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Abstract Biflagellated algae swim in mean directions that are governed by their en-
vironments. For example, many algae can swim upward on average (gravitaxis) and
toward downwelling fluid (gyrotaxis) via a variety of mechanisms. Accumulations
of cells within the fluid can induce hydrodynamic instabilities leading to patterns
and flow, termed bioconvection, which may be of particular relevance to algal biore-
actors and plankton dynamics. Furthermore, knowledge of the behavior of an indi-
vidual swimming cell subject to imposed flow is prerequisite to a full understanding
of the scaled-up bulk behavior and population dynamics of cells in oceans and lakes;
swimming behavior and patchiness will impact opportunities for interactions, which
are at the heart of population models. Hence, better estimates of population level
parameters necessitate a detailed understanding of cell swimming bias. Using the
method of regularized Stokeslets, numerical computations are developed to investi-
gate the swimming behavior of and fluid flow around gyrotactic prolate spheroidal
biflagellates with five distinct flagellar beats. In particular, we explore cell reorienta-
tion mechanisms associated with bottom-heaviness and sedimentation and find that
they are commensurate and complementary. Furthermore, using an experimentally
measured flagellar beat for Chlamydomonas reinhardtii, we reveal that the effec-
tive cell eccentricity of the swimming cell is much smaller than for the inanimate
body alone, suggesting that the cells may be modeled satisfactorily as self-propelled
spheres. Finally, we propose a method to estimate the effective cell eccentricity of
any biflagellate when flagellar beat images are obtained haphazardly.

Keywords Swimming algae · Upswimming · Gravitaxis · Effective eccentricity ·
Biflagellate · Regularized Stokeslets · Gyrotaxis · Sedimentation torque

S. O’Malley · M.A. Bees (�)
Department of Mathematics, University of Glasgow, 15 University Gardens, Glasgow, G12 8QW, UK
e-mail: Martin.Bees@glasgow.ac.uk

S. O’Malley
e-mail: somalley@maths.gla.ac.uk

mailto:Martin.Bees@glasgow.ac.uk
mailto:somalley@maths.gla.ac.uk


The Orientation of Swimming Biflagellates in Shear Flows 233

1 Introduction

Many micro-organisms swim in mean directions relative to external or local cues,
such as gravity, light, chemical gradients or the flow field, exhibiting programmed
strategies in order to optimize their environments. Such biased behaviors are termed
taxes. The precise mechanisms that individual cells employ to facilitate this motion
and the fine details of the associated low Reynolds number flow (creeping flow)
are only just being revealed (e.g. see Pedley and Kessler 1992; Hill and Pedley
2005; Lauga and Powers 2009; Drescher et al. 2010; Guasto and Johnson 2010).
The mechanisms that propel swimming micro-organisms are many and varied. Meth-
ods of propulsion range from a single appendage for spermatozoa and monotrichous
bacteria (examples of “pushers”), biflagellate locomotion for algae such as Chlamy-
domonas spp. (“pullers”) to those with multiple appendages such as the peritrichously
flagellated bacterium Escherichia coli and the ciliated protozoan Paramecium. The
composition and structure of the appendages differs between species. Bacteria have
helical flagella, which are driven by rotary motors at their base (see Lauga and Pow-
ers 2009). Eukaryotes, such as spermatozoa and Chlamydomonas spp., have flexible
flagella generally composed of nine doublet microtubules (partial microtubules at-
tached to full microtubules) arranged around two distinct microtubules. Molecular
motors, known as dynein, bind to the full microtubule of the doublet and extend arms
that translate along the partial microtubule of the opposing doublet, producing a shear
force that bends the flagellum (Omoto et al. 1999).

The manner in which the flagella beat greatly influences the characteristics of a
cell’s swimming motion. For instance, species of the genus Chlamydomonas typi-
cally move their two anteriorly inserted flagella in a whip-like breast-stroke fashion.
The 50 Hz beat has two roughly distinguished aspects. The effective stroke encapsu-
lates how the two flagella, initially extending forward, are rotated mostly in a plane
about their bases until they lie to each side of the body, resulting in forward mo-
tion. The recovery stroke represents the propagation of bending waves from base
to tip that restore the flagella to their starting positions, and result in negative dis-
placement. However, these aspects are not entirely distinct; the propagating wave of
the recovery stroke overlaps the effective stroke at beginning and end. The complete
beat is asymmetric in time, which is necessary for forward propulsion of swimming
microorganisms at low Reynolds numbers (i.e. when viscous effects dominate over
inertia).

The theory of the hydrodynamics of locomotion at low Reynolds numbers has a
long history. “Slender body theory” (SBT) was proposed for bodies with large length
to breadth ratios (Hancock 1953). It has been employed to study a range of micro-
biological systems, such as the hydrodynamics of cilia (Smith et al. 2007). How-
ever, for broad cell bodies, such as Spirillum volutans, results are not fully consistent
with experimental observations (Myerscough and Swan 1989). Gray and Hancock
(1955) proposed an approximation called “resistive force theory” (RFT), based on
SLB with the simple assumption that local relative velocities are proportional to hy-
drodynamic resistance forces, which they used to estimate the swimming speed of
spermatozoa. However, RFT neglects the direct effect that flagella have on the flow.
Johnson and Brokaw (1979) compare RFT and SBT for spermatozoa and conclude
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that SBT is required for accurate analysis only if the cell body is present. Ramia
(1991) showed that improved predictions of swimming speed could be obtained with
a boundary element method (BEM). The BEM has recently been used to study inter-
actions between swimming micro-organisms (Ishikawa et al. 2007) and cilia driven
flow (Smith et al. 2007), providing good agreement with experimental data. Further-
more, immersed boundary algorithms have provided evidence for how an organism’s
internal structure may determine form and motility (Fauci, 1993, 1996, for two-
dimensional simulation results). The “method of regularized Stokeslets” (MRS) is a
numerical method developed for Stokes flow driven by external forcing (Cortez 2001;
Cortez et al. 2005). It employs regularized forces to approximate a boundary integral
formulation of the Stokes equations. Recently, it has been used to study the hydro-
dynamics of bacteria such as E. coli (Flores et al. 2005) and Bacillus subtilis (Cis-
neros et al. 2007), and the nematode Turbatrix (Cortez et al. 2004). The beauty of the
method lies in its relative simplicity, with computations restricted to the boundary of
the microorganism, from which the flow at any point in the fluid can be obtained.

Whilst the motility of bacteria, spermatozoa, and multicellular organisms have
been studied in some detail, little has been reported on the hydrodynamics of unicel-
lular biflagellates. Employing an immersed boundary algorithm, Fauci (1993) studied
the dynamics of a single biflagellate swimmer, similar to Chlamydomonas sp. How-
ever, the estimates the two-dimensional model provided for swimming speeds did not
reflect experimental observations. Jones et al. (1994) (abbreviated to JLP) employed
RFT on a biflagellate with an idealized beat to obtain order-of-magnitude estimates
for swimming speed and angular velocity and, by fitting, were able to estimate other
useful parameters (see below).

To provide a concrete example of biflagellate swimming, we shall present a gen-
eral model based upon experimental measurements of the green alga Chlamydomonas
reinhardtii. To a good approximation, the cell bodies are prolate spheroidal, with a
major diameter of around 10 µm, and have two flagella, of diameter 0.2 µm and length
approximately equal to that of the body, attached to the anterior end of the cell.
Chlamydomonas spp. exhibit negative gravitaxis (biased swimming against grav-
ity), gyrotaxis (cell reorientation due to a balance between viscous and gravitational
torques, leading to cell focusing in downwelling regions of the flow; Kessler 1986)
and phototaxis (swimming toward/away from weak/strong light). Such biased swim-
ming motion inevitably leads to cells accumulating in various regions. As the cells
are typically 5% more dense than the medium in which they swim, such accumu-
lations can lead to hydrodynamic instabilities and bioconvection patterns (Bees and
Hill 1997).

Recently, there has been some debate in the literature over the main mechanisms
that lead to gravitactic and gyrotactic behavior. In particular, three mechanisms for
Chlamydomonas spp. have been proposed, as follows.

Bottom-heaviness In equal density fluid, cells have been measured to be bottom-
heavy: the centre-of-mass (G) of each cell is offset from its centre-of-buoyancy (C)
(see Fig. 1A). Hence, a balance of viscous and gravitational torques leads to cells
generally swimming upward (gravitaxis) but also swimming toward regions of
locally downwelling flow (gyrotaxis; Kessler 1986).
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Fig. 1 (A) A schematic of the relationship between the fixed-space axes (i, j, k), where j points into
the page, and the body axes (p, q, r). The centre-of-buoyancy is denoted C and is offset by a distance h

from the centre-of-mass G. (B) A representation of the cross-section of a 3-sided flagellar prism. From the
centreline node, we traverse along the normal n and the binormal b to find nodes on the surface that are
separated by the angles χk , for k = 1,2,3

Sedimentation torque Cell geometry asymmetry results in the cell body sedimenting
quicker than the flagella (Katz and Pedrotti 1977; Roberts 2006), biasing the cell
to swim upward. Translation due to sedimentation per se is insignificant as effects
are swamped by the cell swimming velocity (C. reinhardtii swim with speed 50–
70 µm s−1 while the sedimentation speed is 2.5 µm s−1), but rotation can not be
ignored. A balance of sedimentation and viscous torques may lead to behavior
similar to gyrotaxis.

Active It has been proposed that cells have a gravity receptor, which may actively
direct cells to swim upward (Häder et al. 2005). However, such a receptor has
not been identified and the above two passive mechanisms appear to explain all
experimental observations.

In this study, the relative magnitudes of the first two of these mechanisms shall be
explored, particularly with reference to the temporally-averaged effective gyrotactic
swimming behavior. JLP implemented the bottom-heaviness mechanism alone. Here,
we shall consider three reorientation combinations: the individual bottom-heavy and
sedimentation torque balances described above and a combined model, where the net
force and torque have contributions from both viscous and gravitational forces and
torques.

In the absence of sedimentation, the force-free far-field flow is dominated by a
Stokes-doublet (which can be decomposed into stresslet and rotlet terms), and de-
cays in three-dimensions as r−2. Inclusion of sedimentation leads to a Stokeslet in
the far-field, decaying as r−1. However, the near-field flow is more complicated (see
Fig. 4, later) and time dependent. In this paper, we shall not dwell on the detail of
the flow field (which will be addressed in later papers). Instead, it is our aim to work
out what effect the flow has on the orientation of the swimming cell and to investi-
gate whether a simple model description is adequate to describe this orientation in
linear shear flows. This is useful for studies of dilute suspensions where cell-cell in-
teractions may be neglected. And for this purpose we require an approximation of



236 S. O’Malley, M.A. Bees

the geometry of the spheroidal cell plus flagella, together with a model of its gyro-
tactic behavior. In this respect, we show that the full swimming cell, with all of the
complexities of its swimming motion, can be well approximated by a simple dipo-
lar spheroid. Recent continuum models of bioconvection (Pedley and Kessler 1990)
in dilute suspensions (most natural suspensions are dilute) require knowledge of the
mean swimming velocity and the cell swimming diffusion tensor as a function of the
flow field. These functions can be computed from either a Fokker–Planck equation
for the probability density function for the cell orientation (Pedley and Kessler 1990;
Bees et al. 1998), or an improved generalized Taylor approach that clarifies the roles
of translation in physical space and rotation in orientational space (Hill and Bees
2002). Both methods combine random components with a deterministic balance of
gravitational and viscous torques acting on a gyrotactic self-propelled spheroidal cell
body. The random components represent biological fluctuations in the individual cell
behavior and some of the variation between cells; the experimental results of Hill and
Häder (1996) suggest that these stochastic aspects are well modeled by a constant
rotational diffusivity in p-space. Other variation between cells, such as cell swim-
ming speed, can also be incorporated within the above descriptions (see Bees et al.
1998). These stochastic aspects will, of course, lead to a spread of trajectories for
natural swimming cells. However, the consensus is that the stochastic and determin-
istic components are independent such that we only need consider the deterministic
balance here (Hill and Pedley 2005). The viscous torque associated with the prolate
spheroidal body of a real cell has a major effect on its orientation. Therefore, it is
natural to ask how the slender beating flagella impact the cell’s mean effective ge-
ometry; to leading order, the cell’s “effective eccentricity” describes the geometry
well. Furthermore, one may also attempt to establish whether an effective gyrotac-
tic reorientation time is a useful measure of the cell’s behavior, whichever method
of gravitactic reorientation is employed (described above). We pursue each of these
questions in this paper.

The cell eccentricity and gyrotactic reorientation time are defined as

α0 = r2 − 1

r2 + 1
, and B = μα⊥/2hρg, (1)

respectively, where r is the ratio of semi-major to semi-minor axes, g is the constant
of gravitational acceleration, h is the distance between the cell’s centre-of-mass and
centre-of-buoyancy, and ρ and μ are the fluid density and viscosity, respectively. The
dimensionless parameter α⊥ relates the viscous torque to the cell’s relative rotation
rate (see Sect. A.2 in the Appendix; Pedley et al. 1988). JLP estimated α0 and B

by fitting results from RFT for a deterministic swimmer to the exact torque balance
equation for the orientation, p, of a dipolar spheroid in a shear flow (Jeffery 1922;
Pedley and Kessler 1990):

ṗ = 1

2B
[k − (k · p)p] + 1

2
ω ∧ p + α0p · E · [I − pp], (2)

where k is a vertical unit vector in the upward direction (see Fig. 1A), ω and E are
the local vorticity vector and rate-of-strain tensor, respectively, and I is the iden-
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tity. Equation (2) relates the rate-of-change of the unit vector p for a spheroid to the
viscous and gravitational torques acting upon it. The JLP results stated that swim-
ming biflagellates are more prolate than their body eccentricities suggest. However,
for simplicity, JLP employed a spherical cell body with an ad hoc idealized flagellar
beat, which as we shall see has a detrimental impact on the realism of the results
for the effective cell dynamics. RFT’s lack of hydrodynamic coupling and mediocre
accuracy are also cause for concern (see Johnson and Brokaw 1979).

In this paper, we shall describe how to employ the method of regularized
Stokeslets to solve the full fluid dynamics equations for swimming cells of C. rein-
hardtii. Furthermore, we shall approximate these solutions by fitting them to the de-
terministic dipolar model of (2). We shall interpret the results physically, addressing
some important biological questions, giving particular attention to the following three
themes.

1. Exploration of the reorientation mechanisms responsible for leading cells to
swim upward: gravitaxis. The two distinct reorientation torques, due to bottom-
heaviness and sedimentation, are compared directly. It will be shown that the two
mechanisms are equally important and are complementary. In other words, a re-
duction in one (e.g. due to variation in the beat pattern) leads to an increase in the
other; the sum of the two effects is approximately constant. The results provide a
compelling answer to the question “which of the mechanisms is dominant?”: they
both are, but both mechanisms can be represented by the same equation.

2. Effective behavior of swimming cells in linear shear flows: gyrotaxis. This is es-
tablished by inserting the swimming cell in a shear box, and fitting the motion to
that of a self-propelled spheroid. The results show that this model is indeed ex-
cellent and suggest that the fine details of the flagellar beat are critical to viscous
torques associated with the mean effective eccentricity of the cell. Contrary to
previous analysis, results for the experimentally acquired beat patterns show that
cells are better modeled as simple self-propelled spheres than prolate spheroids
with the eccentricity of the body or greater. In other words, the full swimming
cell is effectively much less prolate than the body alone. This result is indeed
startling, but can be explained with due consideration of the mean geometry of
the flagella-body ensemble. Such a spherical-cell simplification is much desired
in applications involving the predicted motion of many swimming cells.

3. Practical computation of effective eccentricity. We shall present a technique to
compute a good approximation to the effective eccentricity of a biflagellate if all
that is available is a collection of images of the freely swimming cell that are
neither in sequence nor taken at regular intervals. This has the advantage that
experimenters do not require access to a high-speed camera and high power light
source: the method may be useful in field studies.

In the next section, the numerical approach is described (with the method of cal-
ibration in the Appendix) and the flagellar beat patterns expounded. The results are
then presented, first to establish estimates for orientation time and sedimentation ve-
locity for a free-swimming cell with no ambient flow, and then to estimate the ef-
fective cell eccentricity for a cell swimming in a shear flow. We go on to describe a
simple method to measure these effective parameters from an unordered collection
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of irregularly obtained photographs of swimming cells. Finally, a discussion of the
results is provided.

2 Methods

The geometry of the biflagellate is modelled as a prolate spheroid with two flagella,
located at the anterior end, that beat with a prescribed motion at 50 Hz. The Reynolds
numbers of the body and flagella are 10−3, or less, implying that fluid motion can be
well-approximated by the Stokes equations. Furthermore, a free-swimming cell must
satisfy zero net force and torque at all times (including external forces and torques).
Chlamydomonas spp. are known to exhibit gravitactic and gyrotactic behavior: grav-
itational and viscous torques and forces act to reorient the cell. The problem of a
free-swimming cell is formulated as a mobility problem, by coupling the method of
regularized Stokeslets, with the force/torque constraints and a no-slip boundary con-
dition on the surfaces of the cell body and each flagellum.

2.1 Five Flagella Beats

The imposed flagellar beat patterns for the biflagellate are taken from the literature;
five distinct flagellar beats are employed, as described in Fig. 2.

2.1.1 Beat I

JLP proposed an idealized beat, henceforth referred to as beat I. Beat I represents
the flagella as rigid linear structures, which move from an orientation parallel to the
cell’s principal axis to perpendicular during the effective stroke. During the recovery
stroke, the flagella are partitioned into two linear sections. The first segment is parallel
to the cell’s principal axis, whereas the second lies at a non-zero angle to the vertical
segment. As the recovery stroke progresses, the length of the angled section reduces
whilst that of the parallel section increases. The I beat is shown in Fig. 2A, where
numbers 1–3 signify the effective stroke and 3–5 denote the recovery stroke.

2.1.2 Beat F

Fauci (1993) developed a second beat, referred to as F, modelling the flexible proper-
ties of the flagella. This is re-plotted in Fig. 2B, where components 1–12 and 13–25
represent the effective and recovery strokes, respectively. The flagella are modeled
as discrete nodes connected by passive and active elastic springs whose forces are
obtained by energy functions driven by local curvature, controlled by a bending wave
passing along the flagellum from base to tip. During the effective stroke, the flagella
behave in a similar fashion to the I beat, while for the recovery stage of the beat the
flagella are curved and remain close to the body. While beat F captures aspects of the
whip-like nature of the beat it remains a mechanistic idealization.
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Fig. 2 The five distinct biflagellate strokes. The beat patterns are replotted from their original sources.
(A) An idealized beat pattern developed by Jones et al. (1994). (B) A model of a flexible beat pattern by
Fauci (1993) (only partially re-plotted data). (C) A beat pattern based on sketches of images of moving
cells by Ringo (1967). (D) A non-symmetric beat captured via high speed cinematography by Rüffer
and Nultsch (1985). For ease of analysis, two symmetric versions of this beat pattern are considered: the
left-hand flagellum and its reflection, and the right-hand flagellum and its reflection

2.1.3 Beat R

Ringo (1967) recorded beat patterns of C. reinhardtii using microscopy, documented
via a series of sketches made from flash images of swimming cells (see Fig. 2C,
where components 1–4 and 5–8 denote the effective and recovery strokes, respec-
tively). Like the I and F beats, the effective stroke of the R beat sees the flagella
orientation change from almost parallel to the cell’s principal axis to perpendicular,
although the flagella are mostly curved. During the recovery stroke the R beat shares
characteristics from both the I and F beats; the flagella has a linear section and a
curved section with the arc length of the curve decreasing as the beat progresses.
However, it should be noted that this method of recording is less than ideal as it may
accommodate investigator error and bias.

2.1.4 Beat RN: RNR & RNL

Rüffer and Nultsch (1985) employed high speed cinematography to obtain a series of
images of a single arbitrary beat from a freely-swimming cell that accurately depicts
the natural whip-like breast-stroke of the C. reinhardtii flagellar beat (herein termed



240 S. O’Malley, M.A. Bees

the RN beat). The RN beats are replotted in Fig. 2D. Note the asymmetry between the
left and right flagellum, which may in part be due to the fact that the RN images are
of projections of a rotating cell. Furthermore, the projected length of each flagellum
varies a little during the beat (up to 10%) due to limited image contrast at the tip and
out-of-plane motion. We choose to extrapolate the flagella rather than scale them by
different amounts (as in Jones 1995), to obtain a consistent length and preserve the
smooth nature of their motion.

For ease of analysis, we exploit symmetric strokes: the left flagellum and its re-
flection is denoted RNL, and the right flagellum and its reflection is denoted RNR.
The digits on the RN schematic signify the stage of the beat as recorded in (Rüffer
and Nultsch 1985). The cell’s effective stroke is arbitrarily defined by components
1–6 and the recovery stroke by components 7–11.

2.2 Construction of the Flagella and Body

To implement the beat patterns in a numerical scheme, a process involving imaging
the original data, discretizing and re-normalizing is employed, as described below for
a general beat. In particular, it is very important to ensure that the nodes are spaced
equidistantly in terms of arc length and do not translate in a direction tangent to the
flagellum.

We assume that the flagella beat in the plane. Whilst it is likely that this is not the
full picture, it is a reasonable approximation in the absence of data in three dimen-
sions. For each flagellar beat image, m = 1, T , for T images, the location (xm

i ,0, zm
i )

of pm
a +1 roughly distributed nodes on the flagellum, starting at the base, are recorded

and parameterized with an order index i, for i = 0,1,2, . . . , pm
a . The components of

the node locations are then fitted to an appropriate vector of polynomials Xm(i), such
that Xm(i) = (xm

i ,0, zm
i ), for i = 0,1,2, . . . , pm

a . The arc length along the flagellum
is then given by

s(ζ ) =
∫ ζ

0

∣∣∣∣∂Xm(α)

∂α

∣∣∣∣dα,

for ζ ∈ R
+, from which the discretization size �s = s(pM)/(pf − 1) can be ob-

tained, where pM = maxm(pm
a ) is the maximum of pm

a across all images and pf

is the desired number of nodes. The nodes are then re-distributed as (x̄m
i ,0, z̄m

i ),
i = 0,1,2, . . . , pf , along the length of the flagellum, using a Newton–Raphson iter-
ative scheme, such that the spacing between them is �s. This process is repeated for
each image, m, ensuring equal length flagella. The data for the beat patterns is limited
to the total number of images, which may limit the accuracy of the numerics. Thus it
is advantageous to be able to extend the number of time steps. To achieve this, seek
a Fourier series representation �(si , t) = (ξ1(si , t),0, ξ3(si , t)), where si = i�s, of
the new node points (x̄m

i ,0, z̄m
i ), i = 0,1,2, . . . , pf . In a similar manner to Fulford

and Blake (1986), we write

ξj (si , t) = 1

2
c0(si) +

T∑
n=1

cn(si) cos(ωnt) + dn(si) sin(ωnt), (3)
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where ωn = 2πn, and j = 1,2,3. The Fourier coefficients cn and dn are calculated
in the usual way.

To represent the surfaces of the flagella, we extend the centreline data �(si , t) to
n-sided prisms (n ≥ 3). For each flagellum, the coordinates of the ith node at the kth
corner of the prism are given by

zk(si , t) = �(si , t) + �n(si , t) cosχk + �b(si , t) sinχk, (4)

where � is the radius of the flagellum, χk = 2πk/n, for k = 1,2, . . . , n − 1, is the
angle made between the normal and the surface of the prism. A schematic of a cross
section of the three-dimensional flagellum is shown in Fig. 1B, for n = 3, we can
see the relationship between the normals and binormals with respect to the Cartesian
fixed-space axis (i, j, k), where i points out of the page and χk = 2πk/3, k = 0,1,2.

The body is constructed using a cuboid patch system (Cortez et al. 2005). If a1 =
a2 = a and a3 = b, where a and b are the semi-minor and semi-major axis of the
elliptical body in Fig. 1A, then we obtain a prolate spheroidal body, with major axis
in the direction of p. In the single plane model discussed here, the body axes (p, q,
r) are defined in terms of a right-handed fixed-space Cartesian co-ordinate system
(i, j, k) by p = (sin θ, 0, cos θ), q = (cos θ, 0, − sin θ) and r = (0, 1, 0). The
Euler angle θ is the angle the orientation vector p makes with the vertical axis k,
see Fig. 1A. The rotation of the cell will occur about r and the flagella beat in the
pq-plane. The data for the flagella and cell body are generated in terms of the body
axes. However, for the numerics the data should be converted to the fixed-space axes.
This can be achieved by multiplying on the left by the rotation matrix R = [pqr].

2.3 Numerical Approach and the Self-propelled Spheroid

For an incompressible Newtonian fluid of dynamic viscosity μ, low Reynolds number
flow (with a small value of the frequency Reynolds number) is well-approximated by
the steady Stokes equations,

μ∇2u − ∇P = −Fb and ∇ · u = 0, (5)

where u is the flow velocity, P is the fluid pressure, and Fb represents external body
forces.

The method of regularized Stokeslets is a recently developed and easily imple-
mented technique to compute approximations for Stokes flow problems based upon
regularized point forces of the form Fb = fbφε(x) (Cortez 2001). Here, fb is the
vector strength of the force and φε(x) is an appropriately-defined, radially symmet-
ric, smooth approximation of a delta function, with ε controlling the spread from
x = 0 (Cortez et al. 2005). The fundamental solution for an isolated regularized point
force is known as a regularized Stokeslet, and has the regularized Green’s function
Sij . Employing a modified Lorentz reciprocal identity a boundary integral formula-
tion of (5) can be constructed (Cortez et al. 2005). Discretization and regularization
approximations then provide an equation relating the flow velocity to a distribution
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of N regularized Stokeslets on the boundary at xn, such that

ui(x0) = 1

8πμ

N∑
n=1

3∑
j=1

Sε
ij (x̃n)f̄

n
j , (6)

where f̄n, n = 1, . . . ,N , are the forces acting on the body times the quadrature
weights (termed here the weighted forces) and x̃n = xn − x0. Following Cortez et
al. (2005), we choose

φε(x) = 15ε4

8π(r2 + ε2)7/2
, (7)

where r = |x|, from which we obtain the regularized Stokeslet tensor and regularized
Stokeslet flow field, uε(x),

Sε
ij (x) = xixj + δij (r

2 + 2ε2)

(r2 + ε2)3/2
and uε(x) = (f · x)x + f(r2 + 2ε2)

8πμ(r2 + ε2)3/2
, (8)

respectively.
There are two approaches for the standard method. The first is when the weighted

forces at the nodes f̄ n
j are known and we use (6) to compute the velocity and angular

velocity. The second is the reverse problem, which involves computing the stress
distribution subject to prescribed boundary conditions.

Therefore, if the velocities of the nodes on the surface of the flagella and body
are known, relative to a fixed point in the body, then the method can be utilized to
compute the weighted forces exerted by these nodes on the fluid as well as the trans-
lational and rotational velocities of the centre-of-buoyancy, U and �, respectively.
To evaluate the weighted forces, we employ (6) coupled with the no-slip boundary
condition

u(x) = urel(x) + U + � ∧ x, (9)

where urel(x) is the velocity of the nodes with respect to the body axes (p,q, r).
Substituting (9) into (6) yields

urel,i (x) =
N∑

n=1

3∑
j=1

Sε
ij (x̃n)f̄

n
j − Ui − εiklΩkxl, (10)

where εikl is the alternating tensor.
Furthermore, in the Stokes regime we also have the requirement that the net force

and torque on the surface of the swimming cell, ∂S, must balance with the net external
body force and torque, Fext and Lext, respectively. Hence,

∫
∂S

dS f̄ = Fext and
∫

∂S

dS x × f̄ = Lext. (11)

The external body force and torque are related to the orientation mechanism. For the
sedimentation torque mechanism,

Fext = v(ρc − ρ)g, (12)
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where v is the volume of the cell, g = −gk is the gravitational acceleration, and ρ

and ρc denote the densities of the fluid and cell, respectively, and the external body
torque due to bottom-heaviness is neglected, such that Lext = 0. For the bottom-heavy
mechanism, the external body torque is generated by the centre-of-mass offset and the
sedimentation force is neglected:

Lext = −mh(p ∧ g), (13)

where m is the cell mass, h is the gravitational offset and p is the cell orientation
vector (see Fig. 1B) and Fext = 0. For the combined mechanism, we impose (12) and
(13).

Combining (10) with (11) provides the resistance problem

⎛
⎝ U

Fext
Lext

⎞
⎠ =

(
S AT

A O

)⎛
⎝F

U
�

⎞
⎠ , (14)

where U and F are 3N -vectors whose entries consist of the N relative velocities and
weighted forces, respectively. In other words, U is a vector of the three-dimensional
vectors urel for each node, and F are the associated weighted forces. The 3N × 3N

matrix S is derived from the regularized Stokeslet tensor in (8), the 6 × 3N matrix
A is constructed to satisfy the equilibrium and boundary conditions and O is a 6 × 6
matrix of zeros. The vector urel for each node is determined by its location: on the
body the nodes do not translate with respect to the (p,q, r) axes; while on the flagella,
velocities can be obtained by computing the time derivative of the Fourier series
representation of positions (see Sect. 2.2). Hence,

urel(x) =
{

∂�(s,t)
∂t

for x lying on the flagella,
0 for x lying on the body.

Given that we know the net force and torque as well as the relative velocity of
each node on the cell, we can solve the inverse problem posed by (14) to compute
the translational and angular velocities of the organism. Solving the mobility prob-
lem requires inverting a large matrix, which is achieved by employing an iterative
linear solver associated with the generalized minimal residual method (GMRES; im-
plemented on Matlab; Saad and Schultz 1986). GMRES is particularly useful for
non-symmetric linear systems and has good convergence rates compared to other
solvers. Solving the mobility problem at each time step provides estimates for the in-
stantaneous swimming speed U and angular velocity �. Smith (2009) has advanced
the method of regularized Stokeslets recently by decoupling force and quadrature dis-
cretizations. A significant reduction in the degrees of freedom is possible for approx-
imations of equal accuracy and nearly equal simplicity with an associated reduction
in the computational cost. However, the results of this study do not depend on the
precise form of the method employed.

As described previously, the orientation of the swimming cell can be fitted to the
governing equation for a dipolar spheroid, (2). For uni-planar flow in the vertical x–z

plane, the vorticity is ω = ωj and the non-zero components of the rate-of-strain tensor
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are E11 = −E33, and E13 = E31. In this case, with p = (sin θ, 0, cos θ)T , where θ

is the angle from the vertical, (2) yields

θ̇ = − 1

2B
sin θ + ω

2
+ α0[E11 sin(2θ) + E13 cos(2θ)]. (15)

For shear flow of the form u = ωzi, the axes of the straining flow are situated at ±π/4
from the vertical. Hence, we obtain

θ̇ = −β sin θ + e + α0e sin(2[θ + π/4]), (16)

where e = ω/2 = E13 = E31 and β = 1/2B is the maximum rate of re-orientation.
If there is no imposed flow, then an estimate for β , and thus the effective gyrotactic

reorientation time B , can be calculated by fitting the angular velocity � = θ̇ j obtained
from the simulations ((14)) to (16) with e = 0:

β = Ω2

sin θ
. (17)

Hence, the effective viscous resistance parameter α⊥ can be computed from (1).
Consider a cell placed within a shear flow, u = ωzi, with non-zero rate-of-strain

components E13 = E31 = e and vorticity ω = 2e. Estimates for β and the effective
cell eccentricity α0 can be obtained via fitting the simulation results (from solving
(14) to (16). The fitting process is carried out using a non-linear least squares ap-
proach, and can fit α0, β and e at once, or α0 on its own. To fit α0 alone, we set e

in (16) to the value from the imposed flow and use either the instantaneous values
or the time-averaged values of β , derived from solving (16) under no flow condi-
tions. Fitting all three parameters at the same time has the advantage of providing a
little more room for manoeuvre; less accurate estimates of α0 are obtained if e and
β are constrained (see the second test problem in the Appendix). For an accurate
fit it is important to record the behavior of the cell over a wide range of orienta-
tions. Hence, simulations are performed for a single flagellar beat, consisting of T

time steps, for Nθ unique initial orientation angles θ0, such that θ0 = nπ/Nθ for
n = −(Nθ − 2),−(Nθ − 4), . . . , Nθ .

To impose a shear flow about a swimming cell, we construct a shear box. The
shear box consists of a set of nodes distributed around the surface of a cuboid
of equal height and depth, 2d , with the longest dimension lying along the x-axis,
of length 2l. The nodes are given a prescribed velocity, dictated by their loca-
tion on the surface, but their positions are not updated: u(x, y,±d) = (±ωd,0,0),
u(x,±d, z) = u(±l, y, z) = (ωz,0,0), where ω = 2e. The shear box is depicted in
Fig. 3.

3 Results

The method of regularized Stokeslets, together with a no-slip boundary condition on
the cell surface and the cell force and torque balance, is utilized to obtain estimates
for the swimming speed and angular velocity of a biflagellate cell. In order to obtain



The Orientation of Swimming Biflagellates in Shear Flows 245

Fig. 3 An Illustration of the boundary conditions for the shear box of width and height 2d and length 2l

and ω = 2e. For the front and back walls, the boundary conditions are u(x,±d, z)) = ωzi

approximate solutions, the system is formulated as a resistance problem, (14), and an
iterative linear solver is employed to obtain the associated mobility problem.

The biflagellate model is constructed as a mesh of discrete points representing a
prolate spheroidal body, with eccentricity α0 = 0.3320, and two flagella. The flagella
have a prescribed beat, with the five strokes as in Fig. 2. For the shear problem, the
cell is placed within a shear box and is free to rotate about the j axis (see Fig. 1A).

Unlike the simple examples in the Appendix, a swimming cell has a flagellar beat
comprised of many time steps. To limit computational time, while maintaining a satis-
factory degree of accuracy for the standard implementation of the numerical method,
630 nodes are placed on the body and 2168 on the shear box. The flagella are repre-
sented by 6-sided prisms, constructed from a flagellar centre-line with 25 nodes. As
the spacing of the nodes differs, the regularization parameters for the body, the flag-
ella and the box are necessarily different: εb = 0.0314, εf = 0.01, and εs = 0.8192
(non-dimensionalized with respect to body length) for the body, flagella, and shear
box, respectively. This is a consequence of the inter-dependency of the spacing and
the appropriate regularization parameter (Cortez 2001; Cortez et al. 2005).

3.1 No Flow

The orientation rates, β , for the bottom-heaviness model are shown in Table 1 for all
five strokes; β is obtained via (17). The results show that for the realistic RNR beat
the rate of orientation is approximately 20% larger than for the I beat. This mainly
is due to the motion of the cell during the effective stroke. For the I beat, the mo-
tion of the piece-wise linear flagella generates a larger rotational viscous drag, which
counteracts the effects of the gravitational torque. For the RNR beat, the viscous drag
generated by the flagella is less and, unlike the I beat it steadily decreases through-
out the effective stroke. The remaining beats have orientation rates between the I and
RNR beats. The estimates for β for a cell subject only to sedimentation torques are
listed in the third column of Table 1, from which a noticeable decrease is evident.
For the realistic RN beats sedimentation does not have as great an effect as bottom-
heaviness on reorientation: the RNR beat has a decrease of 47%, while the RNL beat
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Table 1 To examine the relative contributions of sedimentation and bottom-heaviness with regard to reori-
entation, we performed calculations with both of these mechanisms, and with each mechanism separately.
In particular, we computed values for the maximum reorientation rate (i.e. at |θ | = π/4), β , the dimen-
sionless viscous torque parameter, α⊥ and the reorientation time, B . The values are displayed for five
distinct beat patterns I, RNR, RNL, R, F (see Fig. 2). The data show that both reorientation mechanisms
are equally important, and complementary in the sense that they yield reorientation constants that are
almost independent of the flagellar beat when both mechanisms are included

Beat Bottom-heaviness Sedimentation torque Both

β (s−1)

I 0.1037 0.0864 0.1908

RNR 0.1236 0.0656 0.1897

RNL 0.1195 0.0727 0.1926

R 0.1148 0.0790 0.1949

F 0.0976 0.0839 0.1830

α⊥
I 10.0104 12.0060 5.4390

RNR 8.3977 15.8160 5.4719

RNL 8.6866 14.2802 5.3878

R 9.0449 13.1359 5.3243

F 10.6406 12.3802 5.6788

B (s)

I 4.8223 5.7837 2.6201

RNR 4.0454 7.6191 2.6360

RNL 4.1846 6.8739 2.5955

R 4.3572 6.3280 2.5649

F 5.1208 5.9480 2.7326

has a decrease of 40%. Contrary to the results for the bottom-heaviness model, the
I beat exhibits the quickest rates of orientation, which is over 30% larger than the
RNR beat. For the dual force-torque model, β takes a value of approximately the
sum of the two individual models (see Table 1). As a result, the beat patterns that
produced intermediate orientation rates, for both mechanisms, have the greatest rates
of reorientation.

Due to the relationship between β and B the trends that were evident for the orien-
tation rates are the reciprocal of those observed for the reorientation time. In particu-
lar, if a cell reduces its centre-of-mass offset to zero then it would take a biflagellate
with an I beat an extra 3 s to reorient with the sedimentation mechanism alone, and
for a cell with a realistic RNR beat this becomes an extra 5 s. Neglecting the effects of
sedimentation can also lead to longer reorientation times; dual mechanism estimates
are approximately half those of single mechanism estimates for certain beat patterns.

Along with the angular velocity, solving (14) for the right-hand vector provides the
cell’s translational velocity U, which can be employed to find the mean swimming
and sedimentation velocities. Taking the initial angle of orientation to be θ0 = 0,
we find that the average swimming speeds with just the bottom-heavy mechanism,
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Fig. 4 The flow-fields generated by a biflagellate swimmer with an RNR-beat approaching the end of
the effective stroke. (A) The streamlines show how the motion of the flagella cause vortices to appear at
the sides of the body, which expel fluid out of the plane. (B) A density plot of velocity magnitude of the
swimming biflagellate, where darker tones signify higher values. Here, it is evident that the strength of
the flow is less, the further we get from the cell. For this particular aspect of the beat pattern, the tips of
the flagella generate large fluid velocities. In general, while the strength of the flow remains high close to
the body, the parts of the flagella that do most work depend on the aspect of the beat (data not presented).
Far enough away from the cell (∼102 body lengths) the magnitude of the mean flow velocity decays as
r−1 when sedimentation is included (i.e. a three-dimensional Stokeslet); with no sedimentation, the flow
decays as r−2 (a Stokes doublet)

Ub , are equal to 62.35, 21.95, 75.1, 49.35, and 49.15 µm s−1 for the I, F, R, RNL,
RNR beats, respectively. The mean sedimentation speed, Us , can be obtained from the
difference between the mean swimming speeds for the bottom-heavy mechanism, Ub ,
and that for the dual mechanism. The results are similar for the different strokes, with
Us = 2.4760 µm s−1, 2.4777 µm s−1, 2.5016 µm s−1, 2.4558 µm s−1, and 2.4517
µm s−1, for the I, F, R, RNR, and RNL beats, respectively.

Flow fields for the realistic RNR beat are displayed in Fig. 4. The images show the
streamlines and velocity contours of a biflagellate approaching the end of its effective
stroke. During the effective stroke, the magnitude of the velocity is greatest close to
the body and around the tips of the flagella. The flow produced by the flagella causes
eddies to appear at the side of the body; the flagella drag fluid toward the posterior
end of the cell, while the forward motion of the body causes fluid to move toward the
anterior end. Significantly, the fluid is forced to leave the plane of flagella as can be
seen from the streamlines. The recovery stroke induces a more complicated sequence
of flows that leads the cell to move backwards and is also associated with eddies.

3.2 Shear Flow

For a shear flow, with rate-of-strain e = 0.5×10−2 s−1, the reorientation time is only
slightly affected by the introduction of shear, compare Tables 1 and 2; the change is
less than 0.2% over all beat patterns. When the rate-of-strain is increased to e = 5 s−1

the subsequent change in B is O (10−3) s for the RNR, R, and F beats, while for the
I and RNL beats the change in B is O (10−4) s.

Significantly, Table 2 also provides data for the dependence of the effective cell
eccentricity, α0, on the flagellar beat pattern. The largest values of α0 are for the
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Table 2 Estimates for the effective cell eccentricity, the maximum
reorientation rate and the reorientation time, denoted α0, β and B ,
respectively, for a cell with five distinct beat patterns in a shear flow
with rate-of-strain e = 0.5 × 10−2 s−1, incorporating both reorienta-
tion mechanisms

Beat pattern α0 β (s−1) B (s)

I 0.3379 0.1905 2.6247

RNR 0.0646 0.1894 2.6399

RNL 0.1501 0.1924 2.5988

R 0.3528 0.1947 2.5681

F 0.2335 0.1830 2.7326

I and R beats, with both estimates within the 0.31–0.4 range predicted elsewhere
(Pedley and Kessler 1990; Jones et al. 1994; Jones 1995). However, the difference
between these beats and the realistic RN beats is large, particularly in the case of the
RNR beat, which yields an effective self-propelled particle that is more spherical than
spheroidal. The RNL beat’s effective eccentricity is not quite as small, but is less than
half that of the idealized I and R beats.

The variation in α0 for different values of e is small whilst e is below a certain
threshold. When e > 10 s−1 we see a slight reduction in the approximated values of
α0, and by e = 50 s−1 the straining motion of the fluid forces the cell to rotate at a rate
comparable with the flagellar beat frequency, leading to resonance effects (shown for
the RNR and I beats in Fig. 5A and Fig. 5B, respectively). The same characteristics
are evident with the other beat patterns, as in Fig. 5C. The rate at which the values
decrease differs a little between beats, with the realistic beat patterns being most
affected by the large shear rate.

Obtaining good estimates for α0 requires much computational time (whichever
numerical method is employed) and, furthermore, requires a sensitive camera with a
large frame rate to capture the complete sequence of flagellar positions. Therefore, a
technique to compute the eccentricity from an unordered collection of irregularly ob-
tained frames is desirable. To this end, consider a single computation on a cell with
its flagella frozen in an “average” position. For simplicity, we choose the simplest
possible average, the mean over time of individual node positions. Comparisons be-
tween the eccentricity calculated using the full beat pattern, α0 and using the average
beat pattern, ᾱ0, are shown in Fig. 5D. For all beat patterns, increasing the number
of time steps causes α0 to converge to values close to those in Table 2. For the re-
alistic beat patterns, 11 time steps are adequate for convergence to 4 decimal places
and for the R and F beats we require 8 and 25 beats, respectively. This suggests that
when the number of time steps in a beat exceeds the original sampling data no further
improvements in the eccentricity estimates are achieved.

The estimate for ᾱ0 converges more slowly. The RNR beat converges to a value of
ᾱ0 = 0.0137, which is approximately a fifth of the converged value of α0 in Table 2.
Similarly, the I beat converges to ᾱ0 = 0.3825 in roughly the same number of time
steps and overestimates α0 by 14%. The convergence of the remaining three beat pat-
terns is a lot slower. The RNL beat converges to a value of ᾱ0 = 0.114 when the beat
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Fig. 5 Plots of the effective cell eccentricity α0 against the shear rate e. (A) and (B) show how the
eccentricity, for the RNR and I beats, respectively, remains almost constant for small e, but for large e

the vorticity induces the cell to tumble, which resonates with the natural beat cycle of the cell and leads
to oscillations in the approximation for α0. (C) plots results for all five beat patterns, indicating similar
trends. (D) provides a comparison between the effective eccentricity estimates using a full beat and using
an average beat by plotting |α0 − ᾱ0| as a function of the number of time steps, T . Twenty orientations
(Nθ = 20) were tested with 3,098 nodes on the swimmer and box, requiring T × Nθ simulations for each
configuration and a couple of days total computation time on a workstation

is averaged over roughly 60 time-steps, which is an under estimate of about 25%.
However, these estimated values are all within ±0.05 of the converged values, sug-
gesting that the technique can provide a computationally and experimentally cheap
means of establishing bounds on the effective cell eccentricity.

4 Discussion

In this paper, we have demonstrated how it is possible to obtain estimates for key
parameters that can describe the behavior of swimming, negatively-buoyant, bottom-
heavy, biflagellated, micro-organisms. In particular, we have employed the method
of regularized Stokeslets in three-dimensions to obtain numerical approximations
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of the fluid flow around the freely-swimming cells and their swimming speeds and
rotation rates. The resulting motion was then fit to an exact description for a self-
propelled spheroid. As in Jones (1995), five different beat patterns were investi-
gated: an idealized beat pattern (Jones et al. 1994; Jones 1995), I; a flexible flagella
model (Fauci 1993), F; drawings from experiments (Ringo 1967), R; and high-speed
photographic observations (Rüffer and Nultsch 1985), with either right-symmetric,
RNR, or left-symmetric, RNL, flagella. Furthermore, three methods of gravitactic
cell re-orientation were explored, resulting from either bottom-heaviness, a sedimen-
tary torque due to the fore-aft body-flagella asymmetry, and a combination of both.
The relative importance of these two mechanisms is still debated in the literature,
although the consensus is that both will play some role.

Previously, three-dimensional modelling approaches have either simply assumed
that the cells can be represented as self-propelled spheroids (Pedley and Kessler 1990)
or have applied resistive force theory (Jones et al. 1994; Jones 1995). However, we
find that the details of the flagellar beat are vital to the cell’s behavior. Johnson and
Brokaw (1979) found that the resistive force theory approximation is good is some
situations but inadequate in instances where the flagella beat close to a relatively large
body. We also find that one needs to look beyond resistive force theory for an accu-
rate analysis of the swimming behavior of biflagellates, which beat their relatively
short flagella in close proximity to a similarly sized body. The method of regularized
Stokeslets has been successfully applied to a wide range of problems, and its imple-
mentation, usefulness, and accuracy are laid out in the literature (Cortez et al. 2005)
and the Appendix, for some test problems. By formulating a mobility problem for
a cell with a carefully prescribed flagellar beat pattern in a shear box it is possible
to study the cell’s gyrotactic (balancing gravitational and viscous torques) reorienta-
tion mechanisms. The taxes can lead to cells accumulating at upper boundaries or in
locally downwelling flow, and may cause hydrodynamic instabilities, termed biocon-
vection. Therefore, we have measured the effective cell swimming speed, gyrotactic
reorientation parameter and eccentricity. The effective cell eccentricity is important
as it determines the cell’s swimming behavior in straining flows.

Our results indicate that the behavior of non-interacting, swimming biflagellates
can be modeled as self-propelled spheroids, with a high degree of accuracy under con-
ditions of no-flow and in a shear flow. Furthermore, we find that sedimentation and
bottom-heaviness torques play a commensurate and complementary role in the reori-
entation of the cell. The sedimentation mechanism is preferred by Roberts (2006),
who argues that even though translation due to sedimentation is negligible relative
to translation due to cell swimming, the rotation induced by this sedimentary mo-
tion is not. On the other hand, the benefits of the bottom-heaviness mechanism have
been expounded by Kessler amongst others (Kessler 1986; Pedley and Kessler 1990;
Jones et al. 1994). The fact that both mechanisms are of equal measure is unexpected.
That they complement each other, such that a small reduction in one leads to an in-
crease in the other, can be explained as follows. An increase in sedimentation torque
for a cell swimming at an angle to the vertical relies on a greater average extension
of the flagella toward the anterior of the cell, which leads to a larger viscous torque
that is to be balanced with the fixed gravitational torque, thus reducing the impact of
bottom-heaviness in leading the cell to orient towards the vertical.
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The five beat patterns employed here lead to different estimates for the gyrotactic
reorientation time, B , which is proportional to the viscous torque parameter, α⊥, and
inversely related to the maximum reorientation rate, β . The values of these fitted pa-
rameters are reported in full in the results section. To compare with previous results,
we note that for the I beat with the bottom-heaviness mechanism alone our computa-
tion reveals a value of α⊥ = 10.0 that is a little smaller than the estimate provided by
Jones et al. (1994) of α⊥ = 12.6, leading also to a smaller value of B . For this mecha-
nism, the values of α⊥ for the realistic beat patterns are smaller still. The value of α⊥
estimated for the model of Pedley and Kessler (1990) was 6.8, which led to a reori-
entation time of B = 3.4 s, lower than our value of B = 4.1 s for an average realistic
beat. Interestingly, when we include the combined mechanism (bottom-heaviness and
sedimentation torques) the results provide a lower value still, giving B = 2.6 s. For a
cell with a sedimentation torque mechanism, Roberts (2006) estimated the maximum
reorientation rate β = 0.0663 s−1, using a similar approach to (Jones et al. 1994).
This value is in good agreement with the results obtained here for the sedimentation
torque only model. As noted above, rather than compete, the sedimentation and grav-
itational torque mechanisms act in unison, and for the dual mechanism we not only
observe a reduction in the reorientation time B , but we also discover that the flagellar
geometry does not have a significant bearing on this time. The Hill and Häder (1996)
analysis of experiments on swimming C. nivalis measured B to be 2.7 s, approxi-
mately 4% larger than our results for the experimentally determined RNR and RNL
beats with the dual reorientation mechanism, suggesting that biflagellate swimmers
reorient through a combination of bottom-heaviness and shape asymmetry.

One major aspect presented in this paper is the calculation of the effective eccen-
tricity of the cell over one beat, α0, and how the minutiae of the enforced flagellar
kinematics have a pronounced effect on this estimate. Previous analyses based on
self-propelled spheroids estimated α0 = 0.31 (Pedley and Kessler 1990) and resis-
tance force theory with an idealized beat suggested α0 = 0.40 (Jones et al. 1994),
which concurs with the results obtained for the idealized beat patterns here. However,
estimates based on the realistic beat patterns show that the cell’s effective eccentric-
ity is much smaller. The estimates suggest that a zero value of the cell eccentricity is
both qualitatively and quantitatively a good approximation, so that the time-averaged
cell over one beat effectively swims as a sphere. Biologically, this might offer an
advantage, although it is hard to pin down the details without further study over a
range of organisms. A significant question is whether other micro-organisms adapt
their flagellar beat depending on their body geometry in order to reduce or optimize
their effective eccentricity. The methods presented herein allow this question to be
investigated. Work is in progress on this open problem, particularly with reference to
the salt tolerant alga Dunaliella salina.

We should note that whilst the RNR and RNL beat patterns appear to be much
more biologically relevant than the other three, there are still some issues associated
with them. Most importantly, the variable apparent length of the flagella is either due
to insufficient image contrast at the flagellar tips or for three-dimensional motion out
of the plane. Furthermore, the natural helical trajectory of the cell contributes (and is
due) to the latter. The solution to this problem must involve improved imaging to (a)
obtain better projected image contrast and (b) to determine the three-dimensional na-
ture of the beat. We have opted to extrapolate the flagella in this computational study,
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rather than scale each of the images separately as in Jones et al. (1994), to ensure that
the flagellar motion is smooth and appears natural. It is clear that a more accurate data
set of flagellar strokes is critical to understanding the effective swimming behavior of
the cells. Additionally, such a data set should quantify the natural variation amongst
cells.

In this paper, we have also proposed a method to estimate the effective cell ec-
centricity by averaging the beat pattern directly from images of swimming cells and
performing the computations on this average. We find that an estimate for the eccen-
tricity using this technique can be made within ±0.05 of the full temporally resolved
method. Hence, with an established error bound, we can use this method to reduce the
computational time involved in obtaining α0. This technique will also be useful when
the images of the flagella on the swimming cells have been obtained in an unordered
or irregular manner.

The current computations reveal the interesting flows produced by swimming
C. reinhardtii, where the streamlines and velocity contours for a single snapshot
of an RNR beat are shown in Fig. 4A and Fig. 4B, respectively. The stream-
lines show that the motion of the flagella creates vortices at the sides of the
body, which move relative to the body and flagella. These vortices are respon-
sible of the expulsion of fluid from the plane of the flagella, and could provide
a mechanism for the transport of nutrients. The fine details of these flows, in-
cluding comparisons with recent experimental observations (Drescher et al. 2010;
Guasto and Johnson 2010), are beyond the scope of the current manuscript and will
be presented elsewhere.
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Appendix: Method Calibration

A.1 Example 1: Terminal Settling Velocity of a Spherical Particle

For a sedimenting spherical particle in an unbounded fluid, the Stokes drag must
balance the external body forces. Hence, the terminal settling speed is UT =
2a2(ρs − ρ)g/9μ, where a is the sphere radius and ρs is the sphere density. For
a = 5 × 10−5 cm, ρs = 1.04 gm cm−3, ρ = 0.998 gm cm−3, g = 980 cm s−2, and
μ = 10−2 gm cm−1 s−1, then UT = 2.3287 × 10−6 cm s−1.

Using (14), we can obtain a numerical estimate for the settling velocity. For a
non-rotating sphere, there is no external torque and the net force is given by (12).
Further, as a consequence of the position of the nodes remaining constant with re-
spect to the sphere’s origin, U is a 3N vector of zeros. The nodes on the sphere are
generated using a cubic patch system, providing an approximately equal distribution
of abscissa along the surface of the sphere. With the boundary and equilibrium con-
ditions specified, we can construct the grand resistance matrix in (14), then solve
for the right-hand vector. For a sphere with fluid and particle properties as above,
and N = 726 nodes on the surface, the numerical estimate for the swimming speed
U = 2.3295 × 10−6 cm s−1; within 0.04% of the analytical result. Improvements to
the estimate can be obtained by refining the level of discretization: for N = 2166,
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Table 3 Values of exact and
estimated cell eccentricity, α0,
and gyrotaxis parameter β for
spheroids with 630 nodes
distributed around the surface.
The spheroid is placed within a
shear box of width 80 body
lengths, and height and depth 10
body lengths, where a body
length is equal to the major axis
of the spheroid. The
rate-of-strain for the flow is
e = 5.5 × 10−2 s−1

Exact Numerical

α0 β α0 β e (s−1)

0.3320 0.0057 0.3415 0.0055 0.055

0.2764 0.0059 0.2857 0.0057 0.055

0.2165 0.0061 0.2253 0.0059 0.055

0.1521 0.0063 0.1597 0.0061 0.055

0.0833 0.0065 0.0869 0.0064 0.055

0.0103 0.0066 0.0111 0.0064 0.055

U = 2.3289 × 10−6 cm s−1. By choosing fewer nodes on the sphere, the error be-
tween analytical and numerical results increases, as is the case when the regulariza-
tion parameter ε is much larger than the discretization size.

This example not only supports the use of the numerical method, but it is also
relevant to biflagellate swimming; one of the mechanisms for cell orientation involves
the effects of sedimentation on the cell.

A.2 Example 2: Estimating Spheroid Eccentricity In Shear Flow

Numerical estimates for the eccentricity of a neutrally buoyant bottom-heavy
spheroid, where the centre-of-mass is offset from the centre-of-buoyancy by a factor
h, may be obtained through solution of the mobility problem. The spheroid is placed
at the centre of a shear box, which generates a shear flow with rate-of-strain e. The
bottom-heaviness implies there is a gravitational torque acting on the cell, thus Lext
is given by (13). The abscissa for the spheroid are generated as before and are static
with respect to the centre-of-buoyancy. Hence, U is zero and we can solve (14) for
the angular velocity. Consider planar motion, so only one component of the angular
velocity is non-zero, and use (16) to obtain the eccentricity α0 and maximum orien-
tation rate β . Exact solutions can also be obtained (Pedley and Kessler 1990), with
α0 given by (1) and β = hmg/μvα⊥, where m and v are the mass and volume of
the spheroid. The viscous torque parameter α⊥ for a spheroid is given by (Pedley
and Kessler 1990) α⊥ = (α2

1 − 1)2(α2
1 + 1)4/{(2 + γ (2α4

1 − 3α2
1 − 1))α2

1}, where

γ = cosh−1(α1)/α1

√
α2

1 − 1 and α1 is the ratio of semi-major to semi-minor axes.

The exact and numerical estimates for a fixed rate-of-strain e = 5 × 10−2 s−1 and
fixed discretization size are shown in Table 3; m = 5.2 × 10−10 gm, h = 10−5 cm,
and the other parameters as before. The numerical estimates are obtained by fit-
ting all variables in (16); a three parameter fit improves the accuracy compared
to fitting α0 alone. Conducting a three parameter fit for different rates-of-strain,
e = 2.5×10−2,2.5×10−1,5×10−1,7.5×10−1 s−1, the fitted value of e is accurate
to within 6%. Increasing the number of nodes on the body improves the numerical
estimate. Finally, the dimensions and number of nodes located on the surface of the
shear box also have a role in how accurate the method is. By increasing the number
of nodes on the box, there is a reduction in discretization size and, consequently, a
smaller regularization parameter can be employed, concurrent with a reduction in the
numerical errors. Furthermore, when the spacing between nodes is decreased, less
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fluid escapes through the boundary of the box. An increase in the number of nodes
on the body by 60% sees a decrease in the error between exact and numerical values
of 45%. Altering the aspect ratio of the box has no great effect on α0 if the spacing
between the nodes remains the same. However, if the width is made too small or the
height or depth too large, the shear will not be properly formed in the plane of interest
and there may be unwanted boundary effects.
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