
Bull Math Biol (2013) 75:1351–1376
DOI 10.1007/s11538-012-9748-7

R E V I E W A RT I C L E

Negative Tension of Scroll Wave Filaments and
Turbulence in Three-Dimensional Excitable Media and
Application in Cardiac Dynamics

Sergio Alonso · Markus Bär · Alexander V. Panfilov

Received: 15 December 2011 / Accepted: 28 June 2012 / Published online: 25 July 2012
© Society for Mathematical Biology 2012

Abstract Scroll waves are vortices that occur in three-dimensional excitable media.
Scroll waves have been observed in a variety of systems including cardiac tissue,
where they are associated with cardiac arrhythmias. The disorganization of scroll
waves into chaotic behavior is thought to be the mechanism of ventricular fibrilla-
tion, whose lethality is widely known. One possible mechanism for this process of
scroll wave instability is negative filament tension. It was discovered in 1987 in a
simple two variables model of an excitable medium. Since that time, negative fil-
ament tension of scroll waves and the resulting complex, often turbulent dynamics
was studied in many generic models of excitable media as well as in physiologically
realistic models of cardiac tissue. In this article, we review the work in this area from
the first simulations in FitzHugh–Nagumo type models to recent studies involving
detailed ionic models of cardiac tissue. We discuss the relation of negative filament
tension and tissue excitability and the effects of discreteness in the tissue on the fila-
ment tension. Finally, we consider the application of the negative tension mechanism
to computational cardiology, where it may be regarded as a fundamental mechanism
that explains differences in the onset of arrhythmias in thin and thick tissue.

Keywords Reaction–diffusion systems · Cardiac tissue

1 Introduction

The main feature of an extended excitable medium is the conduction of propagat-
ing waves. Velocity and shape of such waves are determined by the properties of the
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medium (Meron 1992). At certain conditions, such waves can form vortices which
take on the shape of spiral waves rotating around a small core area. Such spiral waves
were first predicted in simple models of cardiac tissue (Wiener and Rosenblueth
1946). Experimentally, they were at first discovered (Winfree 1972) in the chemi-
cal Belousov–Zhabotinsky reaction (Zaikin and Zhabotinsky 1970). Nowadays, spi-
ral waves are found in excitable media of various nature in physics, chemistry, and
biology (Keener and Sneyd 1998).

One of the most relevant examples for spiral waves in nature are rotating elec-
trical excitations in cardiac tissue. Contraction of the heart is controlled by electri-
cal waves of excitation initiated by the natural pacemaker. Such waves propagate
through the myocardium and induce the contraction of the cardiac fibers. Abnor-
mal excitation of the heart results in cardiac arrhythmias. Ventricular tachycardia
(VT) is a common cardiac arrhythmia that is characterized by a high rate of cardiac
excitation and, therefore, a high rate of contraction of the heart. Experimental and
clinical studies show that in many cases tachycardia is driven by a spiral wave of
excitation (Gray et al. 1995; Weiss et al. 2000). Ventricular tachycardia can dete-
riorate into ventricular fibrillation (VF). VF is characterized by a turbulent pattern
of excitation that disrupts the coordinated contraction of the heart and often results
in sudden cardiac death. The transition of a single spiral state into turbulent pat-
tern is referred to as spiral breakup and was studied in models of cardiac tissue for
more than 20 years (Panfilov and Holden 1990; Bär and Eiswirth 1993; Karma 1993;
Panfilov and Hogeweg 1993; Panfilov and Pertsov 2001). Possible scenarios of spi-
ral breakup in models of cardiac tissue are surveyed in Panfilov and Pertsov (2001)
and Fenton et al. (2002). The most discussed mechanisms include dynamic insta-
bilities, e.g., those induced by steep restitution curves (Panfilov and Holden 1990;
Karma 1993), heterogeneity (Moe et al. 1964), and more recently mechano-electric
feedback (Panfilov et al. 2007). However, the exact mechanism of onset of chaotic ac-
tivity patterns in the heart in real conditions remains unknown. Currently, researchers
believe that the mechanism of VF may be different in distinct conditions, and thus
studying of various mechanisms of onset of turbulence in excitable medium is im-
portant (Fenton et al. 2002). It is widely accepted that one of the factors important
for the onset of VF is the three-dimensional (3D) structure of the heart. It was even
suggested that VF can occur only if the thickness of the ventricular wall of the heart
exceeds some critical value (Winfree 1994); it could imply that at least in some cases
VF is generated by essentially 3D instability mechanisms.

The extension of a two-dimensional spiral wave into a third dimension is a scroll
wave. Scroll waves have been observed in many excitable systems, e.g., in the
Belousov–Zhabotinsky chemical reaction (Winfree 1973), in the slug phase of the
life cycle of slime molds (Siegert and Weijer 1992), and in the ventricles of the heart
during cardiac arrhythmias (Pertsov and Jalife 2002). Numerous modeling studies of
scroll waves have been performed using analytical and numerical methods. A scroll
wave is usually characterized by its filament. The filament can be regarded as the
line connecting the rotation centers of the spirals, which can be detected in the two-
dimensional sections of the scroll wave. This filament can be straight or curved; it
can even be closed into a ring, giving rise to a scroll ring.

Filaments are dynamical structures which can move in space organizing the 3D
dynamics of vortices in the medium. As a result of the dynamics, the length of a
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filament may increase or decrease. Decrease of the filament length is connected with
a positive filament tension, while increase of the length is the result of a negative
filament tension. It turns out that negative filament tension implies an instability of a
straight scroll wave and that the growth of the filament length amounts to an increase
of the overall vorticity in the medium. The aim of this paper is to describe the main
results on negative filament tension, their possible relation to turbulence in excitable
media, and project it to cardiac tissue.

The manuscript is organized as follows. After a basic description of excitable me-
dia given in the next section (Sect. 2), we will describe in Sect. 3 the phenomenon
of negative filament tension in simple models of excitable media aimed at describing
electrical propagation in cardiac tissue qualitatively. In Sect. 4, we present several
theoretical approaches to analyze negative filament tension. In Sect. 5, we focus on
different control methods of negative filament tension instability in simple models.
Finally, in Sect. 6, we extend the discussion to detailed electrophysiological models
of cardiac tissue and consider the relevance of negative filament tension to cardiac
arrhythmias.

2 Modeling Approaches

Generic excitable media are usually described by a system of two coupled reaction–
diffusion equations:

∂V

∂t
= kI (V,w,pi) + ∇ · (DV ∇V ),

∂w

∂t
= R(V,w,pi) + ∇ · (Dw∇w).

(1)

In chemical excitable medium, all reacting species diffuse. In cardiac tissue, the dif-
fusion operator is present only in the first equation (Dw = 0) and V describes the
transmembrane potential. Below, two main classes of models will be described and
discussed, namely simple models of excitable media consisting of a small number of
reaction–diffusion equations which are computationally very efficient, describe car-
diac excitation in a qualitative way, as well as detailed ionic models, which contain
all relevant details of the electrophysiology of a specific type of cardiac cell and are
typically based on direct measurements of ionic currents in cardiac tissue.

The numerical simulations are typically performed in a cubic domain with no-
flux boundary conditions with a size of several wave lengths. In such domains, the
influence of the boundaries on the dynamics of the filaments is usually negligible.
To study the effect of the thickness on the filament dynamics, a few simulations were
performed in a slab with variable thickness. We also did a few simulations in domains
of more complex shapes, representing a dog heart geometry.

2.1 Simple Models of Excitable Media for Cardiac Dynamics

Simple models for cardiac tissue typically consist of a reduced number of equa-
tions, between two and four, aimed to reproduce general qualitative properties of
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cardiac excitation, such as generation and propagation of a pulse, refractory prop-
erties, simple dispersion relations, etc. Some of that models are obtained as re-
duction of ionic models (Fenton and Karma 1998a), and some have the functions
I (V,w,pi) and R(V,w,pi) as simple as possible (Izhikevich and FitzHugh 2006;
Barkley et al. 1990). Such systems of typically two coupled equations are not de-
rived from physiological data and some properties of the waves often differ from
waves of transmembrane potential in physiologically realistic models. There are
also adaptable models where I (V,w,pi) and R(V,w,pi) are complex expres-
sions on V and w with several tuning parameters. Such models can quantita-
tively reproduce the overall characteristics of cardiac tissue important for propa-
gation, such as restitution of action potential duration (Aliev and Panfilov 1996;
Fenton and Karma 1998a) and restitution of conduction velocity (Fenton and Karma
1998a).

The main advantage of these models is their simplicity and ability to explain basic
properties of cardiac tissue. These models are convenient to implement because the
nonlinearities are not strong and allow the implementation of effective numerical
solvers. Furthermore, the results obtained with such models are not restricted to an
individual excitable system but are generic and may be applicable to the dynamics of
excitable waves in other media. Analytical results are also possible for some of these
models.

There are several generic models of excitable media which were used to study
dynamics of scroll waves: The Puschino model (Panfilov and Rudenko 1987) and its
modification (Biktashev et al. 1994) and the Barkley model (Dowle et al. 1997) be-
came more popular. In this paper, we will illustrate many results using the Barkley
model for excitable medium. Equivalent results can be obtained with other simple
models. This model is formed by a couple of dimensionless reaction–diffusion equa-
tions:

∂V

∂t
= 1

ε
V (1 − V )

(
V − w + p2

p1

)
+ ∇ · (DV ∇V ),

∂w

∂t
= V − w;

(2)

where ε is the ratio of the temporal scales between V and w. The parameters p1

and p2 specify the activator kinetics, with p2 effectively controlling the excitation
threshold of the system.

Equations (2) correspond to the continuous limit of the reaction–diffusion system.
The structure of the tissue is, however, discrete and the continuous reaction–diffusion
model may have to be substituted by a discrete model. A large amount of cells con-
nected by gap junctions forms the tissue. The discreteness can be accounted by the
description of the tissue in terms of a grid of cells coupled by resistors. For the same
model considered above, we obtain (Alonso et al. 2011):

V̇i = 1

ε
Vi(1 − Vi)

(
Vi − w + p2

p1

)
+ L(Vi,Vj ),

ẇi = Vi − wi,

(3)
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where Vi is the action membrane potential of the cell i and the function

L(Vi,Vj ) =
6∑
j

ηij (Vj − Vi), (4)

is the sum of the coupling with the first neighbors in 3D. The parameter ηij is the
strength of the coupling between cells i and j and it decreases with the resistivity
between cells. For constant and large values of ηij the spatial operator L(Vi,Vj ) cor-
responds to the discrete version of the Laplacian operator (L(Vi,Vj ) = ∇ ·(DV ∇V )),
and Eqs. (2) are recovered.

2.2 Detailed Electrophysiological Models

Electro-physiologically detailed models employ a description based on direct exper-
imental observations derived from voltage clamp and patch clamp studies, and gen-
erally include many Hodgkin–Huxley type equations (Hodgkin and Huxley 1952)
to describe individual ionic currents forming the total current I (V,w,pi) = ∑

j Ij

that cross the cell membrane (Noble and Rudy 2001). Modern ionic models also
describe the changes of concentrations of all major ions inside cardiac cells, and
generally consist of anywhere between 10 and 60 equations (Luo and Rudy 1991;
ten Tusscher et al. 2004). The quantitative descriptions of ionic currents in cardiac
tissue are continually being revised, and there is not yet general agreement on the
best model for all circumstances (ten Tusscher et al. 2006). The nonlinear terms are
typically stiff and the integration is slower than in the previous cases.

Most results on scroll wave dynamics in ionic models here will be illustrated with
the Luo–Rudy model phase 1 (LR1) (Luo and Rudy 1991). It describes the biophys-
ical mechanism of generation of action potential in cardiac cells by a relatively small
number of state variables and was widely used to study wave propagation in 2D and
3D cardiac tissue. Following the cable equation (Keener and Sneyd 1998), the prop-
agation of a transmembrane potential can be described by the equation:

∂V

∂t
= −Iion(V ,w,pi)

Cm

+ ∇ · (DV ∇V ). (5)

The membrane capacitance is Cm = 1 F/cm2 and the diffusion coefficient DV =
0.001 cm2/ms is derived from the resistivity between cells, surface to volume ratio
of a cardiac cell and the membrane capacitance (Keener and Sneyd 1998). The rep-
resentation of the total current is: Iion = INa + Isi + IK + IK1 + IKp + Ib , where
INa = GNam

3hj (V − ENa) is the fast Na+ current, Isi = Gsidf (V − Esi) is the slow
inward Ca2+ current, IK = GKxx1(V − EK) is the slow outward K+ current, IK1 =
GK1K1∞(V −EK1) is the time-independent K+ current, IKp = GKpKp(V −EKp) is
the plateau K+ current, and Ib = Gb(V − Eb) is the background current. The values
ENa, Esi, EK , EK1 , EKp, and Eb are the reversal potentials and m, h, j , d , f , and x

are gating variables, which dynamics can be modeled by

dwi

dt
= (wi∞ − wi)/τwi

, (6)

where wi represents any of the gating variables, wi∞ is the steady state value, and
τwi

the relaxation time constant for the corresponding variable. In most simulations
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presented here, the original values of the parameters given in Luo and Rudy (1991)
were used, except for GNa and Gsi, which were varied in simulations (in Luo and
Rudy 1991 GNa = 23 mS/cm2 and Gsi = 0.09 mS/cm2). Note that GNa controls the
speed of the waves (Alonso and Panfilov 2007) and in a general sense the excitability
of the tissue, and Gsi is responsible for the front-tail interaction between the pulses.

3 Negative Filament Tension in Simple Qualitative Models

Negative filament tension was found in the 1980s in computational studies of generic
models of excitable media. At that time, only simplified models were feasible for 3D
computational studies.

3.1 Instability of the Filament and Turbulence

A scroll wave in a thin slab, with its straight filament orthogonal to the boundaries, is a
quasi 2D solution, as each section orthogonal to the filament is the same and all spatial
derivatives in the third direction parallel to the filament will be zero. The first essential
3D effects occur if one considers either curved of twisted filaments. An ideal object
to study the effect of curvature is a scroll ring that contains a circular filament, with
constant curvature. The filament dynamics of scroll rings were studied in Panfilov
and Pertsov (1984), Panfilov and Rudenko (1987) and Panfilov and Holden (1993). It
was shown that the rotation of a scroll ring is nonstationary; see Fig. 1. The position
of its filament is not stable and it drifts in space. The drift velocities are proportional
to the filament curvature:

Vn = −Dnk

Vb = Dbk; (7)

where Vn and Vb are drift velocities in normal (horizontal in Fig. 1) and binormal
(vertical) directions, Dn and Db are proportionality coefficients, and k > 0 is the
filament curvature. For scroll rings, k is equal to R−1, where R is the radius of the
ring and (7) takes the simple form:

Ṙ = −Dn

R
,

Ż = Db

R
.

(8)

Based on the sign of the normal component of the velocity, two regimes of the
scroll ring are distinguished. The first regime with positive Dn corresponds to a
contraction of the scroll ring (Panfilov and Pertsov 1984); see Fig. 1(b). When the
ring filament reaches a critical radius, collapse of the scroll ring occurs. The second
regime with Dn < 0 is the scroll ring extension (Panfilov and Rudenko 1987) shown
in Fig. 1(c). Under such conditions, the radius of the scroll ring increases proportion-
ally to its curvature. Expansion and collapse of scroll rings are typically accompanied
by a vertical drift; see Figs. 1(b)–(c).

Filament contraction obviously decreases the filament length, and thus was as-
sociated with positive tension, while extension of the filament corresponds to the
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Fig. 1 (a) Scroll ring where waves and filament are visible. Half of the wave has been removed to permit
the view of the filament. Sketch of the dynamics of a filament ring under positive (b) and negative (c)
tension

Fig. 2 (a) Scroll wave where waves and filament are visible. Sketch of the dynamics of the filament under
positive (b) and negative (c) tension after a perturbation

case of negative tension. Tension, therefore, affects significantly the stability of the
scroll wave filament. If the filament has positive tension and contracts, it will ei-
ther collapse (e.g., for the case of a scroll ring) or it will attain a stable shape with
the minimal possible length (e.g., for a straight scroll). For example, in a rectangu-
lar slab of isotropic cardiac tissue, it would evolve into a straight line orthogonal to
the opposite tissue boundaries; see Fig. 2. Also, an initially perturbed straight fil-
ament will recover the stable straight configuration; see Fig. 2(b). However, if the
filament has negative tension it tends to increase its length; see Fig. 2(c). It means it
will form loops and if the filament touches a boundary, it will result in the filament
breaking into two pieces, leading to filament multiplication (Biktashev et al. 1994;
Fenton et al. 2002; Alonso et al. 2003; Gray and Jalife 1998). This regime has
received different names from different authors, e.g., autowave turbulence (Bikta-
shev 1998), scroll wave turbulence (Zaritski et al. 2004), or Winfree turbulence
(Alonso et al. 2003). In simple models, positive tension occurs for a medium with
high excitability, i.e., low excitation threshold and/or slow inhibitor dynamics, while
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Fig. 3 Parameter space of the
Barkley model. Solid lines
separate regions of positive
filament tension, negative
filament tension, bistability, and
the subexcitable region (spiral
waves are not observed). Dashed
line encloses the meandering
region. Modified version from
Alonso et al. (2003)

Fig. 4 Evolution of a scroll wave showing negative filament tension in the Barkley model. Waves and
filaments are shown in different panels for the same time step

negative tension occurs for a medium with low excitability (Brazhnik et al. 1987;
Fenton et al. 2002; Alonso et al. 2003).

The most detailed study of the onset of negative filament tension was performed
in the Barkley model (2). For many parameter values, Eqs. (2) produce stable scroll
waves with positive tension and without any scroll breakup; see Fig. 3. The negative
filament tension was observed inside a broad region, characterized by low excitabil-
ity. The regions in parameter space corresponding to negative and to positive filament
tension are comparable in size. The negative tension region is located in the region of
lower excitability near the boundary of the subexcitable region (No Waves in Fig. 3),
exactly at the boundary the spiral rotation period increases to infinity. Negative fila-
ment tension results typically in scroll turbulence.

An example of turbulent dynamics is shown in Fig. 4. First, a scroll wave rotates
around its straight filament (Fig. 4(a)). As time goes on, transverse deformations in
the filament develop (Fig. 4(b)). The length of the filament rapidly increases because
it loops out and forms an irregular expanding tangle. The tangle initially still consists
of a single connected filament until the moment it touches a boundary plane. After
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Fig. 5 Types of spiral waves observed in simulations with the Barkley model. (a) Rigidly rotating spiral
wave with large core, (b) meandering spiral wave with inward loops, (c) drift meandering spiral, (d) me-
andering spiral wave with outward loops, (e) rigidly rotating spiral wave with small core

that, the filament gets fragmented into many pieces (Fig. 4(c)) that fill the medium
and the resulting waves exhibit a turbulent appearance (Fig. 4(d)).

Upon onset of the instability, the total length of the filament increases exponen-
tially with time. The total length saturates when the outflow of filament through the
boundaries is compensated by the increase of filament length generated by the insta-
bility (Alonso et al. 2004a). The turbulent dynamics frequently presents an intermit-
tent behavior between complex turbulence and a relatively organized state (Zaritski
et al. 2004). This occurs due to the stabilizing effect of filament interaction, filaments
tend to bunch in group of three or more filaments; see, e.g., filaments in Fig. 4(d).
These filament bundles push the remaining individual pieces of filament outside the
medium, and thereby counteracts the effects of negative filament tension. This ef-
fect is associated with parameters for which one finds formation of multiarmed spiral
waves in two spatial dimensions, which typically occurs at low excitability conditions
(Zaritski and Pertsov 2005).

Figure 3 displays also the region of spiral wave meandering. Numerical simu-
lations of simple models point toward an intriguing relation between filament ten-
sion and meandering that we will elaborate on in the following passage. Spiral wave
meandering is illustrated in Fig. 5. In general, spiral waves may rotate rigidly; see
Figs. 5(a), (e), or may perform a cycloidal motion composed of two frequencies,
known as meandering; see Figs. 5(b)–(d). The loops forming the meandering mo-
tion can be oriented toward the center (inward meandering); see Fig. 5(b), or outside
(outward meandering), see Fig. 5(d). In the transition between both regions, the me-
andering spiral wave performs a linear drift; see Fig. 5(c).

The onset of the meandering is associated with a Hopf bifurcation of rigidly ro-
tating spirals in excitable media (Karma 1990). One would not necessary expect any
relation between meandering of 2D spiral waves and the tension of filaments in 3D
excitable media at first glance. However, numerical simulations show that the me-
andering for parameter choices that display inward in 2D, always negative filament
tension in 3D is found. This relation has been observed in simple models of excitable
media (Fenton et al. 2002; Alonso et al. 2004a, 2006a; Henry 2004). While outward
meandering of spiral waves in 2D media corresponds in three dimensions to collapse
of scroll rings, inward meandering in contrast is correlated with expansion of scroll
rings in 3D.

This result seems independent of the origin of the meandering. Spiral waves under
constant conditions meander because of their internal dynamics. However, meander-
ing may as well be induced by an external periodic forcing (Mantel and Barkley
1996). Forcing with a frequency smaller (larger) than the frequency of spiral wave
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Fig. 6 Snapshots of waves and filaments at the end of simulations with the Barkley model under negative
filament tension for four different thicknesses (measured in model units): 30 (a), 20 (b), 10 (c), and 4 (d)

rotation produces inward (outward) spiral meandering in 2D. In the corresponding
3D case, forcing with frequencies smaller than the period of the rigidly rotating spi-
ral increases the filament tension and may induce positive filament tension for intense
enough forcing, while forcing with frequencies larger than the spiral period decreases
the filament tension and may induce negative filament tension (Alonso et al. 2003,
2006b). For more details, see Sect. 5.

3.2 Size and Shape of Cardiac Tissue

The instability due to negative filament tension and the resulting turbulence is a purely
three-dimensional effect. For the same parameter values, spiral waves are stable in
two dimensions. It follows that there is a minimal thickness for the three-dimensional
wall below which the negative filament tension should disappear. In Fig. 6, we show
the results of some numerical simulations with the same parameter values as in Fig. 4
but for different vertical thicknesses. For thick three-dimensional tissue the negative
tension instability develops, see Fig. 6(a), with similar properties as in Fig. 4. How-
ever, when the tissue becomes very thin, the instability does not develop and the scroll
wave rotates in a similar fashion as a spiral wave rotates in two-dimensional media;
see Fig. 6(d). For intermediate thickness, the filament is unstable, however, the length
of the filament saturates. The filament bends and undergoes a complex meandering
motion without breaking up; see Fig. 6(c).

There is a critical thickness of the media to obtain the growth of the filament length
resulting from negative filament tension. Slightly above this threshold, the filament is
unstable and the filament length grows; however, it interacts with the boundaries and
large regions of the filament remain parallel to the tissue; see Fig. 6(b).

Excitability of the medium can be decreased not only by changing the parameters
of the model, but also as a result of a replacement of the partial different equation by
a discrete model. In the context of cardiac tissue, this can be motivated by assuming
that the cells are coupled to the others by gap junctions (Kléber and Rudy 2004).
Suppose, we consider a grid of discrete cells coupled by resistors (see Eqs. (3)), and
increase the resistivity between neighboring cells, i.e., we decrease the parameter ηij

in Eq. (4). It is known that if the resistivity is large enough, waves cannot propagate
along the tissue (Shaw and Rudy 1997). Such reduced coupling has similar effects as
too low excitability conditions, wherein waves do not propagate in the medium. In
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Fig. 7 Evolution of waves and filament of a scroll wave using the Barkley model under negative filament
tension induced by heterogeneous discrete coupling among the cells of the tissue

many forms of cardiac disease (e.g., ischemia, infarction, etc.), intercellular conduc-
tance is substantially reduced, making the discrete nature of wave propagation more
pronounced. The effects of discreteness upon the tension of filaments of scroll waves
was studied in detail in Alonso et al. (2011).

Coupling among cells was reduced in two ways (Alonso et al. 2011): First, a frac-
tion of the connections among the cells ηij are randomly decreased close to zero,
producing that the effective coupling among the cells is reduced (Alonso et al. 2009),
and second, the coupling among cells is homogeneous decreased ηij = η0. Numerical
simulations with Eqs. (3) were performed under parameter values inside the positive
tension region. Under such conditions, scroll rings contract and scroll waves are sta-
ble. A fraction of coupling among elements was reduced up to 10 % of the original
value. For low fraction of reduced connections, a scroll wave rotates stable, apart
from some irregularities produced by the heterogeneous connection matrix. The pe-
riod of rotation of the waves increases with the increase of the fraction of reduced
connections (Panfilov 2002). An increase of the period of rotation is a signature of
excitability decrease. It may produce a decrease on the filament tension (Alonso et al.
2011). Figure 7 shows that a scroll wave which is stable for large coupling may be-
come unstable if a fraction of the couplings between cells is decreased. The filament
length of the scroll wave grows (see Fig. 7(b)), and due to this negative filament ten-
sion instability we observe irregular wave behavior; see Figs. 7(c)–(d). The dynamics
is similar to the results obtained with negative filament tension in an homogeneous
system; see Fig. 4.

If the coupling among cells is homogeneously decreased the resulting dynamics
is similar as in the previous case. For large values of the connectivity, the continu-
ous limit is satisfied, therefore, scroll waves are completely stable. If the intercellular
connections are homogeneously reduced, the rotation period of the wave increases
when the characteristic size of the front is of the order of the distance among ele-
ments (Clayton et al. 2011). Then the filament attains negative tension and becomes
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Fig. 8 Numerical simulations of wave propagation in a detailed dog heart geometry. Numerical simula-
tions have been performed with the Aliev–Panfilov model (Aliev and Panfilov 1996) under positive (a) and
negative (b) filament tension conditions. Both simulations employ the same initial condition

unstable, resulting in the onset of scroll wave turbulence (Alonso et al. 2011). For
low connectivity, the propagation of waves is not more possible.

In both cases, a decreased coupling results in a decrease of filament tension. Such
reduction may finally result in a qualitative change in the scroll wave dynamics: Ini-
tially stable scroll waves may become unstable and result in spatiotemporal chaotic
wave patterns.

Simple generic models of excitable media were also employed to study wave
propagation in anatomical models of the heart (Panfilov and Keener 1995a; Panfilov
1999). Recently, we studied the process of negative filament tension turbulence in
the Aliev–Panfilov model (Aliev and Panfilov 1996) in an anatomical model of a dog
heart (Nielsen et al. 1991; Panfilov 1999). Numerical results of scroll wave evolution
for positive and negative filament tensions are shown in Fig. 8. For positive fila-
ment tension, a scroll wave is stable although it drifts slowly, see Fig. 8(a). A scroll
wave with negative filament tension is unstable and produces wave turbulence; see
Fig. 8(b). Interestingly enough, the new wave source appears as a point source below
the cardiac surface; see Fig. 8(b) and the dynamics progresses into wave turbulence.
Such scenario is similar to the transition of VT into VF observed in the heart (Zaitsev
2008).

4 Theory on Filament Dynamics

In the wake of the first simulations showing scroll ring expansion (Panfilov and
Rudenko 1987), negative filament tension and the expansion of scroll rings were de-
scribed in terms of a kinematic theory for the motion of curves (Brazhnik et al. 1987).
It was also predicted that negative filament tension may result in turbulent behavior
(Brazhnik et al. 1987). Later, the dynamics of curved and twisted filaments was stud-
ied using a perturbation theory (Keener 1988). A further important advance was the
numerical calculation of the linear stability spectrum of scroll waves and the charac-
terization of the eigenmodes corresponding to the negative filament tension (Henry
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and Hakim 2000). Next, we summarize the main concepts of such theoretical analysis
of negative filament tension.

4.1 Kinematic Theory

In a three-dimensional system, a scroll wave is approximated by an oriented traveling
surface with an open edge corresponding to the filament (Mikhailov 1995). Each
element of the surface moves with a velocity proportional to the mean curvature H

of the surface: V = V0 − 2DH . The motion of the free edge of the surface depends
on the mean curvature near the edge (H0) and on the geodetic curvature κ , and it
grows (G > 0) or contracts (G < 0) with a velocity G = G0 − 2γH0 − γ ′κ . The
five kinematic parameters describing the evolution of a scroll wave (V0, G0, D, γ

and γ ′) can be determined from the particular reaction–diffusion model (Mikhailov
et al. 1994).

The motion of the waves follows the dynamics of the free edge corresponding to
the filament and, therefore, a quasisteady approximation can be applied (Mikhailov
et al. 1994). For the particular case of scroll rings, the geodetic and mean curvatures
can be expressed in terms of the angle of rotation around the filament α and the radius
R of the scroll ring: κ = −R−1 cos(α) and H0 = (k −R−1 sin(α))/2. As a result a set
of four ordinary differential equations for the position of the free edge (ρ and z), its
local curvature (c) and the angle of rotation (α) can be derived for the case of scroll
rings with large radius (Brazhnik et al. 1987; Mikhailov 1995):

ċ = ω0

D

(
G0 − γ c + 1

R

(
γ sinα + (

γ ′ − D
)

cosα
))

,

α̇ = ω0 + c(G0 − γ c) + 1

R

(
γ sinα + (

γ ′ − D
)

cosα
)
c,

ρ̇ = −V0 sinα − 1

R

(
D + (

γ sinα + (
γ ′ − D

)
cosα

)
cosα

)
,

ż = V0 cosα − 1

R

(
γ sinα + (

γ ′ − D
)

cosα
)

sinα,

(9)

where ω0 corresponds to the rotation frequency of a spiral wave in two dimensions. At
first order in R−1 and after the integration over one period of rotation, the dynamics
of a scroll ring is (Brazhnik et al. 1987; Alonso et al. 2006b):

Ṙ = −Dn

R
,

Ż = Db

R
, (10)

where the filament tension Dn and the vertical drift parameter Db can be explicitly
calculated in terms of the kinematic parameters (Brazhnik et al. 1987; Alonso et al.
2006b; Mikhailov 1995):

Dn = D − 3

4

V0

G0

γ (D(γ ′ − D) + γ 2)

γ 2 + D2
, (11)

Db = 3

4

V0

G0

γ 2(γ ′ − 2D)

γ 2 + D2
. (12)
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Depending on the value of the parameters the filament tension can change the sign.
It follows from Eqs. (11) that filament tension becomes negative under conditions of
weak excitability (Alonso et al. 2006b). Scroll waves in the kinematic approach can
be formed only if G0 > 0. If G0 < 0 no steadily rotating scroll waves can form and the
tip contracts in the course of time. Thus, decreasing the value of G0 is equivalent to
a reduction of the excitability. We also see that the decrease of G0 implies a decrease
of Dn in Eq. (11) and changes the sign of Dn to negative values if G0 is sufficiently
small.

4.2 Perturbation Methods

The main idea of this approach was to assume that a scroll wave can be constructed by
placing 2D spirals along a line (filament) slowly varying in space. A periodic rigidly
rotating spiral wave was described by V = V (r, θ − ωt). The filament dynamics was
represented by coordinates along its length s and in normal p and binormal q direc-
tions yielding to V (s,p, q, t) = V0(r, θ +φ(s, t)−ωt)+V1 +· · · (where r and θ are
the polar coordinates in the plane p,q).

Using the Frenet–Serret equations (Keener 1988) we can express the three-
dimensional Laplacian in terms of the coordinates s, p and q . We represent the
three-dimensional space in the neighborhood of the filament using the coordinate
representation X + pN + qB . The equations of motion of the filament were derived
by rewriting the problem in the coordinate system along the length of the filament
(X) and in the normal (N ) and binormal (B) directions:

dX

ds
= T ,

dT

ds
= kN,

dN

ds
= −kT + τB,

dB

ds
= −τN, (13)

where T is the tangent vector, k the curvature and τ the torsion of the filament.
Keener derived the equation of filament motion as a function of its curvature and

twist (Keener 1988). In general, the equations resulting from the calculation show
the evolution of the phase of rotation around the filament (φ), and the filament (X)
evolution in the normal and binormal directions. These equations read:

∂φ

∂t
= ∂N

∂t
· B + ∂X

∂t
· T

(
∂φ

∂s
− τ

)
+ b1

(
∂2φ

∂s2
− ∂τ

∂s

)
+ a1

(
∂φ

∂s
− τ

)2

− c1k,

∂X

∂t
· N = b2k − c2

(
∂2φ

∂s2
− ∂τ

∂s

)
− a2

(
∂φ

∂s
− τ

)2

,

∂X

∂t
· B = c3k − c4

(
∂2φ

∂s2
− ∂τ

∂s

)
− a3

(
∂φ

∂s
− τ

)2

.

(14)

For more details, see Keener (1988). Later, in Biktashev et al. (1994), it was shown
that due to the symmetry of the scroll ring, the phase φ is the same everywhere on
the ring and the torsion τ of the filament is zero. Hence, k = R−1, and one obtains
the following equations for the filament dynamics:

Ṙ = −Dn

R
,

Ż = Db

R
,

(15)
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where Ṙ and Ż are, respectively, the velocities of the filament in the normal and bi-
normal directions. As in the previous section, the theory predicts a linear dependence
of the radius of the scroll ring on the curvature. The parameters Dn = b2 and Db = c3
can be obtained by calculating the adjoint eigenfunctions of the linearization around
a stable rotating scroll wave (Keener 1988). Note, however, that the finding of the ad-
joint solution is not trivial and they can be obtained mainly using numerical methods
(Biktasheva et al. 2010).

4.3 Linear Stability Spectrum of Scroll Waves

Under some conditions a rigidly rotating scroll wave is stable. In many cases, how-
ever, rigidly rotating scroll wave may be unstable. A linear stability analysis allows to
detect instabilities of the rigidly rotating scroll waves in a co-rotating reference frame
that will be used in the following. First, Eqs. (1) with Dw = 0 are transformed into
cylindrical coordinates (r, θ, z), using θ = θ0 −ωt where ω is the scroll wave rotation
frequency: (

∂

∂t
− ω

∂

∂θ

)
V = DV

(
∇2

2D + ∂2

∂z2

)
V + kI (V,w),

(
∂

∂t
− ω

∂

∂θ

)
w = R(V,w);

(16)

where, for simplicity, we have neglected the effects of the twist; for a complete anal-
ysis including the twist, see Henry and Hakim (2000). The resulting equation for the
steady state is obtained assuming that V0 = V0(r, θ) and w0 = w0(r, θ),

0 =
(

DV ∇2
2D + ω

∂

∂θ

)
V0 + kI (V0,w0),

0 =
(

ω
∂

∂θ

)
w0 + R(V0,w0).

(17)

These equations are solved numerically to obtain the functions V0 and w0 (Henry
and Hakim 2000) corresponding to the steady state of a rigidly rotating straight scroll
in a corotating reference of frame. These functions do not explicitly depend on the
z-coordinate.

Next, the stability of the solution obtained from Eqs. (17) can be determined.
The linear stability is calculated considering small perturbations around the steady
state: V (r, θ, z) = V0(r, θ) + V1(r, θ) exp(σ t − ikzz) and w(r, θ, z) = w0(r, θ) +
w1(r, θ) exp(σ t − ikzz). The functions V0, V1, w0, and w1 do not depend explicitly
on z and can be obtained by solving the stability problem of a rigidly rotating spiral
wave in a 2D systems with the same parameters following the method described in
Barkley (1992). Introducing these perturbations in Eqs. (16) of the model and con-
sidering the steady state obtained from Eqs. (17), the equations obeyed by V1 and w1
and the growth rate σ are obtained:

σV1 =
(

−DV k2
z + ω

∂

∂θ
+ DV ∇2

2D + 1

ε

k∂I (V0,w0)

∂V

)
V1 +

(
1

ε

k∂I (V0,w0)

∂w

)
w1,

σw1 =
(

∂R(V0,w0)

∂V

)
V1 +

(
ω

∂

∂θ
+ ∂R(V0,w0)

∂w

)
w1.

(18)
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From these equations, the corresponding dispersion relation can be calculated
(Henry and Hakim 2002). The dispersion relation is the dependence of the differ-
ent eigenvalues or growth rates σ on kz. If the real part of one of the eigenvalues
is positive (Re(σ ) > 0) for a window of values of kz, the rigid rotating scroll wave
is unstable. One of the eigenvalue pair obtained in the stability analysis of scroll
waves corresponding to a perturbation with kz = 0 is purely imaginary ±iω and is
related to the translational invariance of the underlying reaction–diffusion equations.
For nonzero values of kz, the real part of this eigenvalue may become positive and it is
maximal for a particular spatial wavenumber kmax

z . This instability correspond to the
negative filament tension. The dispersion relation permits the numerical calculation
of the more unstable mode and it is associated with the critical thickness allowing
negative filament tension (Henry and Hakim 2000, 2002).

5 Control of Negative Filament Tension

The mechanism responsible for cardiac arrhythmias remains unknown. Negative fil-
ament tension may be one of the processes which can be behind the generation of
cardiac arrhythmias (Fenton et al. 2002), hence the increasing interest on different
control strategies of the instability. Control of nonlinear extended systems has be-
come a well-studied topic during the last years (Mikhailov and Showalter 2006). In
the following, we review several methods to control negative filament tension. We
account for space-independent global external signals as well as for spatiotemporal
forcings.

5.1 Temporal Forcing

Application of a weak periodic, spatially uniform external forcing through a tempo-
ral modulation of the medium excitability provides an efficient control mechanism
for spiral waves (Mikhailov et al. 1994; Mantel and Barkley 1996). Under resonance
conditions, i.e., periodic forcing with the same frequency of the spiral rotation, the
spiral wave starts to drift along a straight line with the direction determined by the
modulation phase. Under nonresonance conditions, the spiral wave performs an ex-
ternally induced meandering.

We study the effects of a periodic forcing in 3D media by periodically changing
the parameter p2 = po

2 + pf cos(ωf t) of the Barkley model in the numerical sim-
ulations. It was shown that rapid forcing with a frequency higher than the rotation
frequency of scroll waves converts expanding scroll rings into collapsing ones and
suppresses the turbulence in the medium. On the other hand, application of a suffi-
ciently strong forcing with a frequency smaller than the rotation frequency allows to
transform collapsing scroll rings into the expanding ones and induce turbulence in
the medium (Alonso et al. 2003).
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The kinematic theory, see Sect. 4.1, can be extended to the case of nonresonant
forcing for the special case of scroll rings retaining the leading terms of the second
order in the forcing amplitude (Alonso et al. 2006b). The result can be expressed as

Ṙ = −Dn

R
− ξnp

2
f

�ωR
,

Ż = Db

R
− ξbp

2
f

�ωR
,

(19)

where R is the radius of the scroll ring, Z its vertical position, Dn and Db are shown
in Eqs. (11)–(12), �ω is the difference between the forcing frequency and the rotation
frequency of spiral waves (�ω = ωf − ω) and the coefficients ξn and ξb are positive
coefficients determined only by the properties of the excitable medium (Alonso et al.
2006b). The filament tension coefficient of Eq. (11) is effectively renormalized De

n =
Dn + ξnp

2
f �ω−1 by the global nonresonant periodic forcing.

The dynamics of the scroll ring under resonant forcing strongly depends on the
phase of the forcing with respect the scroll ring rotation and preclude any type of
renormalization of the filament tension. The action of resonant periodic forcing on
collapsing scroll rings was numerically studied in Mantel and Barkley (2001). Al-
though the filament tension is not renormalized, global resonant forcing results in an
efficient method to induce a strong drift of the filaments which in a closed system
produces the termination of the turbulence (Morgan et al. 2008).

5.2 Spatiotemporal Forcing

Spatiotemporal forcing of scroll waves results in a more effective method of control.
A traveling-wave modulation of the medium’s excitability suppresses the turbulent
dynamics much faster than a spatial uniform modulation of the medium excitability.
Numerical simulations performed with the Barkley model changing the parameter
p2 = po

2 + pf cos(�k�r + ωf t) shows the increase of efficiency in removing the turbu-
lent regime (Wu et al. 2006).

A periodic pacing in a localized region of the medium induces the generation of a
train of periodic waves. Depending on the frequency of the wave train, the turbulence
can be rapidly removed from the system. Slow pacing does not have relevant effects
on the dynamics of scroll waves. For fast pacing, however, the frequency of the train
is faster than the rotation frequency of the scroll waves. As a result, the unstable fila-
ments are pushed to the boundaries of the system where they disappear (Zhang et al.
2005). There is an optimal frequency which induces the most efficient elimination of
the turbulence.

A stochastic forcing of the parameter p2 = po
2 + η(�x, t) may produce the elim-

ination of the turbulence. The stochastic term η(�x, t) represents a Gaussian white
noise with zero mean 〈η(�x, t)〉 = 0 and correlations, 〈η(�x, t), η(�x′, t ′)〉 = 2p2

f δ(t −
t ′)δ(�x − �x′), where pf is the amplitude of the forcing. A weak stochastic forc-
ing cannot stop the negative filament instability and the filament is unstable; see
Figs. 9(a), (b). However, if the noise is above a critical intensity the tension of
the filament becomes positive and the filament itself returns to the straight con-
figuration; see Figs. 9(c), (d). The spatiotemporal stochastic forcing enters non-
linearly in the dynamics of the system and renormalizes the parameters of the
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Fig. 9 Dynamics of a scroll wave filament under negative filament tension before (a, b) and after (c, d)
the introduction of a spatiotemporal stochastic forcing of the parameter p2. Figure adapted from Alonso
et al. (2004b)

model giving rise to an increase of the effective excitability of the media (Alonso
et al. 2004b). As negative filament tension is associated with low excitability,
the noise increases the effective excitability and may change the sign of the fila-
ment tension. This effect may depend on the specific way the external noise en-
ters into the intrinsic dynamics, for example, spatially static noise may produce
the contrary effect, i.e. a decrease of the effective excitability (Alonso et al. 2011;
Panfilov 2002).

6 Negative Filament Tension in Electrophysiologically Realistic Models

The simple models described so far exhibit negative filament tension. The dynamics
under negative filament tension was successfully explained with phenomenological
theories of filament dynamics in excitable media. The next step is to study the insta-
bility in electro-physiologically realistic models of cardiac tissue.

6.1 Weak Excitability

In simple models of excitable media, negative filament tension was found under con-
ditions of weak excitability where the motion of the waves is stable and the interac-
tion between consecutive pulses is weak. The main parameters of the LR1 model (5)
that affect excitability are GNa and Gsi corresponding, respectively, to the maximum
conductance of sodium and slow inward current. In Alonso and Panfilov (2007), we
performed a study of the effects of reducing excitability in the LR1 model on the fila-
ment tension. We reduced the value of the maximum conductances GNa and Gsi. The
effect of the decrease of Gsi is a shortening of the action potential duration (APD).
If the APD is short, there is less interaction between consecutive pulses. Thus, the
trajectories of the spiral tip in 2D and the filament in 3D are rigid or with weak mean-
dering. Therefore, the use of low values of Gsi, precludes the formation of complex
meandering and breakup. The velocity of a traveling wave is almost independent of
the value of Gsi. However, the decrease of GNa substantially reduces wave velocity,
while the APD remains almost constant (Alonso and Panfilov 2007).

We were able to find negative filament tension in the LR1 model. Figure 10 ex-
hibits an example of negative filament tension in the LR1 model. The simulation
starts with an initial condition in the form of a scroll wave with a sinusoidally per-
turbed straight filament; see Fig. 10(a). After several rotations, the filament begins to
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Fig. 10 Evolution of a scroll wave showing negative filament tension in the Luo–Rudy model.
Waves and filaments are simultaneously shown. Values of the parameters are GNa = 3.9 mS/cm2 and
Gsi = 0.0 mS/cm2

bend; see Fig. 10(b). Length and curvature of the filament increase; see Figs. 10(c)
and 10(d). When the filament touches the boundary, see Fig. 10(e), it fragments giv-
ing rise to a new scroll wave, see Fig. 10(f). The process of fragmentation persists
and gives rise to a complex spatio-temporal pattern of excitation, see Figs. 10(g)
and 10(h). This chaotic dynamics persists as long as we perform the simulation. As
shown in Fig. 10, new filaments appear and disappear as a result of the interaction
with the boundaries and the interaction among the filaments (Alonso and Panfilov
2007). The excitation pattern is equivalent to the dynamics obtained in simple mod-
els of excitable media under negative filament tension, shown, for example, in Fig. 4.

In Alonso and Panfilov (2007) we also show that an increase of excitability (e.g.
by increase of GNa) eliminates negative filament tension. It becomes positive and a
filament initially perturbed stabilizes between the opposite boundaries of the system
and remains straight for the whole simulation. We also confirmed that in the LR1
model, as in simple models, the negative filament tension disappears if we reduce the
thickness of the tissue.

However, the excitability of cardiac tissue in normal conditions is high. Thus, it is
essential to find out negative filament tension in cardiac tissue with high excitability.

6.2 High Excitability

In Alonso and Panfilov (2008), we performed an extensive search of the phenomenon
of negative filament tension for a wide range of parameters of the LR1 model. We
were specifically interested in high values of GNa and Gsi corresponding to high ex-
citability of cardiac tissue. For larger values of GNa and Gsi, the meandering dynam-
ics of spiral and scroll waves becomes more complex and the dynamics is dominated
by several frequencies in contrast to spirals and scrolls with rigid rotation (character-
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Fig. 11 (a) Phase space of the dynamics of scroll waves in the LR1 model. (b) Fourier spectrum of the
spiral tip motion for 2D spiral waves in low-excitable media for different values of GNa. Panels show
particular examples of spiral dynamics at low excitability. (c) Fourier spectrum of the spiral tip motion
for 2D spiral waves in high-excitable media for different values of GNa. Panels show particular examples
of spiral dynamics at high excitability. The simulations here are performed with LR1 model, where j is
clamped to 1

ized by a single frequency) and simple meandering (characterized by two frequen-
cies). To reduce the number of frequencies and keeping the main characteristics of
wave propagation, we fixed the gating variable j to a value 1 (Qu et al. 2000b), repre-
senting a slow inactivation of INa that permits the elimination of several frequencies
in the meandering motion, resulting in simple meandering of spiral waves.

In Fig. 11(a) the behaviors the LR1 model is shown in the parameter spanned
by the conductivities GNa and Gsi, where the variable j is clamped to 1. At high
values of Gsi spiral breakup becomes rapidly dominant. The usual region of negative
filament tension is obtained at the low excitability limit, for the range 3.1 < GNa <

3.5 mS/cm2 for a wide range of values of Gsi. This region corresponds to the classical
regime of negative filament tension in media with low excitability which we have
previously discussed in this review.

We have also found a region of the parameter space where scroll rings can expand
even if the medium is highly excitable. This second region of negative filament ten-
sion is found at 8 < GNa < 35 mS/cm2 for Gsi = 0, and its size decreases with the
increase of parameter GSi, see phase diagram in Fig. 11(a). Numerical simulations of
scroll rings in this region show that the rate of expansion is low, the growth, however,
is robust and is not due to numerical or boundary effects (Alonso and Panfilov 2008).
In our numerical simulations this weak negative filament tension of scroll rings was
not able to produce a turbulent dynamics.

The expansion of scroll rings at low excitability is related with the transition be-
tween inward and outward meandering. Figure 11(b) shows the Fourier analysis of
the spiral tip motion for different values of GNa and several examples of meandering
patterns of the spiral tip. For each value of GNa typically two frequencies are shown:
the large frequency corresponds to the spiral rotation ω and the small frequency to the
meandering �ωm = ωm −ω. For low values of GNa spirals perform an inward mean-
dering which evolves into a resonant drift (ωm = ω), and into an outward meandering
by increasing the parameter GNa. The region with inward (outward) meandering cor-
responds to negative (positive) tension.
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Expansion of scroll rings at high excitability is partially related to a region of
inward meandering of 2D spiral waves. Figure 11(c) shows the appearance of a new
frequency in the Fourier spectrum by the increase of the parameter GNa. For GNa =
5 mS/cm2 spiral waves rotate rigidly. The increase of GNa produces a secondary
frequency inducing an inward meandering. Note that the dependence of this new
frequency on the parameter GNa in Fig. 11(c) differs from the typical meandering
instability shown in Fig. 11(b).

These results highlight the relation between inward meandering in two-dimensional
media and the tension of three-dimensional filaments. In contrast to the low excitabil-
ity case, the boundaries of negative filament tension do not precisely coincide with
the boundaries of the different meandering regimes.

7 Discussion

In this review, we have considered studies of negative filament tension performed nu-
merically in simple models of excitable media and in detailed ionic models of cardiac
tissue as well as corresponding analytical approaches. Two main conclusions are that
negative filament tension typically results in the onset of turbulence in 3D excitable
media and that it normally occurs in media with low excitability. We also have re-
ported on negative filament tension in media with high excitability. The characteriza-
tion of the instability under such condition requires, however, additional studies. The
negative filament tension instability does not develop if the thickness of the medium
is below a critical value, which is determined by the maximal spatial wavenumber of
an unstable mode. Numerical results also show a relation between the characteristics
of spiral wave meandering in 2D and the negative filament tension of straight scrolls
or scroll rings in 3D. Negative line tension in 3D is usually found at parameter values
where spirals show inward meandering in 2D. Analytical approaches can explain the
negative filament tension. It is, however, difficult to predict its onset for a particu-
lar model of cardiac tissue. Such approaches require either the knowledge of some
phenomenological quantities which cannot be explicitly obtained from the parame-
ters of the model or they are based on the knowledge of the adjoint eigenfunctions
of the linearization around a stable rotating scroll wave which can be only done us-
ing numerical methods. Furthermore, it would be important to extend the analytical
description from rigidly rotating to meandering spirals and scrolls.

Much remains to be done to explore the influence of geometry on the develop-
ment of negative line tension for realistic heart shapes. In an influential paper, Win-
free pointed out that ventricular fibrillation was absent in small animals with small
hearts (Winfree 1994) and that ventricular fibrillation can occur if the thickness of
the ventricular wall of the heart exceeds some critical value. From this, he concluded
that genuine 3D effects like negative filament tension may be crucial in the devel-
opment of fibrillation. Nowadays, fibrillation can be induced in small animal hearts
(e.g., mouse or rat heart), but in many cases this requires application of drugs which
reduces the duration of the wave. Thus, thickness of the heart should be considered
relative to the characteristic wavelength of the scroll wave (Panfilov 2006). In addi-
tion, it is not known in which cases VF does indeed occur via the negative filament
tension mechanism.
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Although there is not yet a direct evidence of negative filament tension in the
heart, several indirect observations point towards a role of the negative filament ten-
sion mechanism. The development of the negative filament tension instability in the
heart (see Fig. 8) produces surface activity patterns similar to those observed in the
heart during the development of ventricular fibrillation (Zaitsev 2008). Furthermore,
it is widely recognized that many cardiac arrhythmias occur in conditions of reduced
excitability of the heart, e.g., during ischemia. The reduction of excitability favors
the appearance of negative filament tension. However, our studies of cardiac models
(Alonso and Panfilov 2007) showed that it occurs only in cases of extreme excitability
decrease (nonphysiologically weak sodium and calcium conductances, corresponding
to low values of the parameters GNa and Gsi) and it is not clear if such conditions are
realizable in the heart. In that respect, an interesting observation of negative filament
tension at high excitability was reported in Alonso and Panfilov (2008). However, the
effect needs to be verified in other models of cardiac tissue.

Another important topic on wave propagation in cardiac tissue is the effect of
anisotropy. Recent analytical studies (Verschelde et al. 2007; Dierckx et al. 2009)
show that nonhomogeneous anisotropy can substantially affect scrolls and may gen-
erate the complex dynamics of scroll waves observed in numerical simulations (Fen-
ton and Karma 1998b). Most of the studies on effects of anisotropy were performed
for positive filament tension (Panfilov and Keener 1995b; Qu et al. 2000a). Numerical
simulations for parameters value close to the boundary where negative filament ten-
sion sets show that anisotropy induces negative filament tension (Mi and Ping 2009).

Another possible factor which may contribute to an emergence of negative fila-
ment tension in the heart is cardiac contraction. The mechanical deformation of the
heart during the contraction interacts with the propagation of the electrical waves
which is known as a mechano-electrical feedback. Recent studies showed that the
mechano-electrical feedback is normally associated with a phenomenon of accom-
modation which decreases the excitability of the tissue (Panfilov et al. 2007). Thus,
we expect that it should make negative filament tension more pronounced. However,
as was shown in Panfilov et al. (2007), the mechano-electrical feedback also induces
a resonant drift of the spiral waves which may substantially affect filament tension in
a way that is difficult to predict from the results of two-dimensional simulations, and
hence would require a computationally expensive study based on three-dimensional
simulations.

Negative filament tension is one of the possible mechanisms to generate turbulence
in excitable media. Another widely discussed mechanism are instabilities that cause
spiral wave breakup in two dimensions (Fenton et al. 2002; Bär and Brusch 2004),
for example, the previously mentioned breakup by steep restitution curves (Panfilov
and Holden 1990; Karma 1993). The main difference between them is that negative
tension in simple models is associated with low excitability, where the rotation pe-
riod of the scroll wave is substantially longer than the refractory time of the medium.
On the contrary, spiral breakup is typically associated with highly excitable media,
where the rotation period of spiral and scroll waves is close to the refractory period
and the velocity of the waves is substantially above the values found at propagation
failure. Recently, both types of turbulences were studied in order to differentiate these
two mechanisms from each other. It was shown that the statistical properties of the
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turbulent defect dynamics by negative filament tension are different from those gener-
ated by instabilities associated with 2D mechanism of spiral breakup (Davidsen et al.
2008; Reid et al. 2011). A similar approach may allow researchers to distinguish be-
tween these two mechanisms in experiments because three-dimensional visualization
of the turbulence on the heart is still not available and only the chaotic surface elec-
trical activity is the accessible. Three-dimensional visualization is, however, possible
in chemical excitable systems using tomographic techniques. It has permitted the vi-
sualization of negative filament tension in the Belousov–Zhabotinsky (BZ) reaction
for scroll waves (Luengviriya et al. 2008) and rings (Bánsági and Steinbock 2007)
as already predicted by numerical simulations of the Oregonator model of the BZ
reaction (Alonso et al. 2006a).

In summary, negative filament tension of scroll wave induces the formation of a
turbulent dynamics in simple and electrophysiologically realistic models of cardiac
tissue. The turbulent pattern obtained during this state is reminiscent of the chaotic
and irregular wave dynamics observed in experiments with cardiac tissue or hearts
during VF. The emergence of negative filament tension in real cardiac tissue may be
closely related with the appearance of ischemia in cardiac tissue.
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