where Θ(x) is the Heaviside step function, and M[Q](h) = ∫ h/2
−h/2 J [Q](h, ŷ)dŷ.

Although Q̃1 and Q̃2 are only solved numerically, using information from their re-
spective problems (41) and (42) one can deduce analytical expressions for their in-
tegrals M[Q̃i], namely that M[Q̃1] = −M1(h)/(2

√
2) and M[Q̃2] = 0 (see Ap-

pendix C.3 in Bruna 2012). Using this, we find that

∫ h/2

−h/2
I (2) dŷ = ∂

∂x̃1

(
q

∂q

∂x̃1

)
M1(h). (56)

Because q is independent of the inner variables (x̃, ỹ1, ỹ2), we can write q(x̃1, t) =
qe(x̂, t)/h. Moreover, the normalization condition on P̂ gives that qe(x̂, t) =
p̂e(x̂, t) + O(ε). Therefore, the right-hand side of (56) becomes ∂

∂x̂
(p̂e

∂p̂e

∂x̂
)/h2.

Combining (52), (53), and (56) yields

∂p̂e

∂t
(x̂, t) = ∂

∂x̂

{[
1 + (N − 1)ε

M1(h)

h2
p̂e

]
∂p̂e

∂x̂
− f1(x̂,0)p̂e

}
, (57)

which coincides with the effective equation (10) for a two-dimensional narrow-
channel after writing αh ≡ M1(h)/h2; see (11).

A.3 Outline of Steps for Other Geometries

In this section, we indicate the key steps to derive the effective continuum Fokker–
Planck equation (10) for a general geometry, and in particular for the three-
dimensional cases (NC3) and (PP) presented in Sect. 2.3. First, we note below
relevant definitions that change with the problem dimension d and the number of
confined dimensions k (recall that de = d − k):

(i) Identify the number of confined and effective dimensions: the original position
vector is split into two components, x = (xe,xc) (see Table 1). For example, for
(NC3) xe = x and xc = (y, z), while for (PP) xe = (x, y) and xc = z.

(ii) Determine the confinement parameter(s): Next, we must choose an scaling for
the confined dimensions relative to the unconfined ones. In all cases considered
here, we made that simple by saying that all confined dimensions are of length H

relative to the unconfined ones, but there could be of different lengths, too, such
as the narrow channel of rectangular cross section mentioned briefly in Sect. 3.3.
Suppose that the confinement dimensions are H = (H1, . . . ,Hk) = O(ε). Then
the vector of confinement parameters is given by h = (h1, . . . , hk), with hi =
Hi/ε.
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Note that we are assuming that a confined dimension is always of order ε (the
particle’s diameter). However, this could also be generalized and introduce an
intermediate scaling (between ε and one).

(iii) Narrow-domain variables transformation: the generalization of the change of
variables (5) is

xe = x̂e, xc = εx̂c.

We write x̂ = (x̂e, x̂c). The one-particle and two-particle densities in the rescaled
domain are respectively defined as

p̂(x̂1, t) = εkp(x1, t), P̂ (x̂1, x̂2, t) = ε2kP (x1,x2, t).

The original domain Ω is mapped into the rescaled domain ω.
(iv) Apply the effective domain transformation: The T2 transformation to reduce the

original d-dimensional problem to a de-dimensional problem (cf. Sect. A.2) re-
quires the following rescaled densities

p̂e(x̂1, t) = Λp̂(x̂1, t), P̂e(x̂1, x̂2, t) = Λ2P̂ (x̂1, x̂2, t),

where

Λ =
k∏

i=1

hi. (58)

This factor is, in fact, equal to the volume of the rescaled domain ω (also
|ω| ≡ |ωc|). Recall it is introduced so that p̂e and P̂e are defined as densities.

(v) Evaluate the collision integral I : The evaluation of the contribution of the two-
particle interaction I reduces to computing one coefficient like M1(h) in (57) for
each of the unconfined dimensions. Suppose that all the unconfined dimensions
are symmetric. In general, it is equal to

M1(h) =
∫

ωc

μ1(h, x̂c)dx̂c, (59)

where x̂c are the confined coordinates of the first particle (it was simply ŷ in the
(NC2) [cf. (55)]. The function μ1(h, x̂c) is the integral of x̂2 over the contact
surface between two particles when the first one has coordinates (x̂e, x̂c). With-
out loss of generality, we can set x̂e ≡ 0e . In the rescaled problem, this surface is
a d-dimensional unit sphere centered at (0e, x̂c), and (possibly) intersected with
the confinement walls ∂ωc:

μ1(h, x̂c) =
∫

B(x̂c)∩ωc

x2 dS, (60)

where B(x̂c) is the unit ball, dS is the surface differential and x is the unconfined
dimension of this surface. Once M1 is computed, we use it for the nonlinear
coefficient of the effective Fokker–Planck equation. The generalization of the
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coefficient αh in (10) is given by

αh = 1

Λ
M1(h). (61)
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