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Abstract We modify and empirically study an adaptive multiscale model for sim-
ulating cardiac action potential propagation along a strand of cardiomyocytes. The
model involves microscale partial differential equations posed over cells near the ac-
tion potential upstroke and macroscale partial differential equations posed over the
remainder of the tissue. An important advantage of the modified model of this paper
is that, unlike our original model, it does not require perfect alignment between my-
ocytes and the macroscale computational grid. We study the effects of gap-junctional
coupling, ephaptic coupling, and macroscale grid spacing on the accuracy of the mul-
tiscale model. Our simulations reveal that the multiscale method accurately repro-
duces both the wavespeed and the waveform, including both upstroke and recovery,
of fully microscale models. They also reveal that perfect alignment between myocytes
and the macroscale grid is not necessary to reproduce the dynamics of a traveling ac-
tion potential. Further, our simulations suggest that the macroscale grid spacing used
in an adaptive multiscale model need not be much finer than the spatial width of an
action potential. These results are demonstrated to hold under high, low, and zero
gap-junctional coupling regimes.

Keywords Ephaptic · Multiscale · Adaptive · Cardiac modeling · Gap junction

1 Introduction

Computer simulations of the heart have the potential to improve our understanding of
normal and pathological cardiac dynamics and promise to accelerate the development
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of new medical therapies. To fulfill this promise in the context of whole-heart sim-
ulations, it is necessary to use computationally tractable models of heart tissue that
accurately capture action potential dynamics. The most natural descriptions of car-
diac electrophysiology fall into two classes: those that are fully microscopic, in which
individual cells are explicitly resolved, and those that are fully macroscopic, in which
the details of individual cells are averaged away and the tissue is only considered in
bulk. Each class of models has its benefits and disadvantages.

The primary difficulty with fully microscale models is that they are too computa-
tionally expensive to scale up to whole-heart simulations. As an illustration, consider
a slab of ventricular muscle with dimensions 10 cm × 10 cm × 1 cm, roughly the
dimensions of the wall of the ventricular myocardium of a human heart. If a typ-
ical cardiomyocyte is of dimensions 10−2 cm × 10−3 cm × 10−3 cm (Keener and
Sneyd 1998), this slab contains O(1010) myocytes. Were each cell to be resolved by
ten nodes and supplemented with tens of state variables per node, there would be
O(1012) degrees of freedom. Hence, whereas the biophysics is most accurately and
naturally posed at the microscale, the tremendous computational resources required
by such models imply that whole-heart simulations cannot be exclusively based on
microscale models. Moreover, because most of the nontrivial dynamics in ventricu-
lar myocytes occur only in the vicinity of sharp action potential wavefronts, even if
such fully microscale whole-heart models were computationally feasible, they would
likely be unnecessarily computationally intensive.

Fully macroscale simulations are much less computationally expensive than fully
microscale ones; however, they may still be quite demanding, especially for grids of
fixed spacing. Indeed, action potential upstrokes can have widths of a couple hun-
dred microns (Boron and Boulpaep 2005). Hence, a fixed-size mesh does not yield
accurate results at spacings much coarser than approximately 200 µm. At such reso-
lutions, Bordas et al. (2009) estimate that it would take six weeks to run a 1-second
simulation on 64 processors of a modern supercomputer, even with a simplistic ionic
current model and generous assumptions on algorithmic performance. The expense
of even fully macroscale simulations with uniform mesh sizes suggests that adaptive
methods may be required. For example, Cherry et al. (2000, 2003) and Colli Franzone
et al. (2006) use adaptive macroscale methods to gain about two orders of magnitude
in computational speed when compared to corresponding uniformly fine fixed-mesh
simulations.

A further difficulty with fully macroscale simulations is that they can be inaccu-
rate under low levels of gap-junctional (GJ) coupling, even if the simulations are
highly resolved or use adaptive mesh spacing. As observed in Hand and Griffith
(2010), for such cases, fully macroscale simulations are extremely sensitive to the
spacing of the computational grid. Specifically, macroscale simulations can incor-
rectly predict conduction block if grid spacing is too large, and they can also fail to
predict conduction block if grid spacing is too small. Such errors are not surprising
because the derivation of the macroscale equations assumes electrical potential and
gating variables vary slowly over the length scale of cells (Neu and Krassowska 1993;
Hand et al. 2009). This assumption is strongly violated under low gap-junctional cou-
pling because, in such cases, action potential upstrokes may be only a single cell wide
(Hand and Griffith 2010).
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The pathophysiological regime of low gap-junctional coupling is important be-
cause downregulation of gap-junction expression can occur in various types of car-
diac disease (Severs et al. 2004), such as in cardiac ischemia or hypertrophy, or in
the infarct border zone (Smith et al. 1991; Peters et al. 1993; Severs et al. 2008).
Such gap-junctional remodeling is associated with arrhythmogenesis and may lead
to sudden cardiac death resulting from ventricular fibrillation (Gutstein et al. 2001).
To study how alterations in expression of connexin43 (Cx43), the major ventricular
gap-junction protein, affect cardiac conduction, Gutstein et al. (2001) performed a
gene-knockout study that demonstrated that Cx43-deficient mice exhibit cardiac con-
duction, albeit at slower speeds than usual. They also did not find a compensatory
increase in the expression of other connexin isoforms (Gutstein et al. 2001). Further,
in a subsequent study, they also found that gap-junctional coupling was essentially
abolished in isolated cell pairs extracted for Cx43-null ventricular tissue (Yao et al.
2003). These findings are surprising because gap junctions are generally accepted as
the primary mechanism of normal cardiac electrical communication (Rohr 2004), and
they suggest that there are important electrical coupling mechanisms in cardiac tissue
besides gap-junctionally mediated coupling (Sperelakis and Mann 1977; Picone et al.
1991; Ramasamy and Sperelakis 2007; Mori et al. 2008; Copene and Keener 2008;
Hand and Peskin 2010; Hand and Griffith 2010; Lin and Keener 2010).

One candidate biophysical mechanism is known as ephaptic coupling or as the
electric-field mechanism. In it, adjacent cells interact through a narrow shared cleft
space located at the intercalated discs. When one cell’s cleft-facing Na+ channels
open, current flows into the “prejunctional” cell via the cleft, thereby reducing the
cleft potential relative to the extracellular bulk. This drop in extracellular potential
increases the transmembrane potential difference across the cleft-facing membrane
of the opposing “postjunctional” cell. In some cases, this depolarization is sufficient
to excite the postjunctional cell, thereby continuing the propagation of the electrical
signal. Low gap-junctional simulations, with and without ephaptic coupling, may be
helpful in understanding the experimental observations of Gutstein et al. (2001) and
may ultimately help to design or to optimize therapies for patients with gap-junctional
remodeling.

We believe that it is necessary to use a multiscale approach to make efficient sim-
ulations of cardiac conduction at the organ scale under low levels of gap-junctional
coupling. That is, such simulations should deploy a microscale, cell-level model near
sharp action potential wavefronts, and a macroscale, tissue-level description of car-
diac muscle away from such wavefronts. We have previously introduced such a mul-
tiscale model for a one-dimensional fiber of cells, both with and without ephaptic
coupling (Hand and Griffith 2010). This adaptive multiscale method has been shown
to capture accurately the action potential upstroke and wavespeed over a wide range
of nonzero gap-junctional coupling levels. However, our earlier work did not study
whether recovery was also accurately captured, nor whether the results held in the
absence of gap junctions. It also did not study whether macroscale grid spacing could
be coarse enough to greatly reduce overall computational cost of three-dimensional
simulations. Finally, the interface conditions used in this earlier model required the
myocytes to be perfectly aligned with the macroscopic grid, so that the ends of any
macroscale computational control volume coincided with the ends of microscopic
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Fig. 1 The microscale geometry and equivalent circuit of our model of a strand of cardiomyocytes. No-
tice that adjacent cells are coupled directly through a resistor, which represents gap-junctional connections,
and through a shared cleft space at the intercalated discs. In the figure, cleft spaces are depicted as having
nonzero width; however, in the model, these spaces, which are on the order of tens to hundreds of nanome-
ters (Kucera et al. 2002), are idealized as having zero width. Figure adapted from Hand and Griffith (2010)

myocytes. This requirement makes generalizing the interface conditions to three di-
mensions difficult because fiber rotation guarantees the interface between micro- and
macroscale descriptions will not generally coincide with the ends of cells.

In the present paper, we modify the interface conditions of the multiscale method
of Hand and Griffith (2010). In essence, the new conditions focus on balancing
cytosolic current, whereas the old interface conditions focused on balancing gap-
junctional current. We perform simulations to demonstrate that the modified model is
able to capture accurately both the upstroke and the downstroke of the cardiac action
potential, is applicable to the purely ephaptic parameter regime, and is relatively in-
sensitive to the grid spacing employed to simulate the macroscopic part of the tissue.

2 Multiscale Model

We consider a linear fiber of length L composed of cylindrical cardiomyocytes, each
of length � and radius r . Adjacent cells are coupled by resistive connections, rep-
resenting gap junctions, and possibly by an ephaptic mechanism via a shared cleft
that is resistively connected to grounded extracellular space. In the case in which the
cleft-to-ground resistance is zero, there is no ephaptic coupling. Figure 1 provides a
schematic depiction of the cell-scale model and its discretization.

The adaptive multiscale method works as follows. Given a voltage profile across
the strand of myocytes, adaptivity criteria described below determine which spatial
regions should be described by an low-resolution macroscale model, and which re-
gions should be described by a high-resolution microscale model; see Fig. 2. Bor-
rowing terminology from adaptive mesh refinement methods for partial differential
equations (PDEs), we call the boundary between the regions of low resolution and
high resolution the coarse-fine interface. At such interfaces, the macroscale and mi-
croscale PDE systems are coupled via interface conditions described below. As de-
picted in Fig. 2, the coarse-fine interface can occur at any point along the interior of a
cell. We call myocytes in the high- or low-resolution regions resolved or unresolved,
respectively.
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Fig. 2 A depiction of the strand of myocytes that underlie our model (A), a possible multiscale represen-
tation (B), and its corresponding spatial discretization (C). Given the potential over the entire domain, the
adaptivity criteria (12)–(13) select which myocytes are to be resolved. We require the myocytes in each
interval of width �xmacro to be either all resolved or all unresolved. Note that the coarse-fine interface
intersects the interior of a cell. In (C), each resolved myocyte is depicted with four interior nodes per full
length cell. Boundary nodes at the intercalated discs of resolved myocytes are omitted for clarity. Figure
adapted from Hand and Griffith (2010)

2.1 Microscale System

We consider the PDE analogue of the microscale model of Kucera et al. (2002), as we
have done previously (Hand and Griffith 2010). Let φj = φj (x, t) be the intracellular
potential inside the j th cell, with 0 ≤ x ≤ �. Let φc,j = φc,j (t) be the potential in
the cleft to the right of the j th cell. Let ωleft,j = ωleft,j (t), ωside,j = ωside,j (x, t),

and ωright,j = ωright,j (t) be the gating variables along the left end, the side, and the
right end of the j th cell, respectively. The microscale system of PDEs posed over the
resolved cells is given by:

C∂tφj = A

S
σcyt∂xxφj − Iion,side(φj ,ωside,j ), (1)

C∂t

(
φj (0, t) − φc,j−1

) = σcyt∂xφj (0, t) − gGJ
(
φj (0, t) − φj−1(�, t)

)

− Iion,end
(
φj (0, t) − φc,j−1,ωleft,j

)
,

(2)

C∂t

(
φj (�, t) − φc,j

) = −σcyt∂xφj (�, t) − gGJ
(
φj (�, t) − φj+1(0, t)

)

− Iion,end
(
φj (�, t) − φc,j ,ωright,j

)
,

(3)

φc,j = σcytRcA
(−∂xφj (�, t) + ∂xφj+1(0, t)

)
, (4)

∂tωside,j = g(φj ,ωside,j ), (5)

∂tωleft,j = g
(
φj (0, t) − φc,j−1,ωleft,j

)
, (6)

∂tωright,j = g
(
φj (�, t) − φc,j ,ωright,j

)
. (7)

Here, A = πr2 is the area of a cell’s cross-section (cm2), S = 2πr is the perime-
ter of a cross-section (cm), σcyt is the cytosolic conductivity (mS/cm), gGJ is the
gap-junctional conductance per unit area (mS/cm2) at the ends of cells, C is the
membrane capacitance per unit area (µF/cm2), Rc is the cleft-to-ground resistance
(k	), Iion,side and Iion,end are the ionic current densities (µA/cm2) flowing out of
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the side and end membranes of cells, and g represents the gating variable dynam-
ics (1/ms). We distinguish between Iion,side and Iion,end because successful ephap-
tic conduction requires preferential localization of Na+ channels to the intercalated
discs. Such nonuniformity is biophysically motivated by the microhistological study
of Kucera et al. (2002).

We comment that (2)–(4) can be combined to obtain an equation for the potential
in a particular cleft in terms of the ionic and capacitive current flowing into that cleft.

2.2 Macroscale System

Let φ = φ(x, t) be the intracellular potential of cells near x, with x denoting any
point along the linear fiber. Similarly, let ω = ω(x, t) be the gating variables of the
side and ends of cells near x. Notice that this interpretation of φ and ω only makes
sense if potential and gating variables are slowly varying over the length scale of
cells. The macroscale system applied over the region of unresolved cells is given by

C∂tφ = 1

S� + 2A
�∂x

(
Aσcyt

(
1 − 1

1 + κ

)
∂xφ

)
− Iion(φ,ω), (8)

∂tω = g(φ,ω). (9)

Here, κ = �gGJ/σcyt is a nondimensional parameter comparing gap-junctional and
cytosolic conductances. The gating variables at the sides and ends of the cells are not
distinguished by this macroscale model and are therefore treated as equal.

Notice that Rc does not enter into (8)–(9). Although it is possible to derive
macroscale equations that explicitly include ephaptic coupling (Hand and Peskin
2010), away from action potential upstrokes, there is very little Na+ current flow-
ing through clefts. Thus, the clefts have negligible potential, and the nonephaptic
macroscale equations (8)–(9) are accurate (Hand and Griffith 2010). Both the epahp-
tic and nonephaptic macroscale equations can be derived from macroscopic first prin-
ciples or by the mathematical technique of homogenization (Keener and Sneyd 1998;
Hand and Peskin 2010).

2.3 Interface Conditions

In our modified multiscale model, the microscale and macroscale descriptions are
coupled exclusively through intracellular potential and cytosolic current. Let x∗ be a
point at the coarse-fine interface. Let j∗ be the index of the fractional myocyte on the
high-resolution side of the boundary. For convenience, we identify the domain of φj∗
with the cell’s actual spatial positions. Equations (1)–(9) are supplemented with the
interface boundary conditions

φ(x∗, t) = φj∗(x∗, t), (10)

−Aσcyt

(
1 − 1

1 + κ

)
∂xφ(x∗, t) = −Aσcyt∂xφj∗(x∗, t). (11)

These interface conditions impose continuity of intracellular potential and cytosolic
current at coarse-fine interfaces.
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The coupling approach used in the original model of Hand and Griffith (2010) de-
scribes current between the microscale and macroscale exclusively in terms of gap-
junctional current. As such current is only defined at the ends of myocytes, the model
requires the macroscale grid to coincide with them. This requirement presents a sig-
nificant barrier for extensions to realistic two- and three-dimensional simulations,
in which fiber rotation will prevent any such coincidence. The present modification
to the model therefore represents an important step toward such extensions, as it
allows the macroscale grid to be unconstrained by the location of individual my-
ocytes.

2.4 Adaptivity Criteria

Adaptivity criteria are used to determine which myocytes are to be resolved and
which are to be left unresolved. Our “feature-detection” criteria attempt to use the
higher resolution only near the action potential upstroke. The entire fiber length L is
broken into computational volumes of the macroscale grid spacing �xmacro, as de-
picted in Fig. 2C. A given macroscale computational volume is highly resolved if, at
any point inside that volume,

φ ≥ −60 mV, and (12)

∂tφ ≥ 0.1 mV/ms. (13)

Additionally, because action potential wavefronts travel from left to right in our sim-
ulations, the region of resolved cells is padded by a macroscale volume to the right of
all volumes identified for refinement by (12)–(13). Whenever a macroscale computa-
tional volume is designated for refinement, it is left refined for a time of at least 1 ms.
All other computational volumes are left at low resolution. These criteria are differ-
ent than those in Hand and Griffith (2010). The present ones more naturally select the
upstroke by basing selection on time derivatives, as opposed to space derivatives.

When a low-resolution region is selected to become high-resolution, potential and
gating variables are prolonged onto the new grid points by constant prolongation.
When a high-resolution region is selected to be low-resolution, the values are re-
stricted onto the macroscale node by simple averaging.

3 Discretization

We assume the length of the macroscale and microscale regions to be integer mul-
tiples of the macroscale grid spacing �xmacro. Resolved myocytes are broken into
an integer number of nodes of spacing �xmicro, which are half-offset from the cell
boundaries. They also contain a node at each cell boundary that is entirely contained
within the high-resolution region. Note that resolved cells may have different num-
bers of interior nodes because a coarse-fine interface can, in principle, intersect them
at any point inside. We only require that the interface intersect a cell at a multiple of
�xmicro from the cell’s ends. See Appendix A for the detailed discretization of the
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PDEs (1)–(11). In our simulations, we used a time step of �t = 5 · 10−4 ms for both
the microscale and macroscale regions.

4 Numerical Results

We performed several collections of simulations using the adaptive multiscale model
and its corresponding fully microscale analogue. In all cases, we considered a fiber of
length L = 10 cm composed primarily of identical cells with radius r = 11 · 10−4 cm
and length � = 10−2 cm. As depicted in Fig. 2, the leftmost and rightmost cells in
our model are “half cells” of length �/2. Because we will choose the macroscale
spacing to be an integer multiple of the cell width, the coarse-fine interface always
falls at the midpoint of resolved cells. See Table 1 for a full list of numerical val-
ues for the model parameters. In these simulations, we used the Fenton–Karma
simplification of the Luo–Rudy model (Fenton and Karma 1998). We allow pref-
erential excitability of end membranes by scaling the fast inward current in accor-
dance with a given fraction fNa of Na+ channels expressed on the ends of cells.
That is,

Iion,side(φ,ω) = (1 − fNa)(1 + 2α)Ifi(φ,ω) + Isi(φ,ω) + Iso(φ,ω), (14)

Iion,end(φ,ω) = fNa
1 + 2α

2α
Ifi(φ,ω) + Isi(φ,ω) + Iso(φ,ω), (15)

with α = A
S�

and with Ifi, Iso, and Isi denoting the fast inward, the slow inward,
and the slow outward currents of the Fenton–Karma model. Nonephaptic simulations
have uniform Na+ channel density, with fNa = 2α

1+2α
, whereas ephaptic simulations

have fNa = 1, as in Kucera et al. (2002). Note that the Fenton–Karma Luo–Rudy
model is a simplified ionic current model and does not, for example, explicitly de-
scribe Ca2+ current.

Initial conditions were set such that the leftmost region of width 10 ·� had potential
0 mV. As required by (4), all clefts were thus at 0 mV, and all gating variables and the
remaining potential variables were at resting values. Note that only half of the 11th
cell is initially excited because the leftmost cell has width �/2.

We define the location of a wavefront as the position where φ crosses −20 mV
with ∂tφ > 0. We define the location of recovery for the wave as the position where
φ crosses −20 mV with ∂tφ < 0. The speed of the activation wavefront and recovery
waveback were computed by linear regression.

We performed four sets of simulations. Each set of simulations included both
a fully microscale case, in which all cells were resolved, and a multiscale case,
in which only the regions selected by the adaptivity criteria were subject to the high-
resolution microscale model. In each case, the microscale grid spacing was �xmicro =
2.5 · 10−3 cm, whereas the macroscale grid spacing ranged from �xmacro =
2 · 10−2 cm to �xmacro = 100 · 10−2 cm. We assess the accuracy of the multi-
scale simulations by comparing them to results obtained from the fully microscale
model.



Empirical Study of an Adaptive Multiscale Model for Simulating 3079

The first set of simulations was meant to study the accuracy of the multiscale
model in the high gap-junctional coupling regime in the absence of ephaptic cou-
pling. In these simulations, gGJ was set at its nominal level of 666 mS/cm−2 (Kucera
et al. 2002); fNa was set so that the Na+ channel density is uniform, i.e., fNa = 2α

1+2α
,

and Rc = 0. The second set of simulations was meant to study the accuracy of the
multiscale model in the low gap-junctional coupling regime but in the absence of
ephaptic coupling. In these simulations, we took gGJ = 6.66 mS/cm−2, which is 1%
of its normal value, and set Rc = 0. The third set of simulations was similar to the
second set, except that it included ephaptic coupling by setting Rc = 8000 k	 and
fNa = 1. The final set of simulations was meant to examine the accuracy of the mul-
tiscale model in the purely ephaptic regime, for which gGJ = 0 mS/cm−2. Again, we
chose Rc = 8000 k	 and fNa = 1. We remark that in the case of purely ephaptic
conduction, in which there are no gap junctions, cells are coupled to neighbors only
in the highly resolved region of the multiscale model. Everywhere else, the dynamics
of the tissue are determined by spatially decoupled systems of ordinary differential
equations.

The choice of Rc = 8000 k	 was made because preliminary simulations (not
shown) revealed it to maximize approximately conduction speed in the low gap-
junctional, ephaptic case. Cleft-to-ground resistance can be related to cleft width
through the formula Rc = 1/8πσextwcleft, in which σext is the extracellular con-
ductivity (mS/cm), and wcleft is the cleft width (cm) (Kucera et al. 2002). Taking
σext = 6.67 mS/cm (Kucera et al. 2002), this formula implies that Rc = 8000 k	 cor-
responds to wcleft = 7 nm. This relationship between Rc and wcleft does not account
for the tortuosity of the cleft. Were it to do so, the corresponding wcleft value would
necessarily be larger.

Figures 3–6 show the activation wavefronts and recovery wavebacks for all four
sets of multiscale and macroscale simulations: high gap-junctional coupling in the
absence ephaptic coupling, low gap-junctional coupling in the absence of ephap-
tic coupling, low gap-junctional coupling in the presence of ephaptic coupling, and
purely ephaptic coupling in the absence of gap-junctional coupling. For all sets of
simulations, the action potential upstrokes of the adaptive multiscale model agree
with those of the underlying fully microscale models, even with �xmacro as large as
1 cm. Note that all simulations localize the high-resolution region exclusively within
a few multiples of �xmacro around the upstroke. The accuracy of the simulations with
�xmacro = 0.5 cm and 1 cm is seen to be parameter dependent. Specifically, these
values of �xmacro are most accurate in the high gap-junctional regime, for which the
length scale of the action potential downstroke is quite large. They are least accu-
rate in the low gap-junctional, nonephaptic case, in which the waveform is only a
few multiples of �xmacro. In the case of high gap-junctional coupling, observe that
the wave is much broader than the domain size. Nonetheless, the recovery phase is
accurately computed by the adaptive multiscale model. Figure 7 shows how the wave-
front speeds, waveback speeds, and spatial extent between upstroke and downstroke
depend on the value of �xmacro. All three of these quantities are mostly constant over
the broad range of �xmacro surveyed, indicating that macroscale grid spacings of up
to 1 cm may be used without substantially affecting the accuracy of the multiscale
model.
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Fig. 3 The intracellular potential at two different times for the high gap-junctional, nonephaptic simula-
tions with varying macroscale grid spacing. Panel A shows an upstroke, and panel B shows a recovery.
Note that myocytes are resolved only near the upstroke, which can be seen by the blur of gray circular
marks. In these simulations, gGJ = 666 mS/cm−2, Rc = 0, and �xmicro = 2.5 · 10−2 cm. The multiscale
models agree quite well with their corresponding microscale analogues for all sampled values of �xmacro

5 Discussion and Conclusion

The intentions of this article are twofold: (1) to provide a modified version of the
adaptive multiscale model of Hand and Griffith (2010) that will better general-
ize to three spatial dimensions, and (2) to demonstrate empirically that this multi-
scale model captures both the activation and recovery dynamics of its correspond-
ing purely microscale representation. The primary differences between the present
model and that of Hand and Griffith (2010) are in the interface conditions and the
arrangement of myocytes with respect to the macroscopically imposed grid. Sec-
ondary differences include the ionic model and the adaptivity criteria. We empiri-
cally study the effects of macroscale grid spacing on wavespeed and waveform for
a variety of parameter regimes. For a thorough analysis of the accuracy of the adap-
tive multiscale method as a function of gGJ and for a detailed comparison of the
adaptive multiscale model to its fully macroscale counterpart, see Hand and Grif-
fith (2010). Note, however, that unlike the present article, Hand and Griffith (2010)
did not consider the repolarization dynamics or the case of purely ephaptic conduc-
tion. Nonetheless, we note that the present model and that of Hand and Griffith
(2010) have comparable accuracy and computational cost. As the primary limita-
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Fig. 4 The intracellular potential at a single time for the low gap-junctional, nonephaptic simulations
with varying macroscale grid spacing. Note that myocytes are resolved only near the upstroke. While
the upstroke is only about four cells wide, it is resolved by about 24 nodes, as each cell contains 6 grid
points. In these simulations, gGJ = 6.66 mS/cm−2, Rc = 0, and �xmicro = 2.5 · 10−2 cm. There is visible
quantitative disagreement between the multiscale and microscale models only for �xmacro = 0.5 or 1 cm,
each a sizable fraction of the length scale of the action potential

Fig. 5 The intracellular (A) and cleft (B, C) potential at a single time for the low gap-junctional, ephaptic
simulations with varying macroscale grid spacing. Because cleft potentials in the low-resolution regions
are not explicitly modeled, panel B does not present them from multiscale simulations in those regions.
Panel C provides a magnification of panel B near the action potential upstroke. Panels A and B show that
myocytes are resolved only near the upstroke. In these simulations, gGJ = 6.66 mS/cm−2, Rc = 8000 k	,
and �xmicro = 2.5 · 10−2 cm. There is visible quantitative disagreement between the multiscale and mi-
croscale models only for �xmacro = 1 cm, a sizable fraction of the length scale of the action potential



3082 P.E. Hand, B.E. Griffith

Fig. 6 The intracellular (A) and cleft (B) potential at a single time for the zero gap-junctional, ephaptic
simulations with varying macroscale grid spacing. Because cleft potentials in the low-resolution regions
are not explicitly modeled, panel B does not present cleft potentials from multiscale simulations in those
regions. Panel C provides a magnification of panel B near the action potential upstroke. Panels A and B
show that myocytes are resolved only near the upstroke. In these simulations, gGJ = 0, Rc = 8000 k	, and
�xmicro = 2.5 ·10−2 cm. There is visible quantitative disagreement between the multiscale and microscale
models only for �xmacro = 1 cm, a sizable fraction of the length scale of the action potential

tion of the present model is its one-dimensionality, we emphasize throughout this
section the implications and challenges of two- and three-dimensional generaliza-
tions.

Our primary conclusion is that the modified one-dimensional multiscale method
accurately captures action potential wavespeeds and waveforms over a wide range of
gap-junctional coupling levels. Further, this conclusion holds in the presence or ab-
sence of an ephaptic coupling effect, including in the purely ephaptic regime in which
the model includes no gap-junctional coupling. We thus have replicated the work of
Hand and Griffith (2010) using different interface conditions, adaptivity criteria, and
ionic models. Moreover, we have extended these earlier results to demonstrate that
recovery is also accurately captured by the adaptive multiscale model, provided that
macroscale grid spacing is not too large relative to the spatial extent of the traveling
action potential. We remark that the waveforms of cleft potential are also accurately
recovered, even though they are only nonzero in the highly resolved regions. Thus,
this empirical study justifies the assumption that cleft potential can be ignored away
from wavefronts.

A second conclusion is that coincident boundaries of microscale myocytes and
the macroscale grid are not required by our multiscale method. This observation is
vital because realistic two- and three-dimensional simulations will have deformation,
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Fig. 7 Plots of wavespeed at upstroke (A), wavespeed at recovery (B), and wavewidth (C) for multiscale
simulations as a function of macroscale grid spacing. Each line is based on 6 simulations, depicted by
circles, for roughly logarithmically spaced values of �xmacro. There is little dependence of any of these
variables on �xmacro over the values surveyed

offset, and skewing of myocytes relative to any macroscopically imposed grid. The
most important feature of our model for this observation is the interface conditions
between the macroscale and the microscale. As mentioned in Sect. 2.3, the new inter-
face conditions do not focus on gap-junctional current, which only exists at the ends
of cells. Instead, they equate cytosolic potential and current, which exist throughout
the entire cell body. In particular, even if the end of a myocyte occurs at the boundary
of the high-resolution region, the cytosolic potential and current at the cell’s end are
well defined, and the interface conditions can be implemented as written. Addition-
ally, these less restrictive assumptions on myocyte geometry will facilitate studying
tissues with heterogeneity in cell length.

Much research is still needed to exploit the flexibility of microscale and macroscale
gridding in several dimensions. Specifically, simulations are needed to determine the
best way of describing resolved myocytes in two or three spatial dimensions. For
example, myocytes could be considered as genuinely two- or three-dimensional do-
mains over which Laplace’s equation is solved. Alternatively, they could be consid-
ered as coupled one-dimensional domains over which cable equations are solved. In
either case, the microscale grid would be locally aligned with the microscale cells, but
it need not be aligned with the macroscopically imposed grid. See Hand and Griffith
(2010) for a more complete description of these two possibilities.
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A third conclusion of this study is that macroscale grid spacing can be extremely
coarse without introducing significant errors in one-dimensional conduction speeds
or waveforms. The accuracy of the coarsest simulations in Figs. 3–7 suggests that
�xmacro can be chosen simply to ensure that there are approximately ten macroscopic
nodes across the entire action potential, regardless of the spatial extent of the action
potential upstroke. As a result, it may be possible to use a grid spacing of 0.1–1 cm
away from the upstroke. In contrast, fully-macroscale simulations must resolve the
upstroke, but they cannot use such coarse values of �xmacro in a uniform fashion.
We do not provide detailed timing results for our simulations because such results
are highly dependent on dimension and domain size. Even in one dimension, the
apparent gain in computational speed could be made quite large by choosing a long
enough domain.

Further simulations are needed to determine whether such large macroscale spac-
ings would yield acceptable accuracy in two- or three-dimensional models. If they
do, the computational burden of whole-heart simulations could be greatly reduced.
Currently, many such simulations use grid spacings around 100–250 µm in the tissue
bulk (Colli Franzone et al. 2006; Bordas et al. 2009; Keldermann et al. 2009). In three
spatial dimensions, this could correspond to a computational savings of many orders
of magnitude.

Another important development needed to generalize the current work to more re-
alistic settings is the inclusion of a bidomain formulation. As part of this formulation,
the cleft would need to be coupled to the extracellular space, possibly through a point
current injection. Such simulations may need to preferentially resolve extracellular
space around clefts. Alternatively, they may be able to have extracellular resolution
much less than intracellular resolution. For work developing a purely-microscale ver-
sion of such a generalization, see Lin and Keener (2010).

One limitation of the present study is the lack of a detailed, realistic ionic current
model. For example, the Fenton–Karma simplification does not explicitly describe
intracellular Ca2+ release. The present modeling framework may be generalized to
treat cellular models that include detailed descriptions of intracellular ion dynamics,
such as in Luo and Rudy (1994). At the microscale level, such details could be in-
cluded in either a distributed manner, by tracking one set of intracellular variables
per myocyte, or in a more detailed manner, by tracking one set of intracellular vari-
ables per microscale node. At the macroscale level, such details would be tracked
in a spatially averaged sense. Conservative restriction and prolongation procedures
would be used to transfer intracellular variables between macroscale and microscale
representations, as is currently done with the potential and gating variables. Such
simulations may even require higher resolution around regions away from the ac-
tion potential upstroke. In such a case the adaptivity condition would need to be
modified to select the new features of interest. In all of these scenarios, the mod-
ifications will likely be highly dependent on the particular model and application.
The specific constants may change in accordance with upstroke speed and conduc-
tion velocity, but we expect that adaptivity criteria will remain qualitatively similar
to (12)–(13). In any case, the interface conditions, (10)–(11), would hold as writ-
ten.
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As described in this paper, and as visible in Figs. 3–6, larger values of �xmacro

cause a much larger number of cells to be included in the high-resolution regions
near action potential upstrokes. Such large regions of resolved myocytes could be
quite computationally expensive and even unnecessary if, for example, the wavefront
is significantly smaller than �xmacro. In such a case, it may be useful to combine the
multiscale model adaptivity approach of this work with a more traditional macroscale
mesh adaptivity approach, in which the macroscale region of the computational do-
main would be described using an adaptively refined computational grid (Cherry et al.
2000, 2003; Colli Franzone et al. 2006). We leave a detailed investigation of this pos-
sibility as future work.
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Appendix A: Numerical Discretization

A.1 Spatial Discretization

Let Vi be the intracellular potential of the ith macroscale node, and let vj,k be the
intracellular potential of the kth node within the j th resolved myocyte, with k =
1, . . . , n. Let vj,1/2 and vj,n+1/2 represent the potential at the left and right ends
of the j th myocyte, respectively. For convenience, we introduce ghost values vj,0 :=
2vj,1/2 −vj,1 and vj,n+1 := 2vj,n+1/2 −vj,n. Similarly, let Wi be the gating variables
at the ith macroscale node, and let wj,k be the gating variables for the kth node of the
j th cell.

The semi-discretized microscale system is:

C
d

dt
vj,k = Aσcyt

S

vj,k−1 − 2vj,k + vj,k+1

�x2
micro

− Iion,side(vj,k,wj,k)

for 1 ≤ k ≤ n, (16)

C
d

dt
(vj,1/2 − vc,j−1) = σcyt

vj,1 − vj,1/2

�xmicro/2

− gGJ(vj,1/2 − vj−1,n+1/2)

− Iion,end(vj,1/2 − vc,j−1,wj,1/2), (17)

C
d

dt
(vj,n+1/2 − vc,j ) = σcyt

vi,j n − vj,n+1/2

�xmicro/2

− gGJ(vj,n+1/2 − vj+1,1/2)

− Iion,end(vj,n+1/2 − vc,j ,wj,n+1/2), (18)
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d

dt
wj,k = g(vj,k,wj,k) for 1 ≤ k ≤ n, (19)

d

dt
wj,1/2 = g(vj,1/2 − vc,j−1,wj,1/2), (20)

d

dt
wj,n+1/2 = g(vj,n+1/2 − vc,j ,wj,n+1/2), (21)

vc,j =
{

σcytRcA(
vj,n−vj,n+1/2

�xmicro/2 + vj+1,1−vj+1,1/2
�xmicro/2 ), or

0,
(22)

in which the top entry of the braces in (22) is used only if both biological cells ad-
jacent to the j th cleft are resolved. Equations (16)–(18) are second-order accurate
finite-volume discretizations of the PDE and boundary conditions (1)–(3).

The semi-discretized macroscale system is:

C
d

dt
Vi = 1

S� + 2A

�

�xmacro

(
Aσcyt

(
1 − 1

1 + κ

)
Vi−1 − 2Vi + Vi+1

�xmacro

)

− Iion(Vi,Wi), (23)

d

dt
Wi = g(Vi,Wi). (24)

This system is a second-order accurate finite-volume discretization of (8)–(9).
The interface conditions can be discretized to second order by introducing val-

ues at two additional ghost nodes, one at the macroscale and one at the microscale.
Let i∗ be the index of the low-resolution macroscale volume adjacent to the inter-
face. Let j∗ be the index of the resolved myocyte immediately adjacent to the inter-
face. Let k∗ be the index of the first resolved node within that myocyte. Note that
k∗ = 1 if the coarse-fine interface coincides with the cell’s left end and k∗ > 1 if
the interface intersects the coarse-fine interface within the cell interior. For concrete-
ness, we assume that the high-resolution region is on the right side of the coarse-fine
interface. We introduce the ghost values ̂Vi∗+1 and ̂vj∗,k∗−1, and we discretize
(10)–(11) as

̂Vi∗+1 + Vi∗

2
= vj∗,k∗ + ̂vj∗,k∗−1

2
, (25)

−
(

1 − 1

1 + κ

)
̂Vi∗+1 − Vi∗

�xmacro
= −vj∗,k∗ − ̂vj∗,k∗−1

�xmicro
, (26)

respectively. The ghost values ̂Vi∗+1 and ̂vj∗,k∗−1 are substituted for Vi∗+1 and
vj∗,k∗−1 in (16) and (23). Analogous equations hold at a coarse-fine interface for
which the high-resolution region is to the left of the low-resolution region.
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A.2 Temporal Discretization

A difficulty in numerically simulating (16)–(26) is that the second-order spatial
derivatives in (16) and (23) result in severe timestep size restrictions if treated ex-
plicitly, whereas the nonlinear ionic current terms are generally difficult to treat im-
plicitly. Hence, we use a second-order accurate Strang operator splitting. For a fixed
multiscale grid, we write our semi-discretized PDE system (16)–(26) in the form

d

dt
Ltrans V = Limp V + fexp(V , W ), (27)

d

dt
W = g(Ltrans V , W ), (28)

in which V is a column vector of the microscale and macroscale potentials, and W is
a column vector of the microscale and macroscale gating variables. Ltrans is a matrix
whose action on V returns the transmembrane potential of each node. Specifically, it
returns the cleft potential for interior nodes, and it returns the difference of the in-
tracellular potential from the cleft potential for boundary nodes. Note that Ltrans is
generally not a diagonal matrix. Thus, even if we were to treat (27)–(28) explicitly,
we would still need to solve a system of linear equations at each timestep. Limp is
a matrix that contains the nonionic terms related to gap-junctional and ephaptic cou-
pling, terms that are linear in V , and fexp is a nonlinear function of V and W that
contains only terms related to the transmembrane ionic current.

To determine the values of V and W at time t + �t given their values at time t ,
we perform the following computations: First, we evolve

d

dt
Ltrans V = fexp(V , W ), (29)

d

dt
W = g(Ltrans V , W ), (30)

over the time interval �t/2 using a second-order accurate, two-stage, explicit Runge–
Kutta method. Because Ltrans is not generally a diagonal matrix, this explicit solution
method generally requires the solution of a sparse linear system of equations. Then,
we evolve

d

dt
Ltrans V = Limp V , (31)

d

dt
W = 0, (32)

over the time interval �t using a second-order accurate Crank–Nicolson scheme. We
remark again that Ltrans is not generally a diagonal matrix. Consequently, even if we
were to treat (31) explicitly, we would still need to solve a sparse system of linear
equations when solving (31)–(32) during each timestep.

Finally, we evolve (29)–(30) again over the interval �t/2. The overall scheme is
second-order accurate in time.
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Appendix B: Parameters

Table 1 Table of the measurable and derived parameters that enter our adaptive macroscale simulations.
For ephaptic models, the cleft width is wcleft = 7 nm. Otherwise, for nonephaptic models, Rc = 0 and
φc = 0 mV, which correspond to a very large cleft width

Measurable Parameters

Symbol Parameter Value Reference

r radius of cell 11 · 10−4 cm (Kucera et al. 2002)

� length of cell 10−2 cm (Kucera et al. 2002)

σcyt cytosolic conductivity 6.67 mS cm−1 (Kucera et al. 2002)

σext extracellular conductivity 6.67 mS cm−1 (Kucera et al. 2002)

gGJ gap-junctional conductance per area 0–6.66 · 102 mS cm−2 (Kucera et al. 2002)

C membrane capacitance per area 1 µF cm−2 (Kucera et al. 2002)

Derived Parameters

Symbol Parameter Expression

A area of cross-section πr2

S circumference of cross-section 2πr

κ nondimensional gap-junctional conductivity �gGJ/σcyt

Rc cleft-to-ground resistance 1/8πσextwcleft
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