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Abstract Agent-based modeling and simulation is a useful method to study biolog-
ical phenomena in a wide range of fields, from molecular biology to ecology. Since
there is currently no agreed-upon standard way to specify such models, it is not al-
ways easy to use published models. Also, since model descriptions are not usually
given in mathematical terms, it is difficult to bring mathematical analysis tools to
bear, so that models are typically studied through simulation. In order to address this
issue, Grimm et al. proposed a protocol for model specification, the so-called ODD
protocol, which provides a standard way to describe models. This paper proposes an
addition to the ODD protocol which allows the description of an agent-based model
as a dynamical system, which provides access to computational and theoretical tools
for its analysis. The mathematical framework is that of algebraic models, that is,

This work was supported by a grant from the US Army Research Office. The authors are grateful to
the National Institute for Mathematical and Biological Synthesis, which is sponsored by the National
Science Foundation, the US Department of Homeland Security, and the US Department of
Agriculture through NSF Award #EF-0832858, with additional support from The University of
Tennessee, Knoxville. We have benefited greatly from the workshop “Investigative Workshop on
Optimal Control and Optimization for Individual-based and Agent-based Models” held there in
December 2009. The authors are grateful to all the participants of this workshop for stimulating
discussions and insights. In particular, the authors thank Volker Grimm, Virginia Pasour, and
Grigoriy Blekherman for helpful comments on an earlier draft of the manuscript.

F. Hinkelmann · D. Murrugarra · R. Laubenbacher (�)
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061-0123, USA
e-mail: reinhard@vbi.vt.edu

F. Hinkelmann · D. Murrugarra · A.S. Jarrah · R. Laubenbacher
Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg,
VA 24061-0477, USA

A.S. Jarrah
Department of Mathematics and Statistics, American University of Sharjah,
Sharjah, United Arab Emirates

mailto:reinhard@vbi.vt.edu


1584 F. Hinkelmann et al.

time-discrete dynamical systems with algebraic structure. It is shown by way of sev-
eral examples how this mathematical specification can help with model analysis. This
mathematical framework can also accommodate other model types such as Boolean
networks and the more general logical models, as well as Petri nets.

Keywords Agent based models · Algebraic models

1 Introduction

The arsenal of modeling tools in mathematical biology has grown to include a spec-
trum of methods beyond the traditional and very successful continuous models with
the introduction of Boolean network models in the 1960s and the more general so-
called logical models in the 1980s (Thomas and D’Ari 1998). Since then, other meth-
ods have been added, in particular Petri nets (see, e.g., Hardy and Robillard 2004) as
models for metabolic and molecular regulatory networks. More recently, agent-based
or individual-based models, long popular in social science, have been used increas-
ingly in areas ranging from molecular to population biology. Discrete models such
as these have many useful features. Qualitative models of molecular networks such
as logical models, do not require kinetic parameters but can still provide information
about network dynamics and serve as tools for hypothesis generation. Agent-based
models can capture the fact that in some biological systems, such as a growing tumor,
system dynamics emerges from interactions at the local level, such as cell–cell inter-
actions in the case of a tumor. Discrete models also tend to be more intuitive than
models based on differential equations, so they have added appeal for researchers
without a strong mathematical background.

The flip side of the coin is the relative lack of mathematical analysis tools for
discrete models. While methods like bifurcation, sensitivity, and stability analysis
are available for differential equations models, the principal tool in the discrete case
is simulation. While this is very effective for small models, it becomes impossible
for larger models, since the size of the phase space is exponential in the number of
variables in the model. Thus, problems like the identification of steady states for a
Boolean network model becomes problematic once the model contains many more
than 20 or 30 nodes, unless one makes use of high performance computation capa-
bilities. An added complication is the heterogeneity of the different discrete model
types so that tools developed for one type are unlikely to apply to another one.

One possible approach to this problem is to find a mathematical framework that
is general enough so that most or all types of discrete models can be formulated
within this framework and is rich enough to provide practically useful theoretical
and computational tools for model analysis. This approach was taken in Veliz-Cuba
et al. (2010), where it was shown that any logical model and any k-bounded Petri net
can be translated into a time-discrete dynamical system over a finite state space. The
transition function can be described in terms of polynomial functions. This makes
model analysis amenable to the computational tools and theoretical results of com-
puter algebra, a theoretically rich area that has taken advantage in the last decade of
increasingly powerful symbolic computation capabilities. In this setting, the compu-
tation of steady states of a model, for instance, turns into the problem of solving a
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system of polynomial equations, for which there are several good software imple-
mentations. In this paper, we show that one can make a similar translation for many
agent-based models, thereby covering a large part of the discrete models available in
the literature. One added benefit of this common mathematical framework is that one
can use it to easily compare models of different types.

Many complex biological systems can be modeled effectively as multiagent sys-
tems in which the constituent entities (agents) interact with each other. For in-
stance, processes unfolding in a nonhomogeneous spatial environment can be mod-
eled in this way, or processes that are inherently discrete, such as individual im-
mune cells interacting with each other in a volume of tissues. Examples include
(Castiglione et al. 2007; Eubank et al. 2004; Pogson et al. 2006; Wang et al. 2009;
Pe’er et al. 2005). Often, the models include a large number of agents that can be in
one of finitely many different states and interact with each other and their environ-
ment based on a set of deterministic or stochastic rules. The global dynamics emerge
from the local interactions among the agents. The advantage of increased realism of
agent-based models (ABMs) is counter-balanced by the relative lack of mathematical
tools for their development and analysis.

One key obstacle is the lack of a formal description of ABMs in a way that makes
them amenable to mathematical tools for analysis and optimal control. An important
step in this direction is the work of Grimm et al., which provides a protocol for model
specification. In Grimm et al. (2006), the authors point out that agent or individual
based models are “more difficult to analyze, understand, and communicate” than tra-
ditional analytical models because they are not “formulated in the general language
of mathematics.” They proceed to develop the so-called ODD protocol for the spec-
ification of such models. The basic mathematical nature of many ABMs is that of
a time-discrete dynamical system on a finite state space (either deterministic or sto-
chastic). A state of the model can be specified as a vector of values, one for each
of the model variables. In addition, a function, either deterministic or stochastic, is
specified that transforms a given model state into another state. Model dynamics is
generated by iteration of this function. There are other model types, such as discrete
event simulations, that can also be viewed in this framework. Even hybrid models
that contain continuously varying quantities, such as temperature, can sometimes be
treated as discrete models in practice. The ODD protocol provides essentially a stan-
dard template for specifying the state space of the model and the update function.

Little is gained in terms of mathematical power by viewing an ABMs as a func-
tion from the set of states to itself, without any additional mathematical structure,
however. And it would still be difficult to verify, in many cases, whether the update
function has been specified completely and unambiguously, an important aim of the
ODD protocol. Both problems could be remedied by the introduction of additional
mathematical structure that provides access to mathematical tools and theoretical re-
sults, and which at the same time respects the fundamental property of ABMs that
global dynamics emerges from local interactions. And the additional mathematical
structure should be “benign,” in the sense that it introduces few or no mathematical
artifacts into the model properties, in particular its dynamics. Furthermore, it should
be computationally tractable, allowing easy model comparison, for instance. The ad-
dition of such structure to the ODD protocol in a way that takes a model specified
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in the current ODD protocol and translates it automatically into a mathematical ob-
ject would place little burden on the user, while giving access to mathematical tools.
In this paper, we propose such a mathematical structure and demonstrate its use via
some examples.

A natural way to approximate ABMs by state space models that are grounded in
a richer mathematical theory and satisfies the constraints discussed above is to con-
struct an algebraic model specification, that is, a discrete time, discrete state dynami-
cal system whose state space represents exactly the dynamic properties of the ABMs.
Algebraic models can be described by polynomial functions over finite fields, which
provides access to the rich algorithmic theory of computer algebra and the theoretical
foundation of algebraic geometry.

We demonstrate the added value that is gained from such a mathematical descrip-
tion through a collection of examples. The first example illustrates the fact that it is
easy to check by comparing polynomials whether two different implementations of
the same model are identical, using a published ABM of butterfly migration (Pe’er
et al. 2005). The second example consists of an epidemiological model in the form
of a cellular automaton. Here, one can use theoretical mathematical results to deter-
mine all periodic points of the model and their period without resorting to simulation.
Finally, we show how to compute all steady states of Conway’s Game of Life using
computer algebra algorithms for the solution of systems of polynomial equations. In a
forthcoming paper, we will illustrate the use of the mathematical framework proposed
here for the purpose of designing optimal control methods for agent-based models.

2 Algebraic Models

The basic idea underlying our approach is very similar to the idea that allowed geome-
ters to move from synthetic geometry to analytic geometry, namely the introduction
of a coordinate system. That is, we need to impose an algebraic structure of addition
and multiplication on the set of possible states of the model variables, so that we ob-
tain a field. (This assumption has long been made in the case of Boolean networks,
where the choice of underlying field is the Galois field F2 = {0,1}.) This is possible
whenever the number of states for a given variable is a power of a prime number.
In practice, it is easy to accomplish that all variables take values in the same finite
field F, either by choosing an appropriate number of levels for a given variable at the
outset or by introducing duplicates of one or more states. As with coordinate systems
on real-valued spaces, there will generally be several different choices that all lead
to equivalent outcomes. Once we choose such an algebraic structure F, then the set
function description of an ABM turns into a mapping between vector spaces over
the finite field F, which can be described in terms of polynomial coordinate func-
tions. We briefly describe this class of dynamical systems and then provide a detailed
description of how to translate an ABM specified in the ODD protocol into such a
polynomial dynamical system.

Let x1, . . . , xn be a collection of variables, which take values in F. The variables
represent the entities in the system being modeled and the elements of F represent all
possible variable states. Each variable xi has associated to it a “local update function”
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Fig. 1 The dependency graph
(left) and the state space P (f )

(right) of the polynomial
dynamical system in the above
example

fi : F
n → F, where “local” refers to the fact that fi takes inputs from the variables

in the “neighborhood” of xi . Here, “neighborhood” refers to an appropriately defined
directed graph encoding the variable dependencies. These functions assemble to a
dynamical system

f = (f1, . . . , fn) : F
n −→ F

n,

with the dynamics generated by iteration of f . Iteration can be performed by updating
the variables synchronously or asynchronously.

The dynamics of f is usually represented as a directed graph on the vertex set
F

n, called the state space of f . There is a directed edge from v ∈ F
n to u ∈ F

n if
and only if f (v) = u. It is easy to show (Lidl and Niederreiter 1997) that any local
function fi : F

n → F can be expressed as a polynomial in the variables x1, . . . , xn.
This observation has many useful consequences, since polynomial functions have
been studied extensively and many analytical tools are available.

We discuss a simple example. Let f : F
2
3 → F

2
3 be given by f (x1, x2) = (1 −

x1x2,1+2x2). The state space of f has two components, containing two limit cycles:
one of length two and one of length three. See Fig. 1 (right). The dependency relations
among the variables are encoded in the dependency graph in Fig. 1 (left).

It is discussed in Laubenbacher et al. (2009) that the framework of algebraic mod-
els is particularly suitable for the study of agent-based simulations, since many agent-
based simulations naturally map to this mathematical setting. Furthermore, it grounds
the investigation firmly in the mathematical fields of dynamical systems and polyno-
mial algebra, both of which provide a rich set of tools and concepts.

3 Polynomial Form of ODD Models

In Grimm et al. (2006), the authors propose a standard protocol, named ODD after its
key components Overview, Design concepts, and Details, for describing individual
based and agent-based models. The main motivation was to better enable the com-
munication of such models. They state: “We conclude that what we badly need is a
standard protocol for describing IBMs which combines two elements: (1) a general
structure for describing IBMs, thereby making a model’s description independent of
its specific structure, purpose and form of implementation [. . . ] and (2) the language
of mathematics, thereby clearly separating verbal considerations from a mathemat-
ical description of the equations, rules, and schedules that constitute the model.” In
this section, we address the second element and first review the key features of the
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ODD protocol, using the categories from Grimm et al. (2006). We will make two
assumptions on the models this section applies to.

• All state variables in the model are updated in discrete time steps, either explicitly
in the model or in the way state variable updates are computed.

• All state variables can take on only finitely many different states. (This includes
state variables that include probabilities, etc., since in practice these are represented
by only finitely many choices.)

While these assumptions exclude some models, they are satisfied for many ABMs
found in the literature. We next describe the different parts of an ODD model and
how they relate to algebraic models.

3.1 Purpose

This part contains a verbal description of the process the model is intended to capture
and the questions one hopes to answer using the model.

3.2 State Variables and Scales

The term “state variable” refers to the low-level variables that characterize the low-
level entities of the model, such as individuals or spatial entities. Another class of
variables to be considered are aggregated variables such as population size or av-
erage food density. These auxiliary variables contain information that is deduced
from low-level state variables. Thus, the state variables represent the fundamental
components of the system, the parts whose interactions create the whole. Aggregate
variables contain information about the system by aggregating information about the
state variables. State variables can be grouped according to type, e.g., individuals,
spatial state variables, etc.:

x1, . . . , xn;y1, . . . , ym; . . . ; z1, . . . , zr .

Each state variable x can take on values from a prescribed set X. For instance, an in-
dividual could be described by the state vector (age, sex, location), so that X consists
of a set of triples with a mixture of numerical and symbolic entries. A spatial loca-
tion y could be described by the state vector (number of cars occupying the location,
traffic flow), so that its state set Y contains a set of pairs with numerical entries. An
agent is described by a collection of state variables.

3.3 Process Overview and Scheduling

This part contains a verbal description of the specific processes to be captured by the
model. The scheduling aspect is very important for our purposes. Is time modeled
using discrete time steps, or continuous time, or both? Are there different time scales
involved, e.g., slow and fast, and which variables fall into which category? What is
the update order for the different state variables, synchronous or asynchronous, with a
fixed schedule or in random order? That is, the specification needs to give a complete
description of the update schedule for all state variables.
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3.4 Design Concepts

For our purposes, the important aspects addressed here are:

• Adaptation. Do the state variables change the way they interact with other state
variables, either individuals or spatial state variables, as a result of changes in their
environment? What are the environmental variables they sense? Do they have a
fitness objective that drives adaptation?

• Interaction. What are the dependencies of the state variables and what are the rules
for their update?

• Stochasticity. Do the state variables follow deterministic or stochastic rules to up-
date their state?

3.5 Input

It is necessary to specify all necessary inputs defining the state of all state variables
and for computing a state update for each variable.

3.6 Submodels

This part contains a detailed description of model equations and rules, as well as all
model parameters. It should also include a detailed justification for the choices made.

Mathematical specification. As Grimm et al. point out, the goal has to be to ob-
tain a model description that is complete and as mathematical as possible. We now
rephrase these features in a more mathematical way. The fundamental components of
the model are as follows.

• The state variables. We will denote these by x1, . . . , xn, without taking into ac-
count the different groupings based on domain-specific notions such as individual
or spatial entity, etc.

• Each state variable xi has a set of states Xi that it can be in. Thus, a state of the
model is given by an element of the Cartesian product X = X1 × · · · × Xn. Note
that for the purpose of mathematical specification it is not important that there are
different types of state variables. This information is implicit in their set of possible
states.

• Each state variable xi is assigned a finite collection of rules to update its state.
At each step, each state variable chooses a rule, either deterministically or sto-
chastically, which takes as input the states of all or some other state and environ-
mental variables, and assigns a new state to xi . The choice of rule might involve
aggregated variables and/or random choices. Note that this rule needs to provide
complete information about how to determine the new state, given any admissi-
ble input state of the state variable. For instance, a bacterium might have several
metabolic modes depending on the environment it finds itself in and the density
of other bacteria present. The update rule chosen will then depend on the relevant
environmental variables, and possibly others.

• We are given a complete specification of the order in which state variables are to
be updated. That is, to compute a new state of the model, we update some variables
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before others, some variables simultaneously, and for some variables we choose a
random update order. Different time scales can be implemented by updating faster
variables several times before updating slower ones.

Observe that each rule for the update of a state variable can be expressed as a
function fi : X → Xi . We can now assemble these components to represent the model
as a time discrete dynamical system

f = (f1, . . . , fn) : X −→ X,

with dynamics generated by iteration. We describe the most general case of models
that allow state variables to evolve and choose different update rules depending on
environmental conditions. In this case, each state variable xi has associated to it a
probability space Pi of rules/update functions fi : X → Xi , which represent its dif-
ferent “modes of action,” depending on the environment. The probability distribution
on Pi can be computed with information provided as part of the ODD. For instance,
a state variable may choose an update function based on the state of one or more ag-
gregated variables that describe its environment, such as food density, or the states of
other state variables in its environment. For a given model update, each state variable
chooses one update function from this probability space. The details of the construc-
tion can be found in Appendix A. The key step in the construction is the replacement
of each Xi with a finite field F, so that X = F

n.
The end result is that we can now describe the ABM as a dynamical system

f = (f1, . . . , fn) : F
n −→ F

n,

with all fi ∈ F[x1, . . . , xn] polynomials. So, what have we accomplished? Translat-
ing a model specified in the ODD protocol into a polynomial dynamical system has
several advantages:

• Models are stored in a unified mathematical way.
• Ambiguities in the verbal description and incomplete information can be detected

in the translation to an equation-based model.
• It is easy to implement an existing model and modify it.
• There exists a body of mathematical tools to analyze models, such as computing all

steady states, which amounts to solving a certain system of polynomial equations.
Also, there is a framework for optimal control in this context, which we describe
in a future paper.

• It is easy to compare models.
• It is easy to incorporate variables describing the global environment, such as tem-

perature, market price, pH value, as external parameters into the polynomial func-
tions.

It is also worth mentioning that the mathematical framework we have cre-
ated for ABMs in this way is “minimal,” in the sense that all we have done is
to impose a mathematical structure on the state space of the model. We have
not changed or approximated the rules used to update state variables, and we
have not changed the way in which the states of the model are updated. That is,
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we still have an exact representation of the ABM, but in precise mathematical
terms.

Polynomials are neither intuitive nor are they simple functions. But they provide
an exact representation of the dynamics of the model that is more compact than the
state space, which is not feasible to describe for most realistic models. Any com-
puter algebra system can be used to analyze a polynomial system, independent of a
particular software or implementation. The polynomials can be generated in an al-
most automatic way: we provide a simple script to generate the polynomials that
interpolates a given truth table (Hinkelmann 2010), and tables are easily generated
from the description of the model. We illustrate this process with an example of a
model specified in the ODD protocol, taken from the text book (Grimm and Rails-
back 2010).

4 Examples

We now show three examples, one of which demonstrates how to translate a model
specified in the ODD protocol to its algebraic representation, and the other two show
how the algebraic representation can be used to analyze the global dynamics of the
system without simulating it. We want to point out that these examples are meant as
“proof of concept” illustrative demonstrations. A deeper analysis of each of them to
show what the algebraic language can and cannot do is beyond the scope of this paper,
and for this purpose these examples might not be the best choices. The first model
was chosen because it is a key example in the expository book (Grimm and Railsback
2010). The second example affords an easy way to demonstrate how one might use
theoretical results about algebraic models for the purpose of analyzing dynamics of
models that are much too large to study thoroughly through simulation. And the third
example is a widely known cellular automaton that has rarely been studied from the
point of view of a dynamical system.

4.1 From ODD to Algebraic Model: Virtual Corridors of Butterflies

We demonstrate how to formulate the algebraic description for a model given in the
ODD protocol and show how this process provides guidelines to the modeler for
including all relevant details and formulating the model such that it is suitable for the
purpose it was built for. The example we use is a model analyzing the emergence of
virtual corridors in the movements of butterflies navigating a landscape based on an
elevation gradient (Pe’er et al. 2005). This model was used in Grimm and Railsback
(2010) as an example of how to specify an ABM in the ODD protocol.

We model the “hilltopping” behavior of butterflies, as they try to reach the highest
point in their spatial environment for mating. The model is initialized with 500 but-
terflies on a landscape discretized into 150 × 150 square patches. A butterfly moves
with probability q to the highest patch of its 8 surrounding patches, and it moves
randomly with probability 1 − q . Initially, all butterflies start out on the same patch,
and simulations are run for 1000 iterations.
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The purpose, see Sect. 3.1, of the model is to understand what conditions lead to
virtual corridors and how the uncertainty of butterflies to sense the elevation gradient
correctly affects these virtual corridors. This clearly stated purpose forces us to use
patches as agents, i.e., use a variable xi for each patch. Butterflies are the “acting
agents,” so they have to be represented as variables, also. Since the butterflies are
assumed to be homogeneous, the state of a butterfly only consists of its position. We
enumerate the patches so every state corresponds to a different position. Patches differ
by their elevation (which is fixed during a simulation) and the number of butterflies
on them. At the end of a simulation, one can compare the number of butterflies on
the patches to detect virtual corridors.

4.1.1 Algebraic Model

Each butterfly is a state variable, x1, . . . , x500, and so is each patch, x501, . . . , x23000,
we let x denote a state of the system, x = (x1, . . . , x23000). The state of a butter-
fly is its position (1, . . . ,22500), the state of a patch is the number of butterflies
on it (0, . . . ,500). We enumerate the patches and assume that an elevation map
of the modeled area is given. Updates are synchronous probabilistic updates with
fixed probabilities. From the elevation map we can create 9 different tables: the
first table assigns to every patch its most elevated neighbor, the remaining 8 tables
assign to every patch its north (north-east, east, south-east, . . . , north-west) neigh-
bor.

Since there are 22500 different states for a butterfly, and we want to work over an
algebraic field, we choose p = 22501, the next highest prime number, as described
in Appendix A. The algebraic model is then a system of equations over F22501.

The first table has two rows. The two entries in a column, labeled ai in the first
row and bi in the second row, for i ∈ {1, . . . ,22500} indicates that the patch adjacent
to ai with the highest elevation is bi . We generate the polynomial gj,1 that updates a
butterfly xj for j ∈ {1, . . . ,500} in the following way:

gj,1(x) =
22500∑

i=1

(
1 − (ai − xj )

p−1)bi .

Note that for all butterflies the polynomials gj,1 are the same because all butterflies
have exactly the same hilltopping strategy and ability. This function is generated as
follows. The state of a butterfly is equal to the number of the patch the butterfly is on.
Therefore, (ai − xj )

p−1 is equal to 1, except when xj = ai , i.e., the butterfly is on
patch ai , then it is 0. So (1 − (ai − xj )

p−1) is equal to 0, unless xj = ai , in which
case it is 1, and we multiply by bi . So, gj,1(x) interpolates the first table, it only
depends on the state of butterfly xj , not on the other butterflies or their distribution
over the patches. It is straightforward to generate gj,2(x), . . . , gj,9(x) for the remain-
ing 8 tables. If a butterfly detects the correct elevation with probability q , then the
probabilistic update function for butterfly xj is
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fj (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gj,1(x) with probability q,

gj,2(x) with probability 1−q
8 ,

gj,3(x) with probability 1−q
8 ,

gj,4(x) with probability 1−q
8 ,

gj,5(x) with probability 1−q
8 ,

gj,6(x) with probability 1−q
8 ,

gj,7(x) with probability 1−q
8 ,

gj,8(x) with probability 1−q
8 ,

gj,9(x) with probability 1−q
8 ,

where gj,i interpolates table i.
The functions for the state of the patches, fj , j ∈ {501, . . . ,23000}, are built the

following way:

fj (x) =
500∑

i=1

(
1 − (xi − j)p−1).

As before, each summand is 1 or 0, depending on whether xi is equal to j or not,
respectively. An increment of 1 is added to the state of patch j whenever a butterfly
xi is in state j , i.e., on patch j . The algebraic system that describes the complete
butterfly model is

f : F
500+22500
22501 → F

500+22500
22501 ,

(x1, . . . , x23000) �→ (
f1(x), . . . , f23000(x)

)
.

This example demonstrates how to formalize a model given in the ODD proto-
col as an algebraic model, which fully captures all details of the butterfly hilltop-
ping behavior. The algebraic framework also provides further advantages to the mod-
eler: algebraic equations eliminate any ambiguity inherent in verbal descriptions. The
functions are specified for all possible cases, some of which are often left out when
specifying a function verbally.

One benefit of this description is the ease of comparison of different model imple-
mentations. We illustrate this with an example. In the model description in Grimm
and Railsback (2010), a butterfly “moves uphill”, i.e., “to the neighbor patch that has
the highest elevation,” with probability q . But what if a butterfly is already on the
highest patch? All neighboring patches have a lower elevation, so any movement is a
downhill movement. Two different interpretations are possible:

1. If a butterfly is on the highest patch, it stays on the same patch with probability q ,
to not contradict the “move uphill” instruction.

2. Butterflies can always move, even if this means that “move uphill” is actually a
downhill movement.
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Clearly, these two interpretations lead to different update functions (which may or
may not affect the qualitative dynamics of the model). The difference in a verbal de-
scription or implementation might be hard to notice, but it is easy to see the difference
by comparing the resulting polynomials. Using standard computer algebra tools, the
terms of each polynomial are sorted in a unique way, and the complexity of the com-
parison of the individual terms is linear in the number of terms. Thus, formulated
as algebraic models, their difference becomes clear, a fact that otherwise might go
unnoticed and lead to discrepancies in model dynamics.

Questions about global dynamical behavior can now be formulated in terms of
solving systems of polynomial equations, which come naturally from the algebraic
model. Due to the large number of variables involved in the above example, the result-
ing polynomial systems can not be solved easily by direct computation on a standard
desktop computer with today’s methods and software. However, we believe that with
the advancement of algorithms and computational techniques, it will very soon be
possible to analyze such models with symbolic computation techniques.

Currently, there exist no feasible mathematical methods to analyze the dynamics
of general large stochastic models without iterating over the entire state space, i.e.,
simulating the system, in whatever format. However, it is possible in many cases to
approximate a stochastic model with a deterministic system that captures the main
dynamical features. Next, we show two examples where mathematical theory can be
used to analyze the dynamics of agent based systems.

4.2 Simple Infection Model

Consider the following model for the spread of an infection: agents are cells on a
square grid, every cell can be healthy or infected. Healthy cells are depicted in white,
infected cells in black. Figure 2(a) shows the layout of the grid with a cell and its four
neighbors. Here, we are considering the so-called von Neumann neighborhood of a
cell.

The system evolves according to the following rules: A cell acquires a healthy
state, if its four neighbors are healthy, otherwise infected. Figure 2(b) shows a ran-
domly infected grid and its state after one iteration.

This agent-based model can easily be translated into an algebraic model. Variables
represent the cells, healthy cells have state ON (1), infected cells are OFF (0). Since

Fig. 2 Infection model
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Fig. 3 Dependency graph for
infection model

there are two states for each variable, we choose F2 as base field. The update rule
is homogeneous for all cells, and for a cell x with neighbors y1, y2, y3, and y4 it is
given by

fx(y1, y2, y3, y4) = y1y2y3y4.

One easily sees that fx = 0, i.e., infected, unless all four neighbors are healthy (1).
The resulting polynomial dynamical system is a so-called conjunctive Boolean net-
work, as described in Jarrah et al. (2010). The dependency graph of this network is
shown in Fig. 3 and clearly consists of one strongly connected component, that is,
any node can be reached from any other node by a directed path. We briefly describe
one of the results in Jarrah et al. (2010) that applies here.

The loop number of a directed, strongly connected graph is defined as follows:
Choose a vertex (the loop number is independent of the vertex chosen) and consider
all directed loops at this vertex. The loop number is the greatest common divisor
of the lengths (number of edges) of all such loops (Jarrah et al. 2010). It is easily
seen that the infection model has loop number 2. Theorem 3.8 in Jarrah et al. (2010)
states that the length of any limit cycle of the system has to divide the loop number,
so that there are only steady states and limit cycles of period 2. Furthermore, the
theorem gives an example formula for the number of limit cycles of a given length
according to which the system has exactly two steady states and one limit cycle of
length 2, and no other limit cycles. The two states of periodicity 2 are shown in
Fig. 4. By the nature of the update rule the disease is fast spreading, a single infected
neighbor is sufficient for a cell to be infected. It is interesting and counterintuitive
that there is a limit cycle of length 2 with only half the cells infected. The basin of

attraction of this cycle for an n × n grid is of size 2
n2
2 +1 − 2, any combination of

at least half the cells being healthy and arranged as in Fig. 4. There are two obvious
steady states, given by all cells healthy or all cells infected. Although it might be easy
to find the two steady states and the limit cycle by studying the agent based model
and not its algebraic representation, one would still need to prove that these are the
only fixed points and that there is exactly one limit cycle of length 2, and no limit
cycles of greater length. Finding the fixed points for such a system by simulation is
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Fig. 4 Two states of
periodicity 2

computationally not feasible: on a 500 by 500 grid, there are 2250000 different states
in the state space that one would have to test.

The beauty of this algebraic model is that the theorem in Jarrah et al. (2010) applies
to an arbitrarily large finite grid. An elegant way of dealing with boundary cells is
to project the grid onto a torus by connecting the cells on the right edge to their
counterparts on the left edge, and similarly for the top and bottom cells.

4.3 Conway’s Game of Life

Our third example is Conway’s Game of Life (Gardner 1970), a 2-dimensional cellu-
lar automaton (CA), using the 8 neighbors of a cell, that is, the Moore neighborhood
of a cell, to compute the next state. While most ABMs are not in the form of a cellu-
lar automaton, Conway’s Game of Life has some of the same characteristics as many
ABMs. It is also interesting for our purpose in that it poses an interesting computa-
tional challenge for our framework. The rules of this CA have to cover many cases so
that the polynomials expressing the rules are very dense, containing almost all possi-
ble terms. This affects the computational complexity of the algorithms significantly.

Cells are in one of two states, either LIVE (1) or DEAD (0), with the following
behavioral rules:

1. Any live cell with fewer than two live neighbors dies, as if caused by underpopu-
lation.

2. Any live cell with more than three live neighbors dies, as if by overcrowding.
3. Any live cell with two or three live neighbors lives on to the next generation.
4. Any dead cell with exactly three live neighbors becomes a live cell.

Although the dynamics of the system are determined by very simple rules, the emerg-
ing patterns are fascinating and have been studied extensively. Questions that are nat-
ural to ask are what steady states or oscillators can occur. We will show how to answer
these questions by using an algebraic model of the Game of Life.

Naturally, the variables or agents in this system are the cells. There are only 2 pos-
sible states for an agent, DEAD or ALIVE. Therefore, we can describe its behavior
with polynomials over F2. Every agent x has 8 neighbors, x1, . . . , x8. The function
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fx that describes the transition of agent x, is

fx(x, x1, . . . , x8) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : ∑xi < 2,

0 : ∑xi = 2 and x = 0,

1 : ∑xi = 2 and x = 1,

1 : ∑xi = 3,

0 : ∑xi > 3.

For function fx in polynomial form, see Appendix B. The algebraic model for the
Game of Life is a system

f = (f1, . . . , fn×n) : F
n×n
2 −→ F

n×n
2 ,

xi �→ fi(x1, . . . , xn×n),

where n is the dimension of the square grid. To calculate all the fixed points, i.e., still
lives of this system, we solve the system of polynomial equations:

fi(x) − xi = 0, i = 1, . . . , n × n.

One can use a computer algebra system like Macaulay2 (Grayson and Stillman 2009)
to compute a Gröbner basis of the ideal that is generated by the equations for the fixed
points of the system, from which one obtains the fixed points.

For example, on a 4 × 4 grid with periodic boundary conditions, the fixed points
of the model are the solutions to the system

f1(x) = x1,

...

f16(x) = x16.

First, we compute a Groebner basis in lexicographic order for I = 〈f1(x) −
x1, . . . , f16(x) − x16〉 over the quotient ring F2[x1, . . . , x16]/J, where J = 〈x2

1 −
x1, . . . , x

2
16 − x16〉. From a factorization of the Gröbner basis, one can easily read off

the solutions. There are 53 fixed points.
One should remark that all fixed points can easily be found by updating every pos-

sible initialization and checking whether it is a fixed point. For a 4 × 4 grid, there
are only 216 = 65536 states, so finding all fixed points is no computational challenge
that would require computer algebra. As the grid increases, the complexity of this
brute force approach increases exponentially, whereas the number of variables and
equations increases linearly in the algebraic model. For example, for a 10 × 10 grid,
one has to check 2100 states. With the algebraic model though, one has to compute
a Gröbner basis in a ring with 100 indeterminates for an ideal with 100 generators.
Depending on the polynomials describing the update rules, this is a fast computation.
Admittedly, for the functions that describe the Game of Life, we were not able to com-
pute the solutions for a system with more than 16 variables, neither with Macaulay2
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(Grayson and Stillman 2009) nor Singular (Greuel et al. 2009). However, with the
rapid improvement of hardware and computer algebra software, solving the polyno-
mial system to analyze the dynamics will soon become feasible for larger grid sizes
and also faster than simulating every state which requires exhaustive enumeration of
the state space.

5 Discussion

At this time, there is no broadly agreed-upon mathematical framework which can
serve as a standard for the specification and analysis of agent-based models and which
preserves the key feature of this model type that global dynamics emerges from local
interactions. In this paper, we propose such a framework, which preserves all features
of agent-based models and provides access to mathematical analysis tools. It is con-
ceived as an extra step in the framework of the ODD protocol, which represents a first
step toward a standardized protocol for the specification of agent-based models. The
extra step can be automated, so that users do not need familiarity with the underlying
mathematical concepts. The mathematical framework is that of polynomial dynami-
cal systems over a finite field, which provides access to theoretical and computational
tools from computer algebra and discrete mathematics.

We have presented examples of how this extra step of model specification works in
practice, and we have presented examples of how the mathematical specification pro-
vides added value by allowing access to theoretical and computational tools for model
analysis. We emphasize that algebraic model specification is an addition to the ODD
protocol, not a replacement. The model must be explained in ODD to be understood
by others. An algebraic system is an additional resource that can be used to distribute
and reuse the model. It eliminates any ambiguity created by a verbal description, and
it is a compact format that can run on any system independent of software imple-
mentation, so parameters and rules are easily modified for further simulations. The
algebraic representation allows easy comparison between two models. The rigorous
mathematical language is another advantage of the framework, rich algorithmic the-
ory from computer algebra and the theoretical foundation of algebraic geometry are
available to analyze algebraic models. We are making available a basic tool to auto-
matically generate a polynomial from data in ODD (Hinkelmann 2010) to ease the
process of creating an algebraic model. Because of its many advantages, we hope
that modelers will extend their model description to the algebraic description and
store their models in a central location so that models can easily be found and reused.
The polynomial systems framework unifies the representation of three important dis-
crete model types: agent-based models, logical models (including Boolean network
models), and Petri net models, allowing direct comparison of different models.

The translation algorithm presented in this paper only applies to deterministic
agent-based models. And the algorithms in Veliz-Cuba et al. (2010) also deal only
with deterministic models. However, the majority of published ABMs in biology are
stochastic. Fortunately, there are stochastic versions of several of these model types
available on the mathematical side that can be used for the purpose of modeling
stochastic ABMs. The most suitable model type is that of probabilistic Boolean net-
works (Shmulevich et al. 2002), a multi-state generalization of Boolean networks that
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is stochastic in two ways: each node of the network has attached a probability space
of update functions rather than a single function and, secondly, the update order can
be stochastic. It is easy to represent these models in the polynomial dynamical system
framework, which we have done as part of our software package ADAM (Analysis
of Dynamic Algebraic Models), available at http://adam.vbi.vt.edu as a web service.

Finally, we comment on the computational complexity of the analysis of agent-
based models by the methods proposed in this paper. While a significant number of
published ABMs are well within the computational reach of our methods, there are
many ABMs that completely overwhelm them. This is of course similar to the situ-
ation for continuous models and parameter estimation methods, bifurcation analysis,
etc. There too, models are becoming too large to be analyzed by anything other than
more or less through simulation. For some ABMs, even simulation represents a chal-
lenge because of their size. In these cases, new methods for model reduction are the
only viable approach to a mathematical analysis, no matter what methods are avail-
able. For instance, in the case of a multi-scale ABM one possible approach might be
to construct phenomenological models for the higher scales that accurately model the
aggregate dynamics of the lower scales without explicitly representing these. This is
the subject of ongoing work by the authors.

Appendix A: Translation from ODD to Polynomial Model

Here, we describe the details of constructing a polynomial model from ABM infor-
mation stored in the ODD protocol format.

A.1 Update Schedule

The scheduling information provided allows the assembly of a complete update or-
der for all the state variables that need to be updated, possibly involving a mixture
of sequential, parallel, deterministic, and random updates of subgroups of the state
variables. The scheduling information can be assembled to a probability space P ,
which has as elements the set of words in the letters u1, . . . , un;v1, . . . , vn. Each word
uiujuk · · ·vavb · · ·uc · · · translates into an update order xixj xk · · · (xaxb · · · )xc · · · ,
which is to be interpreted as updating first xi, xj , xk, . . . sequentially in this order,
then updating xa, xb, xc, . . . in parallel, then update xc, . . . sequentially in this order,
etc. The probability distribution on the space P can be computed from the schedul-
ing information which indicates the variables to be updated randomly and with which
probability distribution. The resulting dynamical system will be denoted as

f = (P1, . . . ,Pn;P) : X −→ X.

At this point, we have described the dynamical system as a set function, which
is rather limiting. For instance, if we want to compare whether two such models are
identical, we need to evaluate both at all possible inputs and compare the outputs.
It would be useful if we could describe the function f via equations. Now, some-
times, the model specification will already be given to us in the form of equations or
mathematical functions. We now describe a procedure that allows us to represent f

http://adam.vbi.vt.edu
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by mathematical functions of a unified type, in all circumstances. This procedure is
analogous to the introduction of a Cartesian coordinate system to transition from syn-
thetic geometry to analytic geometry. The fundamental observation is the following.

A.1.1 Observation

Let F be a finite field, such as Z/p and let f : F
n → F be any function. Then there

exists a unique polynomial g ∈ F[x1, . . . , xn], such that each variable in g appears to
a power less than |F|, and f (a1, . . . , an) = g(a1, . . . , an) for all (a1, . . . , an) ∈ F

n.
Thus, in the case that all state variables take on states in the same state set, which

furthermore can be given the structure of a finite field, then the dynamical system
f : X → X above can be described via polynomials. This is in fact always possi-
ble, and we briefly outline the process. It is similar to a construction described in
detail in Veliz-Cuba et al. (2010). There we show how to translate a so-called log-
ical model into a polynomial dynamical system. Logical models are specified in a
way that is very similar to the rules for state variables in an ABM. First, consider
one state variable and suppose that one of its states is described by an r-tuple from
a set X1 × · · · × Xr . In each component Xi, we choose an element and duplicate it
enough times so that the number of elements in Xi becomes equal to the smallest
prime number that is greater than or equal to the orders of all the Xj . If Xi contains
ordered numerical values, for instance, say Xi = {1,2,3,4}, then we can add a state
4′ to obtain a set with 5 elements. After carrying this construction out for all Xi, we
have obtained a set X1 × · · · × Xr in which each component has the same number
of elements, equal to the power of a prime number p. It is now straightforward to
see that one can endow this set with a field structure so that it becomes isomorphic
to the Galois field Fpr . A similar construction can now be carried out to assure that
the order pr is the same for the Galois fields for all state variables. The end result is
that all state variables take values in the same finite field F. The last step is to extend
the update functions fi for each state variable to the larger state set. This is done by
assigning the same value to a new state as the state that was duplicated to obtain it.

Appendix B: Behavioral Rule in Polynomial Form

For a 4 by 4 grid, we obtain for agent x1 with neighbors x2 . . . , x9 the following
polynomial:
f = x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x7 ∗x8 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x7 ∗x9 +x1 ∗x2 ∗x3 ∗
x4 ∗x5 ∗x6 ∗x8 ∗x9 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x3 ∗x4 ∗x6 ∗x7 ∗x8 ∗
x9 +x1 ∗x2 ∗x3 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x4 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗x3 ∗
x4 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x7 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x8 +
x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x7 ∗x8 +x1 ∗x2 ∗x3 ∗x4 ∗x6 ∗x7 ∗x8 +x1 ∗x2 ∗x3 ∗x5 ∗x6 ∗x7 ∗
x8 +x1 ∗x2 ∗x4 ∗x5 ∗x6 ∗x7 ∗x8 +x1 ∗x3 ∗x4 ∗x5 ∗x6 ∗x7 ∗x8 +x2 ∗x3 ∗x4 ∗x5 ∗
x6 ∗x7 ∗x8 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x9 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x7 ∗x9 +x1 ∗x2 ∗x3 ∗
x4 ∗x6 ∗x7 ∗x9 +x1 ∗x2 ∗x3 ∗x5 ∗x6 ∗x7 ∗x9 +x1 ∗x2 ∗x4 ∗x5 ∗x6 ∗x7 ∗x9 +x1 ∗x3 ∗
x4 ∗x5 ∗x6 ∗x7 ∗x9 +x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x7 ∗x9 +x1 ∗x2 ∗x3 ∗x4 ∗x5 ∗x8 ∗x9 +x1 ∗
x2 ∗x3 ∗x4 ∗x6 ∗x8 ∗x9 +x1 ∗x2 ∗x3 ∗x5 ∗x6 ∗x8 ∗x9 +x1 ∗x2 ∗x4 ∗x5 ∗x6 ∗x8 ∗x9 +
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x1 ∗x3 ∗x4 ∗x5 ∗x6 ∗x8 ∗x9 +x2 ∗x3 ∗x4 ∗x5 ∗x6 ∗x8 ∗x9 +x1 ∗x2 ∗x3 ∗x4 ∗x7 ∗x8 ∗
x9 +x1 ∗x2 ∗x3 ∗x5 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x4 ∗x5 ∗x7 ∗x8 ∗x9 +x1 ∗x3 ∗x4 ∗x5 ∗x7 ∗
x8 ∗x9 +x2 ∗x3 ∗x4 ∗x5 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x3 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x4 ∗x6 ∗
x7 ∗x8 ∗x9 +x1 ∗x3 ∗x4 ∗x6 ∗x7 ∗x8 ∗x9 +x2 ∗x3 ∗x4 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x5 ∗
x6 ∗x7 ∗x8 ∗x9 +x1 ∗x3 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x2 ∗x3 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗x4 ∗
x5 ∗x6 ∗x7 ∗x8 ∗x9 +x2 ∗x4 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x3 ∗x4 ∗x5 ∗x6 ∗x7 ∗x8 ∗x9 +x1 ∗
x2 ∗x3 ∗x4 +x1 ∗x2 ∗x3 ∗x5 +x1 ∗x2 ∗x4 ∗x5 +x1 ∗x3 ∗x4 ∗x5 +x1 ∗x2 ∗x3 ∗x6 +
x1 ∗x2 ∗x4 ∗x6 +x1 ∗x3 ∗x4 ∗x6 +x1 ∗x2 ∗x5 ∗x6 +x1 ∗x3 ∗x5 ∗x6 +x1 ∗x4 ∗x5 ∗
x6 +x1 ∗x2 ∗x3 ∗x7 +x1 ∗x2 ∗x4 ∗x7 +x1 ∗x3 ∗x4 ∗x7 +x1 ∗x2 ∗x5 ∗x7 +x1 ∗x3 ∗
x5 ∗x7 +x1 ∗x4 ∗x5 ∗x7 +x1 ∗x2 ∗x6 ∗x7 +x1 ∗x3 ∗x6 ∗x7 +x1 ∗x4 ∗x6 ∗x7 +x1 ∗
x5 ∗x6 ∗x7 +x1 ∗x2 ∗x3 ∗x8 +x1 ∗x2 ∗x4 ∗x8 +x1 ∗x3 ∗x4 ∗x8 +x1 ∗x2 ∗x5 ∗x8 +
x1 ∗x3 ∗x5 ∗x8 +x1 ∗x4 ∗x5 ∗x8 +x1 ∗x2 ∗x6 ∗x8 +x1 ∗x3 ∗x6 ∗x8 +x1 ∗x4 ∗x6 ∗
x8 +x1 ∗x5 ∗x6 ∗x8 +x1 ∗x2 ∗x7 ∗x8 +x1 ∗x3 ∗x7 ∗x8 +x1 ∗x4 ∗x7 ∗x8 +x1 ∗x5 ∗
x7 ∗x8 +x1 ∗x6 ∗x7 ∗x8 +x1 ∗x2 ∗x3 ∗x9 +x1 ∗x2 ∗x4 ∗x9 +x1 ∗x3 ∗x4 ∗x9 +x1 ∗
x2 ∗x5 ∗x9 +x1 ∗x3 ∗x5 ∗x9 +x1 ∗x4 ∗x5 ∗x9 +x1 ∗x2 ∗x6 ∗x9 +x1 ∗x3 ∗x6 ∗x9 +
x1 ∗x4 ∗x6 ∗x9 +x1 ∗x5 ∗x6 ∗x9 +x1 ∗x2 ∗x7 ∗x9 +x1 ∗x3 ∗x7 ∗x9 +x1 ∗x4 ∗x7 ∗
x9 +x1 ∗x5 ∗x7 ∗x9 +x1 ∗x6 ∗x7 ∗x9 +x1 ∗x2 ∗x8 ∗x9 +x1 ∗x3 ∗x8 ∗x9 +x1 ∗x4 ∗
x8 ∗x9 +x1 ∗x5 ∗x8 ∗x9 +x1 ∗x6 ∗x8 ∗x9 +x1 ∗x7 ∗x8 ∗x9 +x1 ∗x2 ∗x3 +x1 ∗x2 ∗
x4 +x1 ∗x3 ∗x4 +x2 ∗x3 ∗x4 +x1 ∗x2 ∗x5 +x1 ∗x3 ∗x5 +x2 ∗x3 ∗x5 +x1 ∗x4 ∗x5 +
x2 ∗x4 ∗x5 +x3 ∗x4 ∗x5 +x1 ∗x2 ∗x6 +x1 ∗x3 ∗x6 +x2 ∗x3 ∗x6 +x1 ∗x4 ∗x6 +x2 ∗
x4 ∗x6 +x3 ∗x4 ∗x6 +x1 ∗x5 ∗x6 +x2 ∗x5 ∗x6 +x3 ∗x5 ∗x6 +x4 ∗x5 ∗x6 +x1 ∗x2 ∗
x7 +x1 ∗x3 ∗x7 +x2 ∗x3 ∗x7 +x1 ∗x4 ∗x7 +x2 ∗x4 ∗x7 +x3 ∗x4 ∗x7 +x1 ∗x5 ∗x7 +
x2 ∗x5 ∗x7 +x3 ∗x5 ∗x7 +x4 ∗x5 ∗x7 +x1 ∗x6 ∗x7 +x2 ∗x6 ∗x7 +x3 ∗x6 ∗x7 +x4 ∗
x6 ∗x7 +x5 ∗x6 ∗x7 +x1 ∗x2 ∗x8 +x1 ∗x3 ∗x8 +x2 ∗x3 ∗x8 +x1 ∗x4 ∗x8 +x2 ∗x4 ∗
x8 +x3 ∗x4 ∗x8 +x1 ∗x5 ∗x8 +x2 ∗x5 ∗x8 +x3 ∗x5 ∗x8 +x4 ∗x5 ∗x8 +x1 ∗x6 ∗x8 +
x2 ∗x6 ∗x8 +x3 ∗x6 ∗x8 +x4 ∗x6 ∗x8 +x5 ∗x6 ∗x8 +x1 ∗x7 ∗x8 +x2 ∗x7 ∗x8 +x3 ∗
x7 ∗x8 +x4 ∗x7 ∗x8 +x5 ∗x7 ∗x8 +x6 ∗x7 ∗x8 +x1 ∗x2 ∗x9 +x1 ∗x3 ∗x9 +x2 ∗x3 ∗
x9 +x1 ∗x4 ∗x9 +x2 ∗x4 ∗x9 +x3 ∗x4 ∗x9 +x1 ∗x5 ∗x9 +x2 ∗x5 ∗x9 +x3 ∗x5 ∗x9 +
x4 ∗x5 ∗x9 +x1 ∗x6 ∗x9 +x2 ∗x6 ∗x9 +x3 ∗x6 ∗x9 +x4 ∗x6 ∗x9 +x5 ∗x6 ∗x9 +x1 ∗
x7 ∗x9 +x2 ∗x7 ∗x9 +x3 ∗x7 ∗x9 +x4 ∗x7 ∗x9 +x5 ∗x7 ∗x9 +x6 ∗x7 ∗x9 +x1 ∗x8 ∗
x9 +x2 ∗x8 ∗x9 +x3 ∗x8 ∗x9 +x4 ∗x8 ∗x9 +x5 ∗x8 ∗x9 +x6 ∗x8 ∗x9 +x7 ∗x8 ∗x9.
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