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Abstract We modify the classical virus dynamics model by incorporating an im-
mune response with fixed or fluctuating vaccination frequencies and dosages to ob-
tain a system of impulsive differential equations for the virus dynamics of both the
wild-type and mutant strains. This model framework permits us to obtain precise
conditions for the virus elimination, which are much more feasible compared with
existing results, which require frequent vaccine administration with large dosage. We
also consider the corresponding impulsive optimal control problem to describe when
and how much of the vaccine should be administered in order to maximize levels
of healthy CD4+ T cells and immune response cells. A gradient-based optimiza-
tion method is applied to obtain the optimal schedule numerically. For a case study
when the CTL vaccine is administered in a period of one year, our numerical studies
support the optimal vaccination schedule consisting of vaccine administration three
times, with the first dosage strong (to boost the immune system), followed by a sec-
ond dosage shortly after (to strengthen the immune response) and then the third and
final dosage long after (to ensure the immune system can handle viruses rebound).
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1 Introduction

The development of an efficacious prophylactic vaccine that stimulates the cyto-
toxic T-lymphocyte (CTL) immune response represents the best hope for control
of human immunodeficiency virus (HIV) (Currie et al. 2006; Klausner et al. 2003;
McMichael and Hanke 2003). CD8 cytotoxic T lymphocytes (CTLs) constitute a ma-
jor component of the immune response. When HIV virus enters the body, it targets
the CD4+ T cells, which are referred to as “helper” T cells. These “helper” T cells
can be considered as “messengers” or the command center of the immune system:
they signal other immune cells that an invader (HIV virus) is to be fought. The im-
mune cells (virus-specific CTLs) then respond to this message and lyse infected cells
by recognizing viral peptide epitopes displayed on the cell surface and bound to class
I major histocompatibility complex (MHC) molecules (Smith 2004). The purpose of
HIV immunotherapy is then to retain high levels of CD4+ T cells and low levels of
viral load, along with, maintaining a positive population of CTLs so as to ensure that
if viral load does rebound, the immune system will be able to handle it. Identifica-
tion of a human immunodominant T-cell epitope (an epitope is the part of a protein
that’s recognized by the immune system) is integral to vaccine design and the op-
timization of assays for assessing vaccine efficacy for the immune system can then
lyse the infected cells by recognizing this particular epitope (Currie et al. 2006). Dif-
ferent strategies for HIV vaccine design have been proposed. For example, the study
(Rossio et al. 1998) proposed a method for inactivation viral particles with preserva-
tion of conformational and functional integrity of virion surface proteins. This study
showed that such inactivation virions should provide a promising candidate vaccine
antigen and a useful reagent for experimental probing. The work (Luo et al. 1998)
constructed chimeric fusion proteins using HIV-2 gag precursor protein to provide
potential HIV vaccine against various HIVs. Balb/C mice immunized by this fusion
protein can induce CTL activity against V3 peptide-stimulated target cells.

Mathematical models describing the interaction between the immune response and
the viral infection have been studied intensively; see Culshaw et al. (2004), Nowak
and McLean (1991), and references therein. Nowak and McLean (1991) established a
mathematical model of vaccination with escape mutants and concluded that the frac-
tion of HIV mutants that must be recognized by the immune response must exceed
a threshold, that is, 1 − 1/R, where R is the average number of escape mutants pro-
duced by any one virus strain. Meanwhile, the immunotherapy has a better chance of
success if applied earlier. However, most of these studies assume the vaccine is ad-
ministered continuously which, in clinical trials, is hard to implement due to patient
tolerance and financial burden.

Modeling study of pulse vaccination has recently gained much attention due to
some successful applications in the control of poliomyelitis and measles through-
out Central and South America (De Quadros et al. 1991; Sabin 1991). Among other
contributions, modeling studies show that pulse vaccination strategies can be distin-
guished from conventional ones in leading to disease eradication at relatively low
cost and tolerable side effects (Agur et al. 1993; Shulgin et al. 1998). Impulsive dif-
ferential equations arise very naturally from the description of such vaccine program.
For example, Smith and Schwartz (2008) modeled a CTL vaccine with fixed pulsing
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at regular intervals and concluded that the number of infected CD4+ T cells will be
driven toward zero, if the vaccine is sufficiently strong or is given sufficiently often.
This study, however, is based on an oversimplified assumption about the dynamics
of the CD4+ T cells and the virus, in particular, that the infected CD4+ T cells are
assumed to be produced at a constant rate. This assumption becomes unreasonable in
the earliest or latest stages of infection when the amount of free virus is not constant.
The results obtained by Smith and Schwartz (2008) under the constant production rate
assumption then may be too strong to be realized, because too big dosages and/or too
frequent vaccinations will cause serious side effects and/or toxicities to the individ-
ual. We extend the model by Smith and Schwartz (2008) to the classical HIV viral
dynamical models consisting of both the wild-type strain and the mutant strain with
CTL vaccine. We assume that cells infected with the mutant strain can be partially
controlled by CTLs, but this (partial) control is less efficient for the wild-type strain
based on the fact that HIV viruses can change their recognition sequence either via
mutation or antigenic drift to escape CTLs of the immune responses, as mentioned
in Nowak and McLean (1991). In our study, we consider not only fixed vaccination
intervals as in Smith and Schwartz (2008), but varying vaccination intervals, which is
motivated by the fact that, in clinical trials, a schedule to obtain the optimal therapeu-
tic results may be the ones with fluctuating vaccination dates and/or vaccine dosages.

A goal of our work is then to study the threshold viral dynamics of the impulsive
periodic system to determine the critical vaccination level (a combination of both vac-
cination frequency and dosage) to eradicate the viruses. We also examine the inter-
actions of the two strains and the effects of escape mutants on the vaccine treatment.
The second goal of our work is to consider the vaccine optimal treatment problem by
formulating it as an impulsive optimal control problem in which the benefit based on
levels of healthy CD4+ T cells and immune response cells are maximized. Our focus
here is to design an optimal vaccination schedule including when and how much of
the vaccine to administer so to have a prolonged and effective immune response.

The optimal control problem encountered in our framework is quite different from
the conventional ones, as the control variables in our framework are not continuous
in time due to instantaneous vaccination. This has been referred to as an optimal
impulsive control problem. We utilize a generalized variational equation to compute
the derivatives of the objective function with respect to the control variables and then
apply some gradient based numerical methods to search for the maximum of the
objective function. Note that classic within-host viral dynamical model is formulated
on the basis of assumption of constant coefficients on average at the individual level.
But in real-world situations, the viral dynamical coefficients may vary due to patient
specificity and variability, which may affect the results in clinical practice. We will
employ sensitivity analysis to examine the effects of patient variability on the critical
vaccination levels.

The rest of this paper is organized as follows. In Sect. 2, the model with vaccina-
tion is presented as a hybrid system of ordinary differential equations and impulsive
differential equations. The threshold viral dynamics is then given in Sect. 3 using
the basic reproduction number as a threshold parameter. Further, the interactions of
the two strains and the effects of escape mutants on the vaccine treatment are stud-
ied. In Sect. 4, the optimal impulsive control problem is formulated and solved using
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gradient-based numerical methods to determine when and how much of the vaccine
to administer. Some remarks and discussions are included in the final section.

2 The Virus Dynamics Model with Vaccine

We modify the classical virus dynamics model by incorporating an immune response
(Konrad et al. 2011; Lou et al. 2011; Rong et al. 2007) with fixed or fluctuating
vaccination times and dosages. In what follows, the susceptible CD4+ T cells are
denoted by T . We consider two virus strains, the wild-type strain Vw and the mutant
strain Vr . CD4+ T cells infected with wild-type and mutant strains are denoted by
Tw , and Tr , respectively. The density of the specialized CTL cells is denoted by C.
We assume that, during the course of reverse transcription of viral RNA into proviral
DNA, cells infected by the wild-type strain mutate at rate p, which is strictly positive.
We ignore mutations from the mutant strain back to the wild-type (Wodarz and Lloyd
2004). We further assume that mutant variants arise with probability q during the
course of wild-type viral replication.

Susceptible T cells are produced from precursors with a constant rate λ and die
with rate δT . Susceptible T cells are infected by the wild-type stain and the mutant
strain at rates βw and βr , respectively. Nw and Nr (burst sizes) are the total number of
virus particles released by productively infected cells infected by the wild-type strain
and mutant strain over the lifespan with the same mean 1/δI . Virus strains Vw and
Vr are assumed to be cleared with the same rate δV . Infected cells are also lysed by
the body’s defensive CTLs with the rate pw and pr . CTLs proliferate at the presence
of the infected cells at rate α and die at rate δC . Continuous vaccination is not a
realistic way of administering a vaccine, so in practical terms only pulse vaccination
makes sense. At vaccination times ti , i = 1,2, . . . , vaccination increases CTL cells
by a amount ci, i = 1,2, . . . . The virus dynamics can then be modeled using the
following impulsive differential equations:

for t �= ti , the virus dynamics is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′(t) = λ − δT T − βwT Vw − βrT Vr,

T ′
w(t) = (1 − p)βwT Vw − δI Tw − pwTwC,

V ′
w(t) = (1 − q)NwδITw − δV Vw,

T ′
r (t) = pβwT Vw + βrT Vr − δI Tr − prTrC,

V ′
r (t) = qNwδITw + NrδITr − δV Vr ,

C′(t) = α(Tw + Tr)C − δCC;

(1)

at t = ti , the CTL cells are given by

C
(
t+i

) = C(ti) + ci . (2)

Here, C(ti) is the CTL concentration immediately before the vaccination, and C(t+i )

is the CTL concentration immediately after the vaccination. The model formulation
is illustrated in Fig. 1.
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Fig. 1 Susceptible T cells are produced at a constant rate λ and die at rate δT . T cells infected by the
wild-type strain and the mutant strain produce new virus particles at respective rates Nw and Nr . Infected
T cells die at rate δI . CTL cells proliferate at the presence of infected T cells at rate α. Due to mutation, a
proportion p of T cells infected by the wild type become mutant. Mutant variants arise with rate q during
the course of wild-type viral replication. CTLs then kill productively infected T cells at rates pw and pr ,
respectively

The mutant strain possesses a fitness cost resulting in a reduced infectivity, so we
assume that βw > βr (Smith 2004; Wahl and Nowak 2000). The wild-type virus is
assumed to have higher replication rate, that is, Nw > Nr (Wodarz and Lloyd 2004).
During in vitro experiments, in which the ability of the mutants Gag p11C, Env TL9,
Env p41A, and Pol p68A to bind to MHC class I molecule Mamu-A*01 and be recog-
nized by epitope-specific CTLs were assessed, partial CTL responses against mutant
viruses were observed (Barouch et al. 2002), which implies that pr > 0. HIV viruses
can change their recognition sequence either via mutation or antigenic drift to escape
CTLs of the immune responses, which also implies pw > pr (Konrad et al. 2011).

3 Threshold Dynamics with Fixed Vaccination Intervals

When the vaccine is administered at regular time intervals with fixed dosage, that is,
ti+1 − ti = τ , ci = C̃, the hybrid system (1)–(2) admits a virus-free periodic solution
P0 = (T0,0,0,0,0,C∗(t)), where T0 = λ/δT , and

C∗(t) = C̃e−δC(t−iτ )

1 − e−δCτ
, iτ < t ≤ (i + 1)τ.

Using the same argument as for Lemma 2.2 (Yang and Xiao 2012), by calculating the
stroboscopic map of the impulsive periodic orbit and applying the Floquet theory, we
can show that C∗(t) is the globally asymptomatically stable periodic solution of the
impulsive periodic system

dC

dt
= −δCC, t �= iτ,

C
(
iτ+) = C(iτ) + C̃, t = iτ.

We now calculate the basic reproduction number for the impulsive system (1)–(2)
by using the next infection operator for continuous periodic systems proposed in
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Bacaër (2007), Wang and Zhao (2008) and the methods developed for the piecewise
continuous periodic system in Yang and Xiao (2010, 2012). Define two matrices at
the virus-free periodic solution P0

F =

⎛

⎜
⎜
⎜
⎜
⎝

0 (1 − p)βwT0 0 0

0 0 0 0

0 pβwT0 0 βrT0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

G(t) =

⎛

⎜
⎜
⎜
⎜
⎝

δI + pwC∗(t) 0 0 0

−(1 − q)NwδI δV 0 0

0 0 δI + prC
∗(t) 0

−qNwδI 0 −NrδI δV

⎞

⎟
⎟
⎟
⎟
⎠

.

Let Y(t, s), t ≥ s be the evolution operator of the linear τ -periodic system

dy

dt
= −G(t)y(t).

That is, for each s ∈ R, the 4 × 4 matrix Y(t, s) satisfies

dY (t, s)

dt
= −G(t)Y (t, s), ∀t ≥ s, Y (s, s) = I,

where I is the 4 × 4 identity matrix.
Define the next infection operator L on Cω:

(Lφ)(t) = lim
a→−∞

∫ t

a

Y (t, s)F (s)φ(s) ds,

∀t ∈ (
iτ, (i + 1)τ

]
, i = 1,2, . . . , φ ∈ Cω,

where Cω is defined as the ordered Banach space of all τ -periodic functions from
R to R

4, equipped with the maximum norm ‖.‖, and the positive cone C+
ω := {φ ∈

Cω : φ(t) ≥ 0,∀t ∈ R}. We then define the basic reproduction number as the spectral
radius of L, that is,

R0 := ρ(L).

The results in Wang and Zhao (2008) and Yang and Xiao (2010, 2012) ensure
that the defined basic reproduction number is a threshold parameter. Assume that
ΦF−G(t) is the principle fundamental solution to the linear system x′ = (F −G(t))x.
Then we have

(i) R0 = 1 if and only if ρ(ΦF−G(τ)) = 1;
(ii) R0 > 1 if and only if ρ(ΦF−G(τ)) > 1;

(iii) R0 < 1 if and only if ρ(ΦF−G(τ)) < 1;
(iv) The “virus-free” periodic solution P0 = (λ/δT ,0,0,0,0,C∗(t)) is asymptoti-

cally stable if R0 < 1, and unstable if R0 > 1.
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The basic reproduction number for the hybrid system (1)–(2) can essentially be in-
terpreted in terms of the basic reproduction numbers for the wild-type and the mutant
strains. Namely, we partition the matrices as follows:

F − G(t) =

⎛

⎜
⎜
⎜
⎝

Fw − Gw(t)
0 0

0 0

0 pβwT0

qNwδI 0
Fr − Gr(t)

⎞

⎟
⎟
⎟
⎠

,

where

Fw =
(

0 (1 − p)βwT0

0 0

)

, Gw(t) =
(

δI + pwC∗(t) 0

−(1 − q)NwδI δV

)

,

Fr =
(

0 βrT0

0 0

)

, Gr(t) =
(

δI + prC
∗(t) 0

−NrδI δV

)

.

Then we define the basic reproduction number for the wild-type strain as Rw
0 :=

ρ(Lw), where the next infection operator Lw is defined as

(Lwφ)(t) = lim
a→−∞

∫ t

a

Yw(t, s)Fw(s)φ(s) ds,

∀t ∈ (
iτ, (i + 1)τ

]
, i = 1,2, . . . , φ ∈ Cω,

Yw(t, s) is the evolution operator of the τ -periodic system y′(t) = Gw(t)y(t).
Similarly, the basic reproduction number for the mutant strain is Rr

0 := ρ(Lr),
with the next infection operator Lr defined as

(Lrφ)(t) = lim
a→−∞

∫ t

a

Yr (t, s)Fr(s)φ(s) ds,

∀t ∈ (
iτ, (i + 1)τ

]
, i = 1,2, . . . , φ ∈ Cω,

Yr(t, s) is the evolution operator of the τ -periodic system y′(t) = Gr(t)y(t).
It follows that ρ(ΦF−G(τ)) = max{ρ(ΦFw−Gw(τ)), ρ(ΦFr−Gr (τ ))}. Then R0 < 1

if and only if Rw
0 < 1 and Rr

0 < 1, R0 > 1 if and only if Rw
0 > 1 or Rr

0 > 1. From
the algorithm in Wang and Zhao (2008) and Yang and Xiao (2010, 2012) by consid-
ering an auxiliary linear impulsive periodic system w′(t) = (−G(t) + F

χ
)w, then R0

(similarly for Rw
0 and Rr

0) is the solution of the polynomial ρ(U(τ,0, χ)) = 1, where
U(τ,0, χ) is the evolution operator of this auxiliary system. Then we can further
observe that

R0 = max
{
Rw

0 ,Rr
0

}
.

From the aforementioned, it can be seen that R0 and ρ(ΦF−G(τ)) (similarly for
Rw

0 and ρ(ΦFw−Gw(τ)), Rr
0 and ρ(ΦFr−Gr (τ ))) can both serve as the threshold pa-

rameters for virus eradication. However, R0 = 1 and ρ(ΦF−G(τ)) = 1 may corre-
spond to different critical vaccine thresholds, and from the biological meaning of the
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Fig. 2 (A) The progression of the basic reproduction number with respect to the vaccination interval τ and
vaccine dosage C̃. (B) PRCC for the basic reproduction number R0 when C̃ = 50 cells/µL, τ = 20 days.
All the parameters came from Latin Hypercube sampling

basic reproduction number, R0 gives the exact critical vaccine thresholds for virus
eradication.

From the definition of the basic reproduction number, it can be observed that R0

(similarly for Rw
0 and Rr

0) is the function of the vaccine dosage C̃ and vaccination
interval τ . Numerical simulations (summarized in Fig. 2(A)) indicate that there ex-
ist a threshold vaccination interval (τ ∗) and a threshold vaccine dosage (C̃∗) such
that if the vaccine is administered with dosage bigger than C̃∗ and/or administered
more frequently (τ < τ ∗), the basic reproduction number will fall down below unity.
Apparently, the results obtained here are easier to be realized than that obtained by
Smith and Schwartz (2008) where the vaccine should be sufficiently strong and/or
be given sufficiently often and no explicit thresholds were obtained. The parameters
for the virus dynamics model are taken from Konrad et al. (2011), Lou et al. (2011),
Smith and Schwartz (2008) and references therein, which are listed in Table 1.

In real-world situations, the viral dynamical coefficients as listed in Table 1 may
vary due to patient variability, we then employ partial rank correlated coefficient
(PRCC) (Marino et al. 2008) to see to which parameter the basic reproduction num-
ber is sensitive when parameters vary. Fix the vaccine dosage C̃ = 50 cells/µL, vac-
cination interval τ = 20 days. We chose a uniform distribution as in (Marino et al.
2008) for all input parameters with the mean value listed in Table 1. PRCC results
in Fig. 2(B) show that the first six with most significant impact on R0 are the natural
death rate of the uninfected cells δT , the source of the uninfected cells from precur-
sors λ, the burst sizes Nw and Nr , and the rates of infection βw and βr . It is reasonable
that both the infection rates βw and βr , and the burst sizes Nw and Nr play important
roles for the infection. Larger λ and smaller δT leads to more susceptible uninfected
CD4+ T cells, which may result in larger R0.

In the following, we show explicitly how the vaccine level, described implicitly
by the basic reproduction number, affects the elimination and the persistence of the
two virus strains.
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Table 1 Parameter Values. We have mentioned in Sect. 2 that the wild-type strain is more infectious
and has a higher replication rate than the mutant strain, that is, βw > βr , and Nw > Nr . Here, we take
βr = 0.95βw and Nr = 0.8Nw to reflect this fact

Parameter Description Value Reference

λ uninfected cell activation
rate

20 cells/ml/day Smith and Schwartz (2008)

δT uninfected cell death rate 0.1 day−1 Konrad et al. (2011)

δI infected cell death rate 0.5 day−1 Konrad et al. (2011)

δV death rate of virus 3 day−1 Konrad et al. (2011)

δC death rate of CTLs 0.2 day−1 Smith and Schwartz (2008)

βw wild-type infection rate 2.4 × 10−5 cells/ml/day Konrad et al. (2011)

βr mutant infection rate 2.28 × 10−5 cells/ml/day
(0.95βw)

Estimated

pw wild-type strain clearance
rate by CTLs

0.05 cells/ml/day Konrad et al. (2011)

pr mutant strain clearance
rate by CTLs

0.04 cells/ml/day Konrad et al. (2011)

α CTL proliferation rate 0.067 cells/ml/day Smith and Schwartz (2008)

Nw burst size of the wild-type
infected T cells

2500 Rong et al. (2007)

Nr burst size of the mutant
infected T cells

2000 (0.8Nw) Estimated

p mutant rate during T cells
infection

0.001 Lou et al. (2011)

q mutant rate during virus
production

0.001 Lou et al. (2011)

3.1 Sufficient Vaccination

The following result shows that if the vaccine is at a high level, leading to the basic
reproduction number below unity, then both strains can be cleared out.

Theorem 3.1 If R0 < 1, then the “virus-free” periodic solution P0 = (λ/δT ,0,0,0,

0,C∗(t)) of the hybrid system (1)–(2) is globally asymptotically stable.

Proof We have already described how to obtain the local stability of the “virus-free”
periodic solution P0 when R0 < 1 is satisfied, so it is sufficient to prove that P0 is
globally attractive if R0 < 1.

By the first equation of system (1) and the nonnegativity of the solutions, we have
T ′(t) ≤ λ − δT T , and C′(t) ≥ −δCC, t �= ti . Then a comparison argument implies
that there exist a time t1 > 0 and a positive constant ε1 such that T (t) ≤ λ/δT + ε1,
t ≥ t1. Since the periodic solution C∗(t) of the CTLs is globally asymptomatically
stable, there exist a time t2 = n0τ ≥ t1 and a positive constant ε2 such that C(t) ≥
C∗(t) − ε2 for t ≥ t2.
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Then the second to the fifth equations of system (1) yields for t ≥ t2 that

T ′
w(t) ≤ (1 − p)βw(T0 + ε1)Vw − δI Tw − pwTw(C∗(t) − ε2),

V ′
w(t) = (1 − q)NwδITw − δV Vw,

T ′
r (t) ≤ pβw(T0 + ε1)Vw + βr(T0 + ε1)Vr − δI Tr − prTr(C

∗(t) − ε2),

V ′
r (t) = qNwδITw + NrδI Tr − δV Vr .

(3)

Consider an auxiliary system

dz(t)

dt
= (

F − G(t) + M(ε1, ε2)
)
z(t), (4)

where z = (z1, z2, z3, z4)
T , and the matrix

M(ε1, ε2) =

⎛

⎜
⎜
⎜
⎜
⎝

pwε2 (1 − p)βwε1 0 0

0 0 0 0

0 pβwε1 prε2 βrε1

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

By Zhang and Zhao (2007) (Lemma 2.1), there exits a positive, τ -periodic
function v(t), such that z(t) = eμ1t v(t) is a solution of system (4), where μ1 =
1
τ

lnρ(ΦF−G+M(ε1,ε2)(τ )). Since R0 < 1, we have ρ(ΦF−G(τ)) < 1. Due to the con-
tinuity of ρ(ΦF−G+M(ε1,ε2)(τ )), we can choose sufficiently small ε1, and ε2 such
that ρ(ΦF−G+M(ε1,ε2)(τ )) < 1, that is μ1 < 0. Therefore, we have z(t) → 0 as
t → ∞. For any nonnegative initial value (Tw(t2),Vw(t2), Tr(t2),Vr(t2))

T of sys-
tem (3), there exits a z∗ large enough such that

(
Tw(t2),Vw(t2), Tr (t2),Vr(t2)

)T ≤ z∗(v1(0), v2(0), v3(0), v4(0)
)T

.

Then a comparison argument yields that

(
Tw(t),Vw(t), Tr (t),Vr(t)

)T

≤ z∗eμ1(t−t2)
(
v1(t − t2), v2(t − t2), v3(t − t2), v4(t − t2)

)T
, ∀t ≥ t2.

Hence, we have Tw(t) → 0,Vw(t) → 0, Tr(t) → 0,Vr(t) → 0 as t → ∞. By the first
and last equations of system (1), we have T → λ/δT and C(t) → C∗(t) as t → ∞.
This completes the proof. �

Corollary 3.1 If the basic reproduction number for the wild-type virus is smaller
than one, that is, Rw

0 < 1, then the wild-type strain cannot persist.

Proof From the structure of the hybrid system (1)–(2), we can see that the equations
for the wild-type strain Tw and Vw are not influenced by the mutant strain variables
Tr and Vr . Then we can consider the system involving only Tw and Vw , and apply
the argument for Theorem 3.1 to obtain the result. �
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Remark 3.1 Theorem 3.1 indicates that if the vaccine is at a high level (big dosage
and/or small vaccination interval) such that the basic reproduction number R0 < 1,
then both strains can be eliminated. While Corollary 3.1 indicates that if the basic
reproduction number for the wily-type strain Rw

0 < 1, then the wily-type strain can
be cleared out. However, this is not the case when the basic reproduction number for
the mutant strain Rr

0 < 1, as shall be shown in the next subsection.
If the vaccination is not sufficient enough, leading to the basic reproduction num-

ber for the wild-type strain and/or the mutant strain larger than unity, that is,

⎧
⎪⎨

⎪⎩

Rw
0 ≤ 1, Rr

0 > 1,

Rw
0 > 1, Rr

0 > 1,

Rw
0 > 1, Rr

0 ≤ 1,

then for all of these cases, the wild-type strain and the mutant strain not only com-
pete with each other but may benefit from each other, as will be shown in the next
subsection.

3.2 Insufficient Vaccination

Under an insufficient vaccination schedule, which is unable to drive the basic repro-
duction numbers for either or both of the two strains below unity, we can see that at
least the mutant strain will persist. We start with the case when the vaccine is at a
level such that the basic reproduction number for the mutant strain is larger than one.

Theorem 3.2 If the basic reproduction number for the mutant strain Rr
0 > 1, then

there exists a positive constant ε such that for every given value (T 0, T 0
w,V 0

w,T 0
r ,

V 0
r ,C0) ∈ R+ × R2+ × Int(R2+) × R+, the solution of system (1)–(2) satisfies

lim inft→∞(Tr (t),Vr(t)) > ε and system (1)–(2) admits at least one nontrivial pe-
riodic solution (T (t),0,0, Tr (t),Vr(t),C(t)).

Define

X = R6+, X0 = {
(T ,Tw,Vw,Tr ,Vr ,C) ∈ X : Tr > 0,Vr > 0

}
,

∂X0 := X\X0.

Let P : R6+ → R6+ be the Poincaré map associated with system (1)–(2), satisfying
P(x0) = u(τ, x0), ∀x0 ∈ X, u(t, x0) is the unique solution of (1)–(2) with u(0, x0) =
x0. It can be seen that

P m
(
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) = u(mτ,

(
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0), ∀m ≥ 0.

Clearly, the fixed point of the Poincaré map P in X is M1 = (T0,0,0,0,0,C∗(0)).

Lemma 3.1 If the basic reproduction number of the mutant strain Rr
0 > 1, then

there exists a δ0 > 0 such that for all x0 ∈ X0 with ‖x0 − M1‖ ≤ δ0, where x0 =
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(T 0, T 0
w,V 0

w,T 0
r , V 0

r ,C0) ∈ X0, we have

lim sup
m→∞

d
(
P m

(
x0),M1

) ≥ δ0. (5)

We defer the proof of this lemma to the Appendix. With this lemma, we can now
give the proof of Theorem 3.2.

Proof of Theorem 3.2 We will show that P is uniformly persistent with respect to
(X0, ∂X0). It is easy to see from system (1)–(2) that X and X0 are positively invari-
ant. Moreover, ∂X0 is a relatively closed set in X. Due to the uniform and ultimate
boundedness of the solutions of system (1)–(2) (refer to Yang and Xiao 2012), the
Poincaré map P admits a global attractor in X.

Set

M∂ = {(
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) ∈ ∂X0 : P m

(
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) ∈ ∂X0,

∀m ≥ 0
}
.

We now show that

M∂ = {
(T ,0,0,0,0,C) : T ≥ 0,C ≥ 0

}
. (6)

Consider a given (T 0, T 0
w,V 0

w,T 0
r , V 0

r ,C0) ∈ ∂X0\{(T ,0,0,0,0,C) : T ≥ 0,

C ≥ 0}. We take T 0
r = 0, T 0

w,V 0
w,V 0

r nonzero as an example. By the fourth equa-
tion of system (1), we can see that

T ′
r (0) = pβwT (0)Vw(0) + βrT (0)Vr(0) > 0.

This implies that for t > 0 sufficiently small, (T ,Tw,Vw,Tr ,Vr ,C) /∈ ∂X0 and
(T ,Tw,Vw,Tr ,Vr ,C) /∈ M∂ . Then the converse proposition indicates that (6) holds.

Clearly, there is exactly one fixed point of P in M∂ , which is M1 = (T0,0,0,0,

0,C∗(0)). Lemma 3.1 implies that M1 is isolated in X and Ws(M1) ∩ X0 = ∅.
Clearly, each orbit in M∂ converges to M1, and M1 is acyclic in M∂ . By Theo-
rem 1.3.1 in Zhao (2003), P is uniformly persistent with respect to (X0, ∂X0). By
Theorem 3.1.1 in Zhao (2003), the solutions of (1)–(2) are uniformly persistent
with respect to (X0, ∂X0). If one (or more) of (T 0

r , V 0
r ) is (or are) larger than 0,

it can be easily obtained that Tr(t) > 0,Vr(t) > 0,∀t > 0. Hence, for a given ini-
tial value (T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) ∈ R+ × R2+ × Int(R2+) × R+, lim inft→∞(Tr(t),

Vr(t)) > ε.
Furthermore, Theorem 1.3.6 in Zhao (2003) implies that P has a fixed point

x∗ ∈ X0. Thus, the solution of system (1)–(2) through x∗ is a nontrivial periodic
solution with Tr(t) > 0,Vr(t) > 0. This completes the proof. �

Corollary 3.2 If the vaccine is at a low level such that Rw
0 > 1, and Rr

0 > 1, then
there exists a positive constant ε such that for any given initial value (T 0, T 0

w,V 0
w,T 0

r ,

V 0
r ,C0) ∈ R+ × Int(R4+) × R+, the solution of system (1)–(2) satisfies

lim inft→∞(Tw(t),Vw(t), Tr(t),Vr(t)) > ε and system (1)–(2) admits at least one
positive periodic solution (T (t), Tw(t),Vw(t), Tr(t),Vr(t),C(t)).
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The proof of Corollary 3.2 is similar to that for Theorem 3.2, using X0 =
{(T ,Tw,Vw,Tr ,Vr ,C) ∈ X : Tw > 0,Vw > 0, Tr > 0,Vr > 0}.

Remark 3.2 Theorem 3.2 and Corollaries 3.1, 3.2 indicate that if the basic reproduc-
tion numbers for the wild-type strain Rw

0 < 1 and for the mutant strain Rr
0 > 1, then

the mutant strain will out-compete the wild-type strain and dominate. These results
also show that both strains persist if Rw

0 > 1, and Rr
0 > 1.

Notice that if the basic reproduction number for the wild-type strain is less than
one, then the wild-type strain is cleared out. However, this is not the case when the
basic reproduction number for the mutant strain is less than one. If the vaccine results
in Rw

0 > 1, the next result shows that no matter what the size of Rr
0 is, both of the two

strains can persist.

Theorem 3.3 If the basic reproduction number for the wild-type strain Rw
0 > 1,

then there exists a positive constant � such that for every given initial value
(T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) ∈ R+ × Int(R2+)×R2+ ×R+, the solution of system (1)–(2)

satisfies

lim inf
t→∞

(
Tw(t),Vw(t), Tr(t),Vr(t)

)
> �,

and system (1)–(2) admits at least one positive periodic solution (T ∗(t), T ∗
w(t),V ∗

w(t),

T ∗
r (t),V ∗

r (t),C∗(t)).

Proof Define

X = R6+, Y0 = {
(T ,Tw,Vw,Tr ,Vr ,C) ∈ X : Tw > 0,Vw > 0

}
,

∂Y0 := X\Y0.

Let P be the Poincaré map associated with system (1)–(2) as aforedefined, and set

M̄∂ = {(
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) ∈ ∂Y0 : P m

(
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0) ∈ ∂Y0,

∀m ≥ 0
}
.

We now show that

M̄∂ = {
(T ,0,0, Tr ,Vr ,C) : T ≥ 0, Tr ≥ 0,Vr ≥ 0,C ≥ 0

}
. (7)

We consider any (T 0, T 0
w,V 0

w,T 0
r , V 0

r ,C0) ∈ ∂Y0\{(T ,0,0, Tr ,Vr ,C) : T ≥ 0, Tr ≥
0,Vr ≥ 0,C ≥ 0}, but focus on the case T 0

w = 0,V 0
w �= 0 as an example. By the second

equation of system (1) we can see that

T ′
w(0) = (1 − p)βwT (0)Vw(0) > 0.

This implies that for t > 0 sufficiently small, (T ,Tw,Vw,Tr ,Vr ,C) /∈ ∂Y0, then
(T ,Tw,Vw,Tr ,Vr ,C) /∈ M̄∂ . Then the converse proposition indicates that (7) holds.

For the case when Rr
0 > 1, the results follow from Corollary 3.2. We now concen-

trate on the case when Rr
0 < 1. We show that under the condition Rr

0 < 1, the solutions



738 Y. Yang et al.

of the hybrid system (1)–(2) initiating from M̄∂ converge to (T0,0,0,0,0,C∗(t)). For
the initial values from M̄∂ , it follows that Tw(t) = Vw(t) = 0, then the hybrid system
(1)–(2) can be reduced to the following:

for t �= ti :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T ′(t) = λ − δT T − βrT Vr,

T ′
r (t) = βrT Vr − δI Tr − prTrC,

V ′
r (t) = NrδI Tr − δV Vr,

C′(t) = αTrC − δCC,

(8)

at t = ti :

C
(
t+i

) = C(ti) + ci . (9)

It can be deduced, by applying the method in Theorem 3.1, that if Rr
0 < 1 then the

solutions of system (8)–(9) satisfy

(
T (t), Tr(t),Vr(t)

) → (
T0,0,0,C∗(t)

)
,

which then indicates that each orbit in M̄∂ converges to M1.
Then using similar methods as that in Theorem 3.2, we can obtain that there exists

a positive constant �1 such that for a given initial value (T 0, T 0
w,V 0

w,T 0
r , V 0

r ,C0) ∈
R+ × Int(R2+) × R2+ × R+, the solution of system (1)–(2) satisfies

lim inf
t→∞

(
Tw(t),Vw(t)

)
> �1.

Due to the structure of system (1), we can see that Tw(t) > 0 and Vw(t) > 0 indicates
Tr(t) > 0, and Vr(t) > 0. Then it follows that there exists �2 > 0 such that

lim inf
t→∞

(
Tr(t),Vr(t)

)
> �2.

Let � = max{�1, �2}, we obtain the coexistence for both strains. Also, Theorem 1.3.6
in Zhao (2003) ensures the existence of a positive periodic solution. �

We summarize in Table 2 the results obtained,indicating to see elaborately the out-
competition and/or the benefit of the two strains with different levels of vaccination
leading to different basic reproduction numbers Rw

0 and Rr
0.

We present in Fig. 3 the temporal evolution of the two virus strains at different
levels of vaccination which results in different sizes of Rw

0 and Rr
0. It can be seen

that high vaccination level yields eradication of the two strains, while intermediate
and low vaccine levels may result in the competition or even cooperative of the two
strains.

4 Optimal Timing and Dosage

In clinical trials, optimal vaccination timing and vaccine dosage are crucial for the
best therapeutic results while avoiding the toxicities as much as possible. To describe
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Table 2 The progression of the two strains with respect to different basic reproduction numbers Rw
0 and

Rr
0

Sizes of Rw
0 and Rr

0 Results

Wild-type Mutant

Rw
0 < 1,Rr

0 < 1 Eliminated Eliminated

Rw
0 < 1,Rr

0 > 1 Eliminated Persist

Rw
0 > 1,Rr

0 < 1 Persist Persist

Rw
0 > 1,Rr

0 > 1 Persist Persist

Fig. 3 Simulated time courses of the viruses with sufficient and insufficient levels of vaccine. Parameter
values are shown in Table 1. (A) At high levels of vaccine with Rw

0 = 0.8586 < 1 and Rr
0 = 0.7618 < 1,

both strains can be cleared out. (B) At intermediate levels of vaccine with Rw
0 = 0.4288 < 1 and

Rr
0 = 1.5231 > 1, the mutant strain out-competes and dominates. (C) At intermediate levels of vaccine

with Rw
0 = 1.3534 > 1 and Rr

0 = 0.9793 < 1, the wild-type strain benefits the mutant strain, such that the
two strains can persist. (D) At low levels of vaccine with Rw

0 = 1.6289 > 1 and Rr
0 = 1.1722 > 1, both

strains persist

this optimal control problem, we reformulate the vaccination program as the sum of
some Dirac-delta functions to represent a dosage ci vaccinated at time ti , with N as
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the total number of vaccinations in the treatment period, that is,

u(t) =
N∑

i=1

ciδ(t − ti ).

As such, we can rewrite the hybrid system (1)–(2) as

T ′(t) = λ − δT T − βwT Vw − βrT Vr,

T ′
w(t) = (1 − p)βwT Vw − δI Tw − pwTwC,

V ′
w(t) = (1 − q)NwδITw − δV Vw,

T ′
r (t) = pβwT Vw + βrT Vr − δI Tr − prTrC,

V ′
r (t) = qNwδITw + NrδITr − δV Vr ,

C′(t) = α(Tw + Tr)C − δCC + u(t).

(10)

There have been intensive studies about optimal controls for HIV chemother-
apy; see Culshaw et al. (2004), Fister et al. (1998), Kirschner et al. (1997), Wein
et al. (1997), and references therein. In these studies, the control function u(t)

is continuous in time, and the control problem is referred to as a continuous
control problem. For continuous control problems, there are some standard theo-
ries, notably the Pontryagin maximum principle (PMP) (Fleming and Rishel 1975;
Pontryagin et al. 1986). This principle involves solving the associated Hamiltonian
system, so the optimal control u∗ in terms of the state variables and the adjoint vari-
ables can be obtained. The optimal control u∗ can then be obtained by solving a
two-point initial-boundary value problem numerically.

Here, we consider a special class of optimal control problems in which the dynam-
ical system (10) involves a finite number of switching times ti , together with a state
jump ci, i = 1, . . . ,N , at each of these switching times. These optimal control prob-
lems are referred to as optimal impulsive control problems. Optimal control problems
for general impulsive systems are difficult to study (Bensoussan and Lions 1984),
though some progress has been achieved for the existence of solutions (Barles 1985;
Li and Yong 1995 and references therein). A computational method was developed
in Liu et al. (1998) to solve this class of impulsive control problems by transforming
them into optimal parameter selection problems. We will use this method, but first let
us reformulate the optimal impulsive control problem.

Consider a vaccine procedure according to the schedule

S = (ξ, c) =
{

(ti , ci) : i = 1, . . . ,N,0 ≤ t1 ≤ t2 ≤ · · · ≤ tN ≤ tfinal,

N∑

i=1

ci ≤ Ctot

}

,

in a treatment period of time tfinal. Let Γ be the space of the schedules. We place
a constraint on the cumulative vaccine dosage Ctot, and hence the optimal control
problem can be defined as follows.

Problem (P) Subject to the system (10) with the initial condition (T 0, T 0
w, ,V 0

w,

T 0
r V 0

r ,C0), find a schedule S = (ξ, z) ∈ Γ such that the objective function, the total
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CD4+ T cells and CTLs during the treatment period

J (ξ, c) = J (t1, t2, . . . , tN , c1, c2, . . . , cN) =
∫ tfinal

0

(
T (t) + C(t)

)
dt (11)

can be maximized.
We seek an optimal pair (ξ∗, c∗) = (t∗1 , t∗2 , . . . , t∗N, c∗

1, c∗
2, . . . , c∗

N), such that

J
(
ξ∗, c∗) = max

{
J (ξ, c) | (ξ, c) ∈ Γ

}
.

The optimal control problem (P) is a finite dimensional optimization problem.
In fact, the control variable space Γ can be clearly parameterized by a subset of
R2N . Problem (P) cannot be solved directly by using available optimal control or
optimization techniques. The states T (t) and C(t) are functions of t , ti , and ci since
they depend on the vaccination times ti and vaccine dosage ci . Note that, in general,
a close form describes the dependence of the objective function on its variables is
not available. Our goal is to compute the derivatives of the objective function with
respect to (ti , ci), i = 1, . . . ,N , and then to apply gradient based numerical methods
to search for the maximum of the objective function.

We first show the existence of the optimal solution for Problem (P).

4.1 Existence of an Optimal Solution for Problem (P)

To use the result, Theorem III.4.1 from Fleming and Rishel (1975) about the existence
of an optimal solution, we must check the following properties:

(i) The control variable space Γ is compact;
(ii) The function S → J (S) is continuous.

The space Γ is obviously compact, the continuity of the objective function J (S)

with respect to the control space S can be obtained by transforming the model (10) to
the equivalent system with the control variables (ti , ci), i = 1, . . . ,N as the parame-
ters, suggested by Liu et al. (1998).

Let X = (T ,Tw,Vw,Tr ,Vr ,C)T and rewrite system (10) as

X′(t) = F(X) +
N∑

i=1

ciδ(t − ti )e6,

X(0) = X0 = (
T 0, T 0

w,V 0
w,T 0

r , V 0
r ,C0),

(12)

where F : R6 → R6 and e6 = (0,0,0,0,0,1)T . For i = 1, . . . ,N + 1, define

Yi = X
(
ti−1 + (ti − ti−1)s

)
, (13)

with t0 = 0 and tN+1 = tfinal. Using the chain rule, we express (12) in terms of the
equivalent system (for Yij , i = 1, . . . ,N + 1, j = 1, . . . ,6, the index i represents the
time interval (ti−1, ti), j represents the equation for the j th state in system (12)):



742 Y. Yang et al.

for i = 1, . . . ,N + 1,

Y
′
i1(s) = (ti − ti−1)[λ − δT Yi1 − βwYi1Yi3 − βrYi1Yi5],

Y
′
i2(s) = (ti − ti−1)

[
(1 − p)βwYi1Yi3 − δI Yi2 − pwYi2Yi6

]
,

Y
′
i3(s) = (ti − ti−1)

[
(1 − q)NwδIYi2 − δV Yi3

]
,

Y
′
i4(s) = (ti − ti−1)[pβwYi1Yi3 + βrYi1Yi5 − δI Yi4 − prYi4Yi6],

Y
′
i5(s) = (ti − ti−1)[qNwδIYi2 + NrδIYi4 − δV Yi5],

Y
′
i6(s) = (ti − ti−1)

[
α(Yi2 + Yi4)Yi6 − δCYi6

];

(14)

with the initial conditions:

for i = 1,

Y11(0) = T 0, Y12(0) = T 0
w, Y13(0) = V 0

w, Y14(0) = T 0
r ,

Y15(0) = V 0
r , Y16(0) = C0;

for i = 2, . . . ,N + 1,

Yij (0) = Y(i−1)j (1), j = 1,2,3,4,5, Yi6(0) = Y(i−1)6(1) + ci−1.

(15)

Applying the transform t = ti−1 + (ti − ti−1)s, s ∈ [0,1] and (13), we obtain

∫ ti

ti−1

(
T (t) + C(t)

)
dt =

∫ 1

0
(ti − ti−1)

(
T

(
ti−1 + (ti − ti−1)s

)

+ C
(
ti−1 + (ti − ti−1)s

))
ds,

=
∫ 1

0
(ti − ti−1)

(
Yi1(s) + Yi6(s)

)
ds.

Then we have

∫ tfinal

0

(
T (t) + C(t)

)
dt =

N+1∑

i=1

∫ ti

ti−1

(
T (t) + C(t)

)
dt

=
N+1∑

i=1

∫ 1

0
(ti − ti−1)

(
Yi1(s) + Yi6(s)

)
ds. (16)

It can be easily deduced that the continuity of the objective function (11) with
respect to the vaccination time ti and vaccine dosage ci is equivalent to the continuity
of the transformed function (16) with respect to ti and ci . Due to the continuity of
the solution of system (14) with respect to the initial data (15) and parameters ti , the
continuity of Yi1(s) and Yi6(s) with respect to ti and ci can be easily obtained. This
gives the continuity of the objective function (11) with respect to ti and ci , which
implies the existence of an optimal solution for Problem (P).

Liu et al. (1998) presented gradient formulas for the transformed problem (16)
with respect to ti and ci , and then used the optimal control software package
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MISER 3.2 (Jennings et al. 1991) to solve the control problem. Here, we resort to
the variational equation (Cappuccio et al. 2007; Castiglione and Piccoli 2006, 2007;
Piccoli and Castiglione 2006) to calculate the gradient of the objective function (11)
with respect to the variables ti and ci , and then use a gradient-based algorithm to
obtain the optimal schedule.

4.2 Numerical Algorithms and Results

To better understand the variational equation method, we first present the definition
of the variational equation. Rewrite the state system (12) as

dX

dt
= F(X) + ue6 = G(X,u).

Given a candidate optimal control u∗ and corresponding trajectory X∗, a time τ and
another control ω ∈ Γ , a needle variation is a family of controls uε obtained replacing
u∗ with ω on the interval [τ − ε, τ ]. A needle variation gives rises to a variation v of
the trajectory, for t ≥ τ , the variational equation with the initial conditions gives

{
dv
dt

= DXG(X∗(t), u∗(t)).v(t),

v(τ ) = G(X∗(τ ),ω) − G(X∗(τ ), u∗(τ )).

For our special control system with the controls occurring in some instantaneous
times, we can now present a more precise result.

Consider a family of controls uε corresponding to a single vaccine administra-
tion procedure that happens at time tεi = ti + ε. The family uε gives rise to a tra-
jectory variation characterized by the following lemma (similar to Proposition 1 in
Castiglione and Piccoli 2006):

Lemma 4.1 Let uε be a family of controls corresponding to a single vaccine admin-
istration procedure that happens at time tεi = ti + ε. The corresponding variation for
t ≥ ti is given by

{
dv
dt

= DXF(X∗(t)).v(t),

v(ti) = F(X∗(ti)) − F(X∗(ti) + cie6).

The objective function (11) can be reduced to a new one depending only on the
final states by introducing a new variable x7(t). We set

dx7

dt
= T (t) + C(t), x7(0) = 0,

L(t, t1, . . . , tN , c1, . . . , cN) = T (t) + C(t).

Then the objective function (11) is reduced to

x7(tfinal) = J (t1, . . . , tN , c1, . . . , cN) =
∫ tfinal

0

(
T (t) + C(t)

)
dt. (17)
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For every vaccination schedule S ∈ Γ , let XS(t) be the corresponding trajectory with
initial conditions as that in (12).

The gradient of the objective function (17) with respect to the vaccination times ti
and vaccine dosage ci are given in the next propositions.

Proposition 4.1 Consider a vaccination schedule at time ti with vaccine dosage ci .
For t ≥ ti , the vector (v1(t), . . . , v6(t),w(t)) with v = (v1, . . . , v6) solves the follow-
ing equations:

dv

dt
= ∇XF

(
XS(t)

)
.v(t),

dw

dt
= ∇XL

(
XS(t)

)
.v(t),

v(ti) = F
(
XS(ti)

) − F
(
XS(ti) + cie6

)
,

w(ti) = L
(
XS(ti)

) − L
(
XS(ti) + cie6

)
,

(18)

and

w(tfinal) = ∂x7(tfinal)

∂ti
= ∂J

∂ti
.

Proposition 4.2 Consider a vaccination schedule at time ti with vaccine dosage ci .
For t ≥ ti , the vector (V1(t), . . . , V6(t),W(t)) with V = (V1, . . . , V6) solves the fol-
lowing equations:

dV

dt
= ∇XF

(
XS(t)

)
.V (t),

dW

dt
= ∇XL

(
XS(t)

)
.V (t),

V (ti) = e6,

W(ti) = 0,

(19)

and

W(tfinal) = ∂x7(tfinal)

∂ci

= ∂J

∂ci

.

The proofs of the above propositions are easily obtained using Taylor expansions
of the involved quantities. Meanwhile, Propositions 4.1 and 4.2 give the basic ingre-
dients for the numerical solution of the optimal control problem (P). We can apply
the steepest descent or other optimization methods, which consists of the following
procedures.

Optimization Algorithm

Step 0. Fix the treatment period tfinal, an initial value X0 for system (10), the num-
ber N of vaccine administrations and an initial schedule (t0

1 , t0
2 , . . . , t0

N, c0
1,

c0
2, . . . , c

0
N).
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Step 1. Solve the system (10) with the initial value X0 and the initial schedule via the
fourth-order Runge–Kutta method. At the same time, for every i = 1, . . . ,N ,
solve Eqs. (18) and (19).

Step 2. Compute the gradient of the objective function with respect to ti and ci via
the Propositions 4.1 and 4.2.

Step 3. Update the schedule by steepest decent method, i.e., for i = 1, . . . ,N ,

tn+1
i = tni − ht .

∂J

∂ti
, cn+1

i = cn
i − hc.

∂J

∂ci

,

where n is the iterations, and ht and hc are small positive parameters. Go to
Step 0.

In the following, we normalize the treatment period tfinal to be one year. The ini-
tial conditions for the state system (10) are set to be (300, 1, 1000, 0.001, 0.001,
2.5 mm−3). The parameters used are listed in Table 1. We start with a random vac-
cination schedule and the initial vaccine dosage is set to ci = 35 cells/µL (the value
used in Smith and Schwartz 2008). The schedule varies in both timing and dosage.
We examine scenarios where four, five, and six vaccine injections are administered
(N = 4,5,6). We run the optimization schema Step 0–Step 3 for 1400 steps (no spe-
cial stoping criteria is used here). In all of these three cases (N = 4,5,6), we observe
that the optimization algorithm tends to converge to three times of vaccine injections
(We obtained the same conclusions even for a larger number N of vaccine injections;
results not shown here). This is illustrated in Fig. 4 where we take the number of vac-
cine administration as N = 6. The numbers 1,2,3,4,5,6 in Fig. 4 represent the first,
the second to the sixth vaccine administrations at the very beginning, respectively.
From Fig. 4, we notice that the schedule is characterized as follows: some vacci-
nations are glued together, such as the first and the second administrations, the third
and the fourth administrations, the fifth and the sixth administrations, which results in
six vaccinations finally converged to three ones (seen in Fig. 4(A), further illustrated
elaborately in Fig. 4(B)-the zooming of Fig. 4(A)). Further noticed is that for the final
three vaccine administrations, the second vaccination is administered soon after the
first one, and the third vaccination is administered a long time later after the second
one, seen in Fig. 4(A). Moreover, as the number of vaccine administrations of the
initial six converges to three, what follows is that the six dosages increase from the
same value ci = 35 cells/µL, i = 1, . . . ,6, and end up converging to three different
dosages, with the first quantity increasing to a high level while the other two dosages
are more or less the same low level, seen in Fig. 4(C). It is intuitively reasonable to
administer the first vaccine with bigger dosage (Fig. 4(C)) to strongly simulate the
immune response to fight the disease, and then administer the second vaccine soon
after the first one (Fig. 4(A)) to further strengthen the immune response. The third
vaccination can be administered a long time later after the second one with a small
dosage in case that if the viruses do rebound, the immune response is able to handle
it. If the vaccine is administered one or two times (N = 1,2), numerical simulations
indicate that the immune response cannot be effectively boosted resulting in that the
viruses cannot be effectively controlled. The simulations support that the optimiza-
tion algorithm is stable and efficient. We present in Fig. 5 the evolution of the viruses
when no vaccine is administered (the dashed line) in comparison with when the op-
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Fig. 4 Evolution of the optimal schedule during the optimization. The numbers 1,2, . . . ,6 correspond to
the first, the second, . . . , the sixth vaccination. (A) Initial six time vaccinations converges to a three time
vaccination program. (B) Zooming of some optimization dynamics in (A). (C) Evolution of the vaccine
dosage

Fig. 5 The comparison of the virus dynamics between the optimal vaccination schedule (solid line) and
no treatment (dashed line). (A) The wild-type virus. (B) The mutant virus. The inset plot in B shows the
optimal CTL vaccine. The optimal vaccination schedule is the one shown in Fig. 4

timal schedule obtained in Fig. 4 is administered (solid line). It can be seen clearly
that when the optimal schedule is administered, the viruses can be driven to a very
low level and even eradicated.
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5 Conclusions and Discussions

A vaccination program was proposed in Konrad et al. (2011), where the critical vac-
cine threshold for the eradication of the virus, and the conditions for the out-compete
of the mutant strain (that is, the mutant strain dominated, while the wild-type strain
was eradicated) were obtained. However, this study simplified the dynamics of the
CTLs by viewing it as a parameter independent of time, which essentially results in
an autonomous and continuous system of ordinary differential equations. Our model
and analysis are based on not only the autonomous and continuous system (1) for the
virus dynamics but also on the discrete perturbation due to the vaccine administration
(2). The system becomes a hybrid impulsive system.

Our main results show that a CTL vaccine administered with fixed time intervals
can theoretically eradicate both the wild-type and the mutant virions if the vaccine
results in a high level of CTL concentration such that the basic reproduction number
R0 (the maximum of the basic reproduction numbers for the wild-type strain Rw

0 and
the mutant strain Rr

0, namely, R0 = max{Rw
0 ,Rr

0}) of the hybrid system fall down
below unity. If the basic reproduction number for the wild-type strain is less than
unity, then the wild-type virus can be eradicated. However, this is not the case when
the basic reproduction number for the mutant strain is less than unity, for if the basic
reproduction number for the wild-type strain is larger than unity, the mutant strain
will benefit from the wild-type strain such that both strains can persist. If either or
both of the basic reproduction numbers for the two strains larger than unity, at least
the mutant strain can persist.

It should be mentioned that patient specificity and variability inevitably induce
variation in coefficients of the viral dynamic system, which may affect our main
results. We then employed partial rank correlated coefficient (PRCC) (Marino et al.
2008) to investigate the sensitivity analysis. We obtained that the basic reproduction
numb R0 is most sensitive to variation in the natural death rate of the uninfected cells
δT (as shown in Fig. 2(B)). For the optimal vaccination design, repeatedly running
the algorithm by varying the viral dynamical coefficients, we can obtain the similar
results. That is, initial six vaccinations converged to final three vaccinations, but with
different final levels of the vaccine dosage and vaccination timings.

In the virus dynamics model (1), we only consider the wild type strain and a mu-
tant strain. However, in general this is reductive since HIV has such a mutation rate
that “hundreds” of mutants are produced. Given multiple mutant strains we can sim-
ilarly extend our model, define the basic reproduction number for the whole system
and the corresponding basic reproduction numbers for different strains. The globally
asymptotical stability of the “virus-free” periodic solution can be obtained by using
similar analysis, and moreover, the optimal vaccination design can also be obtained.
However, our model unfortunately cannot describe the stochastic mutation of HIV
during replication, but one can resort to modeling methods with stochastic events
developed by Christian and Rob (2008).

To obtain better therapeutic results and avoid toxicities, clinicians aim to design
an optimal vaccination schedule consisting of the timing when to administer the vac-
cine and the amount of dosage to administer. To answer this question, we formu-
lated an optimal control problem to maximize the benefits based on levels of healthy
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CD4+ T cells and the immune response cells. Unlike general standard optimal control
problems with the control functions being continuous in time, which can be resorted
to standard theories such as the Pontryagin Maximum Principle to solve the associ-
ated Hamilton system, the optimal control problem in our framework falls into the
category of the so-called impulsive control, which is quite different from the con-
tinuous one. We obtained the gradient of the objective function with respect to the
vaccination timing ti and the vaccine dosage ci via the solution of a generalized vari-
ational equation, which can be solved at the same time with the state system. The
optimization algorithm was then implemented based on some gradient-based meth-
ods. A treatment period of one year is taken to be the optimization horizon. Numerical
results indicate that the optimal schedule should consist of three times of vaccine ad-
ministrations, with a big first dosage to strongly boost the immune responses, and
then administer the second vaccine soon after the first one to further strengthen the
immune responses, and concluded that the third vaccination administered a long time
later after the second one with a small dosage. This is reasonable in clinical trails
to ensure that if the viruses rebound, the immune response is able to handle it. The
results seem to be quite satisfactory since the optimized schedule is always able to
drive the virus to low levels or eradicate the virus, while maintaining a high level of
healthy CD4+ T cells and immune responses.
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Appendix

Proof of Lemma 3.1 By the continuity of solutions with respect to the initial values,
∀ε > 0 there exists δ0 > 0 such that for all x0 ∈ X0 with ‖x0 −M1‖ ≤ δ0, there holds
‖u(t, x0) − u(t,M1))‖ ≤ ε,∀t ∈ [0, τ ]. We further claim that Eq. (5) holds. Assume,
by contradiction, that (5) does not hold. Then we have

lim sup
m→∞

d
(
P m

(
x0),M1

)
< δ0,

for some x0 ∈ X0. Without loss of generality, we assume that d(P m(x0),M1) < δ0,
for all m ≥ 0. It follows that

∥
∥u

(
t,P m

(
x0)) − u(t,M1)

∥
∥ ≤ ε, ∀t ∈ [0, τ ].

For any t ≥ 0, let t = mτ + t ′, where t ′ ∈ [0, τ ] and m = [ t
τ
] is the greatest integer

less than or equal to t
τ

. Thus, we get

∥
∥u

(
t, x0) − u(t,M1)

∥
∥ = ∥

∥u
(
t ′,P m

(
x0)) − u

(
t ′,M1

)∥
∥ < ε, ∀t ≥ 0.
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Note that (T (t), Tw(t),Vw(t), Tr(t),Vr(t),C(t)) = u(t, x0). It then follows that
Tw(t) < ε,Vw(t) < ε,Tr(t) < ε,Vr(t) < ε,∀t ≥ 0. Then from the first and last equa-
tions of (1), we have

dT

dt
≥ λ − δT T − εβwT − εβrT ,

dC

dt
≤ (2εα − δC)C, t �= iτ,

C(iτ+) = C(iτ) + C̃, t = iτ.

Consider an auxiliary system

dT

dt
= λ − δT T − εβwT − εβrT ,

dC

dt
= (2εα − δC)C, t �= iτ,

C
(
iτ+) = C(iτ) + C̃, t = iτ.

(20)

For any ε > 0, system (20) admits a globally asymptotically stable solution
(T̂ (0, ε),C∗(t, ε)), where T̂ (0, ε) = λ/(δT + εβw + εβr),C

∗(t, ε) =
C̃e(2εα−δC)(t−nτ)/(1 − e(2εα−δC)τ ), t ∈ (iτ, (i + 1)τ ]. Then for any ξ > 0, there
exists t3 > 0 such that T̂ (t, ε) ≥ T̂ (0, ε) − ξ, Ĉ(t, ε) ≤ C∗(t, ε) + ξ for t ≥ t3,
(T̂ (t, ε), Ĉ(t, ε)) is any solution of Eq. (20). Note that T̂ (0, ε) → T0,C

∗(t, ε) →
C∗(t) as ε → 0. Then for any η̄ > 0 there exists ε̄ > 0 such that T̂ (0, ε) ≥
T0 − η̄,C∗(t, ε) ≤ C∗(t) + η̄ for ε < ε̄. It follows that for t ≥ t3 and ε small enough
(ε < ε̄)

T̂ (t, ε) ≥ T̂ (0, ε) − ξ ≥ T0 − η̄ − ξ
�= T0 − η,

Ĉ(t, ε) ≤ C∗(t, ε) + ξ ≤ C∗(t) + η̄ + ξ
�= C∗(t) + η,

It follows from Eq. (20) and comparison principles that for t ≥ t3 and ε small enough,

T (t) ≥ T̂ (t, ε) ≥ T0 − η, C(t) ≤ Ĉ(t, ε) ≤ C∗(t) + η.

Consider the fourth and the fifth equations in system (1) with the nonnegativity of
the solutions, there holds for t ≥ t3

T ′
r (t) ≥ βr(T0 + η)Vr − δI Tr − prTr

(
C∗(t) + η

)
,

V ′
r (t) = NrδITr − δV Vr .

(21)

Consider the corresponding comparison differential equations of system (21),

T̂ ′
r (t) = βr(T0 + η)V̂r − δI T̂r − pr T̂r

(
C∗(t) + η

)
,

V̂ ′
r (t) = NrδI T̂r − δV V̂r ,

(22)
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By Zhang and Zhao (2007) (Lemma 2.1), we know that there exists a positive, τ -
periodic function p(t) = (p1(t),p2(t)), such that eμ2tp(t) is a solution of system
(22), where μ2 = 1

τ
lnρ(ΦFr(η)−Vr (η)(τ )). Since ρ(ΦFr(η)−Vr (η)(τ )) is continuous

for small η and Rr
0 > 1 indicates that ρ(ΦFr−Vr (τ )) > 1, we can choose η small

enough such that ρ(ΦFr(η)−Vr (η)(τ )) > 1, that is μ2 > 0. Let t = nτ > t3, and n be
nonnegative integer, we get

(
T̂r (nτ), V̂r (nτ)

)T = eμ2(nτ−t3)
(
p1(nτ − t3),p2(nτ − t3)

)T

→ (∞,∞)T , n → ∞.

For any negative initial values (TI (t3),VI (t3))
T of system (21), there exits a suffi-

ciently small z∗ > 0, such that (Tr(t3),Vr(t3))
T ≥ z∗(p1(0),p2(0))T . By the com-

parison theorem, we have (Tr(t),Vr(t))
T ≥ z∗eμ2(t−t3)(T̂r (t − t3), V̂r (t − t3))

T , for
all t ≥ t3. Thus, we obtain Tr(nτ) → ∞,Vr(nτ) → ∞, as n → ∞, a contradiction.
Hence, Eq. (5) holds. This completes the proof. �
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