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Abstract We describe and analyze a model for a stochastic pulse-coupled neuronal
network with many sources of randomness: random external input, potential synap-
tic failure, and random connectivity topologies. We show that different classes of
network topologies give rise to qualitatively different types of synchrony: uniform
(Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena
similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as
coupling is increased); in contrast, in “scale-free” networks the dependence of syn-
chrony on coupling strength is smoother. Moreover, we show that in the uniform and
small-world cases, the fine details of the network are not important in determining the
synchronization properties; this depends only on the mean connectivity. In contrast,
for scale-free networks, the dynamics are significantly affected by the fine details of
the network; in particular, they are significantly affected by the local neighborhoods
of the “hubs” in the network.

Keywords Neural network · Neuronal network · Synchrony · Mean-field analysis ·
Stochastic integrate-and-fire · Random graphs · Scale-free networks · Small world
networks · Complex networks · Erdős–Rényi

1 Introduction

1.1 Overview

The study of synchronization of coupled nonlinear oscillators has a history that spans
several centuries, starting with Huygens’ observation of synchronizing pendulum
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clocks (Huygens 1673). There has been a great body of work throughout this history
studying such synchronization phenomena; for reviews see Strogatz (2003), Pikovsky
et al. (2003), Winfree (2001). In neuroscience, it is of particular interest to investigate
the dynamics of pulse-coupled nonlinear oscillators, namely, oscillators that interact
only when one of them “fires.” In abstract terms, this means that there is only one
particular phase of an oscillator’s cycle during which it has the opportunity to influ-
ence the other oscillators to which it is coupled. Typically, this influence consists of
an advance or retardation in phase of the oscillator that is on the receiving end of the
interaction.

There has also been much recent interest in understanding dynamical systems
defined on “complex networks,” sometimes defined to be random graphs whose
construction depends on a complicated rule. The theory of random graphs goes
back to the seminal work of Erdős and Rényi (1959, 1960) and has led to a se-
ries of deep and elegant results with connections to combinatorics, computer sci-
ence, and even foundations of mathematics (Bollobás 2001; Janson et al. 2000;
Alon and Spencer 2008). After it was shown that the connectivity of the Internet is
well described by “scale-free” graphs (Barabási and Albert 1999; Albert and Barabási
2002), there was an explosion of interest in the applied community to understand
how complex networks can model natural systems (Newman 2003), particularly in
biology. The theory and simulation of dynamical systems defined on complex net-
works have been applied to ecology (Bascompte 2007), neuroscience (Dayan and
Abbott 2001), and especially gene regulatory networks (Bower and Bolouri 2001;
Wilkinson 2006; Bhan et al. 2002; Milo et al. 2002; Shmulevich et al. 2002;
Zhao et al. 2005; Schlitt and Brazma 2007; Leclerc 2008).

Because of great interest in understanding the topology of networks which arise in
biological applications, there have more recently been several studies of dynamical
systems defined on complex networks (Barahona and Pecora 2002; Hong et al. 2002;
Nishikawa et al. 2003; Lago-Fernández et al. 2000) (see in particular the excellent
reviews Boccaletti et al. 2006; Arenas et al. 2008), but it is clear that there are
many interesting open questions remaining. With a view toward an eventual under-
standing of the interactions between complex networks and complicated dynamics,
we study the evolution of discrete stochastic neuronal dynamics on these networks
and the propensity of these dynamics to synchronize. The authors and collaborators
have studied these exact dynamics on simpler graphs in DeVille and Peskin (2008),
DeVille et al. (2010), and the current work can be thought of an extension of those
papers.

It is to be expected that the topology of the network determines the dynamics de-
fined on the network, and this is what we observe below. The purpose of this paper
is to understand more fully the precise dependence of the synchronization proper-
ties of neuronal dynamics on the underlying networks on which they are defined. It
was shown in DeVille and Peskin (2008), DeVille et al. (2010) that random neuronal
dynamics defined on “all-to-all” networks have certain interesting synchronization
properties—in particular, in certain limits there exist discontinuous phase transitions
between different attractors. We perform a comprehensive numerical study below,
and show that, in a certain sense to be made precise below, while certain random
topologies (e.g., Erdős–Rényi or “uniform” topologies; “small-world” topologies) ex-
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hibit very similar behavior to the “all-to-all” networks, other topologies (e.g., “scale-
free”) exhibit significantly different behavior. To be more specific, we show that

• As a function of network connectivity, the transition to synchrony is quite sharp
for uniform and small-world graphs (just as in the all-to-all case). For scale-free
graphs, this transition is much smoother.

• For uniform and small-world graphs, the fine details of the network do not affect
the overall synchronization propensities: the synchronization correlates very well
with certain average properties of the network. In contrast, for scale-free graphs,
the fine details of the network are important. As we see below, in many cases
knowing the local neighborhood of a small number of highly connected nodes (the
“hubs”) of a network tells us much more than the overall average connectivity of
the network.

• We observe that there is a critical parameter ptrans that, in most cases, is a good
predictor for the synchronization of uniform and small-world graphs but does
quite poorly in general for scale-free graphs. Moreover, the range of parameters
for which ptrans fails to be a good predictor is exactly the same range of parameters
where the all-to-all networks undergo a transition from synchrony to asynchrony
(DeVille and Peskin 2008; DeVille et al. 2010). It was shown there that this pa-
rameter range generates to a complicated multi-phase dynamics where the network
switches between synchrony and asynchrony. As long as the network is not in this
“switching regime,” the single parameter ptrans is a good predictor.

• Finally, we show that (with enough rewiring) small-world networks “look like”
uniform networks in a quantifiable sense; in fact, one the rewiring parameter
crosses a threshold, neuronal dynamics on small-world networks are indistinguish-
able from those on uniform graphs. In particular, the effect of rewiring for net-
works which are sparsely connected is to enhance synchronization; this is consis-
tent with observations for other dynamical models (Barahona and Pecora 2002;
Hong et al. 2002; Lago-Fernández et al. 2000). At the same time, we find that in
networks which are relatively densely connected, the effect of rewiring is to re-
duce synchronization, which is consistent with the observations in Nishikawa et
al. (2003).

1.2 Previous Work; Motivation for Current Study

Much of the work on pulse-coupled oscillators has been done in the specific context
of leaky integrate-and-fire neurons; a variety of dynamics has been observed, and
several authors have explained many aspects of the dynamics of these oscillators.
The simplest example of an integrate-and-fire neuron is one in which the membrane
potential is allowed to take values anywhere in the interval [V0,VT ]; when the po-
tential is raised to VT , the neuron “fires” and is reset to V0. The term “leaky” means
that in the absence of external input the voltage relaxes exponentially toward V0. It
was shown by Knight (1972) that a population of uncoupled leaky integrate-and-fire
neurons can be synchronized by a common periodic input. The second author of the
present paper considered the case of two identical “slightly leaky” integrate-and-fire
oscillators under the assumption that the firing of one oscillator gives a small upward
kick to the state of the other oscillator, and showed in Peskin (1975, pp. 268–278)
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that two such oscillators synchronize. The generalization to any number of oscilla-
tors, and the theorem that such a population of oscillators synchronize, was proved
by Mirollo and Strogatz (1990), who, moreover, generalized the notion of “leakiness”
and clarified its role in synchronization. Kuramoto (1984, 1991) introduced statisti-
cal physics approaches to understanding synchronization. Abbott and van Vreeswijk
(1993), Gerstner and van Hemmen (1993), Hansel et al. (1993), Tsodyks et al. (1993),
Bressloff and Coombes (1998b, 1998c, 2000), Goel and Ermentrout (2002) consid-
ered more general networks of excitable coupling on oscillatory elements and van
Vreeswijk et al. (1994), Terman et al. (1998) considered the role of inhibition in syn-
chronizing such networks. A detailed study of the time needed for synchronization
was performed in Campbell et al. (1999); a general study of the effects of noise on
excitable systems is in Lindner et al. (2004). Further generalization of Mirollo and
Strogatz’s work to a population of nonidentical pulse-coupled oscillators was consid-
ered by Senn and Urbanczik (2000/2001), who showed that deterministic networks
without leakiness synchronize generically. The algebraic structure of the solutions of
oscillator networks with full or partial symmetries have been studied extensively by
Golubitsky, Stewart, and collaborators (Golubitsky and Stewart 1984, 1985, 1986a,
1986b, 1987, 1994, 1999a, 1999b, 2002a, 2002b, 2002c, 2005, 2006; Golubitsky et
al. 1988, 1994, 1998, 2000, 2004a, 2004b, 2005, 2006; 2007; Field et al. 1991; Dell-
nitz et al. 1995; Dionne et al. 1995, 1996a, 1996b; Stewart et al. 2003) and by others
(Bressloff et al. 1997; Bressloff and Coombes 1998a; Mirollo and Strogatz 2005,
2007; Abrams et al. 2008). Further, models (Eurich et al. 2002; Levina et al. 2007,
2009) and data (Beggs and Plenz 2003, 2004) show that neuronal networks can ex-
hibit criticality similar to that seen in the current model.

In DeVille and Peskin (2008), the present authors introduced a model designed
to explore the effect of synaptic failure on the synchronization properties of a neu-
ral network. This model (see Sect. 1.3 below for a precise definition) consists of a
network of elements, each a discretized integrate-and-fire neuron that are coupled
by randomly failing synapses. Whenever a neuron in this network fires, it promotes
the other neurons in the network by one discrete level with some fixed probability,
the synaptic probability psyn. The physiological motivation for this formulation is the
stochastic nature of synaptic transmission, in which the arrival of an action poten-
tial at a pre-synaptic terminal causes, with some probability, the release of a synaptic
vesicle of neurotransmitter. In DeVille and Peskin (2008), the authors considered only
the simplest case, without synaptic facilitation or depression, without temporal inho-
mogeneities, and assuming that all coupling was excitatory. It was further assumed
that each neuron had to receive exactly K vesicles of neurotransmitter to bring it
from reset to firing, and thus the state of each neuron is integer-valued. Immediately
after firing, a neuron is reset to level 0, after which it can be promoted successively
to levels 1,2, . . . ,K either by the firing of other neurons or through spontaneous pro-
motion events (caused by exogenous inputs). The network topology considered in
DeVille and Peskin (2008), DeVille et al. (2010) was the simplest possible: an “all-
to-all” network. Thus, whenever a neuron fired, it had an equal probability psyn of
raising each neuron in the network by one level. This model also incorporates refrac-
toriness: every time a neuron fired, it could in principle start an avalanche of activity
where each firing would bring other neurons up to the firing level; the refractoriness
is imposed by never allowing a neuron to fire more than once in such an avalanche.
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The surprising observation made in DeVille and Peskin (2008) is that such a net-
work can support both synchronous and asynchronous dynamics for the same pa-
rameter values, and that the network dynamically switches between the two states.
Subsequent analysis in that paper, and a much fuller analysis in DeVille et al. (2010),
showed that if the networks were chosen to have many neurons, these networks can be
understood as small noise perturbations of a deterministic hybrid dynamical system
which possesses two attractors (by “hybrid” dynamical system we mean a dynami-
cal system which possesses both discrete and continuous components). Dynamically,
the neuronal network spends most of its time near these deterministic attractors, and
switches between the two on exponentially long timescales. This hybrid system is
thus a mean-field model for the neuronal network. Mean-field models for the dy-
namics of populations of neurons have been studied extensively (e.g., Knight 1972;
Brunel and Hakim 1999; Sirovich 2003; Sirovich et al. 2000; Haskell et al. 2001; Cai
et al. 2004, 2006; Apfaltrer et al. 2006) and typically lead to deterministic equations
for an idealized “infinite number of neurons” limit. The fact that K is kept finite in
the large N limit, i.e., the voltage change produced by the arrival of an action poten-
tial is not asymptotically small, is what leads to the mean-field model being a hybrid
system instead of an ODE or PDE.

In summary, a network consists of N neurons, each of which requires K input
events to fire, and between each pair of neurons is a faulty synapse which transmits
with probability psyn. In the limit N → ∞, it is natural to scale the probability of
synaptic success as psyn ∼ N−1 so that every neuron which fires causes an O(1)

number of postsynaptic neurons to also fire. A rough counting argument suggests
that every time a neuron fires, it will cause about Npsyn/K other neurons to fire—if
the neurons are equidistributed in their levels, we expect that about 1/K of them are
ready to fire at any given time, and every time a neuron fires, it sends an impulse to
about Npsyn other neurons.

For a general dynamical system, we term the “reproduction rate” of an event as the
number of events of similar type it gives rise to. If we have a network in which a cer-
tain class of events have an average reproduction rate more than one, then we would
expect to see large cascades of activity where the number of events grows exponen-
tially. On the other hand, if each event in a certain class has an average reproduction
rate less than one, it is unlikely to see a large cascade. Let us further assume that the
rules of our system are such that large cascades of activity tend to synchronize the
network (e.g., consider a case where all elements caught up in such a cascade are
set to the same value afterward), but that the dynamics of the network are stochastic.
(The model we consider below has these properties.) Then we would expect to see
the most interesting interplays between synchrony and asynchrony when the repro-
duction rate is near one. Moreover, if the detailed dynamics of the network allow this
reproduction rate to change during the evolution of the system (for example, it could
depend on the temporally-varying state of the network), then it is possible that the
reproduction rate will fluctuate around one, and in fact this is the exact effect which
was observed in the model of DeVille and Peskin (2008) and explained in DeVille
et al. 2010—such fluctuations were responsible for the switching between synchrony
and asynchrony observed there.
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The arguments above suggest that in a very general context, if we choose net-
works and dynamics where this reproduction rate is near one but fluctuates, then we
should observe interesting interplays between synchrony and asynchrony. In an “all-
to-all” network of N neurons, this requires scaling the probability of synaptic success
psyn ∼ N−1. However, this particular limit is not entirely biologically reasonable. It
is not typically true that neuronal networks are very densely connected, yet at the
same time have a large probability for synaptic failure. In fact, it is more common
to have networks with a somewhat sparse, but fixed, connectivity, and to have much
more reliable (but still failure-prone) synapses. Trying to capture these aspects of
network connectivity leads to the current study. In particular, it is not entirely clear
a priori which parameters govern this reproduction rate, and in fact we will see that
this question is complicated (we give an overview of the results in Sect. 1.5 below).

1.3 Definition of Model

In this paper, we consider neuronal dynamics on networks of neurons where the
synapses have been chosen and fixed (the network is “quenched”) before the dynam-
ics are allowed to proceed. We also allow the synapses themselves to be failure-prone,
meaning that whenever a neuron fires, even if a synapse is present, the postsynaptic
neuron(s) receive an input with some probability less than one. We will first define
the dynamics on a given network (Sect. 1.3.1), then define the families from which
we will draw the networks (Sect. 1.3.2).

1.3.1 Stochastic Dynamics on the Network

Our dynamics will be determined by the quadruple (G,K,psyn, ρ) where

• G is a (directed) graph. Here, we use the notation that G = (V ,E), where V =
{1, . . . ,N} is the set of vertices in the graph, and E ⊆ G × G is the set of edges.
We write E(i, j) = 1 or i → j iff there is an edge starting at i and ending at j . (We
will typically refer to a vertex as a “neuron” and an edge as a “synapse” below, so
E(i, j) = 1 means neuron i synapses on neuron j .) All our graphs in this paper are
directed and without loops.

• K ≥ 1 an integer, corresponding to the number of times a neuron needs to be kicked
before it can fire.

• psyn ∈ [0,1] is the synaptic probability, the probability of a synapse working.
• ρ ∈ R is the rate of spontaneous promotion of neurons in the network.

The state space of our network will be S = {0, . . . ,K − 1}N ; choosing a point in this
space specifies the voltage level of each individual neuron in the network.

The rough description of the dynamics on our network will be as follows: with
rate ρ, we promote one neuron (uniformly at random) in the network. If it is raised
to a level less than K , then we do nothing else and wait for the next promotion. If it
hits level K , then we say it “fires”, and we enter “firing mode”. In firing mode, we
keep track of which neurons are currently firing. Choose some neuron (say neuron i)
in the firing set and promote every downstream neuron with probability psyn (i.e., for
every neuron j such that E(i, j) = 1, increment the voltage of neuron j ). Stay in
firing mode until the number of neurons firing is zero (note that the firing population
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can both increase or decrease at any time, since neurons can be raised to firing level
by kicks from other neurons). When this occurs, reset every neuron which fired to
level zero. We now give a precise description:

Definition 1 (Definition of Network Dynamics) Fix the quadruple (G,K,psyn, ρ)

and choose an initial vector X0 ∈ S = ({0,1, . . . ,K − 1})N (the initial vector X0 can
be random). Let 0 = t0 < t1 < · · · be a sequence of times such that ti+1 − ti is ex-
ponentially distributed with mean (ρN)−1, and define Xt to be constant on [ti , ti+1).
For each ti , pick an index n ∈ {1, . . . ,N} uniformly and compute the following:

• If Xti,n < K − 1, then Xti+1,n = Xti,n + 1, and Xti+1,j = Xti,j for all j �= n, i.e.,
promote only neuron n by one level and leave the rest alone.

• If Xti,n = K − 1, then define a vector Y (0) and two lists F (0),G(0), where Y
(0)
j =

Xti,j for all j �= n and Y
(0)
n = K and F (0) = G(0) = (n). (Think of the lists F,G

as the neurons “currently firing” and “already fired,” respectively.)
• Define Y (k),F (k),G(k) recursively: If F (k) �= ∅, we define Z ∈ ({0,1})N by{

P(Zj = 1) = psyn, P(Zj = 0) = 1 − psyn, if E(F
(k)
1 , j) = 1, j /∈ F (k) ∪ G(k),

P(Zj = 0) = 1, else.

Then define

Y (k+1) = Y (k) + Z,

F (k+1) = (
F (k) \ F

(k)
1

) ∗ {
j | Y (k+1)

j = K,Y
(k)
j < K

}
,

G(k+1) = G(k) ∗ {
j | Y (k+1)

j = K,Y
(k)
j < K

}
,

where ∗ denotes the concatenation operator. In short, whenever we process the
first element of the “firing list” F (k), we consider all other neurons in the network
which are synapsed on by F

(k)
1 and which have not yet fired, and we promote them

with probability psyn. We then remove this neuron from F (k) but not G(k), and add
those neurons which have just fired to both lists.

• Finally, define

k∗ = min
k>0

(
F (k) = ∅)

,

and

Xtk+1,n =
{

Y
(k∗)
n , n /∈ G(k∗),

0, n ∈ G(k∗),

i.e., whenever the firing list is empty, we stop the cascade, set every neuron which
fired back to level 0, and leave every neuron which did not fire alone. The integer
k∗ will be called the size of the cascade.

Remarks

1. The size of a cascade, k∗, must be finite, and in fact, k∗ ≤ N . At every generation
of the cascade, we process one neuron, and no neuron can reenter the firing set
once it has already fired. Thus, every cascade has finite size with probability 1.
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2. The parameter ρ sets an overall timescale for the problem but otherwise does not
affect the dynamics, and we will set ρ = 1 below.

3. We can think of this graph as a weighted graph where the weight on each edge
is the probability psyn; a more general neuronal network model could allow for a
weight which was different for different edges, but we do not consider that here.

1.3.2 The Networks We Choose

The model considered in DeVille and Peskin (2008), DeVille et al. (2010) is the
model described above where the graph is chosen to be the complete graph on N

vertices, i.e., E(i, j) = 1 for all i, j . The model description is much simpler in that
case, in that one need only keep track of the number of neurons at each level; in fact,
this simplification was exploited in the analysis there. From above, once we specify
a graph G and the other parameters, the dynamics are defined. What we want to do
below is not any single graph G, but instead families of random graphs.

Definition 2 A neuronal network model is the quadruple (G,P,K,psyn), where G is
a set of graphs, P a probability distribution on the set of graphs, and K,psyn are as
above. A graph G is chosen from G according to P, and the dynamics on (G,K,psyn)

are then defined as above. For any observable of the dynamics on a given graph G,
i.e., for any function φ : G → R, we define the ensemble mean (resp. ensemble vari-
ance) of that observable as the mean (resp. variance) of that quantity with respect to
the probability distribution defined on G , i.e.,

〈φ〉P =
∑
G∈G

φ(G)P(G), VP(φ) = 〈(
φ − 〈φ〉P

)2〉
P
,

and similarly for other moments. (It is somewhat redundant to specify G since it can
be defined as supp P but we sometimes make it explicit for clarity.)

In practice, we will not explicitly give a description of G and P in closed form, but
will instead describe their construction algorithmically. The choices of families we
will make for G,P in this paper will be as follows (we give a specific description of
our algorithms for constructing the random graphs in Appendix below):

• GFULL(N), the complete graph on N vertices1 as considered in DeVille and Peskin
(2008), DeVille et al. (2010). Here, P is a delta function on a single graph.

• GUP(N,p), the (directed) Erdős–Rényi uniform random graph where each edge is
present independently with probability p.

• GUFE(N,M), the random graph with M edges, where the M edges are chosen
without replacement uniformly from the set of N(N − 1) possible edges.

• GSW(N,M,prewire), the Watts–Strogatz “small-world” graph (Watts and Strogatz
1998).

1The standard notation for the complete graph on N vertices is KN , since we already use K for the number
of levels of a neuron, we choose this nonstandard notation for the purposes of clarity.
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• GSF(N,M,α,β), the scale-free model inspired by that of Albert and Barabási
(1999) which evolves according to “preferential attachment” (although we actu-
ally use the model described in Bollobás et al. 2003).

1.3.3 Critical Parameters

The case of the complete graph on N vertices with fixed psyn was considered in
DeVille and Peskin (2008), DeVille et al. (2010); it was shown there that in the limit
N → ∞, psynN → β ∈ (0,∞), the parameter β was critical for the behavior of the
limiting system, and this was intimately related to the typical reproduction rate of
various events characteristic of the dynamics. As stated above, this limit is somewhat
biologically unrealistic; it makes more sense to consider sparser networks with more
reliable (but not perfectly reliable) synapses. The natural questions to ask are then:
Are there critical parameters? What are they?

Consider a network with N neurons and M total synapses. Define

pedge = M

N(N − 1)
, ptrans = psynpedge.

We will refer to pedge and ptrans as the “edge probability” and the “transmission prob-
ability,” but strictly speaking these are only probabilities in a certain sense. Once G

has been chosen, N and M are determined so that pedge is a deterministic quantity
and really should be thought of as the proportion of potential edges which exist. How-
ever, it is a probability in the sense that if we have a fixed graph G, and if we choose
two neurons i, j uniformly at random, then there is a probability of pedge that there is
a synapse i → j .

One might expect that the critical parameter in this model is the transmission prob-
ability ptrans. The argument would be as follows: pick the “average” neuron and wait
until it fires. The average neuron is connected to pedge(N − 1) other neurons and will
kick each of them with probability psyn, so the average number of neurons kicked
is ptrans(N − 1). If we further assume that the population is equidistributed, then the
proportion of neurons at level K − 1 is 1/K , so the mean number of neurons which
just got kicked and which will fire is ptrans(N − 1)/K . Thus, we might expect the
critical parameter to be ptrans and its critical value to be K/(N − 1) ≈ K/N . It is in
these senses which we refer to as “edge probability” and “transmission probability.”

The problem with the above argument is that there may be no “typical” neu-
ron; the degree distribution of a graph will in general have a spread, so differ-
ent neurons will affect the network differently. Moreover, there is nothing which
guarantees equipartition, since all of the neurons in the network are correlated; in
fact, in even the homogeneous case considered earlier (DeVille and Peskin 2008;
DeVille et al. 2010), correlations play a role in setting up stable synchronous be-
havior. However, it was true in that case that psynN was a critical parameter in the
N → ∞ limit, so it is plausible that ptrans might play a similar role here.

1.4 Definition of Ensembles

While the parameter ptrans does not necessarily tell us much about a given graph, it
seems the most natural first guess to characterize a given network’s behavior, and
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we study the efficacy of using this parameter below. What we find is that for several
of the families of networks which we consider in this paper, ptrans is a very good
quantitative predictor of a network’s propensity to synchronize. To make the notion
of a “good predictor” precise, we use the following framework. Assume that we have
chosen a random graph model (G,P). We can consider the distribution conditioned
on M or on ptrans, in the following way:

Definition 3 (Conditioning)

• If G , P, K and psyn are specified, define for all G ∈ G :

P(G|M) =

⎧⎪⎨
⎪⎩

P(G)∑
G′∈G,|E(G′)|=M P(G′)

, |E(G)| = M,

0, |E(G)| �= M.

Note that this gives a probability distribution supported on graphs with M edges.
We then choose G according to this distribution and then perform the dynamics on
(G,K,psyn).

• To condition on ptrans once G , P, and K are specified, we choose

M ∈ U
((

ptransN(N − 1),N(N − 1)
] ∩ Z

)
,

psyn = ptrans/pedge = ptransN(N − 1)/M.

(We are using the convention that U(S) for a finite set S denotes the random vari-
able with distribution uniform on S.) Choose G according to P(·|M) and then per-
form the dynamics (G,K,psyn). Note that by construction we have pedge,psyn ∈
[ptrans,1] and pedgepsyn = ptrans.

Definition 4 (Good Predictor) Given a triple (G,P,K), we will say that ptrans is a
good predictor for an observable φ if, defining P̃ as the distribution conditioned on
ptrans, when we compute

μptrans = 〈φ〉
P̃
, σ 2

ptrans
= 〈(

φ − 〈φ〉
P̃

)2〉
P̃
,

we have σptrans much smaller than μptrans , i.e. if it has a small coefficient of variation
over the ensemble.

1.5 Summary of Results

We can now summarize the results of the paper:

• For GUP(N,p), GUFE(N,M) and for most parameter values, the single parame-
ter ptrans is a good descriptor of the synchronization properties of the network,
as defined above. The exceptions are when parameters are chosen to put the sys-
tem in the region where synchrony competes with asynchrony, but this region is
very small in parameter space. As shown in DeVille and Peskin (2008), DeVille
et al. (2010), this is the region where GFULL(N) supports both synchronous and
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asynchronous dynamics and switches between the two. In all cases, these random
graphs also look very close to GFULL(N) when conditioning on ptrans.

• For GSW(N,M,prewire), we observe that if prewire is chosen above 0.5, then
GSW(N,M,prewire) is independent of prewire and almost indistinguishable from
GUP(N,p) or GUFE(N,M) conditioned on the same ptrans. In short, with enough
rewiring, small world networks look precisely like uniform networks. This is
to be expected in the sense that as ptrans → 1, the model GSW(N,M,prewire)

becomes the model GUFE(N,M); what is perhaps quantitatively surprising is
that once about 50% of the network has been rewired, additional rewiring does
not change anything. We also study small prewire below and show some inter-
esting results specific to GSW(N,M,prewire) which we describe in Sect. 4 be-
low.

• Finally, we show that the model GSF is completely unlike the other types of
models. First, we will see that while the other models have a sharp transi-
tion to synchrony (i.e., as a function of ptrans, the networks move from asyn-
chronous to synchronous behavior very quickly), GSF has a much smoother tran-
sition. Next, we will define two candidate observables to measure synchroniza-
tion, and we show that these two are well correlated on GUP,GUFE,GSW but
give quite different answers on GSF. Finally, we show that even conditioning
on M and psyn separately (which is, of course, a stronger condition than con-
ditioning on ptrans alone) does not specify the statistics of GSF very well ei-
ther. This means that if we choose two graphs from GSF with the same num-
ber of edges, they can have significantly varying statistics. In fact, we will
show that the statistics of GSF are dominated by the relative strength of the
“hubs” in the network, and this varies significantly over the M-edge ensem-
ble.

In the numerics shown throughout the paper, we will always choose N = 1000
neurons and K = 10 levels from reset to firing. The effects of changing N and
K were studied extensively in DeVille and Peskin (2008), DeVille et al. (2010).
It was shown there that as long as K is large enough, the qualitative descrip-
tion of the dynamics is independent of K , so we choose K = 10 consistently
for convenience. Also, it was shown that the typical variance of a path of these
stochastic neuronal networks is N−1, as would be expected, so choosing N large,
but not too large, gives small-noise dynamics. This is the regime we which to
study.

1.6 Organization of the Paper

In Sect. 2, we will demonstrate the similarities and differences of the different graph
models, showing that the uniform and small world models are quite close, while the
scale free graphs are significantly different; we will also discuss alternate metrics
for measuring synchronization. In Sects. 3, 4, 5, we will discuss properties spe-
cific to the uniform, small-world, and scale-free families, respectively. Section 6
summarizes our current understanding of the model and lists some open problems
and conjectures related to the model studied here. Finally, in the Appendix, we de-
scribe in detail the precise definitions of the random graphs considered in this pa-
per.
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2 Comparison of the Models

2.1 Trajectories of the Solutions

In this section, we present simulations showing the typical behavior of trajectories of
all types of systems. In Fig. 1, we present some direct simulations of the neuronal
network to exhibit its main two types of behavior: asynchronous and synchronous
dynamics. In both cases, we have chosen a graph from GUFE(N,M) with N = 1000;
in frame (a) we have M = 6000 and in frame (b) we have M = 10000. Since psyn = 1
in both cases, this means ptrans = 6 × 10−3 in frame (a) and ptrans = 1 × 10−2 in
frame (b). We will refer to these two cases as “low” and “high” coupling, giving
rise to asynchronous or synchronous dynamics, respectively. What is observed for
all these graphs is that they tend to synchronize more as ptrans increases (just as in
GFULL(N,M) as considered in DeVille and Peskin 2008; DeVille et al. 2010). More-
over, notice that the size of events is significantly different in the two cases; for low
coupling the largest event is 3% of the size of the network, whereas for high coupling
it is 80% over a comparable timescale. Although we only show two examples here,
we find that all systems we study in this paper have similar qualitative dynamics:
if ptrans is chosen sufficiently small, the network is asynchronous and has no large
events, and if chosen sufficiently large, the network is synchronous and has large
events.

What we study in the remainder of this paper is the propensity of the network to
synchronize, and what we mean by this is the propensity to have events which entrain
a significant fraction of the neurons in the network. One way to get a handle on this

Fig. 1 Solution trajectories.
Here, we show two direct
simulations of neuronal network
dynamics. In both frames, we
have chosen a graph from
GUFE(1000,M), where K = 10
and psyn = 1. In frame (a), we
have chosen M = 6000 and in
frame (b) M = 10000
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Fig. 2 (Color online) Simulations for samples of the uniform random graph GUFE(N,M) (frame (a))
and GSW(N,M,prewire) (frame (b)). In both panels, N = 1000,K = 10. In each case, we have cho-
sen parameters so that ptrans = {9,10,11} × 10−3. For the small world graphs in (b), we have chosen
prewire = 0.8

Fig. 3 (Color online) Simulations for samples of the scale-free graph GSF(N,M,1/4,1/2), where
N = 1000, K = 10. Again, we have chosen parameters so that ptrans = {9,10,11} × 10−3

is to examine the histograms of the burst sizes when the systems are simulated over
long timescales, and we present some of this data in Figs. 2 and 3.

In Fig. 2, we present histograms of burst sizes for particular graphs drawn from
the GUFE(N,M) and GSW(N,M,prewire) ensembles. We have chosen three represen-
tative systems (corresponding to “low,” “middle,” and “high”). What happens in each
case is that as we pass in parameter space from low to high is: first, there is an on-
set of bursts which are a significant size of the network. When ptrans = 9 × 10−3,
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the probability of a burst larger than half of the network is extremely low, but by
ptrans = 1 × 10−2 there are many of them. As ptrans is increased further, the relative
probabilities of the small bursts changes little, but the population of large bursts have
a larger mean. We see that these are qualitatively the same for both random graph
models.

In contrast, notice that Fig. 3 shows a completely different type of histogram for
the scale-free networks. While the shapes undergo a transformation which is qual-
itatively similar (they go from monotone decreasing to developing a “hump”), that
hump is centered at smaller location. Moreover, there is not a very good scale separa-
tion between the small and large events like there is in Fig. 2, and thus the histogram
is smoother.

We will observe these differences throughout the remainder of the paper: the
uniform and small-world models tend to act similarly and to show this sharp di-
chotomy between large and small events, whereas the scale-free networks have a
much smoother type of dynamics, both in the scale separation between large and
small for a given ptrans and as a function of ptrans.

2.2 Which Quantities to Measure?

We are interested in determining the dynamical properties of these networks and
seeing how they depend on the underlying graphs. We need to collate a large amount
of data and thus it makes sense to define some observables on these networks, but it
is not a priori clear what the right observable is. In this section, we compare a few
potential observables and justify the choices made later in the paper.

We propose three potential observables to describe the dynamics of a neuronal
network: we could use the aggregate firing rate of the network, we could count the
proportion of events which entrain more than a fixed proportion of the network, or
we could consider the average size of the largest events.

We compare the firing rate to the other two observables in Sect. 2.3. In Fig. 4,
we compare the last two potential observables: on one hand, we count the fraction of
bursts which take over more than half of the network (i.e. in which more than 500 =
N/2 neurons fire), and on the other, we collect the largest 1% of all of the bursts
in the network and take the mean size of these. (Stated simply, we are contrasting
counting large events versus averaging the sizes of large events.) We see that for the
uniform or small-world networks, it does not much matter which of these observables
we choose and they correlate well. In contrast, these two observables do not correlate
well at all for scale-free networks (for purposes of comparison, the same data for the
uniform and small-world networks is plotted in both frames, the scale-free data has a
much larger “spread”). Because we tend to see a much larger spread in the horizontal
direction, we will use the counting observable: we will choose some proportion of
the network size and count the proportion of bursts large than that fixed proportion.

It then remains to decide which proportion to take. For example, should we count
events larger than N/2, or N/5? We make this comparison in Fig. 5, where in these
graphs we always choose psyn = 1, so ptrans = pedge = M/(N(N − 1)). We see that
while it matters in all cases which threshold is chosen, this data underlies the differ-
ence of the scale-free networks from the other models. For the uniform and small-
world networks, the distinction matters only in the regime where the network passes
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Fig. 4 (Color online) Mean size
of top 1% or number above a
certain threshold? Each of the
data points corresponds to a
realization of a random graph
and the symbol specifies the
distribution from which it was
drawn. In all of these cases, we
plot only data with psyn = 1

from zero synchronization to significant synchronization; below a certain coupling
strength, there are no large events at all and both measures are zero, and above a
certain coupling strength, the measures coincide, which implies that all events larger
than 20% of the network are also larger than 50% of the network, consistent with the
dichotomy seen in Figs. 2, 3. In contrast, the range where the two measures disagree
for the scale-free networks is much larger (notice the scales on the horizontal axis;
for the first three networks, the curves converge at about 10% higher value from the
location where they diverge, whereas for the scale-free networks, they converge at a
value about twice as high).

We also point out yet another contrast between the first three and the scale-free
networks: the ensemble standard deviation. The error bars in each picture represent
the ensemble standard deviation as defined in Definition 2. We see that conditioning
on psynM (for GFULL(N), M is fixed) gives a small ensemble standard deviation in
Figs. 5(a–c), but a large one in Fig. 5(d). In fact, for the scale free networks we can
see by eye that σptrans is roughly half of μptrans . We point out that this is even in light
of the fact that the small-world figure contains networks with various values of prewire

(although all over 0.5).
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Fig. 6 (Color online)
Comparing the 50% threshold
with the 20% threshold across
various networks. In frame (a),
we plot all of GFULL(N),
GUFE(N,M),
GSW(N,M,prewire) and see
they match up nicely; in
frame (b), we plot GFULL(N)

and GSF(N,M,1/4,1/2) and
see that they do not

2.3 Compare/Contrast Different Models

In Fig. 6 we aggregate information in Fig. 5 is different ways. In the left frame,
we compare the 20% and 50% curves for the uniform, small-world, and complete
networks. We see that if we plot all of these versus ptrans, then the networks match up
quite well—in fact, the ensemble means are almost indistinguishable to the eye. In
contrast, the scale-free networks are significantly different, and we plot this versus the
complete graph. Most striking is the comparison of the range of ptrans where the 20%
and 50% curves differ; it is an order of magnitude larger for the scale-free networks
compared to the others.

In Fig. 7, we compare the aggregate firing rates of different networks; as always,
the first three networks all act similarly when conditioned on ptrans, and the scale-
free networks act quite differently. Moreover, we also see that there is a connection
between firing rates and synchronization: for all cases, the aggregate firing rate rises
in the region when the networks first start being synchronized, and in the uniform
and small-world networks, this drops once a significant degree of synchronization
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Fig. 7 (Color online)
Comparing the firing rates
across various networks. In
frame (a) we plot all of
GFULL(N), GUFE(N,M),
GSW(N,M,prewire) and see
they match up nicely; in
frame (b) we plot GFULL(N)

and GSF(N,M,1/4,1/2) and
see that they do not

takes over; however, notice that this does not happen for the scale-free case. This can
be explained as follows: as was analyzed in DeVille and Peskin (2008), DeVille et
al. (2010), when the GFULL(N) system starts synchronizing to a sufficient degree, one
ends up with many “wasted” firings because many of the events are O(N), and during
a cascade there are many cases where the same neuron is kicked several times. In this
model, such neurons do not fire multiple times and end up being set to zero at the end
of a cascade, so these kicks are wasted. Since the uniform and small-world networks
also have these cascades which involve close to N neurons, this effect happens as
well. In contrast, the scale-free networks do not exhibit such large events (see, e.g.,
Fig. 3), and thus there are many fewer wasted kicks. Also, we see that using aggregate
firing rate as an observable for the network is not a good proxy, since it is two-
to-one on almost all parameter intervals of interest. In contrast, the synchronization
measures we will use are monotone over these intervals (or, more strictly speaking,
their ensemble means are monotone), as can be seen in Fig. 5.
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3 Detailed Study of Uniform Models

3.1 GUP(N,p) Versus GUFE(N,M)

The first question we address here is a comparison of the GUP(N,p) and GUFE(N,M)

models. We claim that there is not a significant difference between these two models,
but GUFE(N,M) has a slight advantage over GUP(N,p) which we now discuss.

We present data in Fig. 8 which makes this argument; in particular, the same data
is plotted in both panels of Fig. 8, but simply represented in a different way. This data
was obtained in the following manner. We always choose psyn = 1 for this data. We
then generated many graphs from the GUP(N,p) distribution for various values of p;
once the graph was chosen we measured the fraction of cascades larger than N/2,
and each (background) data point is one realization of a graph. We then binned this
data in p and plotted the bin mean and standard deviation; this is plotted in the solid

Fig. 8 (Color online) Comparison of GUP(N,p) and GUFE(N,M). All frames in this figure are plotting
the same data, but in different ways. In frame (a), we plot synchronization versus p, the probability of an
edge existing in a network. However, one each network has been chosen, it has a fixed number of edges M ,
and we can plot versus this as well. Finally, we plot all of the data in frame (c) against each other to show
that the ensemble means are close
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curve. In Fig. 8(a), everything is plotted against p, the probability of an edge existing
in the random graph.

In Fig. 8(b), we plot precisely the same data, except this time plot against M ,
the number of edges which were actually chosen in the random graph. Again, each
background data point is a single realization of the network and the solid curve is
the mean and standard deviation in bins, but this time binned in M . It is clear to the
eye that representing this data versus M gives a significantly lower standard devia-
tion than representing it versus the edge probability, which indicates that, not only is
knowing the number of edges useful in describing the dynamics, but in fact it is more
useful than knowing the original probability p which we used to generate the random
graphs.

In Fig. 8(c), we plot all of the data from Fig. 8(a, b) on top of each other to show
that while the ensemble variance is different for GUP(N,p) conditioned on p versus
GUFE(N,M) conditioned on M , the ensemble means are quite close. For any graph
chosen from GUP(N,p), the number of edges has the Bernoulli distribution with
N(N −1) trials and probability p of success. Since the mean of M is a function of p,
and we have rescaled axes so that they match, it is not surprising that the ensemble
means conditioned on p or on M give the same value. However, given p, the num-
ber of edges M has mean N(N − 1)p and variance N(N − 1)p(1 − p); speaking
roughly, M has mean O(N2) and standard deviation O(N), which is a significant
spread in absolute terms. We see that conditioning on the number M gives useful
information, and in fact Fig. 8(b) suggests that this conditioning is even more useful
than knowing the original p in the first place. Because of this, it seems preferable to
study GUFE(N,M) instead of GUP(N,p), and this is what we will do below.

3.2 Comparing GUFE(N,M) and GFULL(N)

We now compare GUFE(N,M) and GFULL(N) and present the data in Fig. 9. In
Fig. 9(a), we compare the synchronization of GUFE(N,M) to that of GFULL(N) plot-
ted versus ptrans. As in Fig. 8, we consider a wide variety of values for psyn and M and
compute the proportion of cascades larger than 50% of the network. Also as in Fig. 8,
the background data points each correspond to one realization of a random graph, and
we further bin in ptrans and plot bin mean and standard deviation. We also plot statis-
tic for GFULL(N) versus psyn (recall that since pedge = 1 for GFULL(N), psyn = ptrans).
The two models match well, in the sense that the ensemble mean of GUFE(N,M) con-
ditioned on ptrans is close to the actual value for GFULL(N) for the same ptrans. In the
GFULL(N) model, all edges are present, but only work with probability psyn = ptrans.
One way to think of GFULL(N) is that every time a neuron fires, one chooses a re-
alization of GUP(N,psyn) and then makes the synapses downstream from the firing
neuron work with probability one. In short, GFULL(N) is dynamically averaging over
realizations of graphs, whereas in the GUP(N,p) or GUFE(N,M) models, the graph
is chosen and fixed for all time. Thus, it is to be expected that the means are close;
however, it is remarkable that the ensemble variance is so small (in fact, it is almost
invisible to the eye away from the onset region); in short, the effect of quenching the
network before the onset of the simulation is minimal, at least outside of the switching
regime.
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Fig. 9 (Color online)
Frame (a): a comparison of
GUFE(N,M) and GFULL(N).
We have chosen 13,709
realizations of neuronal models
with various M and psyn and
plotted these versus ptrans.
Frame (b): effect of varying
psyn while holding ptrans
constant where ptrans is held at
{9.0,9.3,9.5} × 10−3 and we
plot 1010, 1925, and 953 data
points, respectively

Conditioning on ptrans determines the dynamics well (in the sense of the error bars
being small in Figs. 8 and 9(a)), but we also see that there is some ensemble variance,
especially in the intermediate range where synchronization is starting to appear. It
is natural then to ask whether conditioning on more information might help predict
the statistics of these models, and we explore this question in Fig. 9(b). Here, what
we have done is taken the data in just three of the bins in Fig. 9(a) (specifically, the
data corresponding to ptrans = {9.0,9.3,9.5} × 10−3) and plotted these versus psyn.
Note that when ptrans is fixed, then M varies inversely proportionally to psyn, so as
one moves from left to right in Fig. 9(b), this corresponds to taking fewer edges
but in such a way that Mpsyn is held constant. The right-hand side of this graph
corresponds to choosing M = ptransN(N − 1) synapses and making them perfectly
reliable; whereas the left-hand edge corresponds to choosing a complete graph but
making the synapses only work with probability ptrans. What we see is when syn-
chronization is high or low, the dependence on psyn is almost nonexistent, i.e., in the
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high and low synchronization cases, the dynamics are mostly independent of psyn and
knowing the product psynM is basically good enough to tell us everything.

In contrast, in the transition regime, knowing psyn gives more information; inter-
estingly, both the networks with the most, and the fewest, edges for a fixed ptrans tend
to be most synchronous. However, it should be noted that specifying psyn does not
cut down ensemble variance that much: for example, in the ptrans = 9.3 × 10−3 data
in Fig. 9(b), the standard deviation of all ptrans = 9.3 × 10−3 data is 9.35 × 10−4,
whereas the smallest error bar in that graph is 4.2 × 10−4, i.e. the ensemble standard
deviation after conditioning on ptrans = 9.3 × 10−3 and psyn in the bin nearest zero
only cuts down standard deviation by a factor of two.

Notice that in the middle regime, where the ensemble variance conditioned on
ptrans is largest, and where psyn plays a significant role, corresponds exactly to the
switching regime of the network observed in DeVille and Peskin (2008), DeVille et
al. (2010) where the all-to-all network has multiphase dynamics.

4 Detailed Study of Small World Models

In this section, we perform a detailed numerical study of the family of small world
networks. We are studying small world models inspired by, and very similar to, those
defined in Watts and Strogatz (1998). (The main differences are that we allow the
graphs to be directed and we extend the definition to the case where the number of
edges is not an integral multiple of the number of vertices.)

The main idea of the construction of the random model GSW(N,M,prewire) is that
we start with a very regular graph with N vertices and M edges (in fact, we make it as
close to a bidirectional, locally-coupled ring as possible), and then rewire each edge
with probability prewire (by “rewire” we mean remove an edge and replace it with
an edge between a pair of vertices chosen uniformly at random). Thus, for prewire

small, we have a regular and locally-coupled graph, but as prewire → 1, we obtain
the GUFE(N,M) model (if prewire = 1, we rewire every node, and thus every node is
chosen uniformly at random).

Our major observations can be summarized as such:

• For prewire sufficiently large (which seems in practice to be the range of larger than
0.5), the model GSW(N,M,prewire) is statistically almost the same as GUFE(N,M).

• For smaller prewire, the onset of synchronization is sharper as a function of ptrans

and more severe. Thus, there is a “turn-around” phenomenon where the more reg-
ular graphs are less synchronous than the more random graphs at small ptrans, but
become more synchronous for large ptrans (cf. Nishikawa et al. 2003).

• For smaller prewire, the ensemble variance is still rather large even after condition-
ing on ptrans; for larger prewire it is not. This means that in the class of more regular
graphs, the details of the graph matter more.

4.1 Comparison of Statistics for Various prewire

In this subsection, we only present data where we have chosen psyn = 1 but study the
onset of synchronization versus both prewire and ptrans = pedge = M/(N(N − 1)).
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Fig. 10 (Color online)
Synchronization as a function
of ptrans = pedge =
M/(N(N − 1)) for
various prewire

In Fig. 10, each curve corresponds to a fixed prewire, and we show the effect of vary-
ing ptrans. We see that the large prewire give roughly the same shape, which are them-
selves very similar to the shape seen earlier for GFULL(N),GUP(N,p),GUFE(N,M),
but smaller ptrans give much different shapes. As always, we plot the individual en-
sembles in the background, but show the bin mean and bin standard deviation for the
curves.

In Fig. 11, we present this same data but collated in both heatmap and contour
forms. It is clear in this figure that all prewire > 1/2 gives about the same synchro-
nization, and that more regular graphs lag behind the more random graphs as ptrans is
increased, but then catch up and even surpass them.

4.2 Varying psyn for Fixed ptrans and prewire

In Fig. 12, we present the data in a similar manner to that shown in Fig. 9; each panel
corresponds to choosing a fixed prewire = 0.95,0.75,0.3, or 0.1. Inside each panel,
we choose high, medium, and low values of ptrans (the specific values are presented
in Table 1). These values were chosen by eye from Fig. 10 to obtain values of ptrans
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Fig. 11 (Color online) Data
from Fig. 10 in heatmap and
contour form

where the networks have high, medium, and low levels of synchronization. In each
case, once prewire and ptrans have been fixed, we vary psyn over the range (ptrans,1]
and plot data as in Figs. 9(b) and 12. Again note that for fixed ptrans, we have M

varying inversely proportionally to psyn.
What is clear from these figures is, again, for larger prewire, the small world graphs

act very much like GUFE(N,M); there is some dependence on psyn once ptrans has
been fixed, but it is not significant, as can be seen in Figs. 12(a, b). In short, for these
ptrans is a good predictor. However, what we also see is that when prewire is small, fix-
ing ptrans is not a good predictor. Considering Figs. 12(c, d), we see that not only does
each curve have a large aggregate variance (i.e., fixing ptrans still has a large ensemble
variance), further conditioning on psyn makes a significant difference; as a function
of psyn, the binned variance is orders of magnitude less than the binned mean. This
means that (for at least some values of ptrans) when prewire is small, conditioning on
psyn after conditioning on ptrans makes the prediction better by several orders of mag-
nitude. This is in marked contrast to GUP(N,p), GUFE(N,M), or GSW(N,M,prewire)

with prewire large.
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Table 1 Values of ptrans
chosen for each fixed prewire

prewire Low Medium High

0.95 9 × 10−3 9.5 × 10−3 1 × 10−2

0.75 9 × 10−3 9.75 × 10−3 1.05 × 10−2

0.3 1 × 10−2 1.075 × 10−2 1.15 × 10−2

0.1 1.4 × 10−2 1.7 × 10−2 2.2 × 10−2

5 Detailed Study of Scale Free Models

In this section, we perform a more detailed analysis of scale-free models to elucidate
some of the key features. As was observed in Figs. 5(d), 6(b), 7(b), the ensemble
variance of the synchronization propensity of the network is significantly larger for
the scale-free case than for the other cases. What this means is that fixing ptrans =
pedgepsyn is not a very good predictor of synchronization.

One might ask for a sharper conditioning by conditioning on both psyn and M and
not just their product and see if this leads to a decrease in variance after such condi-
tioning (this was the case for uniform and small-world graphs; see Figs. 9 and 12).
It turns out that this is not the case, i.e., even if we proscribe a value of psyn and a
number of edges M , the dynamics of the networks drawn from the GSF(M,α,β, γ )

ensemble are significantly different.
We present one set of such data in Fig. 13. In this figure, we have chosen

M = 20000 and psyn = 0.5 throughout, but considered many different realizations of
graphs from the GSF(20000,0.25,0.5,0.25) ensemble. In each case, we have plot-
ted the proportion of bursts larger than 20% of the network, i.e., those cascades that
entrain more than 200 neurons.

We have chosen the 20% threshold here instead of the 50% threshold used in
Sects. 3 and 4 for two reasons: first, this will allow us to obtain more data for the
statistics, but more importantly, considering Fig. 3, we see that while the separation
between small and large bursts is much less clear for the scale-free networks,if there
is any separation between small and large bursts, it is closer to 20% of the network
instead of 50%. In any case, we see in Fig. 5 that the ensemble variance conditioned
on ptrans is large for either threshold.

The natural question to pose at this point is: if knowing the number of edges isn’t
enough to specify the dynamics of the network, is there some simple observable on
which we can further condition to give us better predictions? Scale-free networks
are inherently “hierarchical,” i.e., that there are typically a few vertices in the graph
with a large degree (Bollobás et al. 2003). In fact, this is the property of the network
which gives rise to the term scale-free in the first place: the degree distribution is a
power-law so that the probability of having vertices with high degree is non-zero.
One might expect that knowing something about the vertex with highest degree, or a
collection of vertices with highest degree (the “top-n vertices”) might give us signifi-
cant information about the dynamics on the network. We see in Fig. 13 that this is so.
Here, we compute the fraction of cascades which entrain 20% of the network or more
and plot this versus two observables of the graph. In Fig. 13(a), we plot this versus
the highest in-degree in the graph. In all of these graphs, we have M = 20000 and
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Fig. 13 All data here is for
GSF(20000,1/4,1/2) and we
are plotting the proportion of
cascades larger than 20% of the
network. In panel (a), we plot
these versus the in-degree of the
neuron with the highest
in-degree in the network, in
panel (b) we plot these versus
the size of the local
neighborhood of the “top-2”
vertices (see text for more
detailed definitions)

N = 1000, so that the average in-degree is 20; the largest in-degree is thus somewhere
between 10 and 20 times the average in-degree, but this the salient feature of scale-
free networks. In Fig. 13(b), we are plotting versus a different statistic which we call
the local neighborhood of the top two vertices. Specifically, what this means is that
we choose the two neurons with largest in-degree and then count the total number of
neurons on which they synapse; this is a proxy to understand the size of the network
which the most connected neurons effect directly. More generally, we could define a
top-n statistic as follows: define din(j) = #{i | i → j} and renumber the vertices in
increasing order of din(·), and then our statistic is

Nk(G) =
N∑

j=N−k+1

#{� | j → �},

and we count vertices multiple times if they appear multiple times in this sum. The
statistic we have chosen in Fig. 13(b) is N2(G). We see that in both cases these
statistics give useful information in the sense that there is a clear positive correlation
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in both of these graphs, but neither statistic completely specifies. We also compared to
Nk(G) for k = 3, . . . ,10 (which data we do not present here) but found quite similar
results.

The next question one might ask is why in-degree is presented here, as we could
have easily have presented this data versus the highest out-degree in the graph instead.
We could define “in-hubs” as those vertices with large in-degree and “out-hubs” as
those with large out-degree and then ask why in-hubs over out-hubs?

What we find is perhaps somewhat surprising, and that is that looking at in-hubs
gives significantly better predictive powers than looking at out-hubs. One can pose
the following question: which neurons are involved in the synchronous events, i.e.,
whenever we consider cascades which take over 20% or more of the network, which
neurons are most likely to take part in these events? And are these neurons more or
less likely to be hubs than not?

To explore this question, we perform the following computation.

Definition 5 Given a function f : V (G) → R on the vertices of G, we define a rank-
ing as any permutation π ∈ S|G| which makes f ◦ π an increasing function (i.e. π1 is
the vertex with smallest value of f , and πN is the vertex with the largest value of f ).
Such a permutation always exists but of course may not be unique. We then define
the set

Sf,n(G) = π
([k,N]), k = min

�
f (π�) = f (πN−n+1),

where π is any ranking permutation for f . This set is unique.

Thus for any function f , and graph G, Sf,n(G) identifies the “top-n” vertices for
that particular function, i.e., the n vertices that have the largest value of f . Notice
that we also include the possibilities of “ties,” so that the top-n vertices for a function
might include some number ≥ n; if, for example, f (πN−3) = f (πN−4), then both
the top-4 and the top-5 sets contain at least the five vertices π([N − 4,N ]).

We define din(j) as above, dout(j) similarly, and Q(j) as the fraction of cascades
larger than 20% in which neuron j fired. For each the networks present in Fig. 13,
and for n = 1, . . . ,500, we identified the three sets Sin,n(G), Sout,n(G), and SQ,n(G)

(we abuse notation a bit by denoting Sin,n(G) as the sets corresponding to the function
din, and similarly for Sout,n(G) and dout, to simplify subscripts).

The idea here is the sets SQ,n characterize which neurons are taking place in the
large cascades, and Sin,n(G), Sout,n(G) are identifying which neurons are in-hubs and
out-hubs in the graph-theoretic sense. We then compute two functions

ϕG
in (n) = |Sin,n(G) ∩ SQ,n(G)|

min(|Sin,n(G)|, |SQ,n(G)|) , ϕG
out(n) = |Sout,n(G) ∩ SQ,n(G)|

min(|Sout,n(G)|, |SQ,n(G)|) .

(Note that we actually need to specify the terms in the denominator since these
sets have sizes ≥ n.) The functions ϕ will vary between 0 and 1; a value of 0 means
the sets have empty intersection and a value of 1 means they coincide. Larger values
mean the sets share more in common and when these values are high it suggests a cor-
relation between the properties. Of course, as n → N , these values will all approach 1
so they are only significant when n is not too close to N .
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Fig. 14 The quantities ϕG
in (n) and ϕG

out(n) plotted versus n. Each curve corresponds to a single realization
of G from GSW(1000,20000,1/4,1/2), each of which corresponds to one of the data points in Fig. 13

We plot these two functions, ϕin(n) and ϕout(n), in Fig. 14. In short, these pictures
show clearly that the in-hubs participate more in the synchronous dynamics than the
out-hubs, we see that the list of top in-hubs and top synchronous neurons share about
90% of their members in most cases and dominate the out-hubs significantly. As a
concrete example, let us say that we wanted to predict the 100 most active neurons in
a given scale-free graph. Simply choosing the top 100 in-hubs would, aside from four
particular graphs, give us exactly the top 100 active neurons, and even in those four
bad cases we would have a large degree of overlap. Said differently, for all but four
of these graphs, ϕin(100) = 1, and in any case is never lower than 80%. Conversely,
choosing the 100 largest out-hubs would give us coverage ranging from 20%–60%.

6 Conclusions

We have demonstrated a wide variety of phenomenological behavior of neuronal net-
work dynamics on complex graphs. A brief summary, almost a mnemonic, of these
results is:

Uniform and small-world graphs are almost just like all-to-all networks but
scale-free networks are quite different. The fine structure of the uniform and
scale-free networks does not seem to matter much, but the fine details of the
scale-free networks matter quite a bit.

More precisely, we have shown

• For GUP(N,p), GUFE(N,M) and away from the “switching regime,” the sin-
gle parameter ptrans is a good descriptor of the synchronization properties of
the network, and these networks look like GFULL(N). These statements hold for
GSW(N,M,prewire) as well when prewire > 0.5.
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• GSF(N,M,α,β) acts nothing like these other graphs: the onset of synchronization
happens over a much larger range of ptrans and the ensemble variance conditioned
on ptrans is much larger. Moreover, even conditioning on psyn and M separately
gives a large ensemble variance. The main reason for this is that the local structure
near the hubs of the network are very important, yet the variance of this local
structure is large, even after conditioning on M .

Acknowledgements The authors are indebted to Josh Attenberg, Joszef Balogh, Brent Doiron, and Joel
Spencer for discussion which stimulated this work.

Appendix: Algorithmic Descriptions of Random Graphs

We have used the random graphs GUP(N,p), GUFE(N,M), GSW(N,M,prewire), and
GSF(N,M,α,β), which we now define precisely.

• GUP(N,p)—Given a graph with N vertices, there are N(N − 1) possible directed
edges. We take each one to be present independently with probability p, i.e., say
eij = 1 with probability p for all i, j . The number of edges in this graph is the
Bernoulli random variable with N(N − 1) trials and probability p of success and,
therefore, the expected value of the number of edges is N(N − 1)p.

• GUFE(N,M)—This graph has exactly M edges, in contrast to GUP(N,p). Start
with the empty graph, and add edges to the graph by picking two vertices, each
with probability N−1, and add the directed edge between them. If this edge already
exists, do nothing. Repeat until the graph has M edges.

• GSW(N,M,prewire)—This graph, like GUFE(N,M), has N vertices and M edges.
For each of the M edges, with probability prewire, we place the edge randomly as in
GUFE(M,N). With probability 1−prewire, we choose the edge to connect vertex M

(mod N) and M +�M/N� (mod N). We pick the source of this edge to be one of
these vertices, with probability 1/2. To compare this definition to that of Watts and
Strogatz (1998), consider the case where prewire = 0, M = kN . Here, each vertex
is connected to exactly its k closest neighbors (with random directionality). With
prewire > 0, some of the edges become not near-neighbor because of a “rewiring”;
one way to think of this is to connect each vertex to its M nearest neighbors on
each side, and then rewire each connection with probability prewire. In particular, if
M = kN , then this is exactly the model of Watts and Strogatz (1998) except that
we allow directed edges.

• GSF(N,M,α,β)—We use a slight modification of the scale-free model presented
in Bollobás et al. (2003). One choice of the model presented there is as follows:
Start with a graph with one vertex. At each step, we do one of three things: with
probability α we add a new vertex and an edge from the new vertex to an exist-
ing vertex, with probability β add a new edge between existing vertices, and with
probability (1 − α − β) add a new vertex and an edge from an existing vertex to
the new one. Which existing vertex we choose in each case is random and deter-
mined by the following probability distribution: if we add an edge coming into an
existing vertex, the probability of choosing vertex vj is proportional to 1 + din,j ,
its in-degree plus one, and if we add an edge leaving an existing vertex, the prob-
ability of choosing vertex vj is proportional to 1 + dout,j , its out-degree plus one.
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Since each step always adds one edge, we can fix the number of edges at M by per-
forming exactly M − 1 steps. However, the number of vertices in this graph will
be random with mean α(1 − α − β)M . Since we also want to have a graph with
exactly N vertices, we force the graph to have N vertices: if during the evolution
of the random graph as described above, we end up with N vertices, then we stop
adding vertices but continue to add edges between existing vertices as described
above, i.e., set α = 0, β = 1. If α,β are chosen, for example, larger than 1.1N ,
then for N large enough it is exponentially unlikely that this algorithm terminates
before N vertices are chosen (in practice, we check for this and if this happens,
reject the graph).
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