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Abstract One of the most crucial tasks faced by biologists today is revealing the
mechanisms which account for biodiversity, yet we are still far from a full under-
standing of these mechanisms, and in particular the role of spatially heterogeneous
population distributions. Recently, the spatially heterogeneous coexistence seen in
cyclic competition models—in which species compete as in the game rock-paper-
scissors—has brought them to the fore as a paradigm for biodiversity. Research into
cyclic competition has so far been focused almost exclusively on stochastic lattice
models with discrete space, which ignore several key dynamical aspects. In particular,
such models usually assume that species disperse at the same speed. This paper aims
to extend our understanding of cyclic competition by applying a reaction–diffusion
Lotka–Volterra scheme to the problem, which allows us to vary the mobility of each
species, and lets us take into account cyclic competition with more complex underly-
ing mechanisms. In this paper we reveal an entirely new kind of cyclic competition—
‘conditional’ cyclic competition, with a different underlying mechanism to ‘classic’
cyclic competition—and we show that biodiversity in communities with cyclic com-
petition in fact depends heavily on the ratios between the species mobilities. Fur-
thermore, we show that this dependence can be completely different for conditional
and classic cyclic competition. We also present a wide range of spatiotemporal pat-
terns which are formed in the system, including spiral and target waves, spiralling
patches, and irregular chaotic patches. We show that the previously unknown case of
conditional cyclic competition is host to a scenario of patchy co-invasion, where the
spread of the population front takes place via the formation, splitting and propagation
of patches of high species density. This is also an example of invasional meltdown
because one competitor facilitates the invasion of the other, but unlike well-known
cases of invasional meltdown the co-invaders in this system are not mutualists but
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antagonistic competitors, and the overall result mitigates, rather than amplifies, the
damage done to the native ecosystem.

Keywords Co-invasion · Complexity · Dispersal rate · Excitable system ·
Homogeneous environment · Patterns of spread · Spatial ecology · Spatiotemporal
chaos · Spiral waves

1 Introduction

One of the major challenges in mathematical ecology today lies in discovering the
mechanisms that account for the high degree of species diversity seen in the natu-
ral world (Ives and Carpenter 2007; Tilman 1982; Tilman et al. 1994; Levine and
Hille Ris Lambers 2010; Chesson 2000). A large volume of research has made it
increasingly apparent that competition displaying the ‘competitive exclusion princi-
ple’ (Gause 1934; Hardin 1960; MacArthur and Levins 1967) cannot alone account
for the rich assortment of species our ecosystems contain. As a classic example, the
‘paradox of the plankton’ (Hutchinson 1961) concerns a situation in which many
species of plankton coexist in the same ecological niche. Several possible explana-
tions have been put forward for the diverse range of plankton species found in nature;
these include spatial and temporal heterogeneity of the environment, environmental
fluctuations or turbulence, oscillations or chaos in the competition dynamics and non-
competition interactions with other species in the environment (Huisman et al. 2001;
Scheffer et al. 2003; Roy and Chattopadhyay 2007). One of the more important
proposed mechanisms is spatial partitioning of the species, in which they occupy
distinct areas of the habitat. Often, this is due to heterogeneity in the environment
creating spatial niches (Ryabov and Blasius 2011), but there are also many mod-
els which exhibit such spatial heterogeneity in a completely homogeneous physical
environment—usually with partitioning of the species being dynamic in time (Ama-
rasekare 2003; Reichenbach et al. 2007). In this paper we will continue to explore
species diversity in homogeneous environments by considering a particular type of
multispecies competition called ‘cyclic’ competition.

Cyclic competition is an example of a non-transitive competition (Moen 1989)
characterised by a cyclic ordering of competitive dominance. The simplest case
involves only three species: species 1, 2 and 3, and the ordering of the compe-
tition is analogous to the popular game ‘rock-paper-scissors’: that is, species 1
outcompetes species 2, which outcompetes species 3, which in turn outcompetes
species 1. There are several well-documented examples of cyclic competition in na-
ture, perhaps the most famous concerning the different mating strategies of male
side-blotched lizards of the species Uta stansburiana (Sinervo and Lively 1996).
There has also been evidence found for the presence of cyclic competition in sev-
eral other cases, including competition between certain species of coral reef in-
vertebrates (Jackson and Buss 1975; Buss and Jackson 1979), some yeast strains
(Paquin and Adams 1983) and competing strains of bacteria (Kerr et al. 2002;
Kirkup and Riley 2004). There are also several non-biological situations which can
be modelled by similar competition with cyclic competitive advantage, as in certain
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many-player prisoner’s dilemma games (Szabó 2002; Hauert et al. 2002) and in some
types of voter model (Tainaka 1993). We should note that although we use the term
‘species’ to refer to the competitors in general, examples of cyclic competition are
not limited to either inter-species or intra-species competition, and our investigation
is equally valid for ‘strains’ or ‘types’ of different species since we are concerned
with the general conditions under which cyclic competition can allow for the coexis-
tence of all three participants (e.g. Prado and Kerr 2008).

While models of cyclic competition without space usually forecast the extinction
of one or more species (May and Leonard 1975; Gilpin 1975), considering the same
interactions in space can allow all three types to coexist (Durrett and Levin 1998;
Frean and Abraham 2001; Reichenbach et al. 2007). Durrett and Levin (1998) and
Frean and Abraham (2001) consider a cyclic system which exhibits neutral limit cy-
cles under the assumption that each individual has an equal possibility of interacting
with any other individual, regardless of the distance between them. In this case the
long-term persistence of all competitors is impossible, but by considering only lo-
cal interactions they show that the same system exhibits coexistence due to spatial
partitioning. Using a similar modelling approach based on stochastic lattice models,
Reichenbach et al. (2007) show that coexistence of the three species is subject to lim-
itations on the species migration rate: there exists a critical mobility, Mc , such that
higher values of mobility cause a rapid degradation of persistence. This result can be
intuitively understood in the following way: the faster the species move, the more the
system approximates the mean-field case with full mixing and no explicit space, thus
resulting in extinction (May and Leonard 1975).

One significant limitation to the previous investigations is that they are all re-
stricted to the case in which all species have equal mobility. In nature, however, it
is evident that in the majority of such interactions the competing species will dis-
perse at different rates. Furthermore, previous studies have shown that differences
in the dispersal distributions of competing species can fundamentally alter the out-
come of competition: Durrett and Levin (1998) show that in a two-species model, a
longer-range dispersal can allow a type to overcome a superior competitor. For this
reason the absence of any investigation into the possibility of coexistence in systems
of cyclic competitors with unequally mobile competitors represents a significant gap
in the literature, and this paper aims to provide further research in this direction by
explicitly considering disparity in the dispersal rates of the species, and investigating
the resulting behaviour of the system.

We have chosen to undertake our study using a reaction–diffusion modelling
framework. This is a rather popular approach in ecological modelling (Sherratt 2001;
Cantrell and Cosner 2003), but surprisingly this approach has not been used in the
previous studies of cyclic competition systems in space—with Merino (1996), Petro-
vskii et al. (2001) and Ikeda (2001) being notable exceptions—instead, the con-
ventional approach in considering cyclic competition in space is to use stochas-
tic individual-based cellular automata models. However, using a reaction–diffusion
scheme has several benefits when we model dynamics of highly mobile species: as
the spatial position of individuals can change quickly on the timescale of reproduc-
tion, we can only describe the population dynamics in terms of population densities
averaged over time and space. This is the case, for instance, in the competition be-
tween male side-blotched lizards (Sinervo and Lively 1996). Another advantage of
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the reaction–diffusion framework is that we can explicitly consider local interactions
between individuals of all three species, which is rather difficult to do using lattice
models where we only consider interactions between pairs of individuals (Durrett and
Levin 1998; Frean and Abraham 2001; Reichenbach et al. 2007). Additionally, under
the reaction–diffusion framework it is very straightforward to vary the species’ mo-
bility without affecting the local competition dynamics—we can simply change the
diffusion coefficients at will. Our results reveal several other important benefits of
using a reaction–diffusion framework in modelling movement of cyclic competitors,
which we shall discuss in Sect. 4.

In this paper we examine several aspects of the relationship between biodiver-
sity in a cyclic competition community and the dispersal rates of the competitors.
Firstly, we find the range of dispersal rates which actually admit coexistence of all
three species—we show that small variations in the competition parameters can com-
pletely change the range of dispersal rates which admit coexistence by presenting
an instance in which small parameter variations cause a shift from a situation where
highly disparate species mobilities are detrimental to persistence to one in which dis-
parity is necessary for coexistence. Secondly, we consider several variations in the
competition parameters to determine how such variation affects the extent of species
coexistence and the spatiotemporal patterns observed. We show that the competition
parameters also have a substantial influence on the spatial patterns observed in the
system, and that the system exhibits a large range of spatiotemporal dynamics, in-
cluding spiral/target waves, spatiotemporal chaos, and patchy invasion. Thirdly, we
emphasise the importance of both the relative and the absolute values of species mo-
bility to guarantee biodiversity in the community and we estimate the size of the
habitat which can allow the coexistence of all species. Finally, we use cyclic compe-
tition in space as a paradigm to model the phenomenon of mutual invasion—which
is a hot topic in the ecological literature—and reveal a regime of patchy co-invasion
in which one invasive competitor facilitates the invasion of another in a similar way
to a scenario of invasional meltdown.

2 Modelling Framework

We model the spatiotemporal interaction of three competing species using a reaction–
diffusion scheme based on the three-species Lotka–Volterra competition approach, as
considered by May and Leonard (1975) (see also Petrovskii et al. 2001):

∂u1

∂t
= D1�u1 + a1u1(1 − α1,1u1 − α1,2u2 − α1,3u3), (1)

∂u2

∂t
= D2�u2 + a2u2(1 − α2,1u1 − α2,2u2 − α2,3u3), (2)

∂u3

∂t
= D3�u3 + a3u3(1 − α3,1u1 − α3,2u2 − α3,3u3), (3)

where u1, u2, and u3 are the densities of species 1, 2 and 3, respectively, a1, a2 and a3
are the intrinsic growth rates of the three species, and each coefficient αi,j represents
the limiting effect that the presence of species uj has on species ui . In this sense, 1

αi,i
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can be interpreted as the carrying capacity of species i. The diffusion coefficients D1,
D2 and D3 describe the dispersal rate/mobility of each species.

Since system (1)–(3) contains 15 parameters, it is natural to scale each species’
density according to its carrying capacity: ûi = αi,iui , and then rescale both time and
space to obtain the simplified three-species competition system:

∂u1

∂t
= �u1 + u1(1 − u1 − α1,2u2 − α1,3u3), (4)

∂u2

∂t
= ε2�u2 + a2u2(1 − α2,1u1 − u2 − α2,3u3), (5)

∂u3

∂t
= ε3�u3 + a3u3(1 − α3,1u1 − α3,2u2 − u3), (6)

and so reducing the number of parameters to 10. Secondly, we can assume without
loss of generality that ε2, ε3 ≤ 1 since we can always choose to scale the system to
the largest diffusion coefficient, and consider the corresponding species as u1.

Before we proceed further, we ought to determine exactly what we mean when
we refer to ‘cyclic competition’ in model (4)–(6). Our definition is based on the ar-
rangement of outcomes in the competition between each pair of species in space:
we consider competition between the two species in 1D space with initial conditions
such that at infinity the species densities are equal to the carrying capacities, and the
species boundary forms a travelling wave as shown in Fig. 1A. The direction of the
wave determines which species outcompetes the other, i.e. competitive dominance is
defined by spatial displacement. We define cyclic competition as having such com-
petitive advantage ordered in a cycle, i.e. 1 > 2 > 3 > 1. We require that this order
should hold for any ratio between the diffusion coefficients.

Interestingly, our spatial-displacement definition of cyclic competition can hold
for two types of competition with very different underlying mechanisms in the local
dynamics.

(i) Classic cyclic competition

The local interactions between each pair of species ui and ui+1 (i + 1 always be-
ing considered to refer to i + 1 mod 3) involve only one stable steady state, which
lies on the ui axis, so ui always prevails over ui+1 for nonzero initial conditions.
The isocline diagram and phase trajectory directions for such a case of competi-
tion between two species are shown in Fig. 1C. We should note that the u̇i = 0
and u̇i+1 = 0 nullclines can intersect on the ui+1-axis (at ui+1 = 1) without alter-
ing the number and stability of the steady states. For the competition coefficients
we have αi,i+1 ≤ 1 and αi+1,i > 1. Adding space to the local interaction does not
alter the outcome of competition: the resultant travelling wave will always be di-
rected from the area occupied by ui to the area occupied by ui+1 (Hosono 1998;
Lewis et al. 2002).

(ii) Conditional cyclic competition

To illustrate the concept of conditional cyclic competition, let us suggest that the lo-
cal interactions between two of the pairs of species—which we will assume without
loss of generality to be u1, u2 and u2, u3—are the same as in case (i) but the local
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Fig. 1 Defining cyclic competition. (A) A solution of the 1D reaction–diffusion competition between
species ui and species ui+1 in our definition of cyclic competition. We require that species ui displaces
ui+1 in space. (B) Phase trajectories for the local dynamics of our model, starting from near the unstable
coexistence state (u∗

1, u∗
2, u∗

3). The trajectories are truncated to exclude biologically meaningless hetero-
clinic cycling. (C) Isocline diagram for the competition between two species in the case of classic cyclic
competition. Filled dots represent stable steady states and unfilled dots represent unstable ones. The arrows
show the directions of the phase trajectories. (D) Isocline diagram for the competition between species 1
and 3 in the case of conditional cyclic competition. The dots and arrows have the same meaning as in
Fig. 1C

competition between species u3 and u1 is bistable: there is an unstable nontrivial
equilibrium, and both of the axial steady states are locally stable. In ecology such
competition is called pre-emptive. This will be the case if both a1,3 > 1 and a3,1 > 1
hold—in other words, if the interspecies competition is ‘strong’ in both directions.
The corresponding isoclines and phase trajectory directions for such a situation are
shown in Fig. 1D. Unlike in case (i), the outcome of the local competition between
species 3 and 1 is now dependent upon the initial conditions: in other words, we have
bistability. When we add a spatial dimension to the local interaction, the direction of
the travelling wave can be either from the area occupied by 3 to the area occupied by
1 or vice-versa, since the outcome depends both on local interaction parameters and
the diffusion coefficients (Alzahrani et al. 2010, 2011). In the case where species 3
displaces species 1 in space (see Fig. 1A) we call such cyclic competition ‘condi-
tional’, since local pairwise interactions of some species can show bistability but this
does not alter the order of spatial displacement schematically given by 1 > 2 > 3 > 1.
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Note that Alzahrani et al. (2010) derive the relevant analytical conditions for the
direction of a travelling wave in the case of local bistability when there is a low ratio
between the diffusion rates of the competitors. However, for intermediate and large
diffusion coefficients we always need to check numerically that the same direction of
displacement in space still holds, ensuring that we have cyclic pairwise competition.

In cases (i) and (ii) the mathematical properties of model (4)–(6) without dif-
fusion are qualitatively quite different but behave much the same when we ignore
biologically meaningless behaviour. In all cases, the system may have at most one
interior stationary state (u∗

1, u
∗
2, u

∗
3) with all species densities being above zero; there

are always semi-trivial stationary states where one species density is zero and the
trivial stationary state (0,0,0) always exists and is always unstable. Depending on
parameters the state (u∗

1, u
∗
2, u

∗
3) can be either stable or unstable (May and Leonard

1975), but in this paper we consider the most interesting case of cyclic competi-
tion where no stable limit cycle exists in the system and the persistence of all three
species becomes impossible (May and Leonard 1975). In this case the system can
show heteroclinic behaviour—trajectories cycle between the three one-species un-
stable steady states ((1,0,0), (0,1,0), (0,0,1)), spending longer in the vicinity of
each steady state with every orbit, but never converging. Another type of behaviour
is possible in the case of conditional cyclic competition: consider, for instance, that
interactions between species 1 and 3 show bistability (see Fig. 1D). The u1-only state
is now locally asymptotically stable (this requires α2,1, α3,1 > 1) and the trajectories
unwinding from (u∗

1, u
∗
2, u

∗
3) will be attracted by this state. In this paper, however,

we truncate the trajectories at very small densities (less than 10−5 in our simulations)
to reflect biologically relevant dynamics and as a result; the local cyclic competition
dynamics in both cases becomes qualitatively similar: typical phase trajectories for
both cases are shown in Fig. 1B. Depending on initial conditions trajectories will go
to one of the stationary states ((1,0,0), (0,1,0), (0,0,1)). This can be explained by
the fact that in the case where the u1-only state is stable, the trajectory can reach
unrealistically low densities of u2 and u3 before eventually converging to this state,
thus we may need to truncate it near the other states (0,1,0) and (0,0,1).

Although system (4)–(6) can be partially studied analytically (Petrovskii et al.
2001), it is not possible to perform a complete analytical investigation in the two-
dimensional case, where the spatial patterns have irregular shape. We have used nu-
merical methods and have mostly used an explicit Euler finite-difference scheme,
whilst checking that our results are consistent with those obtained using more ad-
vanced implicit schemes (see Thomas 1995 for details). In order to avoid unrealistic
heteroclinic cycling behaviour as observed in the mean-field case, we truncate pop-
ulation densities lower than ui = 10−5. We should note that the system with and
without such truncation is quite consistent in terms of both spatiotemporal patterns
and persistence provided that the truncation threshold is quite low (we considered the
integration time to be T ≈ 3000). For truncation thresholds of ∼0.01 (i.e. 1/100th
of the carrying capacity of the species), the spatiotemporal patterns are affected and
persistence becomes somewhat more tentative. Finally, we have assumed a square
habitat, and used zero-flux Neumann boundary conditions.

The solutions to system (4)–(6) largely depend upon the choice of initial condi-
tions; and, so here we use the following four types of initial condition sets in order
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to perform a thorough investigation of various dynamical patterns in a 2D environ-
ment: (i) the simplest initial condition: from the centre of the habitat, we extend three
boundary lines at angle 2π/3 from each other, thus dividing the habitat into three ‘tri-
angular’ sub-domains, and we start with one—and only one—species present in each
of these sub-domains, initially at its equilibrium density; (ii) the initial condition set
consists of the same arrangement as above, but with M = 10 such ‘triangulations’;
(iii) for the given parameter set we use the eventual spatial dynamics formed in the
system with nearby parameters (if coexistence for nearby parameter is possible); in
the case the two parameter sets are not close, we can take appropriately small steps
through the parameter space, each time updating the initial conditions to the new
asymptotic spatial distribution; (iv) we consider that the two species are initially dis-
tributed in a pair of overlapping rectangles in the middle of the habitat, with the
other species occupying the rest of the habitat in its entirety. The initial condition of
type (iv) is used to explore patterns of co-invasion in the system where the density
of the native species is at its carrying capacity. Finally, the scale of the investigation
should be emphasised: in order to construct the parametric diagrams (see the follow-
ing sections) we have had to perform a substantial number (over 2000) of simulations.

3 Results

Our main goal is to explore community biodiversity in a two-dimensional environ-
ment, but it is convenient to start with the simpler one-dimensional case. An under-
standing of the mechanisms of persistence and extinction, and the role of varying
dispersal rates in the simplified case, can then form our understanding of the corre-
sponding mechanisms in the two-dimensional case. We are mainly interested in the
dependence of species persistence on variation in the species’ mobility, and so it is
convenient to plot regions of coexistence and extinction in the ε2–ε3 dispersal-rate
space for system (4)–(6). The results for a one-dimensional environment are shown
in Fig. 2. To check the possibility of coexistence of all species in the system we con-
sider the invasion-type initial conditions: the whole habitat is initially occupied by
species 3 except for two non-overlapping domains occupied by species 2 and 1 where
the initial density of the species is equal to the carrying capacities. We consider the
boundary conditions to be of Neumann form.

In Fig. 2A, we show the case where we have classic cyclic competition (see
Sect. 2); in particular, we consider cyclically symmetrical competition parameters
(αi,i = 1, αi,i+1 = 1, αi,i−1 = 2 for i = 1,2,3). The grey domain corresponds to the
coexistence of all species in an ‘unbounded’ habitat: i.e. the size of the domain, L,
was taken to be as large as necessary. The meaning of the dashed and the dotted
curves will be explained later. We can see from the figure that most of the diffusion
space allows for coexistence, except for small values of ε2 or ε3. One can also see
that although the parameters are cyclically symmetrical, the domain of coexistence is
not symmetrical with respect to the line ε2 = ε3. We have also examined a more real-
istic situation of classic cyclic competition (see Fig. 2B) where we do not have exact
cyclic symmetry in the parameters: we increased the parameter α2,1 so that species
u1 exerts more competitive pressure on species u2. The main effect of this is that the
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Fig. 2 Domains of coexistence and extinction for model (4)–(6) in an unbounded 1D habitat in terms of
the diffusion coefficients ε2 and ε3. Black regions indicate that coexistence is impossible, and light grey
regions indicate coexistence is possible. (A) Cyclically symmetrical parameters: αi,i+1 = 1; αi,i−1 = 2
for i = 1,2,3; a2 = 1, a3 = 1. The dashed line denotes the boundary of coexistence for an intermedi-
ate domain length L = 400, and the dotted line denotes the boundary of coexistence for small domains,
L = 150. (B) Increased pressure exerted on species u2 by u1: α2,1 = 4, all other parameters are the same
as in (A). (C) Conditional cyclic competition: α3,1 = 1.3, all other parameters are the same as in (A). In
this case, the local interactions between u1 and u3 display bistability, as seen in Fig. 1D

domain of coexistence moves away from the ε3-axis, and so extinction will occur for
small values of ε2—that is, the extra competitive pressure on species u2 requires it to
be faster if all the three species are to coexist. On the whole, however, the coexistence
region is qualitatively quite similar to the symmetrical case.

On the other hand, the structure of the diagram changes if we consider parameters
for conditional cyclic competition. When species u1 is able to ‘retaliate’ more to com-
petition from u3 (the parameter α3,1 is increased), we get the case of u3, u1-bistable
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competition as discussed in Sect. 2. As shown in Fig. 2C, in this case the regions
of coexistence and extinction change drastically from those in Figs. 2A and 2B: all
three species can only coexist in a thin strip near (but not including) the ε3-axis—
exactly the contrary to the classical cyclic competition case. Full coexistence places
very specific demands on the mobility of species u2, and will not be possible for
medium or small dispersal rates, but is flexible with regard to the third species—only
a small dispersal rate of species u3 will necessarily result in extinction of one or more
species.

To gain an informative insight into how spatial coexistence is maintained, we can
follow the population densities of three species at different times, giving us a ‘profile’
of coexistence. Figure 3 represents patterns of the coexistence in the community with
cyclically symmetrical parameters (constructed for ε2 = 0.2, ε3 = 0.3). The plots
at times t = 20, 60, 80 show the basic underlying mechanism of coexistence: since
species 1 is faster, it can ‘catch up to’ species 2 (which it outcompetes), causing the
habitat occupied by species 2 to become attenuated (t = 20). Eventually, the species 2
distribution becomes so narrow that species 3 can invade the encroaching species 1
population, allowing species 2 to recover (t = 60). Once the species 2 population has
recovered, it resumes pressing on the species 3 population and this allows species 1
to recover, eventually resulting in a return to the scenario we started with, but now
with two such travelling waves (t = 80). Through variations on this mechanism, the
travelling waves multiply until there are many travelling patches of various sizes
intermingled in a complicated way (t = 500, 900).

For certain arrangements of the species mobility, all the species can interact (as
opposed to a situation where two of the species are constantly separated by the third),
but eventually extinction will still take place, rather than coexistence as is observed
in Fig. 3. We display a portrait of such a scenario in Fig. 4, constructed for the same
parameters as were used for Fig. 3, except with ε3 much lower (ε3 = 0.05). Here the
dynamics start off as in Fig. 3, but since species 3 is slower it cannot invade species 1
as quickly, and this allows the species 1 population to recover before species 2 can
establish itself on the other side of the species 1 peak. Because of this, we do not have
local persistence of species 2, as it is constantly forced towards the boundary by the
other species, which eventually results in extinction. In the same way one can observe
that for a slow-moving species 2, coexistence of all three species is impossible (for
the sake of brevity we do not show the corresponding diagrams).

Considering spatiotemporal dynamics in the case of conditional cyclic competition
(with bistability between species 1 and 3) allows us to give a reason why coexistence
is only possible for a narrow range of ε2 in this case. If species 3 is to invade species 1,
it requires a supercritical density to successfully establish itself (a small density will
result in extinction). For this to happen, the population of species 2 must become
sufficiently attenuated so that species 3 can disperse across it in high enough vol-
ume, but not become attenuated so quickly that it is overwhelmed by the encroaching
species 1 population. For this reason, coexistence is largely determined by the speed
of spread of the species 2 population, which is determined by ε2. Interestingly, in
some cases species 3 is unable to disperse across species 2 in high enough volume to
establish itself, but the three-species wave keeps on moving following such an inter-
action, with the whole scenario repeating and the invasion of species 3 always failing.
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Fig. 3 Patchy coexistence in the one-dimensional model. The distribution of the three species is shown at
5 different points of time. Species u1 is indicated by the thin solid line, u2 is indicated by the thick solid
line and the dashed line represents species u3. The diagrams are plotted for the same parameters as in
Fig. 2A, with ε2 = 0.3 and ε3 = 0.2
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Fig. 4 Dispersal-induced extinction in the one-dimensional model. Species u1 is indicated by the thin
solid line, u2 is indicated by the thick solid line and the dashed line represents species u3. The diagrams
are plotted for ε3 = 0.05, with all other parameters the same as in Fig. 3. As a result of this single change,
two of the species will be driven to extinction when the travelling wave fronts reach the boundary

As before, this also results in geographical spread (propagation of a pulse of popu-
lation density of species 2 in space), but without local persistence, which will end in
extinction when the habitat boundary is eventually reached. Curiously, the geographi-
cal spread results in replacement of species 3 by species 1, i.e. the inferior competitor
will eventually replace the superior. This becomes possible due to species 2 acting as
a biological ‘buffer’ between species 1 and 3. Since we do not have local persistence
in the system, we do not include the regions corresponding to propagation of pulses
in the domain of existence in Fig. 2C.
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We can reasonably suppose that, since the inclusion of an additional spatial dimen-
sion usually allows more complex patterns of dynamics, some scenarios of extinction
in one-dimensional habitats can be avoided in two-dimensional ones (e.g. Morozov
and Li 2007). Therefore we should extend our investigation to consider the role of
species mobility in biodiversity in two-dimensional landscapes. The regions of co-
existence and extinction in two dimensions for the same three sets of parameters as
we plotted in Fig. 2 are shown in Fig. 5. Initial conditions of types (i) and (ii) were
used to determine coexistence in the middle of the domains, and regions near the
boundary of coexistence were explored using type (iii) initial conditions—obtained
from the asymptotic dynamics of the system with nearby parameters—since in these
regions type (i) and (ii) initial conditions may result in extinction as they are too far
removed from the eventual dynamics.

Comparing Figs. 2A and 5A shows us that, when the competition parameters are
cyclically symmetrical, including a second spatial dimension causes the domain of
coexistence to increase to take up almost all of the mobility space of the system, with
extinction being unavoidable only for extremely small relative motilities of ε2 or ε3.
The dynamics through which coexistence takes place, however, become much more
rich and varied. In Fig. 5A we have divided up the coexistence domain into the regions
in which the three main types of nontrivial dynamics are observed. Firstly, when all
the dispersal rates are close to each other (white region in Fig. 5A), the coexistence
takes place through spiral waves such as those in Fig. 6A (plotted for type (i) initial
conditions), or through target waves (not shown here), depending on whether initial
conditions of type (i) or (ii) are used, respectively. This observation is consistent with
previous studies which have reported spiral dynamics in cyclic competition when the
species all have equal mobility (Reichenbach et al. 2007; Jiang et al. 2011). These
spiral dynamics do not take place for all mobility configurations, however: if the
species have more unequal motilities, the spirals start to break up (dark grey region in
Fig. 5A). The greater the disparity in the dispersal rates, the shorter the distance from
the origin at which the spiral waves break down, and the dynamics begin to resemble
several intermingled spirals which no longer form waves, as is seen in Fig. 6B (plotted
for type (ii) initial conditions). Eventually, when the first species is very much faster
than one or more of the others, the spiral behaviour disappears, except for a few
temporary spiral heads (light grey region in Fig. 5A). In this region the species coexist
in the manner seen in Fig. 6C (plotted using type (iii) initial conditions)—through a
convoluted and constantly shifting arrangement of irregular patches of varying size
and character, from small island-like patches to large, contiguous patches.

To gain an insight into the dynamical properties and spatiotemporal complexity
of the system dynamics observed, we can fix a point in the habitat and follow the
change in the densities of the species as they interact. Since the model displays three
apparently very different kinds of dynamics, we have examined the local population
dynamics for each of them: the results are shown in Fig. 7, plotted using the same
parameters and initial conditions as Fig. 6. In the case of spiral waves (Fig. 7A)—as
might be expected—the local species densities display perfect periodicity, with con-
stant amplitudes and frequencies. More surprisingly, however, are the local dynamics
seen in the dark grey transition region, which are plotted in Fig. 7B: here we still
observe periodicity with constant amplitudes, despite the observed spatiotemporal
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Fig. 5 Domains of coexistence and extinction for model (4)–(6) in a 2D habitat in terms of the diffusion
coefficients ε2 and ε3, with the habitat length, L = 300. Black regions indicate that no coexistence is
possible. (A) Cyclically symmetrical parameters: the model parameters are the same as in Fig. 2A. In the
white region the species coexist through spiral and target waves, the region in which the system exhibits
intermingled spirals are coloured dark grey, and the region in which the system displays chaotic patchy
behaviour is coloured light grey. (B) Increased pressure exerted on species u2 by u1: all parameters are the
same as in Fig. 2B. The grey region indicates the region in which the species can coexist through chaotic
patches. (C) Conditional cyclic competition: all parameters are the same as in Fig. 2C. The grey region
again indicates the possibility of coexistence through chaotic patches

dynamics being complicated and irregular in space. Also of interest are the popula-
tion densities attained: the species having maximal total biomass is the one which
is the inferior competitor of the species with the smallest mobility, and the species
having the minimal total biomass is the inferior competitor of this species. When we
consider the region of irregular patches (Fig. 7C), the periodicity of the local popu-
lation densities quickly disappears resulting in chaotic dynamics, as can be seen by
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Fig. 6 Three types of spatiotemporal dynamics displayed by system (4)–(6) in a 2D habitat. Blue regions
represent a prevalence of species u1, yellow regions mostly contain species u2, and red regions indicate
that the predominant species is u3. (A) Spiral waves, plotted here for diffusion coefficients ε2 = ε3 = 1,
all other parameters are the same as in Fig. 5A. (B) Intermingled spirals, plotted for diffusion coeffi-
cients ε2 = 0.6, ε3 = 0.5, all other parameters kept the same. (C) Chaotic patches, shown for coefficients
ε2 = 0.2, ε3 = 0.3, all other parameters are the same (Colour figure online)

either considering trajectories in the local phase plane (Fig. 7D) or by calculating the
leading Lyapunov exponent for the spatial model and showing that it is positive.

In the other two diagrams of coexistence in 2D space (corresponding to 1-D di-
agrams in Fig. 2) we do not observe any spiral behaviour at all—we can only have
coexistence through irregular patches as in Fig. 6C. For example, Fig. 5B shows the
regions of coexistence and extinction in two dimensions when we increase the coeffi-
cient α2,1, which is analogous to the case shown in Fig. 2B for one spatial dimension.
In this case, even when all diffusion coefficients are equal, there is no possibility
of long-term spiral behaviour. However, this shift in the dynamics is not accompa-
nied by a significant change in the domains of coexistence and extinction: comparing
Figs. 5B and 5A, the region of coexistence dominates most of the mobility space in



Revising the Role of Species Mobility in Maintaining Biodiversity 2019

Fig. 7 Local population densities for the types of spatiotemporal dynamics seen in Fig. 6. Species u1
is indicated by the thin solid line, u2 is indicated by the thick solid line and the dashed line represents
species u3. (A) Spiral waves: plotted for the same parameters as in Fig. 6A. The local population densities
show periodic cycling. (B) Intermingled spirals: plotted for the same parameters as in Fig. 6B. Local
population densities still show periodic cycling. (C) Chaotic patches: plotted for the same parameters as in
Fig. 6C. Periodicity in the local population densities disappears, resulting in chaotic dynamics. (D) Local
phase portrait for chaotic patches: plotted for the same parameters as in Fig. 6C
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both cases, and the only notable difference is that the extinction domain in Fig. 5B
does expand substantially in the regions near the origin and the ε3-axis.

Note that in both diagrams constructed for the classical cyclic competition sce-
nario we considered the particular case αi,i+1 = 1. Our numerical simulations show
that considering the case αi,i+1 < 1 will not affect qualitatively the conditions of
maintaining the biodiversity in the system: the location and the shape of the domains
of coexistence of all species will be similar to those shown in Figs. 5A, B as well
as Figs. 2A, B (we have checked the robustness of the results by decreasing the pa-
rameters αi,i+1 up to 1/2). However, we found that for smaller αi,i+1, formation of
spiral waves (as shown in Fig. 6A) becomes hampered: in the case αi,i+1 is close to 1
the spiral waves are still possible; finally, for smaller αi,i+1 (e.g. αi,i+1 < 0.75) only
intermingled spirals can be observed even for the equal diffusion coefficients.

An entirely different structure of the mobility space which provides coexistence
is shown when we consider conditional competition (involving u3, u1-bistability),
with parameters the same as the symmetrical parameter set except for α3,1, which
is increased—allowing species 1 to ‘retaliate’ against the competitive pressure of
species 3. In a similar way to the system with a one-dimensional habitat, when
the competition is altered like this, the distribution of the coexistence and extinc-
tion domains completely changes. The new scenario is shown in Fig. 5C, plotted for
α3,1 = 1.3. The coexistence domain is shifted towards the ε3-axis, while the extinc-
tion region near the ε2-axis grows, so that rather than coexistence being possible for
most of ε2–ε3 space—with extinction only guaranteed in proximity to the axes—
the coexistence region is instead constrained to the left-hand side of ε2–ε3 space,
with overly large values of ε3 necessarily resulting in extinction. Comparing Fig. 5C
with Fig. 2C reveals that this is effectively an extension of the analogous coexistence
domain in the one-dimensional case: the inclusion of the second dimension allows
coexistence in a relatively large area around the initial small strip of 1D coexistence.
We can also note that most of the region in Fig. 2C which features the propagation
of pulses without local coexistence (in the 1D case ending in extinction when the
boundary is reached) seems to contribute to this coexistence region—implying that
this mechanism can result in full coexistence when a second spatial dimension is
included. A similar mechanism was reported in Morozov and Li (2007). An open
question regarding the results shown in Fig. 2C concerns coexistence in the regions
lying extremely close to the ε3-axis and ε2-axis—while we can say that any regions
of extinction in these areas must be very small, we cannot rule them out completely
due to extreme demands on the computation in these areas.

The boundary region of the coexistence domain in the case of conditional cyclic
competition is host to a rather interesting phenomenon: a scenario of patchy biolog-
ical invasion. Biological invasion is the name given to the process by which one or
more alien species are introduced to a native ecosystem, establish themselves and
then spread out in space. In reaction–diffusion models of biological invasion the pop-
ulation front that arises is often continuous. However, recently the population front
in some predator–prey systems has been found to break down and become discon-
tinuous (Petrovskii et al. 2002; Morozov et al. 2006). Interestingly, we found that
invasion in our cyclic competition model (4)–(6) can exhibit this behaviour.

An example of such an invasion is given in Fig. 8. We model the scenario of bio-
logical invasion where two cyclic competitors invade an ecosystem in which the third
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Fig. 8 Patchy invasion in a cyclic competition system. The distributions of the invasive species u2 and u3
are plotted in space at three different times with species u2 shown in the left column and u3 in the right
column: starting from two small overlapping rectangles, the continuous invasion front breaks down, and
eventually dynamic patches of all three species are present across the whole domain. The resident species
u1 is not shown here. The diagrams were plotted for the diffusion coefficients ε2 = 0.35, ε3 = 0.4, with
all other parameters the same as in Fig. 5C
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competitor is native. Starting from initial conditions of type (iv)—small overlapping
rectangles of species 2 and 3 in the middle of a habitat dominated by the resident
species 1—we can see species 2 and 3 co-invade the domain, with the initially con-
tinuous invasion front becoming discontinuous, until patches of all three species can
be found across the whole habitat. This situation is closely related to the scenario
known as invasional meltdown, where one invasive species facilitates the invasion of
another invasive species (Simberloff and Von Holle 1999; O’Dowd et al. 2003; Sim-
berloff 2006). Similarly, in our system, species 2 would be unable to establish itself
in the habitat at all were it not for species 3. However, the joint invasion of species 2
in fact prevents species 3 from driving species 1 to extinction, and maintains bio-
diversity, thus potentially reducing the damage caused to the native ecosystem by
the invasion. Such patchy invasion scenarios were found to take place within a large
range of model parameters.

Finally, we investigate one more crucial constraint on the coexistence of competi-
tors in spatial systems: the size of the habitat. Note that previously we assumed that
the habitat was large compared to the characteristic sizes of spatial patterns—we now
relax this assumption. It is easy to see that varying the size of the habitat is equivalent
to varying the absolute values of the mobility of all three species while keeping the
habitat size fixed. To show the results of variation of habitat size in the case of sym-
metrical cyclic competition, the boundaries between coexistence and extinction for
several sizes of one-dimensional habitat are plotted as dashed lines in the coexistence
domain in Fig. 2A. We see that when the habitat size becomes restricted, full coex-
istence is impossible for values of ε2 and ε3 close to 1, and with a further decrease
in habitat size the domain of coexistence is quickly pushed to the interior of the dif-
fusion space until it is extremely small and eventually disappears (for L = 100). The
same analysis in the two-dimensional case (considering a square spatial domain) is
plotted in Fig. 9. From this figure it is apparent that as in the one-dimensional case,
decreasing the habitat size causes the coexistence domain to decrease monotonically.
This is consistent with the results of Reichenbach et al. (2007), but interestingly, for
fast enough species, the point (1,1) representing equal species mobility does not

Fig. 9 Dependence of the
boundary of coexistence upon
the habitat size in two spatial
dimensions. The boundary of
coexistence in the system is
plotted for three different habitat
sizes, with cyclically
symmetrical parameters used in
each case. The solid line is the
boundary in a habitat length of
150, the dashed line is
constructed for a habit length of
25, and the dotted line is
constructed for a habitat length
of 20. For smaller habitats, the
coexistence domain rapidly
disappears



Revising the Role of Species Mobility in Maintaining Biodiversity 2023

admit coexistence, whereas there is still an interior coexistence domain. If the habi-
tat domain is decreased further (until approximately L = 20—much lower than the
threshold observed in a 1D environment), then this interior coexistence domain dis-
appears in a discontinuous manner, meaning that one or more species will always go
extinct in a habitat of this size, regardless of the arrangement of their dispersal rates.

4 Discussion

In this paper we have revisited the spatiotemporal dynamics of a community of three
species showing a particular type of non-transitive competition: cyclic competition.
Two main features set our investigation apart from previous studies: we have allowed
the species to have disparate dispersal rates, while previous papers have assumed
the species have equal mobility, and we have used a reaction–diffusion framework,
whereas previous papers have mostly studied coupled lattice models. Aside from the
clear benefit of relaxing the previous assumption on equal mobility—which allows us
to extend the model to include interacting competitors as distinct from another as, for
instance, parasite–grass–forb interactions in which the competitors have substantially
different dispersal rates (Cameron et al. 2009)—these two factors of our approach
also allow us to reveal a number of new features of spatial cyclic competition systems
in general. In addition, it should be stressed that a tremendous number of simulations
(>2000) were performed in order to complete the current work.

A critical conclusion we can draw from our results is that we should strongly em-
phasise the role which disparity in the mobilities of the species plays in the level of
diversity in systems of cyclic competitors. Depending on the parameters representing
the strength of competition, we can see that disparity in dispersal rates can induce
diversity loss in an otherwise healthy system (as in the classical cyclic competition,
see Fig. 5A and B), and furthermore, in some cases biodiversity can be threatened by
a disparity in the mobilities as small as D2/D1 = D3/D1 ≈ 0.5 (see Fig. 5B). On the
other hand, there are also cases where species with unequal dispersal rates can coex-
ist, while the same situation with equally mobile species would end in extinction, as
in the case of conditional cyclic competition (see Fig. 5C). Assuming that all species
have equal mobility in a cyclic competition system ignores this (e.g. Reichenbach
et al. 2007), and so may give misleading predictions with regard to biodiversity en-
hancement or loss. Interestingly, the set of mobility rates defines the critical habitat
size and, consequently, the magnitude of the dispersal rates for which biodiversity can
be maintained: our results show that once a critical habitat size is reached, coexistence
becomes impossible for equal dispersal rates in smaller habitats, but remains possible
for disparate dispersal rates (see Fig. 2A and Fig. 9). In a study which only consid-
ers equal dispersal rates this possibility of coexistence in smaller habitats would be
simply missed.

An important question concerns the mechanisms allowing for biodiversity ob-
served for different species mobilities, and the reasons why those mechanisms stop
working for small or large values of ratios of the dispersal rates. The complete un-
derstanding of this fundamental issue is still an open question—the large number of
simulations performed tell us that the persistence of interactions in a 2D environment
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combines several mechanisms and does not allow a simple qualitative explanation.
In particular, complex shapes taken by the boundaries separating areas occupied by
different species in 2D space can play a major role, and this can be estimated only
numerically. The spatial patterns observed include spiral and target waves, intermin-
gled spirals and irregular patches, with the observed patterns depending on the ratios
between the dispersal rates considered.

For example, we found that the parametric region corresponding to the formation
of spiral waves is rather narrow and requires exact cyclic symmetry of the compe-
tition coefficients, whereas for slightly different mobility rates and/or competition
coefficients no spirals are formed (cf. Reichenbach et al. 2007 and Jiang et al. 2011).
In fact, for our system to exhibit ‘true’ spiral waves which propagate forever, we
require exact cyclic symmetry in both competition and diffusion parameters—any
other parameters will result in the spiral wave breaking up eventually—so we have
considered a spatial pattern a ‘spiral wave’ if the spiral wave occupies most of the
habitat. This result can partially explain the paradoxical fact that we do not usu-
ally observe spiral waves of population densities in real ecosystems (Hanski 1994;
Rohani et al. 1997), whereas such waves are observed in a large number of models
(Boerlijst et al. 1993; Gurney et al. 1998; Sherratt and Smith 2008)—indeed, in Re-
ichenbach et al. (2007) it was shown that spirals in cyclic competition systems are
even robust to perturbation by noise. In our case, the absence of spirals in our model
is due to the symmetry breaking in the model parameters and the diffusion coeffi-
cients, and this may be the case with real ecosystems: the heterogeneity of species’
life traits might be the reason for the absence of spirals.

We suggest that the formation of complex 2D spatial patterns is an important
mechanism that allows biodiversity to be maintained in the system, and that they need
the additional degree of freedom that an extra spatial dimension allows (Morozov and
Li 2007). For instance, in regions of mobility space where in 1D we have a geograph-
ical spread without local persistence (e.g. on the right-hand side of the boundary of
the coexistence domain in Fig. 2C), in the 2D case we will have target waves, inter-
mingled spirals and patchy invasion allowing for coexistence. It is for this reason that
dimensionality of the environment is key to the understanding of coexistence of the
competitors. In particular, we showed that the range of dispersal rate ratios which per-
mit coexistence significantly increases with dimensionality from a one-dimensional
habitat to a two-dimensional one, which implies potential biodiversity loss for cycli-
cally competing species which are confined to narrow habitats through habitat loss or
fragmentation. Overall, the main difference between 1D and 2D coexistence patterns
is that in the latter case the competition between each pair of species becomes less
harsh: often each patch of species i has the other two species in its neighbourhood,
thus the pressure on species i from the superior competitor becomes mitigated by its
own superior competitor. Such a situation is, obviously, less probable in 1D space.

Considering species interaction in the 1D case can also give us some clue regard-
ing the loss of biodiversity for very small relative mobilities of species in the case
of classical cyclic competition (see Fig. 2A and B). The first major constraint seems
to be the impossibility of species with low mobility to be able to pass through the
domain occupied by their superior competitors. To illustrate this idea let us suggest,
for instance, that we have the situation—illustrated in Fig. 3—where species 2 is
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surrounded from the left by species 1 and from the right by species 3, so that the
population fronts of species 1, 2 and 3 are moving from the left to the right. If the
mobility of species 3 is high enough, and the domain occupied by species 2 becomes
thin enough due to pressure from the faster species 1, diffusion allows a number of
individuals to pass through the domain occupied by species 2 and further split the
population front of species 1 (which is the inferior competitor of species 3) into two
pieces, with one of these new pieces splitting the population front of species 2 into
two pieces. From the new arrangement of species 1, 2 and 3, splitting of the popula-
tion front can repeat again, with repetition leading to the whole habitat being occupied
by splitting population fronts. In the case of low mobilities this ‘infiltration’ through
the domains occupied by competitors happens too slowly for the population front to
split properly: as shown in Fig. 4, if species 3 is too slow in the previous case, then it
only disperses across the population front gradually, and so by the time the species 1
domain has split into two, the front occupied by species 2 has moved on, and so we
will only have a joint propagation of non-splitting population fronts which will hit
the boundary and disappear.

If the mobility of species 2 is too low compared to that of species 1, a second
major constraint emerges: the pressure from its superior competitor, species 1, will
be high enough to drive the species 2 population to too low a level to recover—even
if species 3 is able to successfully disperse across the population front. In the case of
conditional cyclic competition, if this mechanism of coexistence is to work, species 3
must disperse across the species 2 population abruptly—a gradual infiltration will
be suppressed because while its density is low, species 3 is an inferior competitor
of species 1 (i.e. due to the bistability between the two species). The abruptness of
the infiltration is largely determined by the rate at which the species 2 population
attenuates, which is in turn determined by ε2, which must be sufficiently small, but
as before, the mobility of species 2 or species 3 cannot be too small or else species 3
will not be able to disperse across the species 3 population at all.

Using cyclic competition as a modelling paradigm, we considered mutual bio-
logical invasion of two exotic species into a habitat occupied by a native species.
In theoretical ecology, this phenomenon is known as invasional meltdown (Sim-
berloff and Von Holle 1999)—one non-indigenous species facilitates invasion of
another non-indigenous species. At present, invasional meltdown is usually consid-
ered to take place in the case where the co-invaders are mutualists (Crosby 1986;
Richardson et al. 2000; O’Dowd et al. 2003), or one invader facilitates the invasion of
another without receiving either any substantial gain or penalty (Wonham et al. 2005).
In both cases, the overall effect is to accelerate the impact on the native ecosystem.
In our system, the introduced invasive species are antagonistic competitors, but we
still see a scenario of invasional meltdown. This differs from a traditional invasional
meltdown scenario, however, because here the co-invader allows the native species
to survive, and prevents, rather than amplifies, the damage done to the native ecosys-
tem. Therefore this result represents a significant extension of the original concept of
invasional meltdown originally suggested by Simberloff and Von Holle (1999).

Also of interest is the pattern of spread in the observed co-invasion. The inva-
sion takes place not through the formation of a smooth population front but instead
through the spread of irregular patches of high density. Such a pattern of biological



2026 M.W. Adamson, A.Y. Morozov

invasion is rather typical in nature (Shigesada and Kawasaki 1997; Davis et al. 1998;
Kolb and Alpert 2003), and various mechanisms have been suggested so far to explain
the observed patterns of patchy invasion—including landscape fragmentation (Mur-
ray 1989; With 2001) and/or pronounced environmental and demographic stochas-
ticity (Lewis 2000; Lewis and Pacala 2000). In our model, we show the possibility
of patchy invasion in a deterministic system with a completely homogeneous envi-
ronment. The possibility of patchy invasion scenarios in fully deterministic models
is only a very recent discovery, and has previously only been observed in predator–
prey or host–pathogen type interactions with the prey subject to a strong Allee effect
(Petrovskii et al. 2002; Morozov et al. 2006)—this is the first example of such an
invasion in a competition system, and therefore this finding is an important exten-
sion of recent works. It is of note that we found patchy invasion only in the case of
conditional cyclic competition.

The observed patterns of patchy invasion (see Fig. 8) can potentially describe the
experimental case study of mutual invasion of green alga Codium and encrusting
bryozoan Membranipora membranacea into the area originally occupied by native
kelps in southern Maine (Levin et al. 2002). Codium can replace kelp by colonizing
gaps in kelp beds inhibiting kelp recruitment, but established kelp populations can
resist Codium invasion by monopolizing available space. Meanwhile, the bryozoan
grows on kelp and reduces its growth and survivorship, but dominance of Codium
will result in a drop of density of bryozoans, which cannot grow on Codium. As a
result, the community of these three species can be considered to show non-transitive
cyclic competition. Since it is been reported that depending on initial densities either
the dominance of kelp or the dominance of Codium is possible (Levin et al. 2002),
we can suggest that this study case be described as conditional cyclic competition
(see Sect. 2), which would explain the complex patterns of patchy invasion seen in
the system.

Finally, our theory of invasional meltdown due to invasive antagonistic competi-
tors could potentially be applied to the invasion of grey squirrels in the UK. It is
well known that the exotic grey squirrel species Sciurus carolinensis has replaced
the native red squirrel species S. vulgaris across most of the UK, the main reasons
being competitive superiority with regard to resources as well as the susceptibility of
the red squirrel to parapoxviruses carried by the grey squirrel (Okubo et al. 1989;
Rushton et al. 2000; Tompkins et al. 2003). Recently, populations of the black
squirrel—a melanistic subgroup of S. carolinensis—have been found to have es-
tablished themselves in parts of the UK and now are spreading across the country
(for details, see the site http://blacksquirrelproject.org/). Little is known yet regarding
the possible competition outcome between red and black squirrels, but black squir-
rels have been found to store heat with much greater efficiency than grey squirrels
(Ducharme et al. 1989) and therefore enjoy a competitive advantage in the northern
range of S. carolinensis, where they are predominantly found. In the case that red
squirrels turn out to be superior competitors of black squirrels, we may expect to find
similar patterns of patchy invasion amongst the competing squirrels—particularly in
the colder northern regions of the UK such as Scotland, in which the vast majority of
the UK’s red squirrel population is presently located.

The most important distinction between our study and the majority of the cyclic
competition literature is that we consider continuous space and describe the move-

http://blacksquirrelproject.org/
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ment of animals based on macroscopic diffusion—somewhat different from the ap-
proach taken in previous works using stochastic coupled lattice models in a discrete
space (Frachebourg et al. 1996; Durrett and Levin 1998; Frean and Abraham 2001;
Kerr et al. 2002; Károlyi et al. 2005; Reichenbach et al. 2007; Müller and Gallas
2010). Firstly, assuming space to be continuous can result in different predictions
regarding the coexistence of species: it was shown that in the case of equal mobil-
ity rates of cyclic competitors in continuous space, an intermediate level of mobility
produces the maximal likelihood of biodiversity (Ni et al. 2010). Moreover, cou-
pled lattice models can be rather restricted when incorporating disparity in mobility
rates if, for instance, we describe movement of individuals in a ‘stirring’-like manner
by simply swapping between organisms (or patches) occupying the nearest cells in
cellular automata models (e.g. Reichenbach et al. 2007). This kind of movement of
organisms in space is rather exotic from a biological point of view unless we consider
some sessile organisms or we are in the situation where animals fill the physical en-
vironment in such a dense manner that they cannot move without bumping into each
other. The above problem can be partially solved in discrete lattice models where
we consider interaction by randomly choosing a pair of individuals (patches) located
within a certain distance R (e.g. Durrett and Levin 1998). This situation can apply, for
instance, when considering the dispersal of seeds. However, such a modelling frame-
work considers dispersal as a by-product of species interactions and does not take
into account the possibility of individuals dispersing without interacting with other
species, a process which is often observed in real ecosystems.

Implementation of the reaction–diffusion framework, on the other hand, allows
us both to easily incorporate the disparity in mobility/dispersal rate of species and
to separately vary the parameters accounting for competition (αi,j ). Furthermore, a
reaction–diffusion system allows us to define competitive dominance by the actual
displacement in space, rather than by a single probability (as in lattice models)—this,
for instance, permits us to distinguish between ‘classical’ cyclic competition and
conditional cyclic competition. An important property of reaction–diffusion mod-
els is that populations are described in terms of densities and temporary local co-
existence of all three species is possible. The latter has a crucial effect on the co-
existence of species in the model: even if the local fitness is negative, a popula-
tion can migrate through a large unfavourable habitat (a domain largely occupied
by the superior competitor) and reach a favourable domain (occupied by the infe-
rior competitor). This behaviour is vital for the coexistence of all three species in
the case of conditional cyclic competition in model (4)–(6) (see Fig. 5C), but this
type of behaviour is hardly possible in any lattice models which consider interac-
tions in the nearest neighbourhood only (Frean and Abrams 2001; Kerr et al. 2002;
Müller and Gallas 2010). Finally, the existence of conditional cyclic competition
in (4)–(6) requires a revisiting of the phenomenon called the ‘survival of the weak-
est’, previously found in discrete models of cyclic competition: certain studies have
found that the competitor with the weakest competitive ability (measured in terms
of pairwise invasion probability) is more likely to survive when the parameters are
close to the edge of extinction region (e.g. Frean and Abraham 2001). In the case
of conditional cyclic competition, however, the strength of the competition between
species 1 and 3—which shows local bistability—and that of the competition between
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the species pairs 1,2 and 2,3—which results in the unconditional local exclusion
of species 3—are simply incomparable, and the previous definition of the weak-
est/strongest competitor does not makes sense.

Among the open questions in cyclic competition theory in space we would like to
emphasise the following. First, it will be interesting to follow spatial interactions in a
three-component cyclic system involving more complicated conditional competition,
for instance, where the competition between both species pairs 1,2 and 2,3 exhibits
pairwise local bistability whilst still following cyclic competition in space (with the
same ordering as before: 1 > 2 > 3 > 1). Another important future direction is the
consideration of non-transitive competition in systems with n > 3 species in space.
It is well known that real ecosystems often show patterns of complex competitive
relations involving multiple species (Buss and Jackson 1979; Silvertown et al. 1992;
Tanner et al. 1994; Laird and Schamp 2008), and these include non-transitive compe-
tition patterns. Additionally, it would be interesting to consider the influence of dis-
parity in dispersal rates on the spatial dynamics of evolutionary hypercycles where
the species i catalyzes the replication of species i + 1, and finally, species n catal-
yses species 1 (Boerlijst and Hogeweg 1995; Kim and Jeong 2005). Finally, it will
be interesting to include into the initial model (4)–(6) evolution of some life traits
(e.g. mobility or competition parameters) which can be related by some trade-off re-
lations between the life traits and follow a possible convergent stable strategy, for
instance, using the standard adaptive dynamics principals (Metz et al. 1992). Such an
analysis may be particularly interesting, for instance, when considering animal mo-
bility, since our investigation has revealed that slowing down a species actually drives
the biomass of its superior competitor down at no cost to itself, which may lead to
some particularly surprising evolutionary dynamics—especially when considering a
trade-off which reflects the energy cost of mobility.
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