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Abstract Angiogenesis, the process of new vessel growth from pre-existing vascula-
ture, is crucial in many biological situations such as wound healing and embryogene-
sis. Angiogenesis is also a key regulator of pathogenesis in many clinically important
disease processes, for instance, solid tumour progression and ocular diseases. Over
the past 10–20 years, tumour-induced angiogenesis has received a lot of attention in
the mathematical modelling community and there have also been some attempts to
model angiogenesis during wound healing. However, there has been little modelling
work of vascular growth during normal development. In this paper, we describe an
in silico representation of the developing retinal vasculature in the mouse, using con-
tinuum mathematical models consisting of systems of partial differential equations.
The equations describe the migratory response of cells to growth factor gradients, the
evolution of the capillary blood vessel density, and of the growth factor concentra-
tion. Our approach is closely coupled to an associated experimental programme to
parameterise our model effectively and the simulations provide an excellent corre-
lation with in vivo experimental data. Future work and development of this model
will enable us to elucidate the impact of molecular cues upon vasculature develop-
ment and the implications for eye diseases such as diabetic retinopathy and neonatal
retinopathy of prematurity.
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1 Introduction

Angiogenesis is the dominant process of new blood vessel formation by which en-
dothelial cells sprout from an existing vasculature and form new (flowing) vessels.
This is a crucial process in embryogenesis, organ growth, and wound healing, gen-
erating a functional vascular network which matches the metabolic requirements of
the tissue. Angiogenesis is also a fundamental step in pathological situations such as
tumour development, arthritis, and ocular diseases including retinopathy of prematu-
rity, age-related macular degeneration, and diabetic retinopathy (Folkman 1995).

Tumour-induced angiogenesis has received a lot of attention in the mathematical
modelling community going back to the paper of Balding and McElwain (1985). The
modelling has focused on the role played by endothelial cells during the formation
of blood vessels. The models have typically considered the proliferation and the mi-
gration of endothelial cells in response to signalling cues. In particular, these models
have introduced soluble and diffusible angiogenic factors (such as VEGF) produced
by the cells of the tumour bulk and insoluble extracellular matrix macromolecules
(e.g. fibronectin). The interactions of the endothelial cells with angiogenic factors and
the macromolecules of the extracellular matrix can be described in a set of nonlinear
partial differential equations (PDEs). In these continuum models, the endothelial cells
migrate in response to signalling cues from a parent vessel, across and through the
extracellular matrix until they reach the solid tumour (Anderson and Chaplain 1998;
Orme and Chaplain 1997). In some models, a discrete element has been introduced
in order to describe the migration of individual endothelial cells and the formation of
individual blood vessels (Anderson and Chaplain 1998; Levine et al. 2001). To com-
plete the study, blood flow remodelling in a tumour-induced vascular network has
been also considered (Alarcon et al. 2003; Chaplain et al. 2006; Macklin et al. 2009;
McDougall et al. 2002, 2006; Stéphanou et al. 2005, 2006). More recently, Owen
et al. (2009) studied vascular remodelling during growth of normal and cancerous
tissues.

Angiogenesis during wound healing has been the subject of modelling investiga-
tions. Most models describe the formation of blood vessel after a wound by using
a system of PDEs. Xue et al. (2009) developed an 8 variable model incorporating
densities of macrophages, fibroblasts, endothelial tip cells and capillary sprouts, con-
centrations of angiogenic factors (PDGF and VEGF), and density of extracellular
matrix. Schugart et al. (2008) adopt a similar approach. Other models considered
further simplified systems. Olsen et al. (1997) proposed a 2 variable model in order
to investigate the roles of the extracellular matrix on the proliferative and migratory
response of endothelial cells. Gaffney et al. (2002) presented an other example of
a 2 constituent model which describes the passive motion of capillary sprouts fol-
lowing their leading tip cell. Some models additionally incorporated the chemotac-
tic response of endothelial cells to angiogenic factors (Byrne and Chaplain 1995;
Byrne et al. 2000; Chaplain 1995; Pettet et al. 1996a, 1996b) or oxygen (Flegg et al.
2009). Finally, recent work has examined the role of angiogenesis and its impact on
the oxygenation of tissue in tissue engineering, with implications for reconstructive
microsurgery (Matzavinos et al. 2009).

The angiogenic process involved during the formation of the retinal vascula-
ture network has been less well studied by the modelling community. However,
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elucidating how a complex retinal vascular plexus is formed is of utmost impor-
tance, since an abnormal vascular network formation is involved in eye diseases,
such as retinopathy of prematurity and diabetic retinopathy (Folkman 1995). The
formation of the retinal vascular plexus (RVP), similar to other developing organ sys-
tems, is mediated by Vascular Endothelial Growth Factor-A (herein termed VEGF)
which induces endothelial cell migration and division. Around birth in mice, en-
dothelial cells begin to migrate from the optic nerve chiasm over the surface of
the inner retina (Gerhardt et al. 2003; Fruttiger et al. 1996). VEGF is a major
chemotactic factor for endothelial cells in the retina, with VEGF inhibition pre-
venting endothelial cell migration and formation of the retinal plexus (Gerhardt
et al. 2003; Uemura et al. 2006). The formation of the endothelial cell network
is dependent on astrocytes which migrate from the region of the optic nerve in
advance of endothelial cells (Stone et al. 1995). Astrocytes guide the formation
of the retinal vascular plexus as they produce VEGF in the unvascularised retina
and provide a template over which endothelial cells migrate (Dorrell et al. 2002;
West et al. 2005). Astrocyte migration is further dependent on the presence of a
gradient of PDGF-A, produced by underlying retinal ganglion cells. The rate of
astrocyte migration in transgenic mice that constitutively express high levels of
PDGF-A in retinal ganglion cells is delayed, probably reflecting a loss of con-
centration gradient driven chemotaxis. Additionally, retinal ganglion cell-specific
PDGF over-expressing mice have a significantly denser astrocyte network, indicating
that astrocyte number is correlated to PDGF-A concentration (Fruttiger et al. 1996;
West et al. 2005). Murine astrocytic network formation begins shortly before birth
and growth of the superficial RVP begins on the day of birth (post-natal day 0), even-
tually covering the inner surface of the retina by post-natal day 8. In this study, we
correlate the rate of astrocyte and endothelial cell migration determined from in vivo
experiments in mice to the simulation results.

Our aim is to focus on physiological angiogenesis in the retina during the devel-
opment of the embryonic and neonatal mouse eye. We have developed a combined
mathematical and biological approach. This aims to investigate the roles of molecu-
lar cues on the developing plexus. The data generated from our in vivo experiments
are used to inform the mathematical modelling approach for model parameterisation
and validation purposes. We first focus on the formation of the superficial plexus. We
developed two mathematical models for the retinal vascular network. The first, basic
model is restricted to three equations describing the migration of endothelial tip cells
and the migratory response of the blood vessels, following the path created by the
tips. We also consider the evolution of VEGF concentration and its effect on tip mi-
gration. In the second model, we improved our basic model in order to consider the
migratory response of astrocytes to a gradient of PDGF and the secretion of VEGF by
hypoxic astrocytes. The computational simulation results of our model are compared
with experimental data.

2 In vivo Experimental Results

We quantified the extend of astrocyte and endothelial cell migration at various de-
velopmental stages during retinal vascular plexus (RVP) formation: from embryonic
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day (E)15.5 to post-natal day (P)8. The time of birth (P0) corresponds approximately
to E21.

C57BL/J6 mice were euthanised at various pre- and post-natal stages. Following
immediate enucleation and fixation of the globe, retinal whole mounts were prepared
as previously described in Gerhardt et al. (2003). In order to flat mount the spherical
retina on glass slides, 3–4 incisions toward the optic nerve were made. All animal pro-
cedures were approved by and conformed to UK Home Office Guidelines. The retina
were stained with the astrocytic nuceli marker rabbit anti-Pax2 antibody (Covance,
Leeds, UK) in order to detect astrocyte nuclei and with isolectin-B4 biotin-conjugate
(Griffonia simplicifolia [GSI-B4]: Sigma, Gillingham, UK) in order to detect en-
dothelial cells. Anti-rabbit Alexa-Fluor 488 and Streptavidin-conjugated Alexa-Fluor
633 antibodies (Invitrogen, Paisley, UK) were used as appropriate fluorophores. Im-
ages were captured using a SP5 confocal microscope (Lecia Microsystems GmbH,
Wetzlar, Germany).

Migration of astrocytes and endothelial cells were observed at E15.5, E18.5, P0,
P3, P5, and P8 (Figs. 1 and 2). Mean of the distance from the optic nerve to the
radial extent of astrocyte and endothelial cell migration was quantified using at least
4 samples at each developmental stage (Fig. 2). We also quantified the standard errors
of the mean (SEM). SEM is estimated by the sample standard deviation divided by
the square root of the sample size (n = 4–6 at each time point).

3 Mathematical Model

Our model describes the migration of endothelial cells in response to VEGF. We re-
strict our attention to one spatial dimension, in the direction of the line connecting the
centre of the optic nerve to the edge of the retina. We started from the model initially
developed by Gaffney et al. (2002) to describe the migration of the capillary tips and
the migratory response of blood vessels, dragged along the flux of the tips. We added
the evolution of VEGF concentration and its effect on tip migration as performed in
Schugart et al. (2008), Xue et al. (2009). We denote the averaged capillary tip den-
sity by n(x, t), the blood capillary density by b(x, t) and the VEGF concentration by
c(x, t) at position x and time t .

3.1 The Capillary Tip Density Equation

The conservation equation for the capillary tip density n is given by

∂n

∂t
= −∇.Jn + f (n, b), (1)

where Jn is the capillary tip flux and f (n, b) describes the tip kinetics.
We take the tip flux Jn to be:

Jn = −D1∇n − D2n∇b + χ0n∇c. (2)

The flux term reflects the assumption that the capillary tips migrate via a biased ran-
dom walk. The first term influencing the motion of capillary tips is random motility.
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Fig. 1 Murine retinal astrocyte migration and retinal vascular plexus formation. Typical confocal images
of Pax2 (astrocytes, red) and isolectin B4 (endothelial cells, green) immunostained retinal wholemounts
at various pre- and post-natal stages. 400× image showing Pax2 astrocytes are only located in the optic
nerve head at E15.5. 100× images illustrate astrocyte migration from the optic nerve head (arrow) at
E18.5 and P0 (arrowheads indicated Pax2 extent). Endothelial cell sprouting from the optic nerve begins
at P0, and a vascular plexus reaches the retinal edge by P8. At P3, isolectin B4 positive microglial cells
(arrow heads) and remnants of the embryonic hyaloid vasculature (arrow) can also be observed. At P3, the
plexus is dense and highly branched but by P5 defined arterioles and venules have formed, and significant
remodelling form a sparse network by P8

Fig. 2 Plot showing the in vivo
experimental measurement of
migration of astrocytes (in red)
and capillary tips (in green)
during formation of the
superficial retinal vascular
plexus as a function of time.
Distances were measured from
the centre of the optic nerve
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The bias is modelled by the two other terms. The first term −D2n∇b models the mi-
gration of capillary tips in the direction of decreasing blood capillary density (Gaffney
et al. 2002). It has been introduced to avoid migration of tips in regions which already
constrains blood vessels as it is never the case experimentally (data not shown). The
second bias term χ0n∇c represents the chemotactic response which leads to motion
in the direction of increasing VEGF concentration (Anderson and Chaplain 1998;
Pettet et al. 1996a).

We modelled the tip kinetics by the three contributions:

f (n, b) = λ2n − λ3n
2 − λ4nb. (3)

The first term describes the generation of new tips (tip branching) at a rate λ2. The
second term represents the formation of loops created by two capillary tips (tip-tip
anastomosis) at a rate λ3, while the last term describes the joining of a tip to a side
of a capillary (tip-capillary anastomosis) at a rate λ4 (Gaffney et al. 2002; Schugart
et al. 2008; Xue et al. 2009).

3.2 The Blood Capillary Density Equation

We assume that the blood vessels passively follow their leading tip as modelled in
Gaffney et al. (2002), Schugart et al. (2008), Xue et al. (2009). The blood vessels
are dragged along the flux of the capillary tips, moving in the same direction with a
velocity vb proportional to the capillary tip velocity: vb = h(n)vn. The proportional
coefficient h(n) depends on the density of capillary tips as the blood vessel velocity
vb should be small when the capillary tip density n is small. So h(n) is assumed to be
proportional to the capillary tip density n (Schugart et al. 2008). More precisely h(n)

is a non-dimensional parameter equal to the density of endothelial tip cells divided
by the initial density of blood vessels: h(n) = λ5n/b0 and vb = h(n)Jn/n = λ5Jn/b0.
Therefore, the relation between the flux of the blood capillary density Jb and the flux
of the capillary tips is given by

Jb = bvb = −λ5
b

b0
(D1∇n + D2n∇b − χ0n∇c) (4)

where λ5 is the (average) number of endothelial cells in a capillary tip (Gaffney et al.
2002).

The kinetics of blood capillaries are modelled by the three contributions used by
Gaffney et al. (2002):

g(n, b) = ν0b(b0 − b) + μ0nb(b1 − b) + λ5(λ3n
2 + λ4nb). (5)

The first term describes the proliferation of endothelial cells according to an or-
dinary logistic growth at a rate ν0 and a carrying capacity of b0. The second term
represents another contribution to the proliferation, at a rate proportional to the tip
density n with a carrying capacity of b1. The third term describes the contribution
from tip-tip and tip-capillary anastomoses to blood capillary density.
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3.3 The VEGF Concentration Equation

The VEGF concentration equation is given by

∂c

∂t
= λ1S(b)

︸ ︷︷ ︸

production

+ D3∇2c
︸ ︷︷ ︸

diffusion

− γ nc
︸︷︷︸

consumption

− ωc
︸︷︷︸

degradation

, (6)

where

S(b) =
{

1 − b/b̂, b ≤ b̂,

0, b > b̂.
(7)

The first term describes the production of VEGF according to the function S(b) simi-
lar to the one used by Maggelasis and Savakis (1996). VEGF production is controlled
by the density of blood vessel carrying oxygen. We assume that if there are no blood
vessels, the tissue is therefore hypoxic and will produce VEGF to attract capillary
tips. We also assume that when the density of blood capillaries is above a critical
level b̂, the oxygen concentration delivered by these capillaries will be high enough
to supply the oxygen demands of the tissue. Thus, VEGF production will be stopped.
Conversely, if the density of blood vessels falls below b̂, an increase in VEGF produc-
tion occurs. The second term represents the diffusion of VEGF into the surrounding
tissue with a coefficient D3. The binding of VEGF to tip receptors is modelled in the
third term. The last term describes the natural decay at a rate ω.

3.4 The Non-dimensionalised System

The dimensional system is therefore composed of the three equations:

∂n

∂t
= D1∇2n

︸ ︷︷ ︸

diffusion

+ D2∇(n∇b)
︸ ︷︷ ︸

movement away from capillaries

− χ0∇(n∇c)
︸ ︷︷ ︸

chemotaxis

+ f (n, b)
︸ ︷︷ ︸

kinetics

, (8)

∂b

∂t
= λ5

b0

[

D1∇(b∇n) + D2∇(bn∇b) − χ0∇(bn∇c)
]

︸ ︷︷ ︸

capillaries follow tips

+g(n, b)
︸ ︷︷ ︸

kinetics

, (9)

∂c

∂t
= λ1S(b)

︸ ︷︷ ︸

production

+ D3∇2c
︸ ︷︷ ︸

diffusion

− γ nc
︸︷︷︸

consumption

− ωc
︸︷︷︸

degradation

, (10)

where

f (n, b) = λ2n − λ3n
2 − λ4nb, (11)

g(n, b) = ν0b(b0 − b) + μ0nb(b1 − b) + λ5
(

λ3n
2 + λ4nb

)

, (12)

S(b) =
{

1 − b/b̂, b ≤ b̂,

0, b > b̂.
(13)
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We non-dimensionalise the system using the following scalings for the variables:

ñ = n

n0
, b̃ = b

b0
, c̃ = c

c0
, t̃ = t

T
, x̃ = x

x0
.

By omitting the tildes for clarity, we obtain the non-dimensional system:

∂n

∂t
= C1∇2n

︸ ︷︷ ︸

diffusion

+ C2∇(n∇b)
︸ ︷︷ ︸

movement away from capillaries

−χ∇(n∇c)
︸ ︷︷ ︸

chemotaxis

+f (n, b)
︸ ︷︷ ︸

kinetics

, (14)

∂b

∂t
= k5

[

C1∇(b∇n) + C2∇(bn∇b) − χ∇(bn∇c)
]

︸ ︷︷ ︸

capillaries follow tips

+g(n, b)
︸ ︷︷ ︸

kinetics

, (15)

∂c

∂t
= k1S(b)

︸ ︷︷ ︸

production

+C3∇2c
︸ ︷︷ ︸

diffusion

− ηnc
︸︷︷︸

consumption

− σc
︸︷︷︸

degradation

, (16)

where

f (n, b) = k2n − k3n
2 − k4nb, (17)

g(n, b) = νb(1 − b) + μnb

(

1 − b

β1

)

+ k5
(

k3n
2 + k4nb

)

, (18)

S(b) =
{

1 − b/β2, b ≤ β2,

0, b > β2,
(19)

where the non-dimensionalised parameters are:

C1 = D1T

x2
0

, C2 = D2T b0

x2
0

, C3 = D3T

x2
0

, χ = χ0T c0

x2
0

,

β1 = b1

b0
, β2 = b̂

b0
, k1 = λ1T

c0
, k2 = λ2T ,

k3 = λ3T n0, k4 = λ4T b0, k5 = λ5n0

b0
,

η = γ T n0, σ = ωT, ν = ν0T b0, μ = μ0T n0b1.

3.5 Parameter Values

The average radius from the centre of the optic nerve to the edge of the murine retina
is around 2200 µm (2221 ± 94 µm). We thus take the length scale x0 to be 2200 µm.
We assume that the domain goes from x = 0 to x = 1 with x = 0 defined as the centre
of the optic nerve and x = 1 the edge of the retina. The time scale T is taken to be
1 day = 86 400 seconds to match the experimental time scale.

Some of the parameter values can be estimated from the literature.
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In Anderson and Chaplain (1998), the authors use the value 10−10 cm2 s−1 for the
diffusion coefficient of capillary tips. This parameter value give the non-dimensional
value C1 = 1.8 × 10−4. In Gaffney et al. (2002), the authors choose to take C1 = C2.

In order to parameterise the value of the chemotactic coefficient Anderson and
Chaplain (1998) used the work of Stokes et al. (1990). The authors quantified the
chemotactic response of human micro-vessel endothelial cells to acidic fibroblast
growth factor (aFBF; now termed FGF1). The chemotactic coefficient χ0 was found
to be 2600 ± 750 cm2 s−1 M−1 (for an aFGF concentration of 10−10 M). This would
lead, in our model, to the non-dimensional value 0.33 < χ < 0.60.

As λ2 is defined to be the tip branching rate, we can assume k2 to be estimated
from the doubling time of tip cells. This is estimated in Gaffney et al. (2002) via
the typical doubling time of a proliferating cell (20–24 hours). They thus take k2 =
(24/20) ln 2 ≈ 0.83. The same value is used for k3.

Estimates for the diffusion coefficient of VEGF are in range 2.9 × 10−7 cm2 s−1–
5.9 × 10−6 cm2 s−1 (Anderson and Chaplain 1998; Bray 1992; Sherratt and Murray
1992). This yields the non-dimensional value 0.5 < C3 < 10.5.

For the following parameters, k4, k5 and β1, we used the values proposed by
Gaffney et al. (2002). Those values are estimated from biological data (Dyson et al.
1992) (β1 = 9.29) or to satisfy mathematical conditions (k4 = 0.85 and k5 = 0.25).

Some other parameters are difficult to estimate. Thus, in some cases, we made an
assumption regarding some parameter values (η, σ and β2) and we chose some others
in order to fit the experimental data (k1, ν and μ).

Likewise, the binding rate of VEGF to capillary tip receptors γ and the natural
decay ω are not known. However, the values of the corresponding non-dimensional
parameters have been estimated from the literature: η = 0.1 (Anderson and Chaplain
1998) in the case of a tumour-induced angiogenesis and σ = 0.5 (Maggelasis and
Savakis 1996) in the first attempt of capillary growth modelling in the retina. Thus,
we used the given parameter values.

The ratio β2 of the critical density of new blood vessels b̂ (density above which
the concentration of oxygen is high enough to supply the oxygen demands of the
tissue) compared to the normal density of blood vessel b0 has been chosen arbitrarily
(β2 = 0.3).

The production rate of VEGF λ1, which must be large enough to stimulate en-
dothelial migration and growth from the blood vessels and thus supply the oxygen
demands of the tissue, is extremely difficult to measure experimentally, especially in
in vivo conditions. Therefore, the corresponding non-dimensional parameter k1 will
be carefully estimated following a sensitivity analysis.

The non-dimensional blood vessel proliferation rates ν and μ has been chosen to
maintain a maximum value of the non-dimensional capillary density around 1.0.

3.6 Initial and Boundary Conditions

The initial conditions are defined for t = 0, corresponding to time of birth (P0).
At t = 0 the tip cells are located at the edge of the optic nerve (Fig. 1), around

260 µm from the geometric centre of the retina (262±44 µm). In our non-dimensional
system, it corresponds to x = α = 0.12. The capillary tip density has the form:

n(x, t = 0) = ninite
−(x−α)2/ε1, (20)
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Fig. 3 Plot showing the initial
profiles of capillary tip density
(in green), blood capillary
density (in red), and VEGF
concentration (in black) as a
function of the distance from the
centre of the optic nerve. The
grey area delimits the optic
nerve region

where ε1 = 10−3 and ninit = 0.25.
The blood capillaries are located behind the tip cells and the initial capillary den-

sity has the form:

b(x, t = 0) =
{

1, x ≤ α,

0, x > α.
(21)

We assume the presence of a VEGF gradient at time t = 0. The concentration
of VEGF is supposed to be equal to 1 at the right boundary corresponding to the
edge of the retina and decreases to reach its minimum value at the centre of the optic
nerve (left boundary). The profile of VEGF concentration is described by the initial
condition:

c(x, t = 0) = e−(1−x)2/ε2, (22)

where ε2 = 0.45.
The initial profiles are given in Fig. 3.
We assume that the density of blood vessel in the optic nerve should remain con-

stant. Whereas at the centre of the optic nerve, the density of capillary tips and the
concentration of VEGF (except at t = 0) should be negligible. Hence, the boundary
conditions at the centre of the optic nerve (x = 0) are

n(0, t) = 0, b(0, t) = 1, c(0, t) = 0 for t > 0,

∂n

∂x
(0, t) = ∂b

∂x
(0, t) = ∂n

∂x
(0, t) = 0,

At x = 1, the following no-flux boundary conditions are used:

∂x

∂t
(1, t) = ∂b

∂x
(1, t) = ∂n

∂x
(1, t) = 0,
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4 Computational Simulation Results

The simulations are performed in COMSOL Multiphysics (©1998–2010 COMSOL
AB) using the finite element method to solve the PDE system. The parameter values
used in the simulations (unless specified otherwise) are: C1 = C2 = 1.8×10−4, C3 =
10−2, χ = 0.133, k1 = 0.1, k2 = k3 = 0.83, k4 = 0.85, k5 = 0.25, η = 0.1, σ = 0.5,
ν = 1, μ = 5, β1 =9.29, β2 = 0.3.

4.1 Generic Profiles

The computational simulation profiles of the capillary tip density are shown in Fig. 4
for different time steps corresponding to P0, P1, P3, P5, and P8. It should be noted
that the capillary tips start to migrate at P0 from the edge of the optic nerve located at
α = 0.12, as discussed in Sect. 3.6 and shown in Fig. 1. By P8 the capillary tips have
migrated almost completely across the domain (Figs. 1 and 2). It is also important
to note that there is very little spreading of capillary tips. The bulk of cell density
retains a shape similar to the initial distribution. This is because the motion is largely
governed by chemotaxis with the small amount of random movement.

The solution of the complete system is shown in Fig. 5 at P8. A peak of capillary
tips (in green), closely followed by the blood vessels (in red), can be observed moving
through the domain representing the retina.

4.2 Chemotaxis Parameter

In order to examine the importance of chemotaxis in the model, we consider the
system for different values of the chemotactic coefficient χ (Fig. 6). The maximal
density of capillary tips is dependent on χ . By P3, the maximal density of capillary
tips reaches a position located around 0.395x0 ≈ 870 µm when χ = 0.1 whereas the
maximal density of capillary tips are more than half way through the domain (0.87 ≈
1920 µm) when χ = 0.4. As tip cells are approximately 860 µm (857 ± 117 µm)
across the retina in vivo by P3, Fig. 6 indicates that the correct value for χ is close
to 0.1. One can notice that a small change in the value of the chemotactic parameter

Fig. 4 Plot showing the
capillary tip density as a
function of the distance from the
centre of the optic nerve at P0,
P1, P3, P5, and P8. The grey
area delimits the optic nerve
region
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Fig. 5 Plot showing the
capillary tip density (in green),
blood capillary density (in red)
and VEGF concentration (in
black) as a function of the
distance from the centre of the
optic nerve at P8. The grey area
delimits the optic nerve region

Fig. 6 Plot showing the
capillary tip density as a
function of the distance from the
centre of the optic nerve at P3
for χ = 0.1 (solid line) and
χ = 0.4 (dashed line). The grey
area delimits the optic nerve
region

significantly affects the rate of migration, indicating chemotaxis is the major factor
governing capillary tip motion.

In Fig. 7, we further investigate the relationship between capillary tip speed and
chemotactic coefficient by determining the time needed for the maximal density of
capillaries to reach the position xt = 0.8x0 (≈ 1800 µm) for a range of chemotactic
parameter values. Experimentally, this observation takes place between P5 and P8
(Fig. 2) and more precisely between P7 and P8 (data not shown). The speed of the
tip cells depends strongly on the chemotactic coefficient which increases nonlinearly
with the chemotactic coefficient. The analysis presented allows us to produce an es-
timate for the value of the chemotactic coefficient: 0.115 < χ < 0.135. We thus find
that χ0 should range from 650 to 760 cm2 s−1 M−1.

This analysis reveals that the value of the chemotactic coefficient has been over-
estimated in Sect. 3.5. This is not surprising given that the experiments presented
in Stokes et al. (1990) were performed in vitro with a different kind of cells and an
other growth factor than the VEGF which is the focus of this investigation. Further-
more, our model is simplified and would need an extension in order to realistically
reproduce the migration of endothelial cells in the retina (cf. Sect. 6).
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Fig. 7 Plot showing the time to
reach x = 0.8x0 as a function of
the non-dimensional
chemotactic coefficient (χ )

Fig. 8 Plot showing the time to
reach x = 0.8x0 as a function of
the non-dimensional diffusion
coefficient of the capillary tip
cells (C1), if C2 = C1 (solid
line) and if C2 = 0 (dashed line)

5 Parameter Sensitivity Analysis

As discussed in the last subsection (Sect. 4.2) the migration of the capillary tips is
largely governed by chemotaxis. We now perform a parameter sensitivity analysis on
a set of selected parameters which can play a subordinate role in capillary tip migra-
tion by altering the values of the selected parameters and determining the time when
the maximal density of capillary tips reaches the position xt = 0.8x0 (≈ 1800 µm).
In vivo endothelial tip cells reach this position between P7 and P8.

From Fig. 8, we see that if the tip cells reach xt between P7 and P8, the non-
dimensional diffusion coefficient of the tip cells C1 must be smaller than 4.0 × 10−4.
To prevent significant spreading of the profile for the tip cells we thus keep D1 <

2.2 × 10−10 cm2 s−1.
Figure 9 reveals that rate of tip cells migration is correlated to the value of the

VEGF diffusion coefficient and a value of 0.010 < C3 < 0.025 fits the experimental
data. This value is 25 to 50 times smaller than the one expected in Sect. 3.5. The coef-
ficient diffusion of VEGF D3 may vary between 5.6 × 10−9 and 1.4 × 10−8 cm2 s−1.
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Fig. 9 Plot showing the time to
reach x = 0.8x0 as a function of
the non-dimensional diffusion
coefficient of VEGF (C3)

Fig. 10 Plot showing the time
to reach x = 0.8x0 as a function
of the non-dimensional
production rate of VEGF (k1)

From Fig. 10, we obtain the non-dimensional production rate of VEGF k1 which
should range from 0.08 to 0.10 in order to fit the in vivo observations. Therefore, λ1
may vary between 0.08c0 M/day and 0.1c0 M/day.

The simulation results presented in Fig. 11 indicate that the branching parameter
value should be between 0.5 and 0.9. The branching and anastomosis rates therefore
range from 5.8 × 10−6 to 10−5 s−1.

6 Model Extension

In this extension to the original model, we also consider another cell type, astrocytes,
and the growth factor which guides astrocyte migration, PDGF-A. In the embryonic
mouse eye, astrocytes emerge from the optic nerve region and start to migrate across
the inner surface of the retina in response to a chemotactic growth factor gradient of
PDGF-A (Fruttiger et al. 1996) between E15.5 and E18.5 (Fig. 1). It is important to
note that the migration of astrocytes begins before birth although the migration of
capillary tips and blood capillaries only begins shortly after birth (Fig. 1). We denote
the astrocyte non-dimensional density by a and the PDGF concentration by p.
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Fig. 11 Plot showing the time
to reach x = 0.8x0 as a function
of the branching and tip-tip
anastomosis rates (k2 = k3)

6.1 System of Partial Differential Equations

The non-dimensional system is as follows:

∂n

∂t
= C1∇2n

︸ ︷︷ ︸

diffusion

+ C2∇(n∇b)
︸ ︷︷ ︸

movement away from capillaries

− χ∇(n∇c)
︸ ︷︷ ︸

chemotaxis

+ f (n, b)
︸ ︷︷ ︸

kinetics

, (23)

∂b

∂t
= k5

[

C1∇(b∇n) + C2∇(bn∇b) − χ∇(bn∇c)
]

︸ ︷︷ ︸

capillaries follow tips

+g(n, b)
︸ ︷︷ ︸

kinetics

, (24)

∂c

∂t
= k1aS(b)

︸ ︷︷ ︸

production

+ C3∇2c
︸ ︷︷ ︸

diffusion

− ηnc
︸︷︷︸

consumption

− σc
︸︷︷︸

degradation

, (25)

∂a

∂t
= C4∇2a

︸ ︷︷ ︸

diffusion

− ψ∇(a∇p)
︸ ︷︷ ︸

chemotaxis

+ νaa(1 − a)
︸ ︷︷ ︸

kinetics

, (26)

∂p

∂t
= C5∇2p

︸ ︷︷ ︸

diffusion

− ηap
︸︷︷︸

kinetics

, (27)

where

f (n, b) = k2n − k3n
2 − k4nb, (28)

g(n, b) = νb(1 − b) + μnb

(

1 − b

β1

)

+ k6
(

k3n
2 + k4nb

)

, (29)

S(b) =
{

1 − b/β2, b ≤ β2,

0, b > β2.
(30)
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The dimensionless parameters previously defined remain the same except for:

k1 = λ1T a0

c0
.

Equations (23) and (24) are equivalent to the previous ones (14) and (15). In this
PDE system, the VEGF equation (25) is similar to the previous model equation (16),
except for the production term as VEGF production is now controlled by the astrocyte
density a.

As for the capillary tips, we model astrocyte migration via a biased random walk.
The random motility is described in the first term with a non-dimensional diffusion
coefficient C4. The bias is modelled by the second term, the chemotaxis migration
with a chemotactic coefficient ψ (motion in the direction of increasing PDGF con-
centration). The kinetic term reflects the proliferation of astrocytes according to an
ordinary logistic growth at a rate νa .

In this model, the PDGF-A is initially present in the retina (cf. Sect. 6.3), to reflect
the production of PDGF-A by ganglion cells and their precursors. PDGF-A diffuses
at a coefficient C5 and binds to astrocyte receptors at a rate νa .

6.2 Parameter Values

Most of the parameter values from the three-species model remain the same: C1 =
C2 = 1.8 × 10−4, C3 = 10−2, k1 = 0.1, k2 = k3 = 0.83, k4 = 0.85, k5 = 0.25, η =
0.1, σ = 0.5, ν = 1, μ = 5, β1 =9.29, β2 = 0.3.

Only the value of chemotactic coefficient to VEGF, χ , differs from its given value.
In our extended model, the non-dimensionalised chemotactic coefficient χ is greater
than the one used in the 3 PDE model (0.5 compared to 0.133). This is due to the dif-
ferent initial conditions of VEGF. In fact, in the first model, the capillary tip migration
starts with a pre-existing gradient of VEGF (Fig. 3) whereas in the extended model,
VEGF is only produced by the astrocytes as they migrate over the retina, presenting
a different VEGF profile (Fig. 13).

The newly added parameters, νa and ψ , have been chosen in order to fit the exper-
imental data. The non-dimensional production rate of astrocytes νa has been chosen
to maintain a density in the order of 1.0 when astrocytes are presents. Thus, we chose
νa = 0.5.

The value used for the PDGF chemotactic coefficient ψ used to guide astrocyte
migration seems to be small (ψ = 0.08). One could expect ψ to be almost equal to χ

in the three-species model, i.e. ψ = 0.133. This is explained by the fact that evolution
of PDGF is slightly different to the evolution of VEGF in the three-species model:
for simplicity, we do not consider PDGF degradation. Considering PDGF degradation
would lead to a decrease in PDGF concentration and in order to keep a similar rate of
astrocyte migration we would have to increase PDGF chemotactic coefficient.

6.3 Initial Conditions

We run our simulations from E17 (i.e. four days prior to the birth t0 = −4) to P8
(t = 8). The astrocyte density, the VEGF and PDGF concentrations start to evolve at
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t = t0 even though the capillary tips and the blood capillaries migrate from t = tC =
0.5 (corresponding to P0.5).

For t = [t0, tC], the capillary tip and blood capillary densities have the form:

n(x, t) = ninite
−(x−α)2/ε1, (31)

b(x, t) =
{

1, x ≤ α,

0, x > α,
(32)

where ε1 = 10−3, ninit = 0.25 and α = 0.12 (as defined in Sect. 3.6).
In this model, VEGF is only produced by astrocytes and is initially set to 0:

c(x, t0) = 0. (33)

The astrocytes are initially located in the optic nerve region and the astrocyte den-
sity profile has the form:

a(x, t0) =
{

1, x ≤ α,

0, x > α.
(34)

We assume the presence of a gradient of PDGF at time t = t0. The concentration
of PDGF is supposed to be equal to 1 at the right boundary corresponding to the
edge of the retina and decreases to reach its minimum value at the centre of the optic
nerve (left boundary). The profile of PDGF concentration is described by the initial
condition:

p(x, t0) = e−(1−x)2/ε2, (35)

where ε2 = 0.45.

6.4 Computational Simulations

The parameter values used in the simulations are: C1 = C2 = C4 = 1.8 × 10−4, C3 =
C5 = 10−2, χ = 0.5, ψ = 0.08, k1 = 0.1, k2 = k3 = 0.83, k4 = 0.85, k5 = 0.25,
η = 0.1, σ = 0.5, ν = 1, μ = 5, νa = 0.5, β1 =9.29, β2 = 0.3.

The computational simulation profiles of the astrocyte density are shown in Fig. 12
for different time steps corresponding to E17, E18.5, P0, P1, P3, P5, and P8. The
astrocytes start to migrate at E17 (t = t0) from the edge of the optic nerve located at
α = 0.12. Figure 12 shows that astrocytes have almost reached the edge of the domain
by P5. It is also important to note that there is very little spreading of capillary tips.

The density and concentration profiles are shown in Fig. 13 at time tC when the tip
cells and the blood vessels are assumed to start their migration. The main difference
for capillary tip and blood capillary evolution in this extended model is due to the
altered VEGF profile (dashed black line). This profile differs from the previous one
(cf. Fig. 3) as VEGF is now produced by astrocytes.

The solution of the astrocyte, tip cell and blood vessel densities are shown in
Fig. 14 at P5. Astrocytes (in black) migrate ahead of a peak of capillary tips (in
green), closely followed by the blood vessels (in red), moving through the domain
representing the retina.
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Fig. 12 Plot showing the
astrocyte density as a function
of the distance from the centre
of the optic nerve at time E17,
E18.5, P0, P1, P3, P5, and P8.
The grey area delimits the optic
nerve region

Fig. 13 Plot showing the
capillary tip density (in green),
blood capillary density (in red),
astrocyte density (in black),
VEGF concentration (dashed
black line), and PDGF
concentration (dotted black line)
as a function of the distance
from the centre of the optic
nerve at tC (P05). The grey area
delimits the optic nerve region

Fig. 14 Plot showing the
capillary tip density (in green),
blood capillary density (in red)
and astrocyte density (in black)
as a function of the distance
from the centre of the optic
nerve at P5. The grey area
delimits the optic nerve region
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Fig. 15 Plot showing a
comparison of experimental data
(circles with error bars) with the
simulations data (full lines) for
capillary tip (in red) and
astrocyte (in green) migration
during formation of the
superficial retinal vascular
plexus as a function of time.
Distances were measured from
the centre of the optic nerve

6.5 Comparison with Experimental Data

In Fig. 15, we show a comparison of the experimental data with the results obtained
from our simulations. The figure illustrates the migration of astrocytes and endothe-
lial cells as a function of time (from E18.5 to P8). In the computational simulations,
the astrocyte migration corresponds to the position where the astrocyte density is
equal to 0.5 and the capillary tip migration is estimated where the tip density is set to
its maximum. The errors bars in experimental data are the SEM. In the simulations,
the errors made by estimating the position of the cells is less than 10 µm (not shown
in the figure for clarity).

The simulation results match nicely the experimental data when astrocytes start to
migrate at E17 and the tip cells at P0.5.

7 Discussion

In this paper, we have presented a model using partial differential equations to repro-
duce the developing retinal vasculature in one spatial dimension. We compared the
computational simulation results of our five variable model incorporating capillary
tip density, blood vessel density, astrocyte density, VEGF concentration, and PDGF
concentration with experimental data. We showed that our model reproduces the ex-
tent and rate of endothelial tip cell and astrocyte migration in the murine eye. One can
note the presence of kinks and oscillations in the density of astrocytes, blood vessels,
and capillary tips. This reflect a persistence in history due to our initial conditions. We
do not consider these features as important fact as they do not change the positions
reached by the fastest endothelial cells and astrocytes, which are the only results that
we can compare to biological data at that time.

Our approach is a first step in order to investigate and model the key parameters
influencing the development of the retinal vasculature. We started our study with a
three-species model allowing us to change the parameter values and to perform a
complete sensitivity analysis. This model gives good results but the agreement with
the experimental data, albeit promising, is far from perfect. One of the major reasons
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is the simplification in VEGF production. This study has shown that the migration
of cells is largely governed by chemotaxis. Therefore, if the VEGF profile does not
exactly reflect the biological phenomenon happening in the developing retina, the
migration of the capillary tips will not be realistic enough. Without introducing the
astrocytes, it is difficult to set a profile for the concentration of VEGF and to model its
evolution as VEGF is produced by the developing astrocytic network. To be more re-
alistic, the initial VEGF profile in the three-species model should be similar to the one
obtain in the five-species model (considering the astrocyte migration). Unfortunately,
such a profile is impossible to determine without modelling the astrocyte migration
and proliferation. Therefore, we must take into account these cells and their dynamic
(stimulated by PDGF). Indeed, as can be seen from Fig. 15 the computational simu-
lation results from the full five-variable model provide an excellent correlation with
in vivo experimental data.

As chemotaxis plays a important role, it is crucial to determine the value of each
chemotactic coefficient. Once the non-dimenionalised chemotactic coefficient is de-
termined, estimated values of dimensional chemotactic coefficient χ0 can be estab-
lished. The latter is inversely proportional to the non-dimensionalisation parameter
c0. For example, in the three PDE system, we considered c0 as the initial concen-
tration of VEGF on the edge of the retina (right boundary). Unfortunately, it is im-
possible to experimentally determine the concentration of VEGF in vivo, making it
impossible to give an accurate value for c0 and in turn parameters depending on this
value such as χ0 and λ1 (and similarly for ψ0 which depends on PDGF concentration
p0). Nevertheless, this modelling approach provides a way in which such parameters
can be estimated.

We are aware that our model cannot generate the complete vascular structure but
nevertheless this system of PDEs allow us to highlight the most important parameters
responsible for the migration of the endothelial cells and the astrocytes.

We are currently expanding this work by creating a 2-dimensional hybrid model
of retinal vascular plexus development. This discrete model will provide further in-
formation on the role of the different cell types and chemotactic signalling factors
in the post-natal murine eye. Additionally this model will incorporate flow-mediated
remodelling events in order to recapitulated the vascular pruning observed during the
migration of the retinal vascular plexus.
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