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Abstract In a previous paper (Ghosal and Chen in Bull. Math. Biol. 72:2047, 2010),
it was shown that the evolution of the solute concentration in capillary electrophore-
sis is described by a nonlinear wave equation that reduced to Burger’s equation if the
nonlinearity was weak. It was assumed that only strong electrolytes (fully dissoci-
ated) were present. In the present paper, it is shown that the same governing equation
also describes the situation where the electrolytic buffer consists of a single weak
acid (or base). A simple approximate formula is derived for the dimensionless peak
variance which is shown to agree well with published experimental data.
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1 Introduction

Capillary electrophoresis (CE) is a technique for separating a mixture of macroions
in aqueous solution by exploiting the fact that the migration velocity in an applied
field depend on the size and charge of the molecule. It is a widely used laboratory
tool in bioanalytical chemistry. Further background information may be found in the
authors’ earlier paper in this journal (Ghosal and Chen 2010) (henceforth referred
to as GC) and some of the references cited there. There are also several textbooks
devoted to the subject (Landers 1996; Camilleri 1998).

The mathematical formulation of the problem consists of a set of coupled equa-
tions describing the transport of ions in response to electric fields and diffusive fluxes.
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The electric field in turn is determined by the concentration distribution of ions. Cou-
pling to hydrodynamics could occur due to electroosmosis, but is neglected here for
simplicity. Electromigration dispersion (EMD) is caused by variations in the local
electrical conductivity in the vicinity of the solute peak which gives rise to a nonlin-
earity in the equation for solute concentration.

Simple one-dimensional mathematical models of electromigration dispersion ne-
glecting the effects of diffusion have been studied by various authors (Mikkers et
al. 1979; Mikkers 1999; Babskii et al. 1989). The problem is reduced to a single
nonlinear hyperbolic equation for the concentration of sample ions. Analytical and
numerical solutions describe the characteristic wedge shaped profile observed in ex-
periments (Gaš 2009; Thormann et al. 2009). The restriction to zero diffusivity was
removed recently by the authors (Ghosal and Chen 2010) who considered a “mini-
mal system” of three ions—the sample ion, coion and counterion—all being strong
electrolytes (fully dissociated). The diffusivities of the three ionic species were con-
sidered non zero but equal. The sample concentration was then shown to obey a
one-dimensional nonlinear advection diffusion equation which reduced to Burgers’
equation if the sample concentration was not too high. Thus, the concentration pro-
file could be obtained analytically as a function of position and time, providing useful
insights into the nature of electromigration dispersion.

The solutes of interest in CE are often biological molecules for which the charge
is quite sensitive to the pH of the surrounding electrolyte. Many molecules are also
unstable outside a narrow pH range. Thus, CE must be performed in a medium where
the pH is kept as constant as possible. In order to maintain a stable pH an electrolytic
buffer containing a weak acid or base is used as the background electrolyte. The
buffer often contains several ionic species as well as other additives to achieve dif-
ferent functions (e.g., prevent adsorption to capillary walls). Thus, the simplifying
assumption made by GC that the buffer consists of a single strong electrolyte is often
not consistent with laboratory practice.

In this paper, we show that the one-dimensional model derived by GC for strong
electrolytes may also be applied to an idealized model of a buffer consisting of a
single weak electrolyte. The only change required is in the definition of a parameter
in the model that characterizes the strength of EMD effects. A simple formula for
the “number of theoretical plates”—a dimensionless measure of peak dispersion—is
derived and is shown to agree well with published experimental data.

The rest of the paper is organized as follows: the theory of EMD in the presence of
a weak electrolytic buffer is provided in the next section followed by a discussion of
the experimental work and comparison with the theory. A summary of our results and
discussion of the validity of our underlying assumptions is provided in the concluding
section.

2 Theory

For definiteness, we consider an acidic analyte, HnA + nH2O → nH3O+ + An− in
aqueous solution buffered with a weak acid HX+H2O � H3O+ +X−. The auto ion-
ization of water is neglected. The analyte is considered to have a fixed charge (ze),
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but, the buffer could exist in either a charged (X−) or neutral (HX) state. Cationic
analytes or buffers with multivalent ions can be accommodated easily in our analy-
sis but we only discuss the simplest situation for convenience. Further, we assume
that all ions have the same mobility (u), and therefore, identical diffusivity (D), and
that the transport problem is entirely one-dimensional. In particular, we assume that
electroosmotic flow, when present, may be described as an advection of the ions with
a constant velocity u0 in the axial direction. We will return to the question of the
validity of these assumptions in the concluding section.

2.1 Derivation of a Reduced System

The coupled equations describing the concentrations of hydrogen ions (c+), acid ions
(c−), sample ions (c), and the neutral form HX (c0), are then

∂c+
∂t

+ ∂

∂x

[
(u0 + euE)c+

] = D
∂2c+
∂x2

+ r, (1)

∂c−
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+ ∂

∂x
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] = D
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∂x2
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∂c

∂t
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(u0 + zeuE)c

] = D
∂2c

∂x2
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where E is the local electric field, x is the distance along the capillary, t is time, e is
the electronic charge, and r = kdc0 −kac+c− is the net dissociation rate of HX. Here,
ka, kd are constants that characterize the rates for the forward and reverse reactions of
the weak acid. We will assume that the x-axis points in the direction of peak motion
from the inlet toward the detector. These equations differ from those considered by
GC in the presence of the source terms on the right-hand sides of the first three trans-
port equations and in the existence of the additional variable, c0. Since characteristic
spatial scales are always much larger than the Debye length, local electro-neutrality
holds. Thus,

c+ − c− + zc = 0. (5)

If we multiply (1)–(4) by the respective ionic charges, sum them, and use (5), we get
an equation that describes the constancy of electric current

∂

∂x

[
e2u

(
c+ + c− + z2c

)
E

] = 0. (6)

Note that the net contribution from the diffusive fluxes as well as those from the
source terms vanish exactly. Equation (6) may then be integrated;

(
c+ + c− + z2c

)
E = 2c∞E∞, (7)

where E∞ and c∞ are the electric field and cation (or anion) concentration, respec-
tively, far away from the peak.

Equations (5) and (7) provide two algebraic relations among the five dependent
variables c+, c−, c0, c, and E. To reduce the system of (1)–(4) and (6) to a single one-
dimensional equation, we must seek more such algebraic relations. A third relation is
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provided by an approximation first introduced by Saville and Palusinski (1986): The
time scale associated with the dissociation-recombination reactions represented by
the last term on the right-hand side of (3) is so small compared to all transport time
scales that (3) may effectively be replaced by

r = kdc0 − kac+c− = 0 (8)

or kc0 = c+c−, where k = kd/ka is the acid dissociation constant. Thus, locally, the
acid is in equilibrium with its dissociation products.

In GC, it was shown that the Kohlrausch function K = (c+ + c− + c)/u is a
passive scalar that spreads only by diffusion (or, if electroosmosis is present, is also
advected with a constant velocity u0). Therefore, electrophoretic migration relative
to the fluid rapidly advects the solute peak into a region where K is essentially equal
to its far field unperturbed value. This provided the additional algebraic relation (the
constancy of K) that finally enabled the reduction of the transport equations to a
one-dimensional system. This approach does not work in the current problem, as it
may be readily shown from the transport equations (1), (2), and (4), that the evolution
equation for K ,

∂K

∂t
+ u0

∂K

∂x
= D

∂2K

∂x2
+ 2r

u
, (9)

now has a source term, and K is therefore no longer a passive scalar.
Fortunately, however, a fourth algebraic relation is obtained if one assumes that

the buffering action of the weak acid HX is “perfect” so that

c+ = c∞. (10)

The justification of the approximation (10) is rooted in the theory (Helfferich 1995)
of acid-base equilibria where it is shown that in a mixture of a strong (HA) and
weak (HX) acid, the perturbation in the hydrogen ion concentration is small when
the buffering capacity of the background electrolyte is large. The buffering capacity
is a maximum, if the solution pH (-log c+) is equal to the pKa (-logk) of the acid and
drops sharply if the pH differs by more than one unit from the pKa . In practice, the
buffer consists of a mixture of the weak acid and its salt so that the pH and buffer
concentration can be independently controlled. At a given pH, the buffering capacity
increases with buffer concentration. The buffer concentration cannot be made too
large however, as this increases the solution conductivity thereby reducing separation
efficiency. In the context of our model represented by (1)–(4) and (6), the significance
of the assumption (10) becomes clear if we use (5) and (8) to express c+ in terms of
the concentrations c and c0:

c+ =
√

kc0 + z2c2/4 − zc/2. (11)

Equation (11) may be replaced with (10), if

kc0 � z2c2, (12)

that is, if the amount of undissociated acid in the sample zone is high enough to act
as a “buffer” against pH variations.
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With four algebraic relations among the five dependent variables, (1)–(4) and (6)
may now be reduced to a single equation for the normalized solute concentration
φ = c/c∞:

∂φ

∂t
+ ∂

∂x

[(
u0 + v

1 − αφ

)
φ

]
= D

∂2φ

∂x2
, (13)

where v = zeuE∞ is the electromigration velocity of an isolated solute ion and

α = −1

2
z(1 + z). (14)

Equation (13) is identical to the corresponding equation for strong electrolytes
((13) in GC; except there u0 = 0). The only difference is in the definition of α which
is given by (14) instead of (14) of GC, which is α = (1 − z2)/2 for a univalent back-
ground electrolyte.

2.2 Dispersion

Equation (13) is analytically solvable in certain limits and its consequences were
discussed at length in GC. Here we are interested in the peak dispersion of the solute
as measured by N = L2

d/σ 2 where Ld is the distance between the injection point and
the detector, and, σ 2 is the variance of the concentration when the peak reaches the
detector. One of the consequences of (13) is that if φ is not too large, the variance of
the peak increases in proportion to the time so that the spreading may be described in
terms of an effective diffusivity

Deff = 2D

(
F2

F0
− F 2

1

F 2
0

)
(15)

where Fn is the nth moment of a certain function F(x) defined by (23) in GC. The
degree of sample loading is characterized by a length Γ = ∫ +∞

−∞ φ(x, t) dx and the
relative importance of diffusion is characterized by a Peclet number P = Γ |v|/D.
The effective diffusivity has the following asymptotic forms at small and large values
of the Peclet number P :

Deff ∼
{

D if P � 1,
1
9 |αv|Γ if P � 1.

(16)

For the purpose of practical applications, (15), which requires the numerical evalua-
tion of integrals may be replaced by the simpler formula

Deff = D + 1

9
|αv|Γ. (17)

The ratio Deff/D given by (15) depends solely on |α|P . The approximation to Deff
given by (17) approaches the theoretical value given by (15) in the asymptotic limits
of small as well as large Peclet numbers. In Fig. 1, we plot Deff/D as a function of
|α|P evaluated using (15) as well as the approximate form (17). It is seen that the
approximate form provides an excellent approximation for all values of |α|P while
having the advantage of algebraic simplicity.
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Fig. 1 Comparison of the
normalized effective diffusivity
given by (15) [solid line] with
that predicted by the
approximate form (17) [broken
line]

The number of theoretical plates as a function of the magnitude of the applied
voltage, V , may be calculated following the classical result (Landers 1996)

N = (μ0 + μ)V

2D
, (18)

by simply replacing the diffusivity D by the effective diffusivity Deff. Here, μ0 is the
electroosmotic mobility and μ = zeu is the electrophoretic mobility of the sample
ion. Thus,

N = f AV

1 + BV
(19)

where the constants A and B are respectively

A = (μ0 + μ)

2D
(20)

and

B

A
= σ 2

0

f 2L2
+ 2

9
|α| |μ|

μ0 + μ

Γ

L
, (21)

with σ0 denoting the initial variance of the injected peak, and f the inlet to detector
distance divided by the capillary length, L. We will now compare (19) for N with
published experimental data.

3 Experiments

Jorgenson and Lukacs (1981) derived (18) as a simple model of peak dispersion.
The experimental data that they presented, however, showed the expected linear de-
pendence of N on V , but only over a limited range of V . At large V , the linear
dependence was found to exhibit a saturation effect so that N approached a limiting
value rather than increase indefinitely. Jorgenson and Lukacs attributed this to the
effect of Joule heating in the capillary. Delinger and Davis (1992) later reinterpreted
Jorgenson and Lukacs data and suggested that the saturation was more likely due to
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the initial variance (σ0) of the injected zone. They also presented additional experi-
mental data to support their interpretation. Equation (21) shows that electromigration
dispersion is another possible reason for the observed saturation of N at large V .
Whether the initial variance or the electromigration effects dominate will depend on
the experimental parameters. As the voltage is increased further, Joule heating results
in a decrease of N . In some experiments (Issaq et al. 1991), Joule heating masks
any effect of electromigration and no distinct plateau region is observable in the N

vs. V curve. Instead, the N vs. V curve displays a single maximum. Thus, in any
comparison of (19) with experimental data, care must be taken to distinguish electro-
migration effects from those due to the initial variance and Joule heat. Equation (21)
suggests that this can be done in the clearest manner if one varies the sample loading
Γ while keeping all other experimental parameters invariant. In this situation a linear
dependence of N−1 with Γ should be observed. Such an experiment was published
by Lukacs and Jorgenson (1985) and we shall compare (19) with their data.

Specifically, we use the data shown in Fig. 3 of the paper by Lukacs and Jorgenson
(1985) (henceforth referred to as LJ) where the solute was Dansyl-isoleucine in a 0.05
M phosphate buffer at pH 6.86. In the experimental setup, the solute concentration
(c∗) alone was varied. In each run, the same length of plug (�) was injected into the
capillary by electrokinetic injection. Thus, the initial profile φ(x,0) was a square
wave, and therefore, Γ = c∗�/c∞ and σ 2

0 = �2/12. According to (19), N−1 should
have a linear dependence on the concentration: N−1 = a + bc∗ where

a = 2D

f V (μ0 + μ)
+ 1

12f 2

�2

L2
, (22)

b = 2

9
|α| |μ|

f c∞(μ0 + μ)

�

L
. (23)

The symbols in Fig. 2 are the experimental data which does show that N−1 has a
linear dependence on c∗. Fitting a straight line through the data points gives a =
2.57 × 10−6, b = 2.98 × 10−3 M−1.

The reported values of the various constants appearing in (22) and (23) are summa-
rized in Table 1. The value of the electroosmotic mobility, μ0 at pH 6.86 for pyrex was
read from Fig. 4 of LJ. The electrophoretic mobility, μ, diffusivity, D, and valence1

z of Dansyl-isoleucine reported in Table 1 were taken from the paper by Walbroehl
and Jorgenson (1989), where these parameters were measured under settings iden-
tical to those employed in LJ. The buffer strength of our idealized buffer HX when
pH = pKa , is, by the Henderson–Hasselbalch relation [HX] + [X−] = 2c∞. Equat-
ing this to the reported buffer strength of 0.05 M gives the value of c∞ indicated in
Table 1. Unfortunately, the injection Voltage (V∗) and injection time (τ∗) for the elec-
trokinetic injection process were not reported, so that, � is not known. However, if we
use the value of a obtained from the best fit line in Fig. 2, we get � = 0.31 cm. From
the relation � = (μ + μ0)V∗τ∗/L, we can determine that V∗τ∗ ≈ 90 kV · s, which ap-
pears consistent with what is typically reported in similar experiments (Delinger and

1Dansyl-isoleucine has a single negative charge on the carboxyl group but its effective charge is likely
reduced by shielding effects.
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Fig. 2 Symbols are data from Fig. 3 of Lukacs and Jorgenson (1985) re-plotted as N−1 vs. c∗ on the right
panel. The solid line is the best fit linear regression N−1 = a + bc∗

Table 1 Experimental parameters corresponding to the data shown in Fig. 2

L (cm) f V (kV) μ0 (cm2/Vs) μ (cm2/Vs) D (cm2/s) z c∞(M)

100 0.80 30 4.79 × 10−4 −1.37 × 10−4 5.35 × 10−6 −0.65 0.025

Davis 1992). If we substitute this value of the injection plug length, �, into (23) and
use the value of b found from the linear regression, we deduce that α = 0.22. The
phosphate buffer is more complex than the idealized model of a buffer considered
here. However, if we put z = −0.65 in (14) we get α ≈ 0.1. If the background species
was a fully dissociated 1-1 electrolyte we would have (GC) α = (1 − z2)/2 ≈ 0.3.
These numbers are commensurate with the value computed from the experimental
data using (23), which suggests that the value of α is probably not very sensitive to
the simplifications adopted to model the background electrolyte.

4 Conclusion

The problem of electromigration dispersion of a solute was considered in the pres-
ence of an idealized 1-1 weak electrolytic buffer. The analysis complements earlier
work (GC) where the background electrolyte was regarded as fully dissociated. It
was shown that in both models the solute transport is described by the same one-
dimensional transport equation; they differ only in the definition of the parameter α

characterizing the strength of EMD effects. A simple expression for the number of
theoretical plates was derived by replacing the analytical expression for the effective
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solute diffusivity by an approximate form. This expression for N was then compared
with published experimental data and good agreement was found.

The observed agreement between theory and experiment requires further explana-
tion, since the phosphate buffer used in the experiment is a complex multiion mixture
and does not correspond to either the strong electrolyte model of GC or the idealized
weak electrolyte model considered here. The explanation must be that the concentra-
tion is governed by (13) independent of the specific model assumed for the buffer.
This is quite plausible, since to derive (13) all that is required is that one must be
able to find N − 1 linear algebraic relations among the N chemical species in solu-
tion. The analysis presented in this paper and in GC are simply two alternate ways
in which this can be accomplished through different assumptions about the nature of
the background electrolyte. There are, of course, other ways to a similar end. For ex-
ample, in a more complicated multicomponent background electrolyte, in addition to
local electroneutrality, one may assume local equilibrium for a subset of the species
and set the concentrations of certain other species to zero or to a constant value de-
pending on the details of the buffer chemistry. Alternatively, one could take a more
heuristic view point and simply say that the local migration speed of a solute ion is a
function of the local solute concentration, and, if the solute concentration is not too
high, this function may be linearized: ve(φ) = v[1 + αφ + · · ·]. In this approach, α

would be an empirical parameter. Our analysis suggests that in general, α may be
well approximated by a parabolic function of the solute valence α = α0 +α1z+α2z

2

where the coefficients α0, α1, α2 depend on the buffer composition. For a 1-1 strong
electrolyte, we found (GC), z0 = −z2 = 1/2 and z1 = 0, whereas for a 1-1 weak
electrolyte, z1 = z2 = −1/2 and z0 = 0. Determining the coefficients α0, α1 and α2
experimentally may be an efficient way of characterizing the dispersive properties of
electrolytic buffers in the laboratory.

In arriving at (19), the local ion migration velocity was linearized: ve(φ) =
v/(1 − αφ) ≈ v[1 + αφ] by neglecting quadratic and higher powers of φ. This is
a valid approximation if φ � 1. Furthermore, the smallness of φ is also inherent in
the assumption of a “perfect buffer,” (10). Indeed, if we require that (10), (5), and (8)
be consistent with the requirement (12), then we must have 1 + zφ � z2φ2, that is,
φ must be small in comparison to unity. In the experiment, even at the highest solute
concentrations used, φ ∼ c∗/c∞ = 0.006M/0.025M = 0.24. Thus, φ � 1 is a valid
approximation in the experiments of LJ.

In the current analysis as well as in GC, the diffusivity of all ionic species were
presumed equal. This is not an entirely unreasonable assumption, since the diffusiv-
ities decrease weakly with molecular mass. For example, the diffusivity of Dansyl-
isoleucine is only about three times larger than that of the sodium ion though its
molecular mass is about sixteen times as great. The exception is the hydrogen ion
which has a diffusivity about a factor of ten higher than Dansyl-isoleucine. However,
in the phosphate buffer, the cations responsible for conducting current are primarily
the sodium ions, the hydrogen ion concentration is actually very small. For macroions
with molecular weights in the range of kilo Daltons as well as for colloidal particles,
differential diffusivity could turn out to be important. Such effects can be accounted
for in our theory by including the diffusive current in the equation for current con-
servation, (6). This would make the electric field dependent not only on the solute
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concentration but also on its gradient. The resulting one dimensional model would
include the effects of differential diffusion, but one may lose the convenience of hav-
ing an analytically solvable governing equation.

The pyrex capillary employed in the experiment generated strong electroosmotic
flow which was accounted for in a simplistic manner as a uniform advection along the
capillary. However, the perturbation in the electric field generated by the solute peak
also perturbs the slip velocity at the capillary wall which results in radial shear and
consequent Taylor–Aris dispersion by a well-known mechanism (Ghosal 2004). It
may be shown (Ghosal and Chen 2011) that this effect can be accounted for by adding
a contribution to the diffusivity that is quadratic in φ. In the present experiments, this
effect is therefore expected to be negligible due to the smallness of φ.

We have shown that the theoretical framework developed here and in our earlier
paper (GC) is useful for analyzing real experimental data, not withstanding the fact
that the theory pertains to very idealized situations. In particular, (19) is a simple
generalization of the formula (18) introduced by Jorgenson and Lukacs (1981) that
has proved to be extremely useful in laboratory practice. It is hoped that (19) could
be used in a similar manner to characterize the effects of EMD.
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